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Abstract

Based on a set of subjects and a collection of attributes obtained from the Alzheimer’s Dis-

ease Neuroimaging Initiative database, we used redescription mining to find interpretable

rules revealing associations between those determinants that provide insights about the Alz-

heimer’s disease (AD). We extended the CLUS-RM redescription mining algorithm to a con-

straint-based redescription mining (CBRM) setting, which enables several modes of

targeted exploration of specific, user-constrained associations. Redescription mining

enabled finding specific constructs of clinical and biological attributes that describe many

groups of subjects of different size, homogeneity and levels of cognitive impairment. We

confirmed some previously known findings. However, in some instances, as with the attri-

butes: testosterone, ciliary neurotrophic factor, brain natriuretic peptide, Fas ligand, the

imaging attribute Spatial Pattern of Abnormalities for Recognition of Early AD, as well as the

levels of leptin and angiopoietin-2 in plasma, we corroborated previously debatable findings

or provided additional information about these variables and their association with AD patho-

genesis. Moreover, applying redescription mining on ADNI data resulted with the discovery

of one largely unknown attribute: the Pregnancy-Associated Protein-A (PAPP-A), which we

found highly associated with cognitive impairment in AD. Statistically significant correlations

(p� 0.01) were found between PAPP-A and clinical tests: Alzheimer’s Disease Assessment

Scale, Clinical Dementia Rating Sum of Boxes, Mini Mental State Examination, etc. The

high importance of this finding lies in the fact that PAPP-A is a metalloproteinase, known to

cleave insulin-like growth factor binding proteins. Since it also shares similar substrates with

A Disintegrin and the Metalloproteinase family of enzymes that act as α-secretase to physio-

logically cleave amyloid precursor protein (APP) in the non-amyloidogenic pathway, it could

be directly involved in the metabolism of APP very early during the disease course. There-

fore, further studies should investigate the role of PAPP-A in the development of AD more

thoroughly.

PLOS ONE | https://doi.org/10.1371/journal.pone.0187364 October 31, 2017 1 / 35

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: MihelčićM, Šimić G, Babić Leko M,
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Introduction

Alzheimer’s Disease (AD) is an irreversible neurodegenerative disease that results in progres-

sive deterioration of cognitive abilities and behavioural control due to synapse and neuron

loss. It is the most common cause of dementia among older adults. Although available medica-

tions for treatment of mild to moderate AD (donepezil, galantamine, and rivastigmine) and

severe AD (memantine) help to some level, these drugs do not modify the underlying disease

process.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) [1] aims to collect various imag-

ing and biomarker data, that could be potentially useful in diagnostics and treatment of AD.

The analysis of these data provides means to potentially extend our understanding of the dis-

ease, its impact on various functions of human comportment and cognitive functions, and

tracking its progression.

In this work, we analysed the data obtained from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database [1], containing clinical and biological measurements (listed in S1–

S3 Files and available at http://adni.loni.usc.edu/). These measurements are taken for a set of

subjects in order to test for presence of AD and the level of subjects’ cognitive impairment. We

divided the attributes in two main groups: clinical (clin) and biological (bio).

Clinical attributes have been obtained from numerous questionnaires and neuropsycholog-

ical instruments designed to test cognition and memory with the hope of early detection of

AD. These tests have been carefully designed, studied and regularly updated to increase the

detection of various forms of cognitive impairment. Many such tests exist [2], but there has

been no unique measure that can be used to reliably make the diagnosis [3]. Thus, combining

different tests has been shown to provide more reliable results. Biological attributes have con-

tained neuroimaging data of a number of methods to visualize brain activity, such as MRI and

PET scans, along with some related and derived scores. They have also contained biospeci-

mens: a number of blood tests and measurements, and information about the subjects’ genetic

markers (genetic data). These attributes have been generally considered less reliable, but are

still actively investigated with the aim to aid in the early detection of AD and to help under-

stand its complex genetic, epigenetic, and environmental landscapes.

Manual investigation of associations between attributes and analysis of their effects would

require insurmountable efforts, which prompted us to use a data mining technique called rede-

scription mining.

Work related to understanding cognitive impairment

Considerable work has been oriented towards understanding the role of biological or clinical

attributes, determining correlations between different attributes and assessing their predictive

power for determining the level of cognitive impairment.

Researchers have used neural imaging (MRI, PET, etc.) [4–6] to predict levels of cognitive

impairment. For example, Doraiswamy et al. [7] studied PET images of subjects with cognitive

decline. Donovan et al. [8] studied correlations between regional cortical thinning and worsen-

ing of apathy and hallucinations. Guo et al. [9] studied the effects of intracranial volume on

association between clinical disease progression and brain atrophy or apolipoprotein E geno-

type. Hostage et al. [10] studied the effects of apolipoprotein E (APOE alleles) ε4 and ε2 on

hippocampal volume. Other investigators have also studied the role of apolipoprotein E [11] in

early mild cognitive impairment. These are just a few samples of the huge set of studies of cor-

relations between biological, clinical attributes and the level of cognitive impairment. More

extensive list can be found at http://adni.loni.usc.edu/news-publications/publications/.
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Recently, Gamberger et al. used a multi-layer clustering method [12] to identify clusters of

AD patients with respect to several clinical and biological attributes [3]. The same method was

applied [13] to detect differences between clusters containing male and female patients. Bresk-

var et al. used Predictive Clustering Trees (PCTs) [14] to discover and analyse patient clusters.

They focused on relations between biological features and the progression of AD by observing

behavioural response of patients and their study partners (persons who are in frequent contact

with the patient, study with the patient, and are able to assess the patient’s functioning in daily

life).

Redescription mining and related fields

In this section, we provide background information related to redescription mining and moti-

vate its choice as a data mining technique used in our work.

The most open-ended, unsupervised data-mining technique, clustering [15–19] finds and

groups similar instances based on a predefined similarity measure. It is used when underlying

and possibly interesting natural grouping is unavailable, but also to reveal new groups that

were previously unknown. Clustering techniques typically do not create interpretable models

of data, so one has to apply other technique in order to get interpretable descriptions of

induced clustering. One such approach, limited to using a single attribute set, is conceptual

clustering [20, 21] that aims at finding clusters that can be described with concepts derived by

using some description language.

There exists a broad group of descriptive pattern mining techniques that find and describe

subsets of examples using single attribute set or view.

For example, association rule mining [22] finds associations between items (in transaction

databases) or different attributes in the form of unidirectional rules. Interesting associations

are typically selected based on support and confidence scores of association rules and possibly

some other interestingness measures.

Subgroup discovery [23, 24] is a technique that finds queries describing groups of instances

having unusual and interesting statistical properties with respect to the target variable. Con-

trast Set Mining [25] identifies monotone conjunctive queries that best discriminate between

instances containing one target class from all other instances (e.g. subjects with diagnosis Alz-

heimer’s Disease (AD) vs Control (CN) subjects).

In contrast to techniques operating on a single set of attributes, multi-view techniques offer

advantages when the available data contains information from various sources or descriptions

of different properties of instances (as is the case in this study).

Two-view data association discovery [26] aims at finding a small, non—redundant set of

associations that provide insight in how two views are related. The approach can create both

bidirectional and unidirectional rules as translation patterns.

Redescription mining, introduced by Ramakrishnan et al. [27], is capable of mining

descriptions of subsets of data described by multiple sets of attributes. The building blocks of

redescriptions are called queries (logical formulas describing a set of instances by using attri-

butes from some particular view). Redescription queries can describe the same or very similar

subset of instances with different queries, which is an important capability in the context of

knowledge discovery.

Rationale for using redescription mining

Redescription mining offers advantages over related techniques and provides specific results

required for our analysis. The multi-view and descriptive capabilities of redescription mining

make it suitable for relating different biological attributes, many with unknown or scarcely
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explored role and effects on cognitive impairment, to clinical attributes designed to detect cog-

nitive impairment and make the preliminary diagnosis.

Although a two-view data association discovery approach can be applied to this data, we

aimed at discovering interesting equivalence-like associations between biological and clinical

attributes on different support levels and validating them with the subjects diagnosis, that is

possible with redescription mining. Two-view association discovery is also somewhat limited

as it is designed to mine Boolean data and to provide small and non-redundant sets of associa-

tions (translations) between different attribute sets. In our discovery study we aim to create,

potentially larger number, of understandable redescriptions that would be used as a basis for

the thorough statistical analyses and the analysis performed by the domain expert.

Similar data and attributes, related to AD, have been studied before [3, 13, 14, 28]. However,

this study is focussed on the analysis of the ADNI data using redescription mining, which

enables using its specific advantages over other approaches to find potentially new insights and

improve our understanding of the genesis of AD.

Materials and methods

This section contains descriptions of data, notation and related redescription mining

approaches, CLUS-RM algorithm [29, 30] and the motivation for its use in this work. It

includes description of algorithmic extensions incorporated into CLUS-RM that enable fully

automated constraint-based redescription mining, where we generalize the attribute and

instance level constraints introduced by Zaki and Ramakrishnan [31].

Data description

For this study, we extracted data from the ADNI database [1]. To obtain the data, we used the

Merged ADNI 1/GO/2 Packages for R [32] located in study info section of the download data

page in the database. This package contains majority of available datasets in the format of R

data frames. The basis of our datasets was contained in the adnimerge data table, which con-

tains measurement of several clinical attributes (derived by using questionnaires, observations

by doctors and other tests measuring level of cognition) and biological attributes (different

blood tests, genetic markers, attributes derived from brain images, volumes of different parts

of the brain etc.) for 1,737 subjects. There was also a target variable—diagnosis (not used for

redescription construction) containing categorical values: control normal (CN), significant

memory concern (SMC), early mild cognitive impairment (EMCI), late mild cognitive

impairment (LMCI) and probable AD. Values of a target variable can be considered as ordered

(levels of cognitive impairment). Each subject was assigned in exactly one category and there

were no missing values for this variable. By examining the subjects contained in the adnimerge

data table, we have noticed two distinct groups of subjects for whom some additional distinct

attributes were measured. Therefore, we created and studied three related datasets.

The distributions of patients, divided by the level of cognitive impairment, for all three

datasets are provided in Table 1.

Division of attributes to clinical (clin) and biological (bio) forms two disjoint sets of attri-

butes used as views in redescription mining. In all datasets, subjects or patients constitute the

instances for the redescription mining process.

Table 2 contains full names and abbreviations for all attributes required to present our

work, while Tables 3 and 4 contain corresponding basic statistical information for these attri-

butes. Due to data normalization (especially of biological attributes), the original measuring

units do not correspond to the attribute values and are not specified in the tables.
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The first dataset (D1) contained 1,737 subjects. The dataset contained a number of biologi-

cal attributes such as APOE genotype, different brain measurements, such as the volume of the

whole brain, the hippocampus, ventricles, and many other structures, including brain images

obtained by using the 18fluorodeoxyglucose (FDG)-PET method. The dataset contained vari-

ous blood analysis, such as levels of white and red blood cells, protein (RCT12) and glucose

(RCT11) levels, and many others. It also contained a number of neuropsychological tests, such

as the Alzheimer Disease Assessment Scale (ADAS11, ADAS13, etc.), several different Rey

Auditory Verbal Learning Tests (RAVLT), Mini-Mental State Examination (MMSE), Func-

tional Assessment Questionnaire (FAQ), and others, including several attributes related to

clinical dementia rating (CDR) and geriatric depression scale (GDS). Several features describ-

ing the subject’s symptoms, such as presence of nausea (BCNAUSEA), vomiting (BCVOMIT),

Table 1. The number of subjects contained in datasets D1, D2 and D3 divided by the level of cognitive impairment.

Dataset Total CN SMC EMCI LMCI AD

D1 1737 417 106 310 562 342

D2 918 188 106 310 164 150

D3 820 229 0 1 398 193

https://doi.org/10.1371/journal.pone.0187364.t001

Table 2. A list of clinical and biological attributes discussed in the text.

Attribute (bio) Full name Attribute (bio) Full name

Aβ1−40 Plasma biomarker Aβ1−40 ICV Intracranial volume

Aβ1−42 Plasma biomarker Aβ1−42 Insulin Insulin

ANG2 Angiopoietin-2 Leptin Leptin

APAII Apolipoprotein A-II MCRPHMIF Macrophage migration inhibitory factor

APOB Apolipoprotein B PAPP-A Pregnancy associated plasma protein A/ pappalysin-1

APOE ε4 Gene APOE ε4 PLMNRARC Pulmonary and activation-regulated chemo

AV45 18F-florbetapir PPP Pancreatic polypeptide

BAT126 Level of vitamin B12 PTAU Phospho-tau protein

BNP Brain natriuretic peptide RCT11 Serum glucose

CKMB Creatine kinase level RCT12 Total protein

CNTF Ciliary neurotrophic factor RCT14 Creatine kinase

Entorhinal Entorhinal cortex volume SPARE_AD Spatial Pattern of Abnormalities for Recognition of Early AD

FASL Fas ligand T2TCV T2 weighted total intracranial volume

FDG-PET 18fluorodeoxyglucose—positron emission tomography TAU Tau protein

Fusiform Volume of the fusiform gyrus TNC Tenascin-C

Hippocampus Hippocampus volume TSTSTRNT Total blood testosterone

HMT8 Neutrophils Ventricles Volume of the lateral ventricles

HMT18 Eosinophils WholeBrain Whole brain volume

Attribute (clin) Full name Attribute (clin) Full name

ADAS11 11-item ADAS test score CDRSB Clinical Dementia Rating Sum of Boxes

ADAS13 13-item ADAS test score EcogPtPlan Participant everyday cognition planning

BCNAUSEA Presence of nausea FAQ Functional Assessment Questionnaire

BCSWEATN Presence of sweating MMSE Mini-Mental State Examination

BCVOMIT Presence of vomiting MOCA Montreal Cognitive Assessment

CDGLOBAL Global cognitive dementia rating Q13SCORE Question 13 from the ADAS test

CDJUDGE Judgement and problem solving score RAVLT Rey Auditory Verbal Learning Test immediate

CDMEMORY Memory score

https://doi.org/10.1371/journal.pone.0187364.t002
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sweating (BCSWEATN), as well as results of various neurological examinations were also

included. Information about attributes and subjects contained in D1 are available in S1 File.

The second dataset (D2) contained 918 subjects. In addition to features contained in the

first dataset, it also contained features describing subjects’ performance on Montreal Cognitive

Assessment (MOCA) scale and features related to the Eastern Cooperative Oncology Group

(ECOG) Scale of Performance Status. It also contained values of cerebrospinal fluid (CSF),

total tau (TAU) and phospho-tau (PTAU) levels. Information about attributes and subjects

contained in D2 are available in S2 File.

Table 3. Information about value range and percentage of missing values for biological attributes discussed in the text. Absence of an attribute from

a dataset is denoted with “-” in the range and missing columns.

Attribute D1 D2 D3

Range Missing Range Missing Range Missing

APOE ε4 {0, 1, 2} 1% {0, 1, 2} 2% {0, 1, 2} 0%

BAT126 [96, 6725] 12% [96, 6725] 15% [99, 3429] 8%

Entorhinal [1426, 5896] 16% [1438, 5896] 13% [1426, 5731] 39%

Fusiform [8991, 29950] 16% [10012, 29950] 13% [8991, 24788] 39%

Hippocampus [2991, 10769] 14% [2991, 10602] 10% [3091, 10769] 19%

HMT8 [0.98, 11.64] 12% [1.22, 10.22] 15% [0.98, 11.64] 7%

HMT18 [0,35.8] 12% [0, 24] 15% [0,34.8] 7%

ICV [1.1, 2.1] � 106 1% [1.1, 2.1] � 106 2% [1.1, 2.1] � 106 0%

RCT11 [55, 413] 11% [61, 315] 15% [55, 413] 6%

RCT12 [5.7,9.7] 11% [5.9,8.4] 15% [5.7,9.7] 6%

RCT14 [18, 2658] 11% [23, 2658] 15% [18, 721] 6%

Ventricles [0.6, 1.5] � 105 5% [0.6, 1.3] � 105 7% [0.6, 1.5] � 105 2%

WholeBrain [0.7, 1.5] � 107 3% [0.8, 1.5] � 107 4% [0.7, 1.4] � 107 1%

AV45 [0.84, 2.03] 49% [0.84, 2.03] 3% - -

FDG-PET [3.49,8.54] 25% [3.49,8.54] 2% - -

PTAU - - [9.4, 173.3] 58% - -

Aβ1−40 - - - - [13.0,371.8] 13%

Aβ1−42 - - - - [4.6, 102.8] 12%

ANG2 - - - - [0.11, 1.46] 31%

APOAII - - - - [2.35,3.18] 31%

APOB - - - - [2.89,3.47] 31%

BNP - - - - [1.86,4.13] 31%

CKMB - - - - [−1.43,0.59] 31%

CNTF - - - - [0.88,3.48] 31%

FASL - - - - [0.85,3.62] 31%

Insulin - - - - [−0.68, 1.43] 31%

Leptin - - - - [−0.82, 2.0] 31%

MCRPHMIF - - - - [−1.2,0.8] 31%

PAPP-A - - - - [−2.34, −0.85] 31%

PLMNRARC - - - - [1.6, 2.7] 31%

PPP - - - - [−0.004,3.16] 31%

SPARE_AD - - - - [−3.86, 2.79] 0%

T2TCV - - - - [1003, 1922] 1%

TAU - - - - [19.9,300.5] 58%

TNC - - - - [1.9,3.5] 31%

TSTSTRNT - - - - [−1.44, 1.52] 31%

https://doi.org/10.1371/journal.pone.0187364.t003
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The third dataset (D3) contained 820 subjects. It was extremely useful to study the differ-

ences and special properties of healthy subjects as compared to patients with severe stages of

dementia. This dataset lacked information about ECOG Scale of Performance Status, MOCA,

and information about CSF biomarkers, but it contained several additional attributes related

to hormones and proteins measured. It also contained information about T2 weighted total

cranial vault segmentation (T2TCV) and plasma biomarkers Aβ1−40 and Aβ1−42. One particu-

larly useful imaging attribute was Spatial Pattern of Abnormalities for recognition of early AD

(SPARE_AD), which was specifically constructed to help in early detection of AD. Dataset D3

also contained the attribute PAPP-A which is analysed in more detail in this work. The AD

assessment scale contained many additional attributes corresponding to different cognitive

tasks, the full set of attributes being publicly available on the ADNI web page http://adni.loni.

usc.edu/. Information about attributes and subjects contained in D3 are available in S3 File.

Table 4. Information about value range and percentage of missing values for clinical attributes discussed in the text. Absence of an attribute from a

dataset is denoted with “-” in the range and missing columns. If some dataset has equal range as D1, this is denoted with “-||-” in the appropriate field.

Attribute D1 D2 D3

Range Missing Range Missing Range Missing

ADAS11 [0,42.67] 0% [0, 40] 0% [0, 40] 0%

ADAS13 [0,54.67] 1% [0, 52] 1% [0, 52] 1%

BCNAUSEA {0, 1} 0% -||- 0% -||- 0%

BCSWEATN {0, 1} 0% -||- 0% -||- 0%

BCVOMIT {0, 1} 0% -||- 0% -||- 0%

CDGLOBAL {0, 0.5, . . .2} 0% -||- 0% {0, 0.5, 1} 0%

CDJUDGE {0, 0.5, . . ., 3} 0% -||- 0% -||- 0%

CDMEMORY {0, 0.5, . . ., 3} 0% -||- 0% {0, . . ., 2} 0%

CDRSB {0, 0.5, . . ., 10} 0% -||- 0% {0, . . ., 9} 0%

FAQ {0, 1, . . ., 30} 1% {0, 1, . . ., 28} 1% -||- 0%

MMSE {18, 19, . . ., 30} 0% {19, . . ., 30} 0% -||- 0%

Q13SCORE {0, 0.5, . . ., 10} 1% -||- 0% -||- 1%

RAVLT {0, 1, . . ., 71} 0% {1, . . ., 71} 0% {0, . . ., 69} 0%

EcogPtPlan - - [1, 4] 1% - -

MOCA - - {4, 5, . . ., 30} 1% - -

https://doi.org/10.1371/journal.pone.0187364.t004

Fig 1. Relations between attributes used in constructed datasets D1, D2 and D3. Left Venn diagram depicts

clinical and right Venn diagram biological attributes.

https://doi.org/10.1371/journal.pone.0187364.g001
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Relation between attributes used in different datasets is visible in Fig 1.

Division among subjects in the constructed datasets is as follows: D1 = D2 [ D3, D2 \ D3 =

{2002}, where 2002 denotes the roster id (RID), unique id of subject contained in the

intersection.

In all analysed datasets, there were slightly more males than females. Males constitute 55%

of the first, 52% of the second and 58% of the third dataset. They also constitute 57%, 53% and

61% of all subjects with some level of cognitive impairment in these datasets. Pregnancy in

female subjects can alter levels of PAPP-A attribute. Although the information about the preg-

nancy status for female subjects analysed was not directly available in our dataset, documents

describing ADNI1 exclusion criteria (which cover patients contained in our dataset D3) [33]

clearly state that female participants must be sterile or two years past childbearing potential to

be included in the study group. Documents related to ADNIGO [34] and ADNI2 exclusion

criteria [35] state that the participant must not be pregnant, lactating or of childbearing poten-

tial. As a result of these exclusion criteria, we can assume that the PAPP-A levels, for the stud-

ied female subjects, were not influenced by pregnancy.

Redescription mining

Redescription mining [27] works on a dataset D, containing |D| instances and one set, or two

disjoint sets of attributes (views, denoted as W1 and W2) describing these instances. A rede-

scription (as for example R = (q1, q2)) is a pair of queries, containing one query per view. Each

query is a propositional logic formula that can contain conjunction, disjunction or negation

operators and is used to define conditions on values of a subset of attributes from a particular

view. The subset of instances described by a query qi, denoted supp(qi) is called the query sup-

port set. The support set of a redescription is the set of instances described by both queries that

constitute this redescription: supp(R) = supp(q1) \ supp(q2). We also use the notation E1,1 to

denote the set of instances described by both queries, E1,0 a set of instances described by the

first query but not described by the second query, E0,1 a set of instances described by the sec-

ond query but not described by the first query, E0,0 a set of instances that are not described by

either query. E?,1 denotes a set of instances for which it is not possible to determine if they are

described by the first query, due to missing values, but are described by the second query, E1,?

contains a set of instances described by the first query but for which it is not possible to deter-

mine if they are described by the second query, due to missing values, E?,0 denotes a set of

instances for which it is not possible to determine if they are described by the first query, due

to missing values, and are not described by the second query, E0,? contains a set of instances

not described by the first query but for which it is not possible to determine if they are

described by the second query, due to missing values. The set E?,? contains instances for which

it is not possible to determine if they are described by either query due to missing values. attr
(R) denotes a multiset of attributes contained in redescription queries, whereas attrs(R) repre-

sents a corresponding set of attributes. attr(D) denotes all attributes contained in both views of

the dataset and R denotes a redescription set.

We evaluate the quality of mined redescriptions by using two measures [36]: i) the Jaccard

index, which measures the similarity of support sets of the two redescription queries (also

often called accuracy of redescription, since it measures how close two query support sets are

to containing identical set of instances) and ii) statistical significance of the observed rede-

scription, expressed through a p-value.

The Jaccard index is defined as:

JðRÞ ¼
jsuppðq1Þ \ suppðq2Þj

jsuppðq1Þ [ suppðq2Þj
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Assessment of the statistical significance of the redescription R = (q1, q2) is based on an

assumption that the support sets, of two queries q1 and q2, are selected randomly, with mar-

ginal probabilities p1 ¼
jsuppðq1Þj

jDj and p2 ¼
jsuppðq2Þj

jDj respectively. The statistical significance of rede-

scription measures how probable it is to obtain overlap of the size |supp(R)| or larger when

sampling two subsets of instances from a set of size |D|, using sampling probabilities p1 and p2

respectively. The size of the intersection follows a binomial distribution and the probability we

are looking for can hence be written as:

pVðRÞ ¼
XjDj

n¼jsuppðRÞj

jDj
n

� �

ðp1 � p2Þ
n
� ð1 � p1 � p2Þ

jDj� n

Example 1. Redescription Rex = (qclin, qbio), discovered on dataset D3, whose queries are

defined as: qclin: 0.0� GDTOTAL� 2.0 ^ GDALIVE = 0.0 ^ CDMEMORY = 0.0 qbio: 0.5�

HMT18� 16.0 ^ −3.86� SPARE_AD� −0.93, provides alternative descriptions of 156 differ-

ent normal control subjects. Query qclin describes 204 subjects with specific value for the fol-

lowing clinical attributes: memory score (CDMEMORY), total score in geriatric depression

scale (GDTOTAL), score on a question Do you think its wonderful to be alive now? (GDALIVE)

while query qbio describes 172 subjects having specific values for biological attributes such as

percentage of Eosinophils (HMT18) and a Spatial Pattern of Abnormalities for Recognition of

Early Alzheimer’s disease (SPARE_AD). The set of subjects described by at least one query of

redescription Rex contains 220 subjects, i.e |supp(qclin) [ supp(qbio)| = 220. For 156 of 220 sub-

jects, both queries are valid, i.e. |supp(qclin) \ supp(qbio)| = 156. This means that the Jaccard

index (accuracy) for this redescription is 156

220
¼ 0:709. The redescription is statistically signifi-

cant with the p-value< 2 � 10−17 (which can be computed by using the formula above). It

means that it is highly unlikely to observe a redescription of support size 156 or larger given

that we combine two statistically independent queries, with marginal probabilities p1 ¼
204

820
¼

0:25 and p2 ¼
172

820
¼ 0:21, into a redescription Rex.

Existing approaches for redescription mining. The first algorithm for redescription

mining, called CARTwheels, was developed by Ramakrishnan et al. [27]. Several redescription

mining algorithms have been developed since, all of which can handle Boolean attributes.

From these, some algorithms [29, 30, 37, 38] work also with categorical and numerical attri-

butes. Currently, only two redescription mining algorithms ReReMi [37] and CLUS-RM [29,

30], work with attributes containing missing values.

Redescription mining algorithms can be divided into three main categories: a) algorithms

based on itemset mining, b) greedy algorithms and c) tree-based algorithms.

Itemset mining based redescription mining algorithms utilize different itemset mining

methods to create itemsets, which are used to create redescriptions. Approach by Zaki and

Ramakrishnan [31] and the approach by Parida and Ramakrishnan [39], use a lattice (partially

ordered set) of attribute sets to find redescriptions. Approach developed by Gallo et al. [40] is

based on frequent itemset mining. The field is known as Frequent Itemset Mining, because the

notion of frequency (support size, the apriori principle) is central in obtaining practical

algorithms.

Greedy algorithms for redescription mining work by incrementally updating queries with

the goal of increasing redescription accuracy. The first algorithm developed in this category was

the greedy algorithm from Gallo et al. [40]. This algorithm has been extended by Galbrun and

Miettinen [37], under the name ReReMi, to work with categorical and numerical attributes.

Tree-based algorithms use decision trees [41] or Predictive Clustering trees (PCTs) [42] to

create redescriptions. This category includes the first developed algorithm for redescription
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mining called CARTwheels, developed by Ramakrishnan et al. [27]. This algorithm works by

building two decision trees per iteration (one for each view) that are joined in the leaves. Rede-

scriptions are created by reading off the conditions along the paths from the root node of the

first tree to some specified class (which constitutes one redescription query) and the paths

from the root node to the matching leafs of the second tree (which constitutes the second rede-

scription query). All created trees are of the same predefined depth, and the process iterates for

a predefined number of iterations. This algorithm uses multiclass classification to guide the

search between the two views. Layered trees (LayeredT) and Split trees (SplitT) algorithms

developed by Zinchenko [38] use a different methodology of decision tree construction to

obtain redescriptions. Instead of creating fully grown trees of predefined depth, the Layered

trees algorithm creates one or more depth one trees at each algorithm step. For each leaf of the

tree under construction, at some fixed iteration, the Layered trees algorithm builds a new

depth one tree and appends it to the corresponding leaf of the existing tree (thus increasing its

complexity and size). The algorithm allows creating more informed splits, since at a certain

step of tree construction, the algorithm uses information about splits created at a correspond-

ing level of the tree constructed on the opposite view. To construct a tree of maximal depth,

the algorithm considers all nodes of the tree created on the opposite view (not just the leaves of

a fully grown tree as in CARTwheels). The Split trees algorithm creates decision trees of

increasing size. At each step of tree construction, the depth is increased by one and a whole

new tree of larger depth is built (completely replacing the previously constructed tree) until

trees of maximally allowed depth are built. This algorithm simultaneously refines classes (since

it obtains finer splits with trees of larger depth) and trees (by increasing their complexity and

providing more specific classes).

The CLUS-RM algorithm developed by Mihelcic et al. [29, 30] uses multi-target Predictive

Clustering trees (PCTs) [42, 43], instead of decision trees to construct redescriptions. Using

multi-target PCTs allows using information about all nodes (intermediate nodes as well as

leaves) in the constructed PCT simultaneously to create redescriptions (which increases accu-

racy, diversity and number of produced redescriptions). This algorithm has been extended by

Mihelcic et al. [44] to use a random forest of PCTs which further increases accuracy and diver-

sity of produced redescriptions. The CLUS-RM is also equipped with a redescription set con-

struction procedure called redescription set optimization [29, 30, 44]. It enables incorporating

quality constraints in multi-objective optimization manner and uses all produced redescrip-

tions to create a reduced redescription set of user-defined size. A generalized version of rede-

scription set optimization has been presented by Mihelcic et al. [45]. In addition to its main

purpose of redescription set construction, this procedure allows for use of ensembles of rede-

scription mining algorithms, influencing the structure of produced sets through user-defined

importance weights and performing computationally efficient construction of multiple rede-

scription sets with different properties, which is beneficial for exploration [45].

Choice of methodology, redescription accuracy measure

and a query language

In this section, we describe our motivation underlying the use of CLUS-RM algorithm and the

extensions made to allow performing constraint-based redescription mining. In addition, we

describe what reasons motivated us for the use of a redescription accuracy evaluation measure

and a specific query language used to construct redescriptions.

Choice of redescription mining algorithm. To create redescriptions, we used the

CLUS-RM algorithm [29, 30] based on Predictive Clustering trees (PCT) [42, 43]. PCTs allow

clustering on both target and descriptive space. By using their multi-label and multi-target
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capability one can use multiple (or all) nodes in a given tree simultaneously to produce rede-

scriptions. Due to the property of inductive transfer [46], multi-target classification can out-

perform single-target classification, which improves the overall accuracy of produced

redescriptions. The CLUS-RM algorithm incorporates a redescription set optimization proce-

dure (a novelty compared to other redescription mining approaches), which uses the large

number of diverse redescriptions produced to optimize a redescription set of user-define size.

Using a large number of produced redescriptions in the optimization process increases the

quality of the redescription set presented to the user. The optimization process evaluates rede-

scriptions according to accuracy, significance and redundancy (with respect to redescription

support sets and attributes contained in redescription queries).

Since our data contain missing values, we could only use the CLUS-RM or the ReReMi

algorithm to find redescriptions. Given our goal of using the produced redescription sets to

perform further statistical analysis, there are several reasons that motivate the use of CLUS-RM

as the redescription mining algorithm in this work. CLUS-RM has the ability to produce

potentially large sets of redescriptions that can be used to perform statistical analysis (e.g. of

obtained associations). Multiple different redescriptions containing the same attribute pair

and describing different subsets of instances reinforce the importance of frequently co-occur-

ring attributes. CLUS-RM can constrain redescription support set size to an interval, which

provides experts with a range of associations (hypotheses), from general (intervals containing

larger support set size) to more specific (intervals containing smaller support set size). It can

also produce redescription sets of user defined size which allows creating sets that contain

equal number of members per support interval for further statistical analysis. Because of this,

association statistics will not be constructed only from very general or very specific redescrip-

tions, but from redescriptions covering a whole range of different support sizes. The experi-

ments with CLUS-RM [30], and its extension [44], as well as the integration of the CLUS-RM

into a redescription mining framework for redescription set construction [45], show that the

produced redescription sets were fully competitive with other state-of-the-art solutions, and in

some cases (as when only conjunctions are used in redescription query construction), the

resulting redescription sets can even contain significantly more accurate and diverse

redescriptions.

To obtain the results presented in this work, we required the constraint-based redescription

mining capability, mostly using one attribute as constraint. However, developing a constraint-

based methodology that is able to use multiple attributes (instances) as constraint was straight-

forward and is also presented as a part of this work. The proposed extensions include several

modes of constraint-based redescription mining (CBRM) that allow exploring interactions of

multiple attributes from different views with Boolean, categorical and numerical variables,

extending the state-of-the-art in CBRM. Instance level constraints can be incorporated in anal-

ogous fashion.

The one-attribute CBRM capability of Siren [47] allows selecting one attribute as constraint

and defining its numerical interval (for numerical attributes). The resulting redescription set is

comprised of redescriptions that are obtained by extending the initial query supplied by the

user. When compared to this limited CBRM capability of Siren, the CLUS-RM extension oper-

ates in a fully automated constraint-based setting (allowing multiple attributes as constraints).

Also, it is not necessary to manually select numerical bounds as is currently the case in Siren.

In general, performing interactive constraint-based redescription mining can demand signifi-

cant effort and time from the domain expert (in addition to examination of computed rede-

scriptions, which also needs to be done in our approach), but can potentially enable tuning the

algorithm better to find information about some specific, targeted problem.

Relating clinical and biological characteristics of cognitively impaired and AD patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0187364 October 31, 2017 11 / 35

https://doi.org/10.1371/journal.pone.0187364


Analysis and exploration of precomputed redescription sets, based on multiple different

redescription criteria, exploration of different attribute associations and groupings of instances

based on a produced redescription set is also possible with the tool InterSet [48].

Choice of redescription accuracy measure. Since the data contains missing values, we

used the query non-missing Jaccard index, introduced in [30], and further explained in [45] to

evaluate redescriptions. The query non missing Jaccard index is defined as:

Jqnmðq1; q2Þ ¼
jE1;1j

jE1;1j þ jE?;1j þ jE1;?j þ jE0;1j þ jE1;0j

Query non-missing Jaccard index evaluates instances as being a part of redescription sup-

port set only if there is enough information in the data (given the query language) to deduce

that these instances satisfy the conditions of both redescription queries. The construction of

this measure is guided by the principle that the query cannot contain an instance in its support

set if it cannot be evaluated due to missing values. Because of this, the measure does not penal-

ize the score with instances contained in the sets E?,?, E0,?, E?,0 and rather treats them as if they

were contained in the set E0,0 but penalizes the score with instances contained in the sets E?,1

and E1,? and treats them as if they are contained in sets E1,0 and E0,1.

Query non-missing Jaccard index has been designed to trade-off between the pessimistic

and the optimistic Jaccard index [36], which are each forcing opposite extreme values and are

thus leading to less realistic estimates of the true Jaccard index. Query non-missing Jaccard

index is optimistic because it does not penalize the score with instances that are not described

by one query and cannot be evaluated by the other query, due to missing values (E?,0, E0,?). On

the other hand, it is pessimistic, since it penalizes the score with instances that are described by

one redescription query, but cannot be evaluated by the other, due to missing values (E1,? and

E?,1). Redescription accuracy estimates provided by query non-missing, pessimistic and opti-

mistic Jaccard index have already been compared experimentally in [45].

Choice of a query language. In this work, our redescriptions consist exclusively of con-

junctive queries. Queries containing only conjunction operators are easier to understand and

usually shorter than those containing combination of all operators. In redescriptions with que-

ries containing only conjunction operators, every attribute used in its queries must describe all

instances from redescription support set. Thus, such redescriptions discover stronger associa-

tions between attributes than redescriptions with queries containing all operators. These rea-

sons make us believe that applying CLUS-RM with restriction to use of conjunctions to ADNI

data is the right choice which may reveal useful medical hypotheses that can be further devel-

oped by the domain experts. Described query language is similar to the one used in bi-direc-

tional association rules which can, for instance, be produced by the two-view data association

discovery approach, discussed in the Introduction section. In general, using negation and dis-

junction operators in redescription construction can increase the diversity and accuracy of

produced redescriptions, but it can also make them more difficult to understand for domain

experts.

CLUS-RM algorithm description

All experiments were performed with the CLUS-RM redescription mining algorithm [29, 30],

presented in Algorithm 1. CLUS-RM uses PCTs [43] to find descriptions of groups of

instances (i.e. subjects, as is the case in our medical study).

Relating clinical and biological characteristics of cognitively impaired and AD patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0187364 October 31, 2017 12 / 35

https://doi.org/10.1371/journal.pone.0187364


Algorithm 1 The CLUS-RM algorithm

Require:Firstview (W1), Secondview (W2), maxIter,QualityconstraintsQ
Ensure:A set of redescriptionsR
1: procedureCLUS-RM
2: ½Wð0Þ

1 ;Wð0Þ

2 �  createInitalData(W1, W2)
3: ½PWð0Þ

1

;PWð0Þ
2

�  createInitialPCTs(Wð0Þ

1 ,Wð0Þ

2 )

4: ½rWð0Þ
1

; rWð0Þ
2

�  extractRulesFromPCT(PWð0Þ
1

;PWð0Þ
2

)

5: for Ind 2{1, . . ., maxIter}do
6: ½WðIndÞ

1 ;WðIndÞ
2 �  constructTargets(rWðInd� 1Þ

1

, rWðInd� 1Þ

2

)

7: ½PWðIndÞ
1

;PWðIndÞ
2

�  createPCTs(WðIndÞ
1 ;WðIndÞ

2 )

8: ½rðIndÞW1
; rðIndÞW2

�  extractRulesFromPCT(PWðIndÞ
1

;PWðIndÞ
2

)

9: for (Rnew 2 rWðIndÞ
1

�QrWðInd� 1Þ

2

[ rWðInd� 1Þ

1

�QrWðIndÞ
2

) do

10: R addReplaceDiscard(Rnew;R)
11: R minimizeQueries(R)
12: returnR

The presented algorithm pseudocode describes the CLUS-RM functionality in case only

conjunction logical operators are used to create redescription queries. The extended version of

the algorithm pseudocode for the case in which conjunction, negation and disjunction logical

operators can be used in redescription query construction is described in [30] and supplemen-

tary document S18 File.

The algorithm consists of four main parts: 1) Initialization, 2) Query creation (divided in

query construction 2.1 and query exploration 2.2), 3) Redescription creation and 4) Redescrip-

tion set optimisation.

1) In the initialization phase (line 2 in Algorithm 1), the algorithm makes a copy of each

instance from the original dataset and shuffles the attribute values for the copies. For each

attribute, the algorithm selects a random instance from the dataset and copies its value for the

selected attribute to the target copy (value of one instance from the original dataset can be cop-

ied multiple times). This procedure breaks correlations between attributes in the copied

instances. Each instance from the original dataset is assigned a target value 1.0 and each artifi-

cially created instance a target value 0.0. It is possible to use the PCT algorithm to create initial

clusters, from such dataset, by distinguishing between original instances and copies containing

shuffled values (line 3 in Algorithm 1). The described procedure is repeated independently for

both views contained in the dataset.

2.1) Each node in the obtained PCTs represents a cluster. These nodes are transformed to

rules (line 4 in Algorithm 1) which are valid for the corresponding group of instances. More

details about transforming PCTs to rules can be seen in [49].

2.2) The next step is to describe the same groups of instances, as those described by the pro-

duced rules, with the second attribute set (lines 6−8 in Algorithm 1). To do this, for each

instance of the original dataset, the algorithm constructs a set of target variables containing

equal number of targets as number of rules constructed using the first set of attributes (for

more details see [30]). The instance has a target value 1 on position j if it is described by the j-
th rule from a set of rules constructed on the first set of attributes, otherwise the value is 0.

Instances for which information is missing, making it impossible to determine the member-

ship in support set of the query are also labelled with 0. We use the multi-target classification

and regression capability of PCT to construct clusters on different views containing similar

instances. The procedure is repeated by creating initial rules on the second view and describing

similar sets of instances by using attributes from the first view.
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3) Once the algorithm obtains rules for both views, it combines them by computing the

Cartesian product of two rule-sets (line 9 in Algorithm 1). Each redescription is evaluated with

various user predefined constraints (such as minimal redescription accuracy, minimal support,

maximal p-value, contained in a set of redescription quality constraints Q), to select candidates

for redescription set optimization.

4) Each redescription satisfying all user-defined redescription quality constraints is a candi-

date for redescription set optimization (line 10 in Algorithm 1). Satisfactory redescriptions are

added to the redescription set, in the order of creation, until the maximal number of redescrip-

tions (user-defined parameter) is reached. When this number is reached, the algorithm com-

putes the score difference, defined in [29, 30], between the new redescription and every

redescription already contained in the redescription set based on redescription score. The

score of some redescription R 2 R, based on its support set and a redescription set R, is com-

puted as:

redScoreInstðRÞ ¼
P

i2suppðRÞðcoverInstRnRðiÞÞ
P

i2DcoverInstRðiÞ

where coverInstRðiÞ ¼ jfR 2 R; i 2 suppðRÞgj denotes the number of times, the instance i is

described by redescriptions from the redescription set R. The denominator of a score redScor-
eInst(R) can be also written as

P
R2RjsuppðRÞj. Similarly, the redescription score:

redScoreAttrðRÞ ¼
P

a2attrðRÞðcoverAttrRnRðaÞÞ
P

a2attrðDÞcoverAttrRðaÞ

is based on attributes contained in redescription queries, where coverAttrRðaÞ ¼ jfR 2 R; a 2
attrðRÞgj denotes the number of times attribute a is used in queries of redescriptions contained

in R. The denominator of a score redScoreAttr(R) can be also written as
P

R2RjattrðRÞj.
The score of a newly created redescription Rnew is computed in the same way as the score

for some R 2 R but using frequencies for all redescriptions contained in the set R in the

numerator of redScore and redScoreAttr.
The error score is computed as errSc(R) = 1.0 − J(R) and the final redescription score is

computed as:

scðRÞ ¼ a1 � errScðRÞ þ a2 � redScoreInstðRÞ þ a3 � redScoreAtðRÞ

where ai 2 ½0; 1�;
P3

k¼1
ai ¼ 1. Lower total redescription score is favourable because it implies

smaller error in redescription accuracy and smaller level of instance and attribute redundancy

with respect to other redescriptions from the set R. The user—defined weights αk regulate

importance of different scores which affect the properties of the resulting redescription set. In

this work, we use ak ¼
1

3
. Redescription contained in the redescription set with the highest

score difference with the newly created redescription is replaced thus improving the overall

redescription set quality. At each redescription exchange all frequency scores are updated.

The minimization procedure introduced in [30] and performed in line 11 of Algorithm 1 is

a heuristic procedure designed to reduce the size of redescription queries by removing redun-

dant attributes (attributes that can be removed without changing redescription accuracy). It is

performed individually on each redescription of the resulting redescription set.

Constraint-based redescription mining. In this work, we extended the CLUS-RM algo-

rithm to a constraint-based redescription mining setting. The algorithm incorporates
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constraints in redescription creation and one additional score in the optimization function

used for redescription set creation. Necessary CBRM extensions of the CLUS-RM algorithm,

when conjunction, negation and disjunction operator can be used in redescription query con-

struction are described in supplementary document S18 File.

We present the attribute level constraints useful for gaining knowledge as demonstrated in

this work. Constraints involving instances can be introduced in the analogous fashion by

using redescription support set (supp(R)) instead of attribute set (attrs(R)) in formulas (1), (2)

and (3).

Constraint-based redescription mining, first defined in [31], allows placing constraints on

attributes that must occur in redescription queries or instances that must be contained in rede-

scription support set. The constraints are in the form C ¼ fC1;C2; � � � ;Cng, where each con-

straint Ci specifies a set of attributes that must occur in redescription queries or a set of

instances that must be contained in redescription support set. In the original formulation, at

least one constraint Ci must be satisfied by a redescription (contain all attributes or instances

specified in the set) to be presented to the user. We denote this original definition as strict con-

strained-based redescription mining and mostly use it in our study. In practice, various relaxed

versions of constrained-based redescription mining might be useful. In the continuation, we

specify one existing (strict) and two newly defined (soft and suggested) modes of constraint-

based redescription mining (focusing only on attribute constraints):

1. Strict constraint-based redescription mining: there must exist at least one constraint Ci 2 C
such that all defined attributes occur in redescription queries.

2. Soft constraint-based redescription mining: there must exist at least one constraint Ci 2 C
such that a part of defined attributes occurs in redescription queries. Satisfying larger por-

tion of constraints is favoured by the redescription evaluation score.

3. Suggested constraint-based redescription mining: defined constraints are used as sugges-

tions that increase the overall redescription score depending on the number of satisfied

constraints, however high quality redescriptions not satisfying any of these constraints can

also enter redescription set if their total score is high enough.

Strict constraint-based redescription mining can be used when the expert already has a

hypothesis (obtained through domain knowledge and extensive experimentation) and wants

to explore the specified associations in more detail. Soft constraint-based redescription mining

can be used when a set of attributes of interest has been determined (by applying the combina-

tion of domain knowledge and experimentation) but it is not clear which interactions from the

set should be fully explored. Thus, further study of their interactions is needed to form, refine

or confirm the expert hypothesis. Suggested constraint-based redescription mining can be

used when the expert, knowing the research domain (having a priori knowledge about the

problem), selects a set of attributes that are known or suspected to be (currently) more inter-

esting for exploration, though at current stage there is no immediate focus on any particular

hypothesis.

To allow constraint-based redescription mining, we extend the CLUS-RM algorithm by

adding a new set of constraints C containing the user-defined attributes of special interest and

a type of CBRM used (parameter T ). Line 9 of Algorithm 1 is changed to

Rnew 2 ðr
ðindÞ
W1
Þ
fC;T g�Qðr

ðindÞ
W2
Þ
fC;T g. Thus, redescriptions are created only by combining those que-

ries that satisfy predefined constraints. For each redescription Rnew, we apply query minimiza-

tion procedure before using redescription set optimization (defined in line 10 of Algorithm 1).
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If query minimization procedure removes any of the key constraint attributes, defined in set C
of CBRM, the created redescription is discarded.

In addition, CLUS-RM is extended with a new score scConstr, which is used in suggested

constraint-based redescription mining to increase the overall score of a redescription satisfying

user-defined attribute constraints. The score is defined as:

scConstrðRÞ ¼
1

2
�max

jattrsðRÞ \ Cij

jCij
; Ci 2 C

� �

þ
1

2
�
jattrsðRÞ \ ð[iCiÞj

jattrsðRÞj
ð1Þ

The first term in the score rewards redescriptions satisfying higher fraction of constraints

from some set Ci. Due to the fact that more disjoint or partially overlapping constraint sets can

be given and the fact that some redescriptions can satisfy parts of larger number of constraint

sets Ci, we take the maximum score achieved among constraint sets as a quality of redescrip-

tion—thus favouring compliance with larger number of constraints from a single constraint

set. The second term favours redescriptions that, among the attributes contained in their que-

ries, have larger fraction of attributes of interest to the user. Here, we reward satisfied con-

straints from any constraint set defined by the user.

The score used for soft constraint-based redescription mining is defined as:

redScoreSoft ¼

( scConstrðRÞ if 9Ci 2 C; attrsðRÞ \ Ci 6¼ ;

� 1 otherwise
ð2Þ

Similarly, the score used for strict constraint-based redescription mining is defined as:

redScoreStrict ¼

(
1 if 9Ci 2 C; attrsðRÞ \ Ci ¼ Ci

� 1 otherwise
ð3Þ

Higher scores denote higher level of agreement of redescriptions with the imposed constraints

(redescriptions with higher score are thus preferable).

Finally, redescription score sc(R) is extended to:

scðRÞ ¼ a1 � errScðRÞ þ a2 � redScoreInstðRÞþ

þa3 � redScoreAtðRÞ þ a4 � ð1 � redScoreConstðRÞÞ

where ai 2 ½0; 1�;
P4

k¼1
ai ¼ 1 and redScoreConst(R) denotes any variant of the constraint-

based score chosen by the user. Redescriptions with the score value of1 are not allowed to

enter redescription set.

With the extension introduced above, the CLUS-RM is the only redescription mining algo-

rithm capable of performing fully automated constraint-based redescription mining on cate-

gorical, numerical and data containing missing values with more than one attribute constraint.

Experiments and results

In this section, we present the experimental setup and some selected results obtained through

the analyses of the produced redescription sets.

Experiments

Our main goal was to study clinical and biological attributes, and to find interesting relations

among them. To retrieve maximum information from and to obtain deeper insight into the

data, we divided redescriptions by the number of described subjects and used the diagnosis of

the level of cognitive impairment to further assess the relevance and interestingness of the
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obtained redescriptions. For each dataset, we created four redescription sets containing rede-

scriptions with different supports, describing [5, 10], [11, 39], [40, 99] and at least 100 subjects.

The maximum support threshold was set to d jDi j

2
e subjects contained in the dataset Di, i 2 {1,

2,3}. We are interested in re-describing subsets of subjects with some level of cognitive

impairment and using cognitively normal subjects as a control group. Studying different bio-

logical, clinical attributes and their interactions in the context of different levels of cognitive

impairment is also of high interest. Higher homogeneity of described subjects increases the

amount of information obtained about different changes in biological and clinical attributes

occurring as a result of different level of cognitive impairment. Developing an approach with a

combined properties of redescription mining and subgroup discovery may also be interesting

in this setting, but is beyond the scope of this work. Each set contains 100 redescriptions with a

minimal Jaccard Index of 0.2 and a maximal p-value of 0.01. Allowed support intervals, as well

as other parameter limits were found through experimentation. Redescriptions contained up

to 8 attributes per query.

The same support intervals were used to create redescriptions on each dataset. This allows

making easier comparisons of redescriptions and statistics of attribute co-occurrence across

different datasets. Distribution analysis of redescription quality measures, in the produced

redescription sets, reveals potentially interesting datasets, attributes and support intervals.

Since PAPP-A showed interesting associations with cognitive impairment in the experi-

ments described above, we performed constraint-based redescription mining with the same

algorithmic parameters but focusing redescription search on redescriptions containing preg-

nancy associated plasma protein A (PAPP-A) in the redescription queries. We created one

redescription set containing 100 redescriptions describing at least 100 subjects.

Redescription accuracy and homogeneity analysis

We merged the four sets of redescriptions, of different supports, created on each dataset (D1,

D2, D3) and formed one larger redescription set (RS) per dataset, denoted R1;R2;R3 (see Fig

2). For the obtained redescriptions, contained in the corresponding redescription sets

(R1;R2;R3), we analysed the homogeneity of the described subsets of subjects with respect to

the degree of cognitive impairment (CN, SMC, EMCI, LMCI and AD) by computing the

entropy of described subject’s medical diagnosis (demonstated in Fig 2).

The entropy was computed for the support set of each redescription by using the package

entropy developed for the programming language R. The package allows estimating Shannon’s

entropy (H ¼ �
PN� 1

i¼0
pi � log2ðpiÞ) [50] of some finite set of probabilities obtained from the

observed counts (occurrence frequencies of each level of cognitive impairment in the rede-

scription support set). In this use-case, N equals the number of different target classes occur-

ring in the support set of a redescription. Probability pi is computed as pi ¼
jtargeti \ suppðRÞj
jsuppðRÞj , where

targeti, i 2 {0, . . ., N − 1} denotes a set of entities with target label i. Characteristics of redescription

sets produced with different support intervals (1., 2., 3., 4. in Fig 2), can be seen on a plot show-

ing entropy distributions (i in Fig 2) and distributions of redescriptions’ Jaccard index (ii in

Fig 2).

Due to the smaller diversity in target classes (containing no SMC subjects and only 1 EMCI

subject), it was easier to distinguish between different groups of subjects on dataset 3 (which is

illustrated in Fig 2) than on the other two datasets. On dataset 3, we obtained many clusters of

various size, homogeneous with respect to medical diagnosis, which gives us confidence that

we found attribute combinations and numerical intervals useful for the analysis and under-

standing of cognitive impairment connected to AD.
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The entropy increases with the increase of the number of described subjects, while the Jac-

card index shows stronger associations in redescriptions with support in the first (|supp(R)|�

100 in Fig 2) and the last interval (|supp(R)| 2 [5, 10] in Fig 2). Redescriptions describing the

smallest number of subjects (the last interval) use larger number of attributes with very specific

numerical intervals to isolate groups of subjects that are very homogeneous with respect to the

medical diagnosis and describe many different groups of subjects suffering from severe cogni-

tive impairment (LMCI, AD). In contrast, many accurate redescriptions (in the first interval)

use larger numerical intervals, thus often describing subjects with various levels of cognitive

impairment. Additional reason for higher accuracy in this interval compared to the middle

two intervals is the detection of highly accurate redescriptions describing subgroups of CN

subjects. Missing values in the data and potential noise, occurring from the errors in measure-

ments and data processing, negatively affect the Jaccard index.

Analyses based on examination of redescription sets

Redescription set analyses, which included: a) the examination and expert evaluation of indi-

vidual redescriptions, b) the distribution analysis of level of dementia for the described subjects

of these redescriptions, c) comparative analyses of attribute value distribution between differ-

ent subsets of subjects (LMCI/AD vs CN or supp(R) vs CN), allowed us to find useful informa-

tion related to subjects with cognitive impairment.

From the clinical attributes, we noticed that ADAS, MOCA, Geriatric Depression Scale,

Rey Auditory Verbal Learning Test (especially the percent forgetting score), and Mini-Mental

State Exam (MMSE) occurred frequently in queries of obtained redescriptions that describe

subjects suffering from various degrees of cognitive impairment. Nevertheless, there were

instances where some CN subjects fell in the identified intervals of values for these attributes.

Attributes connected to Clinical Dementia Rating distinguished well between CN subjects and

those with different degrees of cognitive impairment. Redescriptions mostly contained the

attributes CDMEMORY, CDGLOBAL and CDR-SB (clinical dementia rating sum of boxes).

From the biological attributes, we often encountered attributes connected to brain volume,

hippocampus, various blood and urinary tests (attributes HMT and RCT), intracranial volume

(ICV), 18fluorodeoxyglucose—positron emission tomography (FDG-PET) and 18F-florbetapir

(AV45). These attributes have been studied before by Gamberger et al. [3, 13]. We noticed that

the biological attribute SPARE_AD (Spatial Pattern of Abnormalities for Recognition of Early

AD) correlated with subject’s diagnosis very well and occurred frequently in redescriptions

constructed on dataset 3 that contains it. Also, the gene variant APOE ε4 was present exclu-

sively in redescriptions describing subjects diagnosed with LMCI and AD.

We report several attributes, discovered during our analyses, for which we detected varia-

tions in levels connected to AD or discovered interesting subgroups of patients with signifi-

cantly different distribution of values for a given attribute compared to CN subjects.

Difference in distribution is measured with three different statistical tests: a) Anderson-Dar-

ling (ADT) test [51, 52], Kolmogorov-Smirnov (KST) test [53, 54] and Mann-Whitney U

(MWUT) test [55]. For Anderson-Darling we perform two-sided test and report simulated

Fig 2. Entropy (i) and Jaccard index (ii) value distributions for the redescription sets created on each dataset (first

dataset—D1 at the top, third dataset—D3 at the bottom). For a dataset Di, i 2 {1, 2,3}, we create four redescription sets Ri;1 �

Ri;4 so that the number of described subjects in each redescription (from a particular redescription set) falls in the corresponding

interval shown on the y-axis (boxplots representing distributions for each interval are coloured in different color). Each

redescription set Ri;j ; i 2 f1; 2; 3g; j 2 f1; � � � ; 4g contains 100 redescriptions.

https://doi.org/10.1371/journal.pone.0187364.g002
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(ps) and asymptotic (pa) p-values, while for Kolmogorov-Smirnov and Mann-Whitney U test

we report p-values, obtained by performing one-sided tests, and the observed direction of the

shift of distribution. Alternative hypothesis (a), for one-tailed tests have two possible forms:

a equals ( = ) less (l), or (a) = greater(g). Depending on the choice of statistical test,

the alternative hypothesis have different meaning (explained in S17 File). Simulated p-value in

ADT are obtained with default parameters (1000 simulations). Short motivation for the used

statistical tests, providing references to implementations and meaning of the chosen alterna-

tive, for the used one-sided tests, is available in supplementary document S17 File. Tests of sta-

tistical significance of difference in distribution between one selected example group and a

group of CN subjects for all mentioned attributes is displayed in Table 5. Information about

attributes with statistically significant difference in distribution between AD/LMCI and CN

subjects is reported in Table 6.

By observing redescriptions describing very homogeneous groups of subjects with high

level of cognitive impairment (LMCI and AD), we discovered groups where testosterone levels

(TSTSTRNT) were significantly decreased. Although some studies (e.g. Zhao et al. [56]) and

meta-analyses showed no differences in plasma levels of testosterone between AD and

matched controls (e.g. Xu et al. [57]), some studies, such as the one of Hogervorst et al. [58]

and Lv et al. [59], found low free testosterone level to be an independent risk factor for AD.

Plasma testosterone levels display circadian variation, peaking during sleep, and reaching a

lowest level in the late afternoon, with a superimposed ultradian rhythm with pulses every 90

min reflecting the underlying rhythm of pulsatile luteinizing hormone (LH) secretion [60].

The increase in testosterone during sleep requires at least 3 hours of sleep with normal sleep

architecture. However, since noradrenergic locus coeruleus and serotonergic dorsal raphe

nucleus are among the first neurons affected by neurofibrillary tau pathology, their changes

lead to the early and prominent deterioration of the sleep-wake cycle in AD (for a review, see

šimić et al. [61]), which may add to a reduction of testosterone levels with advancing age.

Experimental data obtained in animal models of AD suggest that low levels of testosterone

increase Aβ and tau pathology through both androgen and estrogen pathways (testosterone is

metabolized in the brain into androgen dihydrotestosterone, DHT, and 17β-estradiol, the E2

estrogen) [62, 63].

Table 5. Attributes analysed in this section with corresponding example redescription containing this attribute. For each selected attribute we pres-

ent example redescription that describes subjects with statistically significant difference in attribute value distribution compared to a group of CN subjects.

Attribute D R |E1,1| File ADT KST MWUT

pa ps a p a p

ANG2 D3 R45 46 S14 4.1 � 10−3 0 l 2.7 � 10−6 g 4.7 � 10−6

APOAII D3 R37 55 S14 7.3 � 10−15 0 g 1.7 � 10−11 l 4.2 � 10−13

BNP D3 R96 48 S14 5.7 � 10−3 0 l 0.02 g 0.15

CNTF D3 R56 33 S13 0.03 0.03 l 0.02 g 0.02

TSTSTRNT D3 R85 366 S15 5 � 10−6 0 g 0.002 l 0.05

INSULIN D3 R90 5 S12 0.01 0.01 l 0.06 g 0.01

LEPTIN D3 R72 24 S13 9.4 � 10−6 0 g 5.1 � 10−6 l 7.4 � 10−6

MCRPHMIF D3 R31 6 S12 9 � 10−5 0 l 4.2 � 10−4 g 2.3 � 10−4

PAPP-A D3 R39 327 S16 3 � 10−6 0.0 l 4.8 � 10−4 g 1.8 � 10−5

PPP D3 R43 8 S12 8.8 � 10−3 0.13 l 0.02 g 0.008

SPARE_AD D3 R37 155 S15 1.2 � 10−28 0.0 l 2.2 � 10−16 g 2.2 � 10−16

https://doi.org/10.1371/journal.pone.0187364.t005

Relating clinical and biological characteristics of cognitively impaired and AD patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0187364 October 31, 2017 20 / 35

https://doi.org/10.1371/journal.pone.0187364.t005
https://doi.org/10.1371/journal.pone.0187364


Unlike previous scarce data and negative correlation [64], we also found increased levels of

ciliary neurotrophic factor (CNTF) in plasma in several redescriptions describing subjects

with high level of cognitive impairment, together with decreased levels of leptin. The difference

in distribution of leptin level between groups of AD/LMCI patients and CN subjects is signifi-

cantly different (lower for AD and LMCI patients). This is in agreement with the results of

Marwarha and Ghribi [65], showing that lower leptin levels detected in AD subjects can be a

possible target for developing supplementation therapies for reducing the progression of AD.

Some groups of subjects (such as R45 from S14 File) had significantly increased levels of plasma

angiopoietin-2 (ANG2). This is in agreement with research by Thirumangalakudi et al. [66]

and research by Grammas et al. [67], that revealed elevated expression of angiopietin-2 in the

brains of AD subjects and the transgenic AD mice, respectively.

Increased levels of plasma brain natriuretic peptide (BNP) were found in several redescrip-

tions containing subjects with severe cognitive impairment. Previous research [68] suggested

that this peptide has more significant association with vascular dementia than with AD. This

could suggest either that this group of subjects, described by redescriptions containing BNP

attribute, suffered from both types of dementia (mixed dementia), or that these cases do not

suffer from AD but indeed suffer from vascular dementia. Distributions of level of BNP are sig-

nificantly different, in dataset D3, between groups of LMCI/AD and CN subjects.

Finally, we also found alteration in plasma levels of several other attributes, whose relation-

ship with AD has already been shown in the literature. These include increase in serum apoli-

poprotein B (APOB) [69], pancreatic polypeptide (PPP) [70, 71] and for very small groups, the

increase of plasma insulin [72] and the CSF macrophage migration inhibitory factor

(MCRPHMIF) [73] in AD brain. Fas (CD95) ligand (FASL) levels are found to be significantly

decreased in LMCI patients compared to AD and CN subjects in our dataset. Levels are also

lower in AD patients than in CN subjects but the difference is not statistically significant.

Although one study suggests the upregulation of FASL in AD brain [74], the levels and varia-

tions seem to heavily depend on the part of the brain. For instance, FASL levels are found to be

significantly decreased in hippocampus [75] in patients suffering from AD. Several groups of

LMCI/AD patients with significantly lower levels of APOAII compared to the CN subjects

were detected (which corresponds to research performed in [76, 77]). The difference in value

Table 6. Analysed attributes with statistically significant difference in value distribution between groups of LMCI or AD patients and CN subjects.

Attribute D Type ADT KST MWUT

pa ps a p a p

APOAII D3 LMCI vs CN 4.6 � 10−11 0 g 1.1 � 10−9 l 3.1 � 10−10

D3 AD vs CN 3.3 � 10−7 0 g 8.4 � 10−5 l 3.3 � 10−7

APOB D3 AD vs CN 0.03 0.04 l 0.03 g 0.02

ANG2 D3 LMCI vs CN 2.6 � 10−4 0 l 4.8 � 10−3 g 1.5 � 10−4

BNP D3 LMCI vs CN 9.2 � 10−8 0 l 1.8 � 10−5 g 1.2 � 10−6

D3 AD vs CN 6 � 10−7 0 l 1.3 � 10−5 g 1.2 � 10−6

FASL D3 LMCI vs CN 3 � 10−5 0 g 0.001 l 2 � 10−5

LEPTIN D3 LMCI vs CN 1.2 � 10−3 0 g 6 � 10−3 l 4.7 � 10−4

D3 AD vs CN 0.05 0.05 g 0.08 l 0.02

PAPP-A D3 LMCI vs CN 7.2 � 10−4 0.001 l 1.3 � 10−3 g 3.4 � 10−4

D3 AD vs CN 6.1 � 10−6 0 g 1.1 � 10−4 l 8.3 � 10−5

PPP D3 LMCI vs CN 6.2 � 10−3 0.005 l 0.009 g 0.003

D3 AD vs CN 2.5 � 10−3 0.001 l 0.007 g 1.5 � 10−3

https://doi.org/10.1371/journal.pone.0187364.t006
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distribution in dataset D3 is significant between groups of LMCI/AD patients and CN subjects.

Alterations in the levels of the PAPP-A attribute between CN subjects and LMCI/AD patients

are very interesting (see Tables 5 and 6). The PAPP-A levels rise in LMCI subjects than drop

significantly in AD subjects. This very property has been already detected in [78].

For each redescription set, we extracted one interesting, statistically significant redescrip-

tion, and displayed its queries, along with the diagnosis distribution of the subjects described

by this redescription (as shown in Fig 3).

The three redescriptions (as shown in Fig 3 from top to bottom) describe 602, 118 and 365

subjects, respectively with different proportion of EMCI, LMCI and AD diagnosis. They are

statistically significant and describe 46%, 20% and 62% of all subjects with some level of cogni-

tive impairment contained in the corresponding dataset. Their queries mostly contain well

known attributes listed in Table 2 and in S1–S3 Files. The clinical attributes contained are

memory score (CDMEMORY), Clinical Dementia Rating Scale Sum of Boxes (CDRSB),

judgement and problem solving score (CDJUDGE), Alzheimer’s Disease Assessment Scale

(ADAS), Mini-Mental State Exam (MMSE). The biological attributes used contain neutrophils

(HMT8), 18F-florbetapir (AV45), 18fluorodeoxyglucose—positron emission tomography

(FDG-PET), Spatial Pattern of Abnormalities for Recognition of Early Alzheimer’s disease

(SPARE_AD) and Pregnancy-Associated Protein-A (PAPP-A) measurements.

Pairwise attribute association analysis based on co-occurrences

In this section, we present results of attribute association analyses based on attribute co-occur-

rences in queries of redescriptions contained in our redescription sets. To obtain these associa-

tions, we studied the attribute co-occurrence frequencies in redescriptions contained in

redescription sets R1;R2 and R3. We focused on redescriptions describing subjects with some

level of cognitive impairment. Co-occurrence frequencies were computed separately for pairs

Fig 3. Example redescriptions (one for each dataset), each describing at least 100 subjects. All subjects described

are diagnosed with EMCI, LMCI or AD. Attribute explanations can be seen in Tables 2 and 3 (P denotes PAPP-A and FDG

denotes FDG-PET).

https://doi.org/10.1371/journal.pone.0187364.g003
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of attributes contained in views bio-bio, clin-clin and bio-clin, where bio denotes the view con-

taining biological and clin denotes the view containing clinical attributes. Finally, we merged

all redescriptions computed on all three datasets to obtain global information about pairwise

attribute associations (set R1 [R2 [R3). We do this for bio-bio, clin-clin and bio-clin combi-

nations of views. Besides the associations, we also computed the pairwise attribute correlations,

by using values of all subjects in the corresponding dataset for the selected pair of attributes,

and the statistical significance of these correlations. For each attribute we performed the Kol-

mogorov-Smirnov test to assess if its values, for subjects contained in the dataset, follow nor-

mal distribution. If we obtained p-values smaller than 0.05 for both attributes in the pair, we

computed Pearson correlation coefficient [79], otherwise we computed the Spearman’s corre-

lation coefficient [80] and the appropriate p-value of the corresponding significance test.

Spearman’s test was also used to compute correlations involving attributes with ordinal values.

A short list of top 5 pairwise associations (by co-occurrence) between attributes contained

in the analysed datasets is provided in Tables 7, 8 and 9.

Table 7 shows high association between FDG-PET and the volume of the hippocampus, the

entorhinal cortex, as well as an attribute related to the volume of the lateral ventricles. High

association was also found between intracranial volume and creatine kinase levels (CKMB).

This enzyme is present in greatest amounts in skeletal muscle, myocardium, and brain. The

FDG-PET attribute often occurred in the same descriptive rules as the attribute measuring the

level of vitamin B12 (BAT126). Administering of vitamin B12 is known to have beneficial

effects on cognition when there is insufficient level of B12 in the organism [81, 82]. The inci-

dence of AD increases with age and in fact, older adults often show deficiency of vitamin B12,

Table 7. The top five associations between pairs of biological attributes as measured by their co-occurrence in redescription queries. Attribute cor-

relations for a redescription set Ri are computed on dataset Di. P denotes the Pearson correlation coefficient and S denotes the Spearman’s correlation coeffi-

cient. Ru ¼ R1 [R2 [R3. Correlations for attribute pairs from the redescription set Ru are computed on the largest dataset containing both attributes.

Pairwise associations and correlations between biological attributes

RS Attribute pair Co-occurrence Test Correlation p-value

R1 Hippocampus, FDG-PET 111 P 0.42 <2.2 � 10−16

FDG-PET, Entorhinal 106 P 0.35 <2.2 � 10−16

FDG-PET, Ventricles 52 S −0.39 <2.2 � 10−16

FDG-PET, ICV 46 S −0.39 <2.2 � 10−16

FDG-PET, AV45 42 S −0.37 <2.2 � 10−16

R2 FDG.PET, Hippocampus 86 P 0.4 <2.2 � 10−16

FDG-PET, Entorhinal 76 P 0.31 <2.2 � 10−16

FDG-PET, AV45 52 S −0.37 <2.2 � 10−16

FDG-PET, RCT14 45 S 0.124 0.0003

FDG-PET, BAT126 31 S −0.007 0.42

R3 SPARE_AD, PAPP-A 66 S −0.05 0.1

SPARE_AD, Entorhinal 39 S −0.51 <2.2 � 10−16

PLMNRARC, PAPP-A 18 S −0.05 0.14

SPARE_AD, TNC 17 S 0.09 0.14

PAPP-A, Entorhinal 15 S 0.08 0.039

Ru Hippocampus, FDG-PET 197 P 0.42 <2.2 � 10−16

FDG-PET, Entorhinal 182 P 0.35 <2.2 � 10−16

FDG-PET, AV45 94 S −0.37 <2.2 � 10−16

FDG-PET, Ventricles 68 S −0.39 <2.2 � 10−16

FDG-PET, ICV 67 S −0.39 <2.2 � 10−16

https://doi.org/10.1371/journal.pone.0187364.t007
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mainly due to the impaired vitamin B12 uptake in the gastrointestinal tract [83]. AD patients

also have increased homocysteine levels in the blood. Since homocysteine is directly associated

with brain atrophy, it is possible that vitamin B12 supplementation (that reduces homocysteine

levels) can actually slow the progression of brain atrophy [81]. However, since meta-analyses

failed to prove [84, 85] the connection of vitamin B12 supplementation with homocysteine lev-

els and improved cognition, further studies should be conducted to resolve this issue. The cor-

relation between FDG-PET and B12 values in our dataset was not statistically significant,

though it may be more pronounced on a subset of subjects (for instance those above a certain

age). It has been reported [86] that diagnosis based on FDG-PET can lead to false diagnosis of

AD, where subjects can be cognitively normal or have cognitive impairment due to a reversible

cause.

The clinical attributes ADAS, MOCA, MMSE, CDR, FAQ and RAVLT co-occurred fre-

quently. Interestingly, the question number 13 (number of targets hit) from the ADAS test

occurred very frequently in redescription queries. In this task, the participants are required to

cross-out specific digits from a long list of digits. High frequency co-occurrences and corre-

sponding correlations for all aforementioned attributes can be seen in Table 8.

There was also a strong association of the ADAS, CDR and MOCA clinical attributes with

FDG-PET and SPARE_AD, the volume of the entorhinal cortex and the hippocampus, and

other biological attributes (see Table 9). Correlations between these attributes were statistically

significant. One of the most interesting associations is that between CDRSB and PAPP-A

which is used in screening tests for Down syndrome. CDRSB and PAPP-A negatively corre-

lated (−0.15) and the correlation was statistically significant at the significance level of 0.01.

Table 8. The top five associations between pairs of clinical attributes as measured by their co-occurrence in redescription queries. Attribute correla-

tions for a redescription set Ri are computed on dataset Di. P denotes the Pearson correlation coefficient and S denotes the Spearman’s correlation coeffi-

cient. Ru ¼ R1 [R2 [R3. Correlations for attribute pairs from the redescription set Ru are computed on the largest dataset containing both attributes.

Pairwise associations and correlations between clinical attributes

RS Attribute pair Co-occurrence Test Correlation p-value

R1 ADAS13, RAVLT 52 S −0.8 <2.2 � 10−16

ADAS13, Q13SCORE 49 S 0.5 <2.2 � 10−16

ADAS13, CDMEMORY 48 S 0.5 <2.2 � 10−16

ADAS13, FAQ 45 S 0.67 <2.2 � 10−16

RAVLT, CDMEMORY 43 S −0.63 <2.2 � 10−16

R2 MOCA, ADAS13 60 S −0.72 <2.2 � 10−16

MOCA, EcogPtPlan 30 S −0.28 <2.2 � 10−16

MOCA, CDMEMORY 27 S −0.58 <2.2 � 10−16

ADAS13, MMSE 24 S −0.64 <2.2 � 10−16

ADAS13, CDRSB 23 S 0.66 <2.2 � 10−16

R3 ADAS13, CDMEMORY 60 S 0.76 <2.2 � 10−16

MMSE, CDMEMORY 42 S −0.73 <2.2 � 10−16

ADAS13, CDRSB 34 S 0.76 <2.2 � 10−16

ADAS13, MMSE 30 S −0.71 <2.2 � 10−16

FAQ, ADAS13 29 S 0.7 <2.2 � 10−16

Ru ADAS13, CDMEMORY 122 S 0.5 <2.2 � 10−16

ADAS13, FAQ 82 S 0.67 <2.2 � 10−16

ADAS13, CDRSB 79 S 0.72 <2.2 � 10−16

ADAS13, RAVLT 77 S −0.8 <2.2 � 10−16

ADAS13, MMSE 77 S −0.69 <2.2 � 10−16

https://doi.org/10.1371/journal.pone.0187364.t008
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Associations with PAPP-A. Motivated by the statistically significant association between

PAPP-A and CDRSB, we used constraint-based redescription mining to create a new rede-

scription set (on dataset D3) by focusing only on redescriptions containing PAPP-A as one of

the attributes in the redescription queries (corresponding redescription set is presented in sup-

plementary document S16 File). The associations from this redescription set, containing 100

redescriptions, are presented in Table 10. Support sets of all constructed redescriptions con-

tained both male and female subjects with diagnosis LMCI and AD.

The associations presented in Table 10 show that PAPP-A occurs frequently in redescrip-

tion queries together with the clinical tests CDMEMORY, CDRSB, MMSE and ADAS13. Cor-

relations between PAPP-A and all these attributes were statistically significant at the

significance level of 0.01. Interestingly, SPARE_AD and PAPP-A occurred in every redescrip-

tion from the redescription set obtained with constraint-based redescription mining. As noted

earlier, the correlation between these two attributes was not statistically significant when mea-

sured for all subjects in the dataset. However, the correlation (Spearman’s ρ = −0.096) was sta-

tistically significant (with p = 0.026) when measured for subjects with AD and LMCI at the

significance level of 0.05. The fact that every redescription in the set obtained with constraint-

based redescription mining described exclusively subjects with AD and LMCI possibly

explains the high frequency of association between those attributes and necessitates further

exploration of the role of PAPP-A in AD and LMCI. Additionally, we found an interesting

association between PAPP-A and two other biological attributes: the volume of the entorhinal

Table 9. The top five associations between pairs of attributes consisting of a clinical and a biological attribute. The association is measured as their

co-occurrence in redescription queries. Attribute correlations for a redescription set Ri are computed on dataset Di. P denotes the Pearson correlation coeffi-

cient and S denotes the Spearman’s correlation coefficient. Ru ¼ R1 [R2 [R3. Correlations for attribute pairs from the redescription set Ru are computed on

the largest dataset containing both attributes.

Pairwise associations and correlations between a biological and a clinical attribute

RS Attribute pair Co-occurrence Test Correlation p-value

R1 ADAS13, FDG 197 S −0.58 <2.2 � 10−16

ADAS13, Entorhinal 99 S −0.49 <2.2 � 10−16

ADAS13, Hippocampus 96 S −0.54 <2.2 � 10−16

ADAS11, FDG 79 S −0.55 <2.2 � 10−16

CDMEMORY, FDG 69 S −0.49 <2.2 � 10−16

R2 ADAS13, FDG 142 S −0.56 <2.2 � 10−16

MOCA, FDG 124 S 0.49 <2.2 � 10−16

ADAS13, Entorhinal 52 S −0.38 <2.2 � 10−16

MOCA, Hippocampus 44 S 0.45 <2.2 � 10−16

RAVLT, FDG 42 S 0.48 <2.2 � 10−16

R3 ADAS13, SPARE_AD 131 S 0.68 <2.2 � 10−16

CDMEMORY, SPARE_AD 110 S 0.72 <2.2 � 10−16

CDRSB, SPARE_AD 58 S 0.7 <2.2 � 10−16

MMSE, SPARE_AD 51 S −0.62 <2.2 � 10−16

CDRSB, PAPP-A 43 S −0.15 0.0002

Ru ADAS13, FDG 339 S −0.58 <2.2 � 10−16

ADAS13, Entorhinal 171 S −0.49 <2.2 � 10−16

ADAS13, Hippocampus 136 S −0.54 <2.2 � 10−16

ADAS13, SPARE_AD 131 S 0.68 <2.2 � 10−16

MOCA, FDG 124 S 0.49 <2.2 � 10−16

https://doi.org/10.1371/journal.pone.0187364.t009
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cortex and the volume of the fusiform gyrus (Fusiform). Correlations between PAPP-A and

these biological attributes were statistically significant at the significance level of 0.05.

Discussion

The redescription mining approach to segmenting high-dimensional datasets offers several

advantages over classical clustering, subgroup discovery and association mining, such as the

capability to generate relevant equivalence associations among combinations of attributes. We

performed redescription mining experiments on three different datasets, created by extracting

different sets of attributes from the ADNI database, and measured the redescription accuracy

and the level of homogeneity (in terms of level of cognitive impairment) of the subjects

described by each redescription. Basically, the main aim of our study has been to differentiate

between cognitively normal subjects and those with some level of cognitive impairment, using

clinical and biological attributes potentially related to AD. Our experiments over the con-

structed datasets were deliberately split into different support ranges in terms of subjects

described with redescriptions to allow extracting general and specific, relevant AD-related

information.

In this study, we found a number of surprisingly large and homogeneous groups and many

smaller, more specific subgroups of subjects that are described with informative redescriptions,

in a large extent confirming findings of previous works, corroborating some previously debat-

able findings or providing additional information about various attributes. After obtaining

interesting associations with PAPP-A, we used the introduced extensions to the CLUS-RM

algorithm to perform constraint-based redescription mining, allowing us to further explore

associations of various attributes with PAPP-A. CLUS-RM is extended to perform fully auto-

mated constraint-based redescription mining on data containing either numerical, categorical

attributes or missing values. In addition, it is equipped with soft and suggested CBRM capabil-

ity, introduced in this work.

The clinical attribute CDR (CDMEMORY, CDGLOBAL and CDR-SB) was shown to be a

very good attribute for differentiating CN subjects and subjects with some level of cognitive

impairment. The gene variant APOE ε4 was associated with subjects with high level of cogni-

tive impairment (LMCI and AD), whereas the biological attribute SPARE_AD was highly cor-

related with the subject’s diagnosis.

Table 10. The top four associations of PAPP-A with other attributes based on attribute pair occurrences in redescription queries obtained by

using constraint-based redescription mining on dataset D3. S denotes Spearman’s correlation coefficient. The produced redescription set contains 100

different redescriptions.

Associations of PAPP-A with biological attributes

Attribute pair Co-occurrence Test Correlation p-value

SPARE_AD, PAPP-A 100 S −0.05 0.1

Fusiform, PAPP-A 21 S 0.11 0.01

Entorhinal, PAPP-A 20 S 0.08 0.039

Hippocampus, PAPP-A 13 S 0.01 0.4

Associations of PAPP-A with clinical attributes

Attribute pair Co-occurrence Test Correlation p-value

CDMEMORY, PAPP-A 85 S −0.11 0.0034

CDRSB, PAPP-A 51 S −0.15 0.00019

MMSE, PAPP-A 49 S 0.13 0.00088

ADAS13, PAPP-A 42 S −0.11 0.0056

https://doi.org/10.1371/journal.pone.0187364.t010
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Additionally, high association of ADAS, CDR, and MOCA clinical attributes with

FDG-PET, SPARE_AD, and the volume of the entorhinal cortex and hippocampus were

shown. When describing homogeneous groups of subjects with high level of cognitive

impairment (LMCI and AD), the decrease of testosterone plasma levels, CNTF plasma levels

and increase of BNP plasma levels were observed. Likewise, changes in other biological attri-

butes previously reported as being altered in AD, such as increase in levels of serum apolipo-

protein B, pancreatic polypeptide, plasma insulin and Fas (CD95) were found.

Finally, probably the most important finding of this study was the detection of altered levels

of those biological attributes, for subjects with cognitive impairment, that could have potential

as therapeutic targets in AD, namely decreased leptin and increased angiopoietin-2 plasma lev-

els. Decreasing leptin levels have been suggested to alleviate AD-related cellular changes in

rabbit organotypic slices [87] and in human neuroblastoma cell culture [88, 89], suggesting

that lowered leptin levels detected in AD subjects can be a possible target for developing sup-

plementation therapies for reducing the progression of AD. The finding of increased angio-

poietin-2 plasma levels in AD patients is in accordance with the study of Thirumangalakudi

et al. [66], who showed that angiopoietin-2 is expressed by AD, but not control-derived micro-

vessels, supporting the idea of targeting the angiogenic changes in the microcirculation of the

AD brain as a potential therapeutic approach in AD [67]. Altogether, analysing redescriptions

from all three different datasets allowed finding many different associations. Some of these

associations, such as SPARE_AD and PAPP-A are novel and require more in depth analysis

with the supervision of domain experts. The correlation between SPARE_AD and PAPP-A

was not statistically significant when computed for all subjects contained in the dataset R3, but

it was statistically significant when computed only for subjects with AD and LMCI at the sig-

nificance level of 0.05. PAPP-A showed significant correlation with the volume of the Fusiform

gyrus and the volume of the Entorhinal cortex—both already known as being associated with

AD [90, 91]. Further, PAPP-A had statistically significant correlation to the most widely used

clinical cognitive tests: ADAS, Mini-Mental State Examination and Clinical Dementia Rating

Sum of Boxes.

It has been shown [92] by measuring the reference intervals of PAPP-A (in 52 healthy

males and 74 healthy, non-pregnant women) that the reference intervals are <22.9 ng/mL for

men and<33.6 ng/mL for non-pregnant women. PAPP-A levels of smokers were lower than

that of non-smokers and there is a positive correlation between serum PAPP-A levels and sub-

jects’ age. The measured median value of PAPP-A in males 6.85 with the range [undetectable,

24, 40] ng/mL were significantly higher than the median of female subjects 3.4 with the mea-

sured range [undetectable, 36, 7] ng/ml. For both males and females, non-smokers had higher

levels of PAPP-A than smokers. For males, the difference was statistically significant and for

females, it was not. PAPP-A levels in pre-menopause women were lower than in the post-men-

opause women, however the difference was not statistically significant. In male subjects, the

study found a significant correlation between subjects’ age and the level of PAPP-A, however

in female subjects this correlation was not statistically significant.

Our search (PubMed search on 3 March 2016.) by using the keywords pappalysin-1/Preg-
nancy-associated plasma protein-A (PAPP-A) and Alzheimer’s disease revealed only one publi-

cation [93] that associates PAPP-A with depressive symptoms.

Results by Llano et al. [78] show that PAPP-A is among the most significant descriptors in

plasma proteomic data for distinguishing between CN, MCI and AD patients by different

supervised machine learning algorithms. We discovered associations between PAPP-A and

cognitive status (LMCI, AD). These results demonstrate the importance of further study of

PAPP-A as potential marker for early detection of AD.
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Distribution analysis of PAPP-A values based on our data and those of Llano et al. [78]

show that PAPP-A levels are increased in MCI and LMCI patients but are significantly

decreased in subjects diagnosed with AD. Decrease in PAPP-A levels from LMCI to AD

patients on our data is more pronounced in female than in male patients. The possible link

between PAPP-A and AD related genes (ABCA1,ABCG1) discovered in Hu et al. [94] is

explained by Tang et al. [95]. This publication discusses the role of PAPP-A in pathogenesis of

atherosclerosis through its inhibition of liver X receptors α (LXRα) through the insulin-like

growth factor (IGF)-I-mediated signalling pathway, and negative regulation of expression of

ABCA1 and ABCG1 genes—all significantly associated with AD [94]. Although LXR are best

known as the key regulators of cholesterol metabolism and transport, LXR signaling has also

been shown to have significant anti-inflammatory properties [96]. Various studies surveyed in

štefulj et al. [96] implicate LXR in the pathogenesis, modulation, and therapy of AD.

Further potential association between PAPP-A and AD can be seen through study of

patients suffering form type-2 diabetes. It has been shown [97] that patients suffering from

type-2 diabetes also have significantly increased level of PAPP-A. Akter et al. [98] showed the

potentially shared pathology of type-2 diabetes and AD, where some research (e.g. [99]),

shows high influence of type-2 diabetes on the potential development of AD. Also, one study

performed on mice [100] suggested that changes in the brain during AD can potentially cause

diabetes.

Conclusion

The association of PAPP-A (previously known as pappalysin-1) with cognitive status is proba-

bly the most intriguing and novel finding of this study, as it has been scarcely investigated in

this context.

PAPP-A was detected as a significant attribute in differentiating between CN, MCI and AD

subjects [78] through use of different supervised machine learning algorithms. It has also been

shown that it is significant in predicting the progression from MCI to AD, though none of the

used subsets of attributes provided adequate predictions of progression between these two

classes. High association of PAPP-A with depressive symptoms has already been demonstrated

[93] by using the ensemble machine learning algorithm of Random Forests.

In our work, we detected important correlation between the attribute PAPP-A and the cog-

nitive test CDRSB. By applying the newly developed constraint-based extensions of the

CLUS-RM algorithm, we detected a larger number of attributes with statistically significant

correlation with PAPP-A. In addition to CDRSB, we observed more clinical tests, such as

MMSE and ADAS13, with statistically significant correlations with PAPP-A. Interesting and

significant correlations were also observed with the biological attributes: volume of the Fusi-

form gyrus and volume of the Entorhinal cortex both known as being associated with AD [90,

91] with the volume of Entorhinal cortex being significantly reduced even in the mild case of

AD [91].

The high importance of our finding lies in the fact that PAPP-A is a metalloproteinase,

already known to cleave insulin-like growth factor (IGF) binding proteins (IGFBPs). Perhaps

even more importantly, since it also shares similar substrates with the A Disintegrin and

Metalloproteinase (ADAM) family of enzymes (the main group of enzymes that act as α-secre-

tase to physiologically cleave the amyloid precursor protein (APP) in the so-called non-amyloi-

dogenic pathway [101]), it could be directly involved in the metabolism of the amyloid

precursor protein (APP) in the very early stages of AD. Based on the above, the role of

PAPP-A in AD should be investigated in greater details.
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