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Identification of clusters of rapid 
and slow decliners among subjects 
at risk for Alzheimer’s disease
Dragan Gamberger1, Nada Lavrač2, Shantanu Srivatsa3, Rudolph E. Tanzi4 & P. Murali 
Doraiswamy3,5

The heterogeneity of Alzheimer’s disease contributes to the high failure rate of prior clinical trials. 
We analyzed 5-year longitudinal outcomes and biomarker data from 562 subjects with mild cognitive 
impairment (MCI) from two national studies (ADNI) using a novel multilayer clustering algorithm. The 
algorithm identified homogenous clusters of MCI subjects with markedly different prognostic cognitive 
trajectories. A cluster of 240 rapid decliners had 2-fold greater atrophy and progressed to dementia at 
almost 5 times the rate of a cluster of 184 slow decliners. A classifier for identifying rapid decliners in 
one study showed high sensitivity and specificity in the second study. Characterizing subgroups of at 
risk subjects, with diverse prognostic outcomes, may provide novel mechanistic insights and facilitate 
clinical trials of drugs to delay the onset of AD.

Alzheimer’s disease is a major public health concern worldwide and the leading cause of dementia in late life. 
There are no therapies to slow progression or delay its onset. Consequently, there is an urgent need to develop 
accurate prognostic tests and effective disease modifying therapies. The 99% failure rate of clinical drug trials 
over the past two decades1 points to both our incomplete knowledge of pathology and prognostics. Both clinical 
experience and research outcome study data have shown that AD is a heterogeneous condition with high individ-
ual variability in age of onset, rate of clinical decline as well as degree of underlying pathology2–5. Characterizing 
subgroups of at risk subjects, with homogenous but diverse prognostic outcomes, may provide novel mechanistic 
insights and facilitate clinical trials of drug to delay AD onset.

Of the nearly 5 million people affected by AD dementia in the US, it has been estimated that 60% are women. 
In addition to individual heterogeneity, the study of potential sex differences in AD epidemiology, biology and 
therapeutics has been a relatively neglected area of research (reviewed in refs 6 and 7. The reported higher prev-
alence of Alzheimer’s disease (AD) in women had been attributed previously to longer female life expectancy 
or a detection bias but some, but not all, recent findings suggest that older women may be at greater risk for AD 
than men6, 7. For example, one study found that the age-specific risk of AD was almost two-fold greater in women 
than men (17.2% versus 9.1% at age 65 years and 28.5% versus 10.2% at age 75 years)8 and some other studies 
find that sex-differences become most prominent among eighty year olds7. Potential mechanisms to explain such 
differences include greater effects of the Apolipoprotein E4 allele in women, sex hormones (such as estrogen), 
lower cognitive reserve, and differences in occupational or educational attainment (reviewed in refs 6 and 7. Sex 
differences in immune system responsivity, MRI brain atrophy rates9 and effects of plaque-tangle pathology10 
have also been reported. In contrast, other studies report a higher risk for men to develop verbal memory loss, 
incident MCI6 and cerebrovascular disease6. Overall these studies argue for a more definitive examination of sex 
differences in the vulnerability to AD.

AD may have a prolonged preclinical and prodromal phase and there is great interest in characterizing these 
phases using biomarkers. Mild cognitive impairment (MCI) is a risk factor for AD and is clinically characterized 
by mild cognitive deficits but relatively normal everyday functioning and the absence of dementia11, 12. Prior 
studies have documented that MCI subjects have an intermediate phenotype between AD and cognitively healthy 
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subjects with regards to cognition, hippocampal atrophy, neuronal metabolism and cortical fibrillary amyloid 
pathology (determined) (reviewed in refs 11 and 12. While MCI has been divided into amnestic, non-amnestic 
and multi-domain MCI, even amnestic MCI is not homogenous13. Approximately 10–15% of such subjects may 
progress to dementia on an annualized basis but there is considerable variability from study to study and within 
the group – many MCI subjects remain cognitively stable for years and some even revert to normal cognitive 
states. Thus, identifying subgroups within MCI remains a priority13. A number of baseline factors have been 
linked to such variability. For example, in one 36-month study, the annualized rate of conversion from amnestic 
MCI to AD dementia was higher in amyloid-positive versus amyloid negative MCI subjects14. Such results have 
led to attempts to further subgroup amnestic MCI based on pathological or neuronal loss biomarkers to improve 
the homogeneity and accuracy of predicting prognostic outcome15. While studies have shown that combining 
multiple baseline markers does improve prediction, there is no consensus on the best combination of predictive 
markers and no biomarker has been fully validated and approved for predicting future dementia risk.

These findings are not surprising due to a high degree of randomness in the MCI data as a consequence of the 
fact that cognitive impairment can have different causes and different manifestations and be affected by multiple 
biological and measurement factors. For such a relatively noisy domain it is normal that the detected biomarker 
and clinical prognostic correlations (using traditional statistical approaches) are weak or only moderately strong.

Unsupervised cluster analysis is a data mining method that is increasingly used across many diverse fields to 
unearth new insights in multidimensional data. It does not require explicit assumptions about the target variables. 
Such methods may also offer insights into AD given the variability in clinical outcomes and prior autopsy litera-
ture noting the existence of patient clusters with unique pathological phenotypes (such as a subgroup with very 
localized cortical distribution of senile plaques versus another subgroup with more widely distributed plaques)16. 
To our knowledge, such clustering algorithms have not been previously applied to the study of longitudinal 
changes in people at risk for AD.

The development of an interactive data mining multilayer clustering algorithm (MLC) has been spurred, in 
part, by recently introduced approaches of redescription mining17 and multi-view learning18. MLC enables the 
size and the number of clusters to be determined automatically. The algorithm consists of two steps; in the first 
step an example similarity table (EST) is computed for each data layer and in the second step these tables are used 
by an agglomerative bottom-up procedure to find an optimal clustering solution. Similarity of instances is deter-
mined by execution of a supervised machine learning algorithm on an artificial classification task which is formu-
lated so that original instances are positive class examples while randomized original instances are in the negative 
class19. The supervised learning algorithm constructs rules that can discriminate between original examples and 
randomized examples20. Multilayer clustering results in improved quality over single layer clustering methods, 
does not require statistical independence of input data layers, and requires no explicit definition of the distance 
measure among instances (patients) or the number or size of the resulting clusters. The quality of the obtained 
clusters can then be reviewed by a dementia domain expert for clinical significance.

The aim of this study was to apply a novel multi-layer clustering algorithm to a longitudinal cohort of MCI 
subjects to discover homogenous clusters based on baseline and prognostic characteristics. A secondary aim 
was to test for sex differences within clusters. We studied a large well characterized cohort of late amnestic MCI 
subjects who were recruited for two multicenter Alzheimer’s Disease Neuroimaging Initiative studies (ADNI-1, 
ADNI-2) and followed for up to 5 years longitudinally with clinical, cognitive and biomarker (volumetric brain 
MRI, amyloid PET, FDG-PET, spinal fluid) tests.

Results
We studied 562 MCI subjects comprising 218 women and 344 men. The mean (SD) age for all subjects was 74.0 
(7.5) years and 54.3% were positive for the ApoE4 genotype. Table 1 depicts characteristics of the overall group as 
well as male and female MCI subjects.

Correlation Network Among Baseline and Longitudinal Clinical and Biomarker Variables. We 
performed a Fruchterman-Reingold force-directed correlation network graph for the entire sample as a first step 

MCI Mean (SD)
Female MCI 
Mean (SD)

Male MCI Mean 
(SD) Significance

N 562 218 344 —

Age 74.0 (7.5) 72.8 (7.6) 74.8 (7.3) <0.01

Education 15.9 (2.9) 15.4 (2.8) 16.2 (3.0) <0.01

CDR-SB 1.6 (0.9) 1.6 (0.9) 1.6 (1.0) —

ADAS-11 11.5 (4.6) 11.2 (4.8) 11.8 (4.4) —

MMSE 27.2 (1.8) 27.1 (1.8) 27.2 (1.8) —

RAVLT-immediate 31.3 (9.5) 33.9 (10.6) 29.7 (8.4) <0.001

APOE4 + (%) 54% 58% 52% —

F/U (months) 34.2 (14.2) 34.3 (14.1) 34.1 (14.3) —

Table 1. Baseline Demographic and Clinical Variables. ADAS = Alzheimer’s Disease Assessment Scale 
Cognitive Subscale Total Score; CDR-SB = Clinical dementia Rating Sum of Boxes; MMSE = Mini-Mental State 
Exam total score; RAVLT = Rey Auditory Verbal Learning Test; F/u = follow up duration averaged between the 
two studies; P-values are for comparison of male versus female subjects.
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to examine inter-relationships between various baseline and longitudinal rate of change variables (Fig. 1). Each 
variable is a node and the edges represent correlations with shorter edges representing stronger correlations.

One observation is that there are many unconnected nodes (like Age and Education) and some locally con-
nected groups like baseline volumetric descriptors (yellow squares). The largest connected subnetwork is concen-
trated around the longitudinal slopes of cognitive and functional clinical scales (dark green circles denoting slopes 
of ADAS-Cog13, CDR-SB, MMSE, FAQ). On one side of these prognostic clinical descriptors are corresponding 
baseline clinical descriptors (light green squares presenting for example baseline ADAS-Cog13, MOCA, etc). On 
another side is baseline FDG-PET and yet another side is baseline pathological biomarkers such as AV45 PET and 
spinal fluid biomarkers (Aβ42, total-tau, p-tau). And as expected, AV45 PET is linked to CSF amyloid-beta and 
tau measures. Also the two baseline functional measures, CDR-SB and FAQ, are tight linked.

The network also depicts clearly that baseline pathological biomarkers are better correlated with longitudinal 
slopes of clinical and cognitive tests than they are with the baseline cognitive or functional tests. This is more 
explicitly demonstrated in Table 2 which compares correlations between biomarker data (spinal fluid and PET 
data) with baseline values versus longitudinal rate of change (slope) values of key cognitive and functional tests 
(ADAS-Cog13, CDR-SB and MMSE). For example, the correlation between baseline PET AV45 and the rate of 
change of CDR-SB is twice that of the correlation between PET AV45 and baseline CDR-SB.

Identification of homogeneous MCI subpopulations. A clustering tool which implements the 
multi-layer clustering algorithm was used to construct clusters of MCI subjects. Data on all clinical, MRI, PET 
and CSF biomarkers were used to determine the similarity among subjects. In the first data layer have been 26 
baseline descriptors while 17 prognostic descriptors have been in the second data layer.

Figure 2 graphically illustrates that our clustering method identified two clusters of subjects termed as “Slow 
decliners” and “Rapid decliners”. Slow decliners (N = 184) include a subset of MCI subjects that have both favora-
ble baseline data and prognosis while rapid decliners (N = 240) consists of a subset of MCI subjects with a more 
impaired baseline status and a rapidly progressing longitudinal cognitive course. Our method also identified 
another 138 patients who did not fit into either cluster - many with baseline ADAS scores in-between slow and 
rapid decliners.

Figure 1. Correlation Network between clinical and biomarker variables in all MCI subjects. The network 
Baseline descriptors are denoted by squares while circles are used to denote longitudinal rate of change 
(slope) descriptors. Green color depicts cognitive and functional variables with squares depicting baseline 
values and circles depicting rate of change values. Yellow squares depict baseline MRI volumetric measures 
while yellow circles depict slope of MRI volumetric changes over time. Orange squares represent baseline 
brain FDG-PET and AV45PET data while red squares represent baseline spinal fluid amyloid-beta, total-
tau and phosphorylated-tau data. See Methods for details of the measurements. The length of the edges is 
inversely proportional to the strength of the correlation. Only Spearman’s correlations rho > 0.5 are shown as 
edges. Slopes are denoted with the prefix alphabet “S” in front of the test name. FAQ = Functional Activities 
Questionnaire; ADAS11 and ADAS13 reflect the 11-item and 13-item versions of this test. MOCA = Montreal 
Cognitive Assessment Scale; Other details are described in the Methods.
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Table 3 presents differences between the clusters of slow and rapid decliners in their baseline characteristics 
as well as longitudinal slopes of change for specific cognitive and functional variables. The Mann-Whitney test 
was used to determine statistical significance of numerical properties and chi-square test has been used for the 
presence of at least one APOE4+ modification. As shown in Table 3, rapid decliners were more likely to be 
ApoE4+ and had slightly lower educational levels. Rapid decliners also had substantially worse baseline cognitive 
and functional measures as well as larger ventricles and smaller medial temporal lobe brain volumes than slow 
decliners. Rapid decliners also had lower CSF amyloid-beta42 and higher tau levels than slow decliners. Rapid 
decliners declined at much faster rates than slow decliners on most cognitive and functional measures and had 
faster rates of brain atrophy. For example, baseline ADAS13 average values are 11.7 and 24.5 for slow and rapid 
decliners, respectively, a two-fold difference. Likewise, the value of annualized decline for the ADAS-Cog13 is 2.5 
times higher in rapid decliners versus slow decliners, and that for the CDR-SB is 7 times greater. A similar effect 
is present for some objectively measured data like MRI volume of lateral ventricles. Thus, although both groups 
were classified as late-MCI, these two subpopulations are substantially different.

Figure 3 depicts differences in the ADAS-Cog 13 between slow and rapid decliners to illustrate the substantial 
differences in both baseline value and slope of change.

Progression from MCI to Dementia in Slow versus Rapid Subpopulations. We examined the cat-
egorical diagnostic changes from MCI to dementia as determined by the clinician. At each visit, the diagnosis of 
the subject as reassessed by the site physician using all available information and the clinician rated whether the 
subject was stable, had converted to dementia or reverted to cognitively normal status. For the complete MCI 
population the rate of conversion to dementia from MCI was 42% and the rate of reversion from MCI to normal 
was 4%. The rate of conversion to dementia from MCI was 64% in the rapid cluster and 13% in the slow cluster. 
In the rapid cluster there was no reversion from MCI to normal while in the slow cluster it has been 10%. These 
differences were statistically significant (p < 0.001).

Classifiers to Identify Rapid Decliners. Subgroup discovery technique was used to identify the best clas-
sifiers (clinical test cut-offs on ADAS, MMSE and RAVLT) to identify MCI rapid decliners. The classifiers were 
first developed using ADNI-1 study MCI data and then replicated and validated using the ADNI-2 study MCI 
data. Table 3 presents sensitivity and specificity of the classifiers. All MCI subjects were included and unclassified 
patients were combined with slow decliners for this analysis.

A baseline ADAS13 > 19.50 yielded a sensitivity and specificity in ADNI1 of 92.0% and 93.7% respectively, 
and was also highly accurate in ADNI2 with sensitivity and specificity of 98.4% and 90.0%. A baseline cut-off on 
ADAS11 > 12.0 yielded satisfactory metrics in ADNI1 of 80.7% and 93.7% versus in ADNI2 of 89.1% and 98.0%. 
In total 230 rapid decliners (95.8%) satisfy at least one of these conditions and 194 of them (80.8%) satisfy both 

ADASCOG 13 
Baseline Slope

CDR-SB 
Baseline Slope

MMSE 
Baseline Slope

Pathological Markers

Aβ42 −0.24 −0.38 −0.16 −0.40 0.20 0.36

T-TAU 0.29 0.31 0.18 0.34 −0.15 −0.35

P-TAU 0.33 0.34 0.17 0.34 −0.12 −0.33

18F-AV45 PET 0.39 0.49 0.28 0.58 −0.32 −0.50

Neural Metabolism

18F-FDG PET −0.38 −0.38 −0.25 −0.45 0.30 0.42

Table 2. Correlations between biomarkers and clinical data for all MCI subjects. Baseline = baseline clinical 
data; Slope = rate of change of clinical data. The correlations between biomarker data and baseline clinical data 
are weaker than those with the rate of change of clinical data.

Figure 2. Clustering of the total (N = 562) MCI sample into Rapid and Slow decliners.
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conditions. Using combined cut-off scores from ADAS11 and ADAS13 yielded the highest accuracy (Table 4). An 
MMSE cut-off < 27 yielded the worst sensitivity and specificity of 56.8% and 74.3% in ADNI1 and 46.9% and 79% 
in ADNI2. The RAVLT-immediate < 30 yielded intermediate accuracy.

Slow decliners Mean (SD) Rapid decliners Mean (SD) z-score

Baseline Clinical Variables N = 184 N = 240

Education 16.6 (2.6) 15.4 (3.1) 3.8

APOE4+(%) 49% 77% **

MMSE 28.1 (1.6) 26.4 (1.7) 9.4

ADASCOG-13 11.7 (3.3) 24.5 (4.2) 17.6

MOCA 24.7 (2.9) 20.6 (2.4) 7.1

RAVLT-%forgetting 45.8 (30.4) 83.7 (23.7) 11.7

FAQ 2.2 (3.7) 5.3 (4.9) 7.8

CDR-SB 1.4 (0.8) 2.0 (1.0) 6.7

Baseline MRI, PET and CSF Variables

MRI Ventricles 38 809 (21 120) 46 461 (24 608) 3.4

MRI Hippocampus 6 905 (1 055) 6 096 (964) 7.0

Entorhinal Cortex 3 681 (746) 3 055 (656) 7.8

MRI Medial Temp 19 716 (2 670) 18 348 (2 970) 4.4

Aβ42 177 (56) 148 (45) 4.1

T-TAU 80 (41) 121 (67) 5.4

P-TAU 32 (18) 48 (24) 5.8

FDG PET SUVR 1.26 (0.13) 1.16 (0.11) 6.1

AV45 PET SUVR 1.18 (0.18) 1.38 (0.24) 4.5

Longitudinal Clinical Slopes

SMMSE −0.1 (0.8) −1.0 (1.3) 9.9

SMOCA −0.2 (0.9) −0.7 (0.9) 3.5

SADASCOG13 0.7 (2.0) 1.9 (2.6) 6.9

SFAQ 0.5 (1.3) 1.7 (2.4) 8.8

SCDR-SB 0.1 (0.4) 0.7 (0.8) 11.6

Longitudinal MRI Slopes

SVentricles 1128 (1079) 2197 (1801) 7.5

SHippocampus −64 (75) −113 (110) 6.7

SWholeBrain −3600 (6000) −7600 (8100) 6.3

SEntorhinal Cortex −33 (176) −71 (187) 3.4

SFusiform −102 (308) −282 (391) 6.2

SMedial Temp −138 (287) −344 (449) 6.0

Table 3. Clinical and Biomarker Differences between slow and rapid decliners All variables in the table were 
statistically significant at least p < 0.01 or greater using Mann Whitney test. ApoE4 prevalence was tested using 
the chi-square test and was also significant between groups. The prefix “S” depicts longitudinal change slope. See 
statistical methods for details.

Figure 3. X-axis depicts duration of follow up. Y-axis depicts ADAS-Cog-13 total scores and higher scores 
depict greater worsening of cognition (due to more cognitive errors). The slopes depict the markedly different 
cognitive baseline and endpoint for slow versus rapid declining subpopulations of MCI subjects.
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Effect of Gender on Rapid versus Slow Decliner Status. At entry, men were slightly older, better edu-
cated, had larger brain volumes (p < 0.001) and lower RAVLT immediate recall score (p < 0.001) than women 
(Table 1). In both men and women, rapid decliners had worse baseline cognitive status, smaller brain volumes, 
FDG-PET hypometabolism, higher amyloid and tau markers and more rapid atrophy than slow decliners 
(Table 5, Fig. 4). Among women, the rate of conversion to dementia from MCI was 69% in the rapid cluster and 
9% in the slow cluster whereas among males this was 61% and 16% respectively.

Discussion
The early and accurate identification of subjects at risk for AD remains a priority for the field. Aging and AD both 
are well known to be heterogeneous conditions and decades of research have shown that individuals vary widely 
in many clinical, cognitive and pathological characteristics of brain aging2–12. Initial attempts to identify a homog-
enous group of individuals at risk for AD dementia led to the concept of MCI as a transition stage between aging 
and dementia11, 12. Subsequently, MCI was further subgrouped into amnestic, nonamnestic and multidomain 
types, and more recently into pathological subtypes based on amyloid scans or spinal fluid markers (reviewed in 
ref. 15). While these efforts have modestly improved the prognostic reliability, all of these classifications remain 
suboptimal since binary cut-off points for biomarkers remain insufficiently validated and many underlying pro-
cesses may contribute to the heterogeneity of MCI and risk for AD.

The novelty of our work is the use of an unbiased clustering algorithm on baseline to identify clusters of slow 
and the rapid declining subjects within the category of late MCI. Our work (e.g. Table 2) clearly demonstrates 
that these subpopulations are markedly different in respect to baseline cognition, objectively measured baseline 
biomarker data, the rate of cognitive progression of these subjects and the rate of longitudinal brain atrophy. The 
rapid cluster had an almost 5-fold greater rate of converting to dementia versus the slow cluster and a lower rate of 
reverting back to cognitively normal state (0% versus 13%). The rapid cluster also had a 7-fold faster deterioration 
of global functioning as measured by the CDR-SB. The slope of the increase of the volume of lateral ventricles, 
a neuronal loss marker of disease progression, was almost 2-fold greater in rapid declining subjects versus slow 
declining patients. These data confirm that the rapid decliner subset of MCI is pathological different from the 
slow decliner subset – likely in a more advanced phase of the pathological process of AD - arguing for a need to 
further subclassify late MCI subjects.

From the correlation networks it can be noticed that values of biomarker data are more strongly correlated 
with slopes of changes of clinical scales than with their baseline values. This suggests that pathological biomarker 
changes precede the cognitive decline and supports their proposed causal role. Table 3 lists the mean and SD val-
ues for the Rapid Decliner and Slow Decliner group on a range of baseline characteristics. These results confirm 
the fact that baseline cognitive and biomarker status robustly predict cognitive decline in MCI but extends that 
to identify specific baseline cognitive, functional and biomarker characteristics that mark very slow and very 
rapid decliners. While baseline differences between these clusters are most significant in respect of ADAS scores 
they are apparent across a range of clinical and biomarker measures such as entorhinal cortex and hippocampal 
volume as well as amyloid and tau markers.

Using the data from all MCI subjects, we identified baseline classifiers that could predict rapid decline. We 
focused on cognitive tests since they are less expensive and more practical than PET scans or CSF data. We first 
tested the MMSE and found that even a conservative MMSE < 27 cutoff was a poor classifier for identifying rapid 
decliners. Currently subjects with MMSE score between 25–30 are routinely included in MCI clinical trials (as 
long as they meet other memory test score criteria) and our findings suggest this practice could be modified if 
there is a desire to identify rapid decliners. A combination of ADAS11 and 13 cut-offs proved the best classifier 
overall – with lower cut points than when these tests are applied individually. It had high specificity and sensi-
tivity in our test sample (ADNI-1) with high reproducibility in the independent replication sample of ADNI-2 
subjects. The differences between rapid and slow clusters (and unclassified patients) were very large for a number 
of markers thus explaining the high discriminatory effect. This is not totally surprising since prior studies have 
reported that baseline ADAS is a predictor of future decline. Because the ADAS-11 is part of the ADAS-13 test, 
MCI treatment trial sponsors could readily incorporate such a criterion for their studies to enrich their study for 
rapid decliners. While using such a cut-off would result in a need to screen more subjects and a higher screen 
fail rate, the robust decline of those enrolled could allow for more efficient trial design with smaller numbers of 
subjects randomized. The cut-offs listed in Table 3 would be useful both for sponsors planning for future clinical 
trials of therapies to prevent AD dementia as well as clinicians doing prognostic counseling of their patients.

There are several strengths to our report. To our knowledge, this is the first study to use multilayer cluster 
analyses to identify homogenous MCI clusters with diverse prognostic outcomes. An advantage of the unbiased 
methodology we use is that, in contrast to other approaches, we cluster cases that can be clustered and the rest 
remains simply unclustered. Clinically useful clustering should result in patient subpopulations that very similar 

ADNI1 ADNI2

Sensitivity Specificity Sensitivity Specificity

ADAS13 > 19.50 92.0% 93.7% 98.4% 90.0%

ADAS11 > 12.0 80.7% 93.7% 89.1% 98.0%

RAVLT_immediate < 30 75.6% 73.0% 75.0% 70.0%

ADAS11 > 10.5 AND 
ADAS13 > 19.0 93.8% 95.5% 98.4% 94.0%

Table 4. Sensitivity and specificity of classifiers for identifying Rapid Declining MCI.
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with regards to multiple variables as documented by the large differences in multiple baseline and longitudinal 
variables between the rapid and slow clusters. ADNI is one of the most successful longitudinal biomarker studies 
in the AD field and its strengths include the use of more than 50 sites across the US, a prospective design, rigorous 
selection criteria for late MCI, careful standardization of clinical, imaging and biomarker data collection and lon-
gitudinal follow up for up to 5 years21. The late MCI subjects in ADNI-1 and ADNI-2 were recruited using identi-
cal criteria and hence provided an ideal test and validation sample for our identifying classifiers. We included the 
major baseline clinical, cognitive, activities of daily living and biomarker predictors that are routinely used since 
our goal was to make the findings relevant to clinical trials. There are also some limitations. ADNI subjects were 
recruited at leading academic research centers and while representative of subjects enrolled in clinical trials, may 
not be representative of all such subjects in the population. We restricted the follow up to 5 years to keep the max-
imum follow up period identical for ADNI1 and ADNI2 and hence we do not know if the outcomes would change 
with longer periods of follow up. Hence, the findings observed here, including the specificity and sensitivity of cut 
points to identify rapid decliners, need be replicated in larger population studies before they can be generalized.

Lastly, the identification of homogenous MCI subpopulations may also provide new insights into Alzheimer’s 
disease mechanisms. For example, it could be of interest to examine how the rapid and slow declining clusters 
differ in their genetic, transcriptomic, proteomic and metabolomics profiles. ApoE4 was overrepresented among 
rapid decliners but it does not explain all of the variability. The inclusion of baseline genomics data in such a clus-
ter analyses could result in the identification of even more homogenous sets of MCI subgroups. One of the most 
important genetic subgrouping that has been relatively overlooked in the laboratory study of AD is the effect of 

Females Males

Slow decliners mean 
(SD)

Rapid decliners 
mean (SD) Sig.

Slow decliners 
mean (SD)

Rapid decliners 
mean (SD) P-value

N 77 90 107 150

Baseline Clinical Variables

Age 72.4 (7.6) 73.6 (7.8) 74.4 (7.6) 75.6 (6.6)

Education 15.9 (2.9) 15.2 (2.6) 17.1 (2.4) 15.6 (3.2)

APOE4+ (%) 38% 68% p < 0.001 42% 59% p < 0.01

ADAS-13 10.8 (4.5) 25.0 (3.6) 12.3 (2.9) 24.2 (4.3)

MMSE 28.3 (1.5) 26.0 (1.3) p < 0.001 28.0 (1.7) 26.7 (1.7) p < 0.001

MOCA 25.1 (2.2) 20.2 (3.0) p < 0.001 24.2 (2.7) 20.9 (2.5) p < 0.001

RAVLT-%forgetting 43.5 (25.7) 82.6 (34.0) p < 0.001 47.5 (27.7) 84.3 (23.1) p < 0.001

FAQ 2.2 (5.0) 5.0 (3.5) p < 0.001 2.2 (3.3) 5.5 (4.8) p < 0.001

CDR-SB 1.4 (0.9) 2.0 (0.9) p < 0.001 1.3 (0.8) 1.9 (1.0) p < 0.001

Baseline MRI, PET and CSF Variables

Ventricles 30 397 (14 872) 34 843 (14 144) p < 0.05 44 956 (23 220) 53 591 (26 544) p < 0.02

Hippocampus 6 664 (861) 5 798 (956) p < 0.001 7 085 (861) 6 281 (992) p < 0.001

Whole Brain 965 210 (90 020) 924 940 (88 040) p < 0.01 1 057 130 (104 
570) 1 045 230 (90 540)

Entorhinal Cortex 3 510 (630) 2 854 (760) p < 0.001 3 809 (713) 3 182 (658) p < 0.001

Medial Temp 18 737 (2 537) 16 820 (2 531) p < 0.001 20 447 (2 547) 19 310 (2 850) p < 0.01

ABETA 174 (48) 145 (56) p < 0.001 180 (57) 149 (46) p < 0.02

T-TAU 87 (73) 133 (48) p < 0.001 63 (73) 114 (63) p < 0.001

P-TAU 34 (29) 53 (19) p < 0.001 31 (18) 45 (20) p < 0.001

FDG PET 1.27 (0.11) 1.15 (0.13) p < 0.001 1.27 (0.11) 1.15 (0.13) p < 0.001

Amyloid PET 1.17 (0.25) 1.39 (0.16) p < 0.001 1.19 (0.19) 1.37 (0.24) p < 0.01

Longitudinal Clinical Data

SCDRSB 0.1 (0.7) 0.7 (0.5) p < 0.001 0.0 (0.3) 0.7 (0.8) p < 0.001

SADAS13 0.9 (2.7) 1.9 (1.8) p < 0.001 0.6 (2.0) 1.8 (2.5) p < 0.001

SMMSE −0.3 (1.3) −1.0 (0.8) p < 0.001 −0.0 (0.7) −1.1 (1.3) p < 0.001

SFAQ 0.4 (2.2) 2.0 (1.2) p < 0.001 0.5 (1.4) 1.6 (2.4) p < 0.001

SMOCA −0.1 (0.7) −0.5 (0.7) p < 0.01 −0.3 (1.1) −0.8 (1.0) p < 0.05

SRAVLT-immediate −0.8 (3.3) −1.6 (2.2) −0.6 (2.5) −1.4 (2.8) p < 0.001

Longitudinal MRI Slopes

SVentricles 1 120 (1 798) 2 091 (1 148) p < 0.001 1 135 (1 029) 2 262 (1 813) p < 0.001

SHippocampus −66 (89) −122 (80) p < 0.001 −62 (72) −108 (122) p < 0.001

SWholeBrain −3 410 (7 840) −7 630 (5 380) p < 0.001 −3 760 (6 460) −7 560 (8 260) p < 0.001

SEntorhinal Cortex −30 (178) −54 (136) p < 0.02 −36 (203) −81 (193) p < 0.05

SFusiform −94 (383) −305 (242) p < 0.001 −108 (353) −268 (397) p < 0.001

SMedial Temp −159 (431) −365 (286) p < 0.001 −121 (289) −331 (462) p < 0.001

Table 5. Sex-specific clinical and biomarker differences between MCI Clusters.
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gender – most rodent studies have been in male mice and only a small number of biomarker studies have tested 
for sex differences6, 7. Our analyses show that rapid MCI decliners in both sexes had worse baseline cognition, 
higher levels of cortical amyloid and tau pathology as well as smaller volumes of hippocampal and entorhinal 
cortices. This supports the use of these markers, in both men and women, to select at risk subjects in prevention 
trials. Further characterization of the genetic underpinnings of such divergent prognostic outcomes may poten-
tially yield new prognostic tests for AD and novel biochemical targets for therapeutic drug discovery.

Clinical trials in MCI testing therapies to delay the onset of AD today require large sample sizes and long 
durations of follow up in order to achieve reliable rates of decline in the placebo groups1, 2, 5, 14, 21. This is because of 
the heterogeneous nature of MCI, the variables rates of conversion to AD from one subject to another and lack of 
an approved predictive test. Further, the fact that in such studies many patients will receive placebo for 18 months 
or longer raises the ethical dilemma of exposing subjects at risk of developing dementia to lengthy placebo treat-
ment22. It is our hope that further research utilizing newer data mining approaches to identify clinically relevant 
subpopulations at risk for AD will not only accelerate the search for disease modifying therapies and development 
of prognostic tests but provide reassurance to those who may be at very low risk for progression.

Materials and Methods
Subjects. All protocols were approved by the Duke University Medical Center institutional review board and 
IRBs at each site (full list of all sites and IRBs is available at www.adni-info.org), and written informed consent 
was obtained from all subjects prior to enrollment. Data used in the preparation of this article were obtained 
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was 
launched in 2003 as a public-private partnership with a primary goal to test whether serial magnetic resonance 
imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and neuropsycho-
logical assessment can be combined to measure the progression of mild cognitive impairment (MCI) and early 
Alzheimer’s disease (AD). ADNI (ADNI ClinicalTrials.gov identifier: NCT00106899) is the result of efforts 
of many coinvestigators from a broad range of academic institutions and private corporations, with subjects 
recruited from over 50 sites across the United States and Canada. Details of the ADNI-1 and ADNI-2 protocol, 
timelines, study procedures and biomarkers can be found in the ADNI-1 and ADNI-2 procedures manual [http://
www.adni-info.org/]. For up-to-date information, see www.adni-info.org.

All ADNI-1 and ADNI-2 late MCI subjects with at least one post-baseline visit data were eligible for inclu-
sion. The criteria for classification as late MCI in ADNI-1 and ADNI-2 are identical and are as follows: subjective 
memory complaint, objective evidence of impaired memory calculated by scores of the Wechsler Memory Scale 
Logical Memory II adjusted for education, absence of significant confounding conditions such as current major 
depressive episode, normal, or near normal daily activities, absence of clinical dementia, an inclusive mini-mental 
state examination (MMSE) score from 24–30, and a score of 0.5 on the global CDR. For a detailed list of all 
selection criteria, refer to the ADNI procedures manual [http://www.adni-info.org/]. In addition to demographic 
data, for subject inclusion, data for all the following parameters were required: Alzheimer’s Disease Assessment 
Scale-Cognitive subscale (ADAS-cog) for at least two different time points, genotyping results, and biomarker 
data at baseline. The term “baseline” is used to indicate data collected first at either screening or baseline. 
Additional details are provided in the ADNI procedures manual. Early MCI (EMCI) subjects were not included 
in this analysis.

Clinical and Genetic Variables. Demographic variables included were age, gender, education level. APOE 
allele genotyping of all subjects was completed using DNA extracted from peripheral blood cells, with details pro-
vided elsewhere [http://www.adni-info.org]. In total, 378 MCI subjects from ADNI-1 were included. Cognitive 
and functional variables included were Alzheimer’s Disease Assessment Scale (ADAS-Cog 11 and 13), Mini 
Mental Scale Examination (MMSE), Montreal Cognitive Assessment (MOCA), and the Rey Auditory Verbal 
Learning (including subtests). Disease staging and activities of daily living scales included were the Clinical 
Dementia Rating (CDR-SB) and Functional Assessment Questionnaire (FAQ). Details of these tests can be found 
in the ADNI procedures manual [http://www.adni-info.org/].

Figure 4. X-axis depicts duration of follow up. Y-axis depicts ADAS-Cog-13 total scores and higher scores 
depict greater worsening of cognition (due to more cognitive errors). The slopes depict sex-specific cognitive 
baseline and endpoint scores for slow versus rapid declining subpopulations of MCI subjects.

http://www.adni-info.org
http://www.adni-info.org
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Pathological and Neuronal Loss Biomarkers. Imaging and spinal fluid data were downloaded from the 
ADNI dataset.

MRI Measures. Structural MRI brain scans were acquired using 3 T MRI scanners with a standardized protocol. 
Quantification was performed in an automated pipeline using FreeSurfer software package version 5.1 (http://
surfer.nmr.mgh.harvard.edu/fswiki). Detailed descriptions can be found at www.adni-info.org. Volumetric or 
thickness data on whole brain, lateral ventricles, hippocampus, entorhinal cortex, fusiform and medial temporal 
lobe were included. These served as surrogate markers for neuronal loss. Intracranial volume was also included as 
a covariate. For more details of MR imaging procedure, readers are referred to http://adni.loni.usc.edu. Each brain 
volume indicated is a summation of right and left hemispheric region and the unit is in mm3.

FDG-PET Measures. 18F-FDG-PET standardized protocols, acquisition and analyses methods are described 
at http://adni.loni.usc.eduqw/methods/pet-analysis/pre-processing/ and at http://www.adni-info.org/Scientists/
ADNIStudyProcedures.html. Cerebral metabolic rate for glucose (CMRgl) values were analyzed. We classified 
FDG-PET as a metabolic marker rather than as a pathological marker by convention but acknowledge it can also 
mark neuonal injury and pathological changes.

Amyloid PET (Pathological biomarker). 18F-florbetapir brain PET (referred to as AV45 PET) measures fibrillary 
cortical amyloid deposition and global SUVr values were used for our analyses. The global summary measures rel-
ative cortical Aβ deposition in frontal, cingulate, lateral parietal, and temporal cortices. Methods used to acquire 
and process ADNI florbetapir PET image data can be found at http://adni.loni.usc.edu/methods/.

Cerebrospinal fluid (CSF) measures. CSF samples were obtained by lumbar puncture and examined for total 
tau, phosphorylated tau (p-tau181P), and amyloid-beta (Aβ1–42). CSF proteins were measured using the multiplex 
xMAP Luminex platform (Luminex Corp) with Innogenetics (INNO-BIA AlzBio3, for research use–only rea-
gents) immunoassay kit–based reagents with details described elsewhere (www.adni-info.org).

MRI volumes, PET SUVRs and CSF protein levels were used as continuous variables.
ADNI-1 and ADNI-2 differed slightly in the numbers of subjects who had various biomarker tests. MRI was 

done in all subjects with at least one volumetric measure available in 561 subjects. CSF markers were available in 
302 subjects (required for only a third of ADNI-1 subjects but required for all ADNI-2 subjects). FDG-PET was 
required for only half of ADNI-1 subjects and required for ADNI2 thus was available for 362 subjects. Florbetapir 
amyloid PET was done only in ADNI-2 and was available for 157 subjects. Details of imaging and spinal protein 
assay protocols, quality control and standardization across sites can be found on the ADNI website (http://www.
adni-info.org/).

Longitudinal Cognitive, Functional and MRI Data. MCI subjects were monitored in both ADNI-1 and 
ADNI-2 at 6 month intervals for up to 5 years. Cognitive and biomarker tests were administered at specific inter-
vals. From the available longitudinal data we computed slopes for 10 clinical (SCDRSB, SADAS11, SADAS13, 
SMMSE, SFAQ, SMOCA, SRAVLTimmediate, SRAVLTlearning, SRAVLTforgetting, SRAVLTpercForgetting) and 
7 imaging descriptors (SVentricles, SHippocampus, SWholeBrain, SEntorhinal, SFusiform, SMidTemp, SICV). 
Slopes are identified by the name of the corresponding baseline descriptor with added starting ‘S’. For example 
SFAQ denotes changes of FAQ. Its value is the mean increase or decrease in a 6 month period computed for the 
complete period in which the patient has been monitored. In the rest of paper the computed slopes are denoted as 
prognostic descriptors. ADNI-1 subjects were analyzed only through the end of ADNI-1 (first 5 years) to keep it 
comparable to newly recruited ADNI-2 subjects who were also followed for upto 5 years.

Longitudinal Change in Diagnosis. The subject’s diagnosis was assessed at each visit by the site clinician 
using all available information. At each visit the MCI subject’s diagnosis could remain unchanged, or be changed 
to Dementia (if the subject worsened and met criteria) or be changed to Cognitively Normal (if the cognition 
had improved and subject no longer met MCI criteria). Subjects who met criteria for dementia were then further 
assessed to see if they met criteria for probable AD dementia. Details of criteria can be found in the ADNI proce-
dures manual [http://www.adni-info.org/].

Statistical and Data Mining Methods. Summary Statistics. For initial descriptive and slope analyses, we 
used standard statistical methods: Man-Whitney’s test to detect descriptors for which two populations are statisti-
cally different and Spearman’s correlation to detect pairs of related descriptors. Because of the large number of var-
iables, non-parametric test was used to avoid assumptions about distributions of variables. Simple linear regression 
slopes, without any covariates, were computed for clinical and MRI variable of interest using all time points avail-
able. Non-parametric methods are used in order to avoid assumptions about distributions of descriptor values.

Correlation Network. For correlation network visualization igraph package in R was used to obtain 
Fruchterman-Reingold force-directed layout. Edges present Spearman’s rank correlations with value rho ≥ 0.50. 
Distance between nodes is defined as the inverse of the correlation: dist = 1/ rho; small distance denotes large cor-
relation. Fruchterman-Reingold force-directed graph technique was used to construct a layout in which strongly 
correlated concepts are next to each other and concepts that are strongly related to many other concepts are 
positioned in the center of the network. Baseline clinical and biomarker descriptors are denoted by squares while 
circles denote longitudinal slope descriptors. Green and yellow colors are used for clinical and MRI descriptors, 
respectively. Orange squares represent baseline 18F-FDG or 18F-florbetapir PET data while red squares are base-
line spinal fluid data.

http://www.adni-info.org
http://adni.loni.usc.edu
http://adni.loni.usc.eduqw/methods/pet-analysis/pre-processing/
http://www.adni-info.org/Scientists/ADNIStudyProcedures.html
http://www.adni-info.org/Scientists/ADNIStudyProcedures.html
http://adni.loni.usc.edu/methods/
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Multilayer Clustering Algorithms. A novelty of the work is application of a clustering tool for identification of 
homogeneous subpopulations of subjects. Although clustering is a well-known technique and many different 
algorithms are available, it is rarely used for insightful data analysis. The main reason is that application of differ-
ent algorithms will typically result by different clusters. Each algorithm has parameters that have to be carefully 
adjusted by the user and whose selection also influences the final result23. In the absence of objective measures 
for the evaluation of the clustering results, a typical criterion for the selection of the most appropriate clustering 
algorithm and selection of its parameters is the usefulness of the clustering result24.

Multi-layer clustering algorithm has been used in this work because it enables the size and the number of 
clusters to be determined automatically. The algorithm consists of two steps; in the first step example similarity 
table (EST) is computed for each data layer and in the second step these tables are used by an agglomerative 
bottom-up procedure to find an optimal clustering solution. Similarity of instances is determined by execution 
of a supervised machine learning algorithm on an artificial classification task which is formulated so that original 
instances are positive class examples while randomized original instances are in the negative class19. The super-
vised learning algorithm constructs many rules that discriminate between original examples and randomized 
examples20. Similar positive examples are covered by many common rules while very different examples are rarely 
both covered by the same rule. EST is a symmetric NxN matrix where N is the number of original instances. Value 
in position xi, j represents similarity of examples i, j which is computed as a proportion of rules that cover this pair 
of examples.

The second step of the multi-layer algorithm is a heuristic procedure aimed at finding an optimal solution in 
which each instance i is clustered together with all instances with which it has high similarity while instances with 
low similarity should stay outside this cluster. The Clustering Related Variability (CRV) score CRVi is defined for 
each instance i

= +CRV CRV CRVi i wc i oc, ,

CRVi, wc is within cluster variability while CRVi,oc is outside cluster variability of EST values.

∑= −
∈

CRV x x( )i wc
j C

i j mean wc, , ,
2

∑= −
∉

CRV x x( )i oc
j C

i j mean oc, , ,
2

CRVi, wc is computed from the values that are in row i and those columns corresponding to instances that are 
in the same cluster C as the instance i. Value xmean, wc is the mean value of xi, j in cluster C while value xmean, oc is the 
mean value for all other xi, j values in the row i. If example i is the only one example in cluster C then CRVi, wc = 0 
and CRVi, oc is equal to the variability of all xi, j, i ≠ j. Clustering related variability for a cluster C, = ∑ ∈CRV CRVC i C i 
is defined as a sum of CRVi values for all instances included into the cluster. For each pair of clusters x, y the value

= + −DIFF CRV CRV CRVxy x xy xy

can be computed. DIFFxy has a positive value if merging clusters x and y enables reduction of the clustering related 
variability. In multi-layer clustering when two data layers are defined then EST and DIFFxy are computed inde-
pendently for each data layer. In this case the joint DIFFxy is the smaller one of differences for both layers:

= .DIFF DIFF DIFFmin( , )xy xy layer xy layer, 1 , 2

The goal is to find a clustering solution so that for all constructed clusters the clustering related variability 
CRVC is minimal. The clustering starts with each example in its own cluster. In every iteration DIFFxy is computed 
for all possible pairs of clusters x, y in the current solution and the pair with maximal DIFFxy is selected. If this 
maximal value is positive it means that further reduction of variability is possible. Clusters x and y are merged 
and the next iteration starts. Otherwise, clustering procedure ends with the current solution as the optimal one. 
Details of the algorithm have been published previously25, 26.

The multi-layer algorithm is the substantial part of the web application called Exploratory Clustering. It is 
publicly available at http://rr.irb.hr/exploC/27. The tool can be used for various clustering tasks with up to 1000 
instances and 1000 attributes. The ADNI baseline data for all MCI patients are loaded into the first data layer, 
and the second data layer consists of slopes of values computed from longitudinal data. In all, 26 baseline and 
17 longitudinal variables were input. The tool is unbiased and clusters patients based on their variables and then 
based on the properties of obtained clusters the user can distinguish different clinically relevant subpopulations. 
The difference among experiments is that various subsets of input attributes are used for the computation of the 
similarity of instances.

Identifying and Validating Classifiers. Subgroup discovery technique was used to identify the best classifiers 
(clinical test cut-offs on ADAS, MMSE and RAVLT) to identify MCI rapid decliners as well as to compute sen-
sitivity and specificity of constructed classifiers. The classifiers were first developed using ADNI-1 study MCI 
data and then replicated and validated using the ADNI-2 study MCI data. All MCI subjects were included in this 
analysis including slow and unclassified subgroups.

All methods were performed in accordance with the relevant ethical guidelines and regulations as as stated in 
the first section of Methods.

http://rr.irb.hr/exploC/
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