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Text mining and natural language processing are fast growing areas of research, with 
numerous applications in business, science and creative industries. This paper presents 
TextFlows, a web-based text mining and natural language processing platform supporting 
workflow construction, sharing and execution. The platform enables visual construction 
of text mining workflows through a web browser, and the execution of the constructed 
workflows on a processing cloud. This makes TextFlows an adaptable infrastructure for the 
construction and sharing of text processing workflows, which can be reused in various 
applications. The paper presents the implemented text mining and language processing 
modules, and describes some precomposed workflows. Their features are demonstrated on 
three use cases: comparison of document classifiers and of different part-of-speech taggers 
on a text categorization problem, and outlier detection in document corpora.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Text mining [9] is a research area that deals with the construction of models and patterns from text resources, aiming at 
solving tasks such as text categorization and clustering, taxonomy construction, and sentiment analysis. This research area, 
also known as text data mining or text analytics, is usually considered as a subfield of data mining (DM) research [12], but 
can be viewed also more generally as a multidisciplinary field drawing its techniques from data mining, machine learning, 
natural language processing (NLP), information retrieval (IR), information extraction (IE) and knowledge management.

From a procedural point of view, text mining processes typically follow the CRISP-DM reference process model for data 
mining [7], which proposes six phases when working on a DM project: business understanding, data understanding, data 
preparation, modeling, evaluation, and deployment. Text mining can be distinguished from general data mining by special 
procedures applied in the data preparation phase, where unstructured or poorly structured text needs to be converted 
into organized data, structured as a table of instances (rows) described by attributes (columns). In the modeling phase, 
such a table of instances can be used by the standard or slightly adapted data mining algorithms to uncover interesting 
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information hidden in the data. Two typical approaches are using clustering algorithms to find groups of similar instances 
or classification rule learning algorithms to categorize new instances.

The TextFlows platform described in this paper is a new open source, web-based text mining platform that supports 
the design and composition of scientific procedures implemented as executable workflows. As a fork of ClowdFlows [28], 
TextFlows has inherited its service-oriented architecture that allows the user to utilize arbitrary web services as workflow 
components. TextFlows is oriented towards text analytics and offers a number of algorithms for text mining and natural 
language processing. The platform is implemented as a cloud-based web application and attempts to overcome various 
deficiencies of similar text analytics platforms, providing novel features that should be beneficial to the text mining com-
munity. In contrast to existing text analytics workflow management systems, the developed platform is the only one with all 
the following properties. It is simple (i.e., enables visual programming, is web-based and requires no installation), enables 
workflow sharing and reuse, and is open source. Moreover, the platform enables combining workflow components (called 
“widgets”) from different contexts (e.g., using clustering in relational data mining) and from different software sources (e.g., 
building ensemble classifiers from different libraries). To do so, it provides a unified input-output representation, which 
enables interoperability between widget libraries through automated data type conversion. It uses a common text represen-
tation structure and advocates the usage of ‘hubs’ for algorithm execution.

TextFlows is publicly available at http :/ /textflows .org, while its source code is available at https :/ /github .com /xflows /
textflows under the MIT License. Detailed installation instructions are provided with the source code. After setting up a 
local TextFlows instance, advanced users can also implement and test their own algorithms. Improvements to the code can 
also be pushed to the main Git code repository via pull requests. The committed changes are reviewed by the TextFlows 
core team and merged into the master branch.

TextFlows is a web application which can be accessed and controlled from anywhere while the processing is performed 
in a cloud of computing nodes. TextFlows differs from most comparable text mining platforms in that it resides on a server 
(or cluster of machines) while its graphical user interface for workflow construction is served as a web application through 
a web browser. The distinguishing feature is the ease of sharing and publicizing the constructed workflows, together with 
an ever growing roster of reusable workflow components and entire workflows. As not only widgets and workflows, but 
also data and results can be made public by the author, TextFlows can serve as an easy-to-access integration platform both 
for various text mining workflows but also for experiment replicability. Each public workflow is assigned a unique URL that 
can be accessed by anyone to either repeat the experiment, or to use the workflow as a template to design another, similar, 
workflow.

Workflow components (widgets) in TextFlows are organized into packages which allows for easier distributed develop-
ment. The TextFlows packages implement several text mining algorithms from LATINO1 [11], NLTK2 [3] and scikit-learn3 [32]
libraries. Moreover, TextFlows is easily extensible by adding new packages and workflow components. Workflow compo-
nents of several types allow graphical user interaction during run-time and visualization of results by implementing views 
in JavaScript, HTML or any other format that can be rendered in a web browser (e.g., Flash, Java Applet).

The rest of the paper is structured as follows. Section 2 presents the technical background and implementation details 
of the TextFlows platform, along with its key text mining components. The architecture of the system is presented in detail 
along with specific data structures that allow efficient text mining in a workflow environment. The concept of workflows, 
their implementation, execution and sharing are presented in Section 3, while Section 4 describes the widget repository 
and the implemented modules of the platform. The advanced features of TextFlows are demonstrated in Section 5 on three 
use cases: a comparison of document classifiers on a classification problem, a comparison of part-of-speech taggers on 
a text categorization (classification) problem, and outlier detection in document corpora. Section 6 presents the related 
work, where we describe comparable text mining platforms together with their similarities and differences compared to the 
TextFlows platform. Section 7 concludes the paper by presenting a summary and some directions for further work.

2. The TextFlows platform

This section presents the TextFlows platform, together with its architecture and main components of the system. We 
also introduce the graphical user interface and describe the concept of workflows. Like its predecessor data mining platform 
ClowdFlows [28], TextFlows can also be accessed and controlled from a browser, while the processing is performed on 
a cloud of computing nodes. In this section we explain the relationship between TextFlows and ClowdFlows, present the 
architecture of the TextFlows platform and describe the key text mining concepts of TextFlows in more detail.

2.1. Platform architecture

In software engineering, terms front-end and back-end are used to distinguish the separation between a presentation 
layer (the client side) and a data access layer (the server side), respectively. Fig. 1 shows the TextFlows architecture, which 

1 LATINO (Link Analysis and Text Mining Toolbox) is open-source—mostly under the LGPL license—and is available at http :/ /source .ijs .si /mgrcar /latino.
2 http :/ /www.nltk.org.
3 http :/ /scikit-learn .org.

http://textflows.org
https://github.com/xflows/textflows
http://source.ijs.si/mgrcar/latino
http://www.nltk.org
http://scikit-learn.org
https://github.com/xflows/textflows
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Fig. 1. An overview of the TextFlows architecture, separated into the front-end (in pink) and the back-end (in blue). (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

is logically separated into the front-end (in pink) and the back-end (in blue). The back-end comprises a relational database 
for storing workflows, workers for task execution and a broker for delegating tasks from different queues to workers which 
can reside on different clusters of machines. The front-end is designed for user interaction with workflows through the 
graphical user interface in a web browser.

The back-end of the TextFlows platform uses Django,4 a Python-based open source high-level web framework. Django fol-
lows the model–view–controller architectural design, which encourages rapid development, and includes an object-relational 
mapper and a template engine for efficient code generation. The object-relational mapper provides an interface which links 
objects to a database. This provides support for several database systems, such as PostgreSQL, MySQL, SQLite and Oracle 
databases. PostgreSQL is used in the public installation of TextFlows.

Without additional extensions Django is synchronous, sometimes also described as blocking. This means that a HTTP 
request will not be returned until all processing is complete. Though this is the expected behavior usually required in web 
applications, in the case of TextFlows we need tasks to run in the background without blocking. Furthermore, different 
system environment requirements of implemented libraries dictate that the TextFlows platform must be distributed across 
multiple machines (e.g., the LATINO library uses the. Net framework and performs best on Windows operating systems). 
TextFlows task queues are used as a mechanism to distribute work across threads and machines. This is performed via 
Celery,5 which is a task queue system based on distributed message passing. Celery is focused on real-time operation, 
but supports scheduling as well. Dedicated worker processes monitor task queues for new work to perform and active 
workers execute different tasks concurrently on multiple servers. Tasks can be executed asynchronously (in the background) 
or synchronously (wait until ready). A Celery system can consist of multiple workers and brokers, thus supporting high 
availability and horizontal scaling.

Celery communicates via messages and uses a message broker to mediate between clients and workers. To initiate a 
task, a client adds a message to the queue, which the broker then delivers to a worker. The system used as a broker 
in TextFlows is RabbitMQ,6 a complete and highly reliable enterprise messaging system based on the Advanced Message 
Queuing Protocol (AMQP). It offers not only exceptionally high reliability, but also high availability and scalability, which is 
vital for the TextFlows platform.

TextFlows uses the PySimpleSoap library7 for integrations of web services as workflow components. PySimpleSoap is a 
lightweight Python library which provides an interface for client and server web service communication. Using PySimple-
Soap we can not only import WSDL web services as workflow components, but also expose entire workflows as WSDL web 
services.

The client side of the TextFlows platform consists of operations that involve user interaction primarily through the 
graphical user interface (GUI) in a modern web browser. The graphical user interface is implemented in HTML and JavaScript, 

4 https :/ /www.djangoproject .com.
5 http :/ /www.celeryproject .org.
6 http :/ /www.rabbitmq .com.
7 https :/ /code .google .com /p /pysimplesoap/.

https://www.djangoproject.com
http://www.celeryproject.org
http://www.rabbitmq.com
https://code.google.com/p/pysimplesoap/
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with an extensive use of the jQuery library.8 The jQuery library was designed to simplify client-side scripting and is the 
most popular JavaScript library in use today.9 On top of jQuery we use the interaction library jQuery-UI,10 which is a 
collection of GUI modules, animated visual effects, and themes. This library supports the option to make elements in the 
graphical user interface draggable, droppable, and selectable, which are the features supported by the TextFlows workflow 
canvas (cf. Section 3).

2.2. Key text mining concepts in TextFlows

The key concepts used in text mining and natural language processing are a document collection (or corpus), a single 
document (or text), and document features (or annotations) [9]. The following sections describe the model of corpora, doc-
uments and annotations in TextFlows. When designing TextFlows, emphasis was given to common representations that are 
passed among the majority of widgets: each TextFlows document collection is represented by an instance of the Annotated-
DocumentCorpus (ADC) class, a single text is an instance of the AnnotatedDocument class, while the features are instances of 
the Annotation class.

2.2.1. Annotated corpus
A document collection is any grouping of text documents that can be used in text analytics. Even though the size of a 

collection may vary from a few to millions of documents, from the text analysis perspective, more is better. In TextFlows, the 
Python class that represents a corpus of documents is called AnnotatedDocumentCorpus (ADC). Every ADC instance contains 
not only a collection of documents which are part of this corpus but also the features that provide additional information 
about the corpus (e.g., authors, date of collection, facts and notes about the dataset, etc.). The features are stored in a simple 
key-value Python dictionary, where keys are strings and the values can store any Python object.

2.2.2. Annotated document
In TextFlows a single textual data unit within a collection—a document—is represented by the class AnnotatedDocument. 

An AnnotatedDocument object contains the text of the entire document, which may vary in size, e.g., from a single sentence 
to a whole book.

Similarly to AnnotatedDocumentCorpus, AnnotatedDocument instances in TextFlows also contain features which may pro-
vide information about a single document (e.g., author, date of publication, document length, assigned keywords, etc.).

2.2.3. Annotation
In TextFlows Annotation instances are used to mark parts of the document, e.g., words, sentences or terms. Every An-

notation instance has two pointers: one to the start and another to the end of the annotation span in the document text. 
These pointers are represented as the character offset from the beginning of the document. Annotation instances also have 
a type attribute, which is assigned by the user and is used for grouping annotations of similar nature. As described in detail 
in Section 4, annotations can also contain key-value dictionaries of features, which are used by various taggers to annotate 
parts of document with a specific tag, e.g., annotations of type “token” that have a feature named “StopWord” with value 
“true”, represent stop words in the document.

3. The concept of workflows

The workflow model in the TextFlows platform consists of an abstract representation of workflows and workflow com-
ponents. A workflow is an executable graphical representation of a complex procedure. The graphical user interface used for 
constructing workflows follows a visual programming paradigm which simplifies the representation of complex procedures 
into a spatial arrangement of building blocks. The most basic unit component in a TextFlows workflow is a processing com-
ponent, which is represented as a widget in the graphical representation. Considering its inputs and parameters every such 
component performs a task and outputs the results. Different processing components are linked via connections through 
which data is transferred from a widget’s output to another widget’s input. Additional inputs for a widget are its parameters, 
which the user enters into the widget text fields. The graphical user interface implements an easy-to-use way of arranging 
widgets on a canvas to form a graphical representation of a complex procedure.

The TextFlows graphical user interface, illustrated in Fig. 2, consists of a widget repository and a workflow canvas. The 
widget repository is a set of widgets ordered in a hierarchy of categories. Upon clicking on a widget in the repository, the 
widget is added as a building block to the canvas. While hovering over a widget its documentation is shown in as a tooltip. 
Connections between widgets can be added by clicking on an output of a widget and then on an input of another widget. 
The workflow canvas implements moving, connecting, and issuing commands to execute or delete widgets. Every action on 
the workflows canvas causes an asynchronous HTTP POST request to be sent to the server. After the requested operation is 

8 http :/ /jquery.com.
9 http :/ /w3techs .com /technologies /overview /javascript _library /all.

10 http :/ /jqueryui .com.

http://jquery.com
http://w3techs.com/technologies/overview/javascript_library/all
http://jqueryui.com
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Fig. 2. A screenshot of the TextFlows GUI opened in Google Chrome. On the top there is a toolbar for saving, deleting entire workflows. On the left is the 
widget repository giving a list of available widgets grouped by their functionality. By clicking on a widget in the repository it is added to the workflow 
construction canvas which is on the right. The console for displaying success and error message is located on the bottom of the interface.

validated on the server, a success or error message with additional information is passed to the user interface. An example 
of such a validation is checking for cycles in the workflows when connecting widgets.

3.1. Workflow execution

The workflow execution engine is responsible for executing the workflow widgets in the predefined order. Two such 
engines are integrated into the TextFlows platform, one implemented in Python and another in JavaScript. Sub-parts of 
workflows in subprocesses and loops are executed by the Python implementation, while the top-level workflows executed 
from the user interface (when the user actually needs to see the order of the executed widgets in real time) are processed 
by the JavaScript implementation. The former shows results only after their complete execution, while the later allows 
showing results of the execution in real time. With the Python implementation the server receives only one HTTP request 
for the entire part of the workflow, therefore multiprocessing had to be implemented manually. On the other hand, when 
a workflow is running with the JavaScript engine, it perpetually checks for widgets that are executable and executes them. 
Executable widgets are widgets which either have no predecessors or their predecessors have already been successfully 
executed. Whenever two or more independent widgets can be executed at the same time they are asynchronously executed 
in parallel. Each widget is executed through a separate asynchronous HTTP request. Every request is handled by the server 
separately and executes a single widget. When a widget is prepared to be executed, a task is added to a suitable task queue; 
as some widgets have special library requirements or even system requirement they are executed on a separated task queue 
with its dedicated workers. Celery communicates via messages and uses a message broker to find a suitable worker to 
which the task is delivered to. Dedicated worker processes monitor task queues for new work to perform. When the task is 
executed its result is saved into the database and returned to the client. The execution of a workflow is considered complete 
when there are no executable or running widgets.

3.2. Workflow sharing

Workflows in TextFlows are processed and stored on remote servers from where they can be accessed from anywhere, 
requiring only an Internet connection. By default each workflow can only be accessed by its author, although (s)he may also 
choose to make it publicly available. The TextFlows platform generates a specific URL for each workflow that has been saved 
as public. Users can then simply share their workflows by publishing the URL. Whenever a public workflow is accessed by 
another user, a copy of the workflow is created on the fly and added to their private workflow repository. The workflow 
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is copied with all the data to ensure that the experiments can be repeated. In this way, the users are able to tailor the 
workflow to their needs without modifying the original workflow.

4. The widget repository

This section presents the TextFlows widget repository. First we describe different types of widgets, followed by the 
presentation of widgets based on their functionality as they appear in the TextFlows widget repository.

Widgets in TextFlows are separated into four groups based on their type:

• Regular widgets perform specific tasks that transform the data from their inputs and parameters to data on their outputs, 
and provide success or error messages to the system. In the back-end such widgets are represented as Python functions, 
which receive (on every widget execution) a Python dictionary of inputs and parameters as widget arguments, perform 
a specific task and return a dictionary of outputs. The function is called each time the widget is executed. Widgets that 
implement complex long-running procedures can also display a progress bar, which shows the progress to the user in 
real time.

• Visualization widgets are extended versions of regular widgets as they also provide the ability to render an HTML tem-
plate with JavaScript to the client’s browser, which is useful for data visualizations and presentation of a more detailed 
feedback to the user. Visualization widgets differ from regular widgets by a secondary Python function which controls 
the rendering of the template. This function is only invoked when the widget is executed using the JavaScript execution 
engine, i.e., when it is not part of a subprocess.

• Interactive widgets are extensions of regular widgets as they pop-up an additional window during execution through 
which the user can interact with or manipulate the data (an example of an interactive widget is shown in Fig. 12). 
The entire procedure is implemented using three Python functions. The first function receives the widget’s inputs and 
initialization parameters as its arguments and prepares the data for the second function. The second function renders 
(using an HTML template) a pop-up window that prompts the user to manipulate the data. The final function uses the 
user inputs, as well as the widget’s inputs and parameters to produce the final output of the widget.

• Workflow control widgets provide additional workflow controls which allow the user to combine different workflow 
components into subprocesses, and provide different types of iterations through data (e.g., iteration through a list of 
classifiers, applying a classifier to all folds in cross-validation, etc.). This group of widgets consists of: Subprocess, Input, 
Output, For Input, For Output, Cross Validation Input and Cross Validation Output widgets. Whenever a Subprocess widget is 
added to a workflow, an initially empty workflow with no inputs and outputs is created. Then, when an Input or Output
widget is attached to a subprocess workflow, an input or output is automatically added to the subprocess widget itself. 
Workflows can be indefinitely nested this way.
Two additional variations of the input and output widgets exist in TextFlows. When a subprocess contains the For Input
and For Output widgets, the workflow execution engine will emulate a for loop by attempting to break down the object 
on the input and executing the subprocess workflow once on every iteration. Using these controls a subprocess can 
be iteratively executed on a list. Similarly, if the user opts to use the Cross Validation Input and Cross Validation Output
widgets the input data will be divided into the training and test dataset according to the selected number of folds; if 
the input data is labeled, stratified cross-validation [40] is performed.

The widget repository shows the hierarchy of all the widgets currently available in the TextFlows platform, grouped by their 
functionality. There are four top-level categories:

• Text mining widgets: a collection of implemented text mining widgets; these widgets are further divided based on their 
text mining functionality.

• Basic widgets: widgets that are responsible for creating and manipulating simple objects such as strings and integers.
• Subprocess widgets: a collection of workflow control widgets, which are required for visual programming of complex 

procedures.
• WSDL imports: workflow components representing the WSDL web-services that the user has imported.

In the following sections we present in more detail the text mining widgets based on their functionality in the order of 
appearance in the TextFlows widget repository.

4.1. Corpus and vocabulary acquisition

Document acquisition (import) is usually the first step of every task, where TextFlows employs various widgets to enable 
loading document corpora, labeling of documents with domain labels and converting them into the AnnotatedDocumentCor-
pus structure. We identified the following text document acquisition scenarios, which are also supported by the developed 
widgets:
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• Loading locally stored files in various application dependent formats. In TextFlows document corpora can be uploaded from 
local files using the Load Document Corpus interactive widget. The entire dataset can be either a single text file (.doc, 
.docx, .pdf file formats are supported), where each line represents a separate document, or a zip of files in which a 
document is represented as a file. Apart from text, the files may optionally contain document titles, as well as multiple 
labels, which are encoded by the first word within a document prefixed by an exclamation mark, e.g., “!positive” is 
used to denote that the document belongs to the “positive” document category.

• Acquiring documents using the WSDL+SOAP web services. The user can integrate third-party web services as workflow com-
ponents using the Import webservice button obtained from the bottom of the widget repository. Such integration allows 
for the inclusion of database web services into the workflow (e.g., PubMed offers a SOAP web service interface to ac-
cess their database). TextFlows currently supports WSDL as the interface definition language for describing connections 
and requests to the web service and SOAP as the format for sending and receiving messages. The output of the im-
ported web service widget can be connected to the Load Document Corpus widget that transforms the plain text input 
documents into the AnnotatedDocumentCorpus structure.

• Selecting documents from SQL databases. The TextFlows platform supports loading data only from MySQL databases via 
the Load Document Corpus from MySQL widget. Before execution the user enters the information which is required to 
connect to a database (e.g., user credentials, database address, database name, table name, column names, etc.) in order 
to retrieve the data from a MySQL database server. This widget then connects to the specified MySQL database server 
and returns the input columns representing document titles, texts and labels from the selected table. The final output 
of the widget is an automatically constructed Annotated Document Corpus object.

• Crawling the Internet for gathering documents from web pages. The Crawl URL links widget receives as an input a list of 
URLs, e.g., Wikipedia pages. First, every page is visited by an automatic crawler in order to gather the website’s (HTML) 
content. Next, the Boilerpipe library [27] is used to extract the linguistically relevant textual content from the web page 
source. There are several content extraction methods available which can be selected by the user from the widget’s 
properties. Finally, the Crawl URL links outputs the Annotated Document Corpus where document titles are represented 
with URLs and the extracted website texts become the document texts.

• Collecting documents from snippets returned from web search engines. In TextFlows the user can search the web using the 
Search with Bing and Search with Faroo widgets, which use the Microsoft Bing11 and Faroo12 as their web search engines, 
respectively. Both widgets require the user to enter the search query as well as the number of search results that the 
widget should return. The output of both widgets is a list of URLs which are returned by the web search engine. The 
execution the output can be connected to the Crawl URL links widget which will extract the web content for every URL.

The most straightforward technique to incorporate background knowledge about the documents and their domain is to 
use a controlled vocabulary. A controlled vocabulary is a lexicon of all terms that are relevant for a given domain. TextFlows 
allows the users not only to upload their own local vocabulary files but also gives them the possibility to use one of the 
implemented vocabulary construction tools, such as the MeSH filter widget which constructs a vocabulary containing all the 
terms that belong to the user selected descriptors from the MeSH hierarchy.13

4.2. Corpus manipulation and visualization

TextFlows implements widgets which allow the manipulation of AnnotatedDocumentCorpus (ADC) data objects. They allow 
the user to add new features, extract existing features from a document corpus, split document corpora (by either specifying 
conditions or by indices), merge different corpora, etc.

A special widget in the platform is Document Corpus Viewer, which visualizes the ADC data objects (note that TextFlows 
emphasizes the importance of the common ADC representation which is passed among the majority of widgets). As shown 
in Fig. 3, the Document Corpus Viewer interactive widget allows the user to check the results of individual widgets by 
visualizing the ADC data object from their outputs. Through its interactive interface the widget allows the user to select 
an individual document from the list of document snippets by simply clicking on it. This opens a new page with a detailed 
view of the selected document, as shown in Fig. 3.

4.3. Text preprocessing widgets

Preprocessing is a very important part of any form of knowledge extraction from text documents. Its main task is the 
transformation of unstructured data from text documents into a predefined well-structured data representation. In general, 
the task of preprocessing is to construct a set of relevant features from text documents. The set of all features selected 
for a given document collection is called a representational model [42,43,9]. Each document is represented by a vector of 

11 http :/ /www.bing .com/.
12 http :/ /www.faroo .com/.
13 MeSH (Medical Subject Headings) is a controlled vocabulary thesaurus used for indexing articles in PubMed, a database designed by The National 

Library of Medicine. The MeSH database is available online http :/ /www.nlm .nih .gov /mesh.

http://www.bing.com/
http://www.faroo.com/
http://www.nlm.nih.gov/mesh
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Fig. 3. Document Corpus Viewer widget visualizes the AnnotatedDocumentCorpus data objects. This figure shows the document exploration page which 
displays a detailed view for a selected document. On the left side a list of applied tokenizations is shown, while on the right the document’s full text is 
displayed. When the user selects a tokenization from the list, the tokens are highlighted directly on the text of the document with an alternative background 
color. As shown in the figure, annotation features are shown by hovering over a token.

numerical values, one for each feature of the selected representational model. Using this construction, we get the most 
standard text mining document representation, called feature vectors, where each numeric component of a vector is related 
to a feature and represents a weight related to the importance of the feature in the selected document. Typically, such 
text-based feature vectors are very sparse, as the majority of weights are equal to zero [9]. The goal of text preprocessing 
widgets is to extract a high quality feature vector for every document in a given document corpus.

Technically, our implementation employs the LATINO (Link Analysis and Text Mining Toolbox) software library [11], NLTK 
(Natural Language Toolkit) library [3] and scikit-learn library [32] for the text preprocessing needs. Together they contain the 
majority of elementary text preprocessing procedures as well as a large number of advanced procedures that support the 
conversion of a document corpus into a table of instances, thus converting every document into a table row representation 
of an instance.

In the TextFlows widget repository preprocessing techniques are based on standard text mining concepts [9] and are 
implemented as separate categories. Every category possesses a unique hub widget, which has the task of applying an 
given preprocessing technique from its category to the AnnotatedDocumentCorpus data object. Every such widget is library 
independent, meaning that it can execute objects from either LATINO, NTLK or scikit-learn libraries.

A standard collection of preprocessing techniques is listed below, together with sets of functionalities implemented in 
our platform:

1. Tokenization. In tokenization, meaningful tokens are identified in the character stream of the document, such as words 
or terms. TextFlows offers a large set of tokenizers: from LATINO, such as Max Entropy Tokenizer (word and sentence), 
Unicode, Simple and Regex tokenizers; various tokenizers from the NLTK library, from simpler ones, such as Line, Regex, 
S-Expression, Simple, to more complex ones, like Stanford Tokenizer and Treebank Word Tokenizer. Every tokenizer can be 
applied on a document corpus using the Tokenizer Hub widget. This hub receives as an input an ADC data object and 
a tokenizer instance, as well as two parameters entered by the user: the type of annotations to be tokenized (e.g., 
“TextBlock”) and the type of annotations to be produced (e.g., “Sentence”, “Token”). The Tokenizer Hub finds annotations 
of the input type and tokenizes them using the input tokenizer. The output of the hub is a new ADC object, which now 
contains the annotations of the new type. As described in the previous section, the results of any corpus tokenization 
can be visualized using the Display Document Corpus widget, as shown in Fig. 3.

2. Stop word removal. Stop words are predefined words from a language that do not carry relevant semantic information 
(e.g., articles, prepositions, conjunctions, etc.); the usual practice is to ignore them when building a feature set. In 
TextFlows we have three widgets which are used for stop word tagging: Get StopWord Set (outputs a predefined list of 
stop words for the user selected language—stop word lists for 18 languages, taken from Snowball,14 are included in our 
library), StopWords Tagger (receives as an input a list of stop words and outputs a constructed tagger object, which tags 
the words from the input list as stopwords), StopWord Tagger Hub (responsible for applying a stop word tagger on a 

14 Snowball: A small string processing language designed for creating stemming algorithms: http :/ /snowball .tartarus .org/.

http://snowball.tartarus.org/
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document corpus). Similarly to the Tokenization Hub, the Stop Word Tagger Hub receives on its inputs an ADC data object 
and a stop word tagger instance. The user is able to enter two parameters: the type of annotations to be tagged (as 
a stop word) and a feature name, which is added (with a default value of ‘true’) to every annotation of the selected 
type, which the tagger marks as a stop word. The output of the hub is a new ADC object. Fig. 3 shows the visualization 
of a selected document from the output ADC data object using the Display Document Corpus widget. The stop word 
annotation features are shown by hovering over the documents tokens.

3. Part-of-speech tagging. Tagging annotates words with the appropriate part-of-speech (PoS) tags based on the context in 
which they appear. The TextFlows platform includes the LATINO’s Max Entropy PoS Tagger and from NLTK the following 
taggers: Affix PoS Tagger (learns only on term affixes), Brill’s rule-based PoS Tagger [5], Classifier-based PoS Tagger (requires a 
classifier and a pre-annotated dataset to learn the PoS tags) and a PoS N-gram tagger (learns on a pre-annotated dataset 
the most frequent tag for every n-gram). PoS tags are applied to ADC data using the PoS Tagger Hub. The PoS Tagger Hub
requires, besides the usual element annotation type (default: “Token”) and the PoS feature name (default: “PoS Tag”), 
an additional parameter input by the user: a sentence annotation type (default: “Sentence”). The hub tags element 
annotations in the context of sentence annotations by assigning them new features with values returned by the PoS 
tagger. Fig. 3 visualizes a selected document from the output ADC data object using the Display Document Corpus widget. 
The generated PoS tag features are shown when hovering over the document’s tokens.

4. Stemming and lemmatization. This is the process of converting words/tokens into their stem or citation forms. The follow-
ing stemmers/lemmatizers were taken from the LATINO library: Stem Tagger Snowball and the Lemma Tagger LemmaGen
[23]. We have also implemented the following widgets which represent the corresponding algorithms from the NLTK 
library: Porter Stemmer, Snowball Stemmmer, ISRI Stemmer, Regex Stemmer, RSLP Stemmer, Lancaster Stemmer, and Word-
Net Lemmatizer. Analogous as in the stop word removal category, stemmers and lemmatizers can be applied using the 
Stem/Lemma Tagger hub. This widget receives as an input an ADC data object and a stemmer (or lematizer) instance 
and outputs a new ADC data object with an additional stemming added. The user can enter two parameters: the type 
of annotations to be stemmed (“Token” by default) and a feature name (“Stem” by default), which will be assigned to 
every annotation of the selected type as a key-value pair together with the stemmed value.

4.4. Bag-of-Words model

In the most general case, when dealing with raw text, the features are derived from text using only text preprocessing 
methods. The most common document representation model in text mining is the Bag-of-Words (BoW) model [9]. It uses 
all words (or, e.g., terms) as features, therefore the dimension of the feature space is equal to the number of different words 
in all of the documents. One of the most important characteristics of the described document features is the fact that they 
are usually very sparse [9], meaning that most of the features in a vector have zero weight. This sparsity is due to the fact 
that there are many different features (words, terms, concepts) in the document corpus; yet, a single document contains 
only a small subset of them. Consequently, the resulting feature matrix will have many (typically more than 99%) feature 
values that are zeros.

The TextFlows platform uses the Compressed Sparse Row (CSR) matrices, implemented in the scipy.sparse package15 in 
order to be able to efficiently store the matrix of features in memory and also to speed up algebraic operations on vectors 
and matrices. The CSR matrices make no assumptions about the sparsity structure of the matrix, and do not store any 
unnecessary elements. Their main purpose is to put the subsequent non-zeros of the matrix rows in contiguous memory 
locations. Usually three vectors are created: one for storing floating-point numbers (values), and the other two for integers 
(col_ ind, row_brk). The values vector stores the values of the non-zero elements of the matrix, as they occur if reading 
through the matrix row by row. The col_ind vector stores the column indexes of the elements in the val vector, while the 
row_brk vector stores the locations in the values vector that start a new row in the dense original matrix. The storage savings 
using this approach are significant. Instead of storing m ∗ n elements, we only need to use 2 ∗ nnz + m storage locations, 
where m is the number of rows, n is the number of columns and nnz is the number of non-zeros in the dense matrix.

In the data mining modeling phase (i.e., document classification or text clustering), each document from the ADC struc-
ture needs to be represented as a set of document features it contains. In TextFlows the Construct BoW Dataset and BoW 
Model Constructor widget takes as an input an ADC data object and generates a sparse BoW model dataset (which can be 
then handed to a classifier). The widget takes as an input also several user defined parameters, which are taken into account 
when building the feature dataset:

• Token Annotation. This is the type of Annotation instances marking parts of the document (e.g., words, sentences or 
terms), which will be used for generating the vocabulary and the dataset.

• Feature Name. If present, the model will be constructed out of annotations’ feature values instead of document text. For 
example, this is useful when we wish to build the BoW model using stems instead of the original word forms.

15 http :/ /docs .scipy.org /doc /scipy /reference /sparse .html.

http://docs.scipy.org/doc/scipy/reference/sparse.html
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• Stop Word Feature Name. This is an annotation feature name which is used to tag tokens as stop words. These tokens 
will be excluded from the BoW representational model. If the stop word feature name in not provided all tokens are 
included in the BoW space.

• Label Document Feature Name. This is the name of the document feature which will be used as a class label of the 
examples in the dataset. If blank, the generated sparse dataset will be unlabeled.

• Maximum n-gram Length. The upper bound of the range of n-values for different n-grams to be extracted. All values of n
such that 1 ≤ n ≤ max_ngram will be used.

• Minimum Word Frequency. Cut-off frequency value for including an item into the vocabulary.
• Word Weighting Type. The user can select among various weighting models for assigning weights to features:

– Binary. A feature weight is 1 if the corresponding term is present in the document, or zero otherwise.
– Term occurrence. A feature weight is equal to the number of occurrences of the corresponding term. This weight is 

sometimes better than a simple binary value since frequently occurring terms are likely to be more relevant to the 
given text.

– Term frequency. A weight is derived from the term occurrence by dividing the vector by the sum of all vector’s 
weights.

– TF-IDF. Term Frequency-Inverse Document Frequency [42] is the most common scheme for weighting features. For a 
given term w in document d from corpus D , the TF-IDF measure is defined as follows:

tfIdf(w,d) = tf(w,d) × log
|D|

|{d ∈ D : w ∈ d}| , (1)

where tf(w, d) represents the number of times term w appears in document d. The reasoning behind the TF-IDF 
measure is to lower the weight of terms that appear in many documents as this is usually an indication of them 
being less important (e.g., stop-words). The appropriateness of this scheme was confirmed in numerous text mining 
problem solutions [14,9].

– Safe TF-IDF. For a given term w in document d from corpus D , the Safe TF-IDF measure is defined as follows:

safeTfIdf(w,d) = tf(w,d) × log
|D|

|{d ∈ D : w ∈ d}| + 1
, (2)

This approach smoothens IDF weights by adding one to document frequencies, as if an extra document was seen 
containing every term in the collection exactly once. This prevents the occurrence of divisions by zero.

– TF-IDF with sublinear TF scaling. It often seems unlikely that twenty occurrences of a term in a document truly carry 
twenty times the significance of a single occurrence. Accordingly, there has been considerable research into variants 
of term frequency that go beyond counting the number of occurrences of a term [31]. A common modification is to 
use the logarithm of the term frequency instead of tf, defined as:

wf(w,d) =
{

1 + log tf(w,d), if tf(w,d) > 0

0, otherwise
(3)

• Normalize Vectors. The weighting methods can be further modified by vector normalization. If the user opts to use it in 
TextFlows the L2 regularization [30] is performed.

Besides the sparse BoW model dataset the Construct BoW Dataset and BoW Model Constructor also outputs a BowModelCon-
structor instance. This additional object contains settings which allow repetition of the feature construction steps on another 
document corpus. These settings include the input parameters, as well as the learned term weights and vocabulary.

An important widget in the Bag-of-Words category is the Create BoW Dataset using BoW Model Constructor. Its task is to 
apply the input BowModelConstructor instance to an input ADC data object and create a sparse feature dataset. This is useful, 
for instance, in every cross-validation fold where you need to build the test dataset’s sparse matrix using the same settings 
(also including IDF term weights) used for building the training sparse matrix.

4.5. Document classification

Document classification (also called text categorization) refers to automated assigning of predefined categories to nat-
ural language texts. A primary application of text categorization systems is to assign subject categories to documents to 
support information retrieval, or to aid human indexers in assigning such categories. Text categorization components are 
also increasingly being used in natural language processing systems for data extraction. Classification techniques have been 
applied to spam filtering, language identification, genre classification, sentiment analysis, etc. The common approach to 
building a text classifier is to manually label a selected set of documents to predefined categories or classes, and use them 
to train a classifier. The trained classifier can then be used to assign class labels to unseen documents based on the words 
they contain.

The term supervised learning refers to the above-described approach to automatically building a text classifier from 
training documents, which have been labeled (often manually) with predefined classes. The TextFlows platform currently 
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contains only the supervised learning approaches from the LATINO, NTLK and scikit-learn libraries. Every widget contains 
input parameters which are used to construct the classifier object. From the LATINO library we integrated Nearest Centroid 
Classifier, Naive Bayes Classifier, SVM (Binary and Multiclass) Classifier, Majority Classifier, Maximum Entropy Classifier, kNN (fast and 
regular version) Classifier, while the NLTK library contributes an additional Naive Bayes Classifier. The following widgets rep-
resent classifiers from the scikit-learn library: Decision Tree Classifier, Multinomial Naive Bayes Classifier, Gaussian Naive Bayes 
Classifier, k-Nearest Neighbors Classifier, SVM Linear Classifier, SVM Classifier

For training and applying classifiers TextFlows offers two dedicated widgets: Train Classifier Hub and Apply Classifier Hub. 
The Train Classifier Hub receives on its inputs a sparse feature dataset object and an untrained classifier. Its function is to fit 
the classifier model according to the given training data. The final outcome of this widget is a trained classifier object.

The Apply Classifier Hub receives a trained classifier object and returns predicted class probabilities for every new docu-
ment from the input test dataset, as well as the test dataset with a new predicted labels column.

4.6. Literature-based discovery

Literature-based discovery refers to the use of papers and other academic publications (the “literature”) to find new 
relationships between existing knowledge (the “discovery”). [48] presented an approach to discovering unknown relations 
between previously unrelated concepts by identifying interesting bridging terms (b-terms) appearing in two separate docu-
ment sets and bearing the potential to indirectly connect the two concepts under investigation.

The TextFlows platform includes a dedicated category with several widgets which support literature-based discovery. For 
example, literature-based discovery is supported through the incorporated Explore In CrossBee widget, which provides a link 
to the web application CrossBee (Cross-Context Bisociation Explorer) developed by [21]. The web application can be used 
for cross-domain knowledge discovery from a given pair of user-selected document corpora.

4.7. Noise detection

Noise filtering is frequently used in data preprocessing to improve the accuracy of induced classifiers. TextFlows incor-
porates an ensemble-based noise ranking methodology for explicit noise and outlier identification, named NoiseRank [45], 
which was modified to work with texts and TextFlows ADC data objects. Its main aim is to detect noisy instances for 
improved data understanding, data cleaning and outlier identification. NoiseRank was previously successfully applied to a 
real-life medical problem [45]. We show an example of using the NoiseRank methodology on a task of outlier detection in 
document corpora in Section 5.3.

4.8. Evaluation and visualization

The TextFlows platform enables users to create interactive charts for easy and intuitive evaluation of performance results. 
It includes standard performance visualizations used in machine learning, data mining, information retrieval, etc. Notably, 
the TextFlows platform includes a full methodology, named VIPER [45,46], i.e., a visualization approach that displays the 
results as points in the two dimensional precision-recall space. The platform contains several visual performance evaluation 
widgets, which result in interactive performance charts that can be saved and exported to several formats.

• Scatter charts. These include ROC space charts and PR space charts.
• Curve charts. These include PR curves, Cost curves, Lift curves, ROC curves, Kendall curves and Rate-driven curves.
• Column charts. These are general column charts for visualizing multiple performance measures for a set of algorithms.

While VIPER visualizations appear to be straightforward, this visualization toolbox is innovative and very useful for 
text analytics. An example is visual comparison of F-value results of different text analysis tools, including F-isoline-based 
text classifier comparison, which is not supported by any other visualization tool. We demonstrate several implemented 
visualization techniques in Section 5.

5. Selected use cases

In this section we demonstrate advanced features of TextFlows on three use cases: a comparison of classifiers from 
different libraries for a text categorization problem, a comparison of PoS taggers on the same categorization problem and 
outlier detection in document corpora.

In our experiments we used a corpus of documents, presented by [35] and [36], which was originally collected by the 
IPrA Research Center, University of Antwerp. The document corpus contains 464 articles (about 320,000 words) concerning 
Kenyan presidential and parliamentary elections, held on 27th December 2007, and the crisis following the elections. The 
documents originate from six different daily newspapers in English, covering the time period from 22nd December 2007 
to 29th February 2008. Articles from the US and British press (The New York Times, The Washington, The Independent, 
The Times and Post) form the class label “Western” (WE) and articles from local Kenyan newspapers Daily Nation and The 
Standard are categorized as “Local” (LO).
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Fig. 4. Document preprocessing workflow, available at http :/ /textflows .org /workflow /604/. The same workflow is implemented as a subprocess in the three 
use cases presented in this paper.

Fig. 5. The workflow for evaluating 7 classifiers from different text mining libraries. The workflow is available at http://textflows.org/workflow/350/.

The two common steps in the three presented use cases are the Document acquisition and Document preprocessing steps. 
These two steps were implemented as subprocesses in the main workflows for the three use cases, as shown in Figs. 5, 9
and 11.

In all three workflows, Document acquisition is the first step of the methodology and is responsible for, first, loading the 
locally stored text file (containing the Kenyan elections document corpus), then labeling the documents with appropriate 
domain labels and finally converting them into the AnnotatedDocumentCorpus data object.

Fig. 4 shows the subprocess in the TextFlows platform for the second step in all three presented methodologies: the Doc-
ument preprocessing workflow. As described in Section 4, category specific hubs are used for applying different preprocessing 
objects to the AnnotatedDocumentCorpus data object. The documents are first split into sentences with LATINO’s Max Entropy 
Sentence Splitter and then the sentences are split into tokens with LATINO’s Max Entropy Tokenizer. Some of these tokens are 
tagged as stop words using the Stop Word Tagger with the predefined Snowball list of English stop words. Finally, the Porter 
Stemmer is used for converting tokens into their stems.

5.1. Classifier comparison for text categorization

In this section we propose a workflow for classifier evaluation on the Kenyan elections dataset. In our experiments 
we compared 7 different classifiers from different text mining libraries. As shown in Fig. 5, we compared 4 classifiers 
from LATINO (Nearest Centroid Classifier, Naive Bayes Classifier, Maximum Entropy Classifier, kNN Fast Classifier) and 3 classifiers 
implemented in the scikit-learn library (Gaussian Naive Bayes Classifier, k-Nearest Neighbors Classifier, SVM Linear Classifier).

Every algorithm was evaluated using 10-fold stratified cross-validation, as shown in Fig. 6. All cross-validations were 
performed using the same seed in order to ensure the data was equally split for different classifiers. Fig. 7 shows the 

http://textflows.org/workflow/604/
http://textflows.org/workflow/350/
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Fig. 6. The For loop subprocess which evaluates the input classifier using 10-fold stratified cross-validation (with a constant seed) and extracts the obtained 
results, which are then visualized as shown in Fig. 5.

Fig. 7. The subprocess workflow representing the methodology in every fold for the used 10-fold cross-validation. First, the construction of the training and 
testing sparse matrices is performed. Next, the input classifier model is fitted to the training dataset and used to predict class probabilities for every new 
document from the input test dataset. The subprocess returns constructed pairs of actual and predicted classes.

methodology behind the CrossValidation subprocess which was executed for every cross-validation fold. First, a sparse BoW 
model dataset and the BowModelConstructor instance were generated by the Construct BoW Dataset and BoW Model Constructor. 
We constructed unigrams (n-grams where n = 1) out of stemmed values from word tokens, while disregarding stop words 
in the process. The Bag-of-Words vector space was calculated using the TF-IDF weighting scheme.

The test sparse matrix is required to be constructed using the same parameter settings, IDFs and vocabulary as the 
training sparse matrix. Therefore, we applied the BoW constructor object (output of the Construct BoW Dataset and BoW 
Model Constructor) to the test ADC data object using the Create BoW Dataset using the BoW Model Constructor.

After calculating the training and testing sparse matrices, we fitted the input classifier model to the training dataset 
using the Train Classifier Hub. Next, the Apply Classifier Hub received the trained classifier object and returned predicted 
class probabilities for every new document from the input test dataset. The Extract Actual and Predicted Values widget used 
these probabilities and constructed pairs of actual and predicted classes. These pairs were returned from the CrossValidation
subprocess and used for calculating different metrics, as shown in Fig. 6.

The results of cross-validation (precision, recall, F-score) were connected to the input of the VIPER: Visual Performance 
Evaluation widget, as shown in Fig. 5, while Fig. 8 presents its visualization of classifier evaluation in the precision-recall 
plane, where each point represents the result of an algorithm (for the selected target class “Lo”). Points closer to the 
upper-right corner have higher precision and recall values. F-measure values are presented as isolines (contour lines), which 
allows a simple comparison of algorithm performance.

Fig. 8 shows that in terms of the F-measure, scikit-learn’s SVM Linear Classifier and LATINO’s Maximum Entropy Classifier
achieved the best results: both algorithms generally achieved a higher percentage of correctly classified examples (higher 
recall score), and also a slightly higher percentage of correctly classified examples of the target class (higher precision score) 
compared to other classifiers used. A somewhat lower performance was achieved using LATINO’s Nearest Centroid Classifier
classifiers, while the k-nearest neighbor and Naive Bayes classifiers performed worse. Detailed results are presented in 
Table 1.
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Fig. 8. The VIPER visualization showing evaluation of classifiers from different libraries. This visualization is the result of the workflow presented in Fig. 5.

Table 1
Classifier evaluation on the Kenyan elections dataset.

Library Classifier Recall Prec. F1 
score

Classif. 
accuracy

AUC

LATINO Nearest Centroid Classifier 0.96 0.90 0.93 92.42% 0.92
LATINO Naive Bayes Classifier 1.00 0.72 0.84 80.74% 0.81
LATINO Maximum Entropy Classifier 0.97 0.93 0.95 94.59% 0.95
LATINO kNN Fast Classifier 0.93 0.88 0.90 90.26% 0.90

scikit-learn Gaussian Naive Bayes Classifier 0.87 0.82 0.84 83.77% 0.84
scikit-learn k-Nearest Neighbors Classifier 0.91 0.88 0.89 89.18% 0.89
scikit-learn SVM Linear Classifier 0.95 0.95 0.95 95.24% 0.95

The workflow was run within a virtual machine with a dedicated 1 core (Intel i7 2600k) and 4 GB of RAM. The running 
time for the document acquisition and document preprocessing step is 161 seconds while the comparison of classifiers with 
the 10 fold cross-validation takes 1486 seconds. The runtime of the entire workflow was 1652 seconds.

5.2. Part-of-speech tagger comparison for text categorization

In this section we describe a workflow for the evaluation of different part-of-speech taggers on the Kenyan elections 
dataset. In the experiments we compared five different PoS taggers: English Maximum Entropy PoS Tagger (from LATINO 
library) and PoS Affix Tagger, PoS N-gram Tagger, PoS Brill’s rule-based Tagger, PoS Classifier-based Tagger (from NLTK library). As 
shown in Fig. 9, PoS tagging widgets from NLTK require tagged sentence data as input, which is used for training the PoS 
tagger. The TextFlows platform already contains several tagged datasets, which come as a part of the NLTK library, and can 
be added to workflows through the NLTK Document Corpus widget. In this use case we used the annotated Brown corpus.16

The training process involves inspecting the tag of each word and storing the most likely tag for any word in a dictionary, 
which is stored inside the tagger. As it happens, once we have processed several thousand words of English text, most new 
words will be nouns. In cases when the NLTK PoS tagger is unable to assign a tag from its learned lookup table, it can use 
a backoff tagger from its input. As shown in Fig. 9 we have set the PoS Default Tagger as the backoff tagger for all NLTK 

16 Description of the Brown corpus is available at http://www.nltk.org/book/ch02.html#tab-brown-sources.

http://www.nltk.org/book/ch02.html
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Fig. 9. The workflow used for evaluation of 5 different PoS taggers from various text mining libraries on a text categorization problem. The workflow is 
available at http :/ /textflows .org /workflow /355/.

Fig. 10. The subprocess workflow representing the methodology in every fold for the used 10-fold cross-validation. First, the input PoS tagger is applied to 
the document corpus. Next, the construction of the training and testing sparse matrices is performed. Then, a linear SVM classifier is fitted to the training 
dataset and used to predict class probabilities for every new document from the input test dataset. Last, the subprocess returns constructed pairs of actual 
and predicted classes.

PoS taggers. The PoS Default Tagger assigns the input tag (e.g., “NN”, which is the PoS tag representing a noun) to every 
single word. Whenever the initial PoS tagger cannot assign a tag to a token it will invoke the input backoff tagger and thus 
tag the token as a noun. This improves the robustness of the language processing system. The PoS Classifier-based Tagger
widget also requires input of a classifier, which is learned to predict PoS tags based on the pre-annotated dataset. Every 
PoS tagger was applied to the document corpus, as shown in Fig. 10. In every iteration (over the list of PoS taggers) of the 
for loop the input PoS tagger is applied to the tokenized sentences of preprocessed ADC data object using the PoS Tagger 
Hub by generating new features with name “PoS tag” on every elementary (word) token. In order to use PoS tags together 
with stemmed values, we constructed (for every token) new features named “Stem with PoS” using the Add Computed Token 
Features widget. These features were later used in the CrossValidation subprocess to generate the BoW models. The values 
of the “Stem with PoS” features were constructed using the Add Computed Token Features widget as a combination of stems 
and PoS tags: “Stem_PoS tag”.

Next, 10-fold stratified cross-validation was performed on the generated PoS tagged ADC data objects. Similarly as in 
the classifier evaluation use case, all cross-validations were performed using the same seed in order to ensure the data 
was equally split for all PoS taggers. The methodology behind the CrossValidation subprocess, which is executed on every 
cross-validation fold, is similar to the methodology presented in Fig. 7. The only two differences are that cross-validation 
does not receive a classifier on its input—instead it always uses scikit-learn’s linear SVM classifier—and that the Construct 

http://textflows.org/workflow/355/
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Table 2
PoS tagger evaluation on the Kenyan elections database.

Library Tagger Recall Precision F1 
score

Classif. 
accuracy

AUC

no PoS tagger 0.98 0.93 0.95 95.24% 0.95

LATINO Maximum Entropy 
PoS Tagger

0.98 0.94 0.96 96.10% 0.96

NLTK PoS Affix Tagger 0.98 0.94 0.96 95.67% 0.96
NLTK PoS Ngram Tagger 0.98 0.95 0.96 96.10% 0.96
NLTK PoS Brill Tagger 0.97 0.93 0.95 95.24% 0.95

NLTK+scikit-learn PoS Classifier Based 
Tagger (using SVM 
Linear Classifier)

0.98 0.95 0.96 96.32% 0.96

BoW Dataset and BoW Model Constructor widget uses features constructed by the Add Computed Token Features widget instead 
of stemmed values.

Table 2 shows the results of the presented PoS tagger evaluation workflow. The first row in the table shows the classi-
fication results without applying a PoS tagger (see row 3 of Table 1). We see that the usage of a PoS tagger increases the 
performance of the classifier. The best results were obtained using the NLTK’s PoS Classifier Based Tagger, which in combina-
tion with the LATINO’s Maximum Entropy Classifier achieved a slightly higher classification accuracy on the Kenyan elections 
dataset compared to the other PoS taggers.

The experiments were run using the same resources as in the classifier evaluation example—a virtual machine with a 
setting of 1 core and 4 GB of RAM. The execution time of the entire workflow was 1913 seconds, where 158 seconds were 
used for document acquisition and preprocessing, while the for loop which compares PoS taggers took 1747 seconds to 
execute.

5.3. Outlier document detection in categorized document corpora

In this section we propose a workflow for detecting atypical, unusual and/or irregular documents on the Kenyan elections 
dataset. The idea behind irregularity detection in categorized document corpora is based on early noise filtering approaches 
by [6], who used a classifier as a tool for detecting noisy instances in data. Noise detection approaches identify irregularities 
and errors in data and are therefore suitable also for detecting atypical documents in categorized document corpora, which 
can be considered as outliers of their own document category.

The aim of the NoiseRank (ensemble-based noise detection and ranking) methodology, proposed by [47,45], is to sup-
port domain experts in identifying noisy, outlier or erroneous data instances. The user should be able to select the noise 
detection algorithms to be used in the ensemble-based noise detection process. We have implemented this methodology 
as a workflow in TextFlows, which now offers widgets implementing classification and saturation noise filters, and enables 
the inclusion of external user specific noise detection algorithms available as web services. Fig. 11 presents the NoiseRank 
workflow using the implemented classifiers used for class noise detection.

The NoiseRank methodology workflow returns a visual representation of a list of potential outlier instances, ranked 
according to the decreasing number of noise detection algorithms which identified an instance as noisy, due to its classi-
fication into a class different from its own class label. The ability of NoiseRank to obtain atypical documents was tested 
on the Kenyan elections corpus. The implemented voting-based irregularity detection method uses four different classifiers 
acting as noise detection algorithms by identifying misclassified instances.

As in the experiments of Section 5.1 and Section 5.2 we ran the workflow on a virtual machine with 1 CPU core and 
4 GB of RAM. The execution time of the entire workflow was 202 seconds, where 148 seconds were used for document 
acquisition and preprocessing, while the BoW model construction and NoiseRank widget took 52 seconds to execute.

Fig. 12 shows the obtained set of atypical/irregular articles grouped and ranked according to the number of noise detec-
tion algorithms that identified them as irregular.

6. Related work

An extensive survey of workflow management platforms, including general data mining platforms—such as RapidMiner 
[29], Weka [49] and Orange [8]—is out of the scope of this paper, however, we do describe and compare to TextFlows other 
text mining and natural language processing platforms, starting with a comparison to its predecessor ClowdFlows [28]. In 
the rest of this section, we concentrate on the key features of the presented platforms: visual programming and execution 
of scientific workflows, diversity of workflow components, service-oriented architectures, remote workflow execution, big 
data processing, stream mining, and data sharing. This overview is followed by a comparison of the presented systems with 
TextFlows.
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Fig. 11. Example workflow of the NoiseRank methodology, which is available at http://textflows.org/workflow/360/.

Fig. 12. The NoiseRank interactive widget where the user gets a visual representation of a list of top-ranked potentially noisy instances, which are mis-
classified according to a decreasing number of elementary noise detection algorithms which identified the instance as noisy. The user can decide which 
documents he wishes to exclude from the document corpus.

6.1. Comparison with ClowdFlows

TextFlows is a heavily modified fork of the ClowdFlows data mining platform [28], which is a general workflow con-
struction and execution tool for data mining and machine learning. The platform incorporates workflow components for 
numerous data mining and machine learning projects—including WEKA [49] and Orange [8]—while severely lacking text 
mining and natural language processing components. Moreover, despite being very useful for workflow construction by the 
informed developers and end-users, ClowdFlows currently suffers from a somewhat disorganized roster of workflow com-

http://textflows.org/workflow/360/
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ponents which may be incompatible with each other. As a result, new users sometimes struggle to construct functioning 
workflows as there are too many mutually incompatible components.

We created a fork of ClowdFlows in order to maintain cohesion of incorporated text mining and natural language process-
ing workflow components. TextFlows has a completely redesigned roster of workflow components, which are now highly 
compatible with each other within the platform and easier to use for the expert and novice users alike. In contrast to 
ClowdFlows, where there are no guidelines for sorting workflow components into categories, TextFlows sorts the compo-
nents based on the functionality of the components As a result, all widgets that perform similar functions are located in 
the same category. We have also enriched the user interface with extra information about the workflow components and 
written the documentation for the provided workflow components and their inputs and outputs.

While we introduced a completely new common text representation structure (cf. Section 2.2), a new widget structure 
as well as numerous new text mining and new NLP components (cf. Section 4) and workflows (cf. Section 5 for selected 
examples), the underlying architectures of ClowdFlows and TextFlows remain similar. To summarize, TextFlows is built on 
top of ClowdFlows, meaning that both the widget execution engine and the core of the ClowdFlows user interface are 
present in TextFlows. TextFlows still benefits from all security updates, bug fixes and feature upgrades that ClowdFlows 
receives.

6.2. Survey of workflow management environments for natural language processing

Workflow Management Systems have in the last years become a very hot topic, mostly in the field of bioinformatics 
and other natural sciences. Lately, however, this trend has also spread to NLP, as evidenced also by recent workshops at 
the main NLP conferences, e.g., the Workshop “Language Technology Service Platforms: Synergies, Standards, Sharing” at the 
9th Language Resources and Evaluation Conference (LREC 2014)17 and the Workshop on Open Infrastructures and Analysis 
Frameworks for HLT18 at the 25th Conference on Computational Linguistics, (COLING 2014).

The current situation with Workflow Management Systems for NLP is very fluid; some well-established systems are 
slowly starting to be used for NLP applications, while at the same time, new ones are being developed, specifically targeted 
to NLP. In this section we first overview some of the more important NLP-related Workflow Management Systems, where 
each platform/project is introduced and its most salient characteristics presented.

6.2.1. Taverna
The set of tools developed by the myGrid19 team in the U.K. and used primarily for bioinformatics and other life sci-

ences research (having in mind experiment replication) is currently probably the most advanced, richest and easiest to use 
Workflow Management (Eco)System, and consists of the following main components:

• SoapLab20 [44] which provides a convenient way to generate web services for command-line software;
• Taverna21 [16] with its Workflow editor and Server;
• BioCatalogue22 [2], a registry (for life sciences) where web services can be shared, searched for, annotated with tags, 

etc.
• myExperiment23 [41], a social network for sharing, reusing and repurposing public workflows.

As the most important part of the myGrid offerings, we here discuss Taverna, which is conceived as a suite of tools used 
to design and execute scientific workflows. It combines distributed Web Services and/or local tools into complex analysis 
pipelines, which can be executed on local desktop machines or through larger infrastructures, such as supercomputers, Grids 
or cloud environments, using the Taverna Server. The Server allows for workflow execution from web browsers, or through 
third-party clients; it supports WSDL, REST, GRID and Cloud services, local and distributed command-line scripts, as well as 
other types of services, such as R-Scripts.

Taverna is connected to myExperiment and BioCatalogue, as well as to other service registries, such as BioVeL,24 the 
Biodiversity Virtual e-Laboratory. In addition, Taverna offers an Interaction Service, which enables scientists to select param-
eters and data during workflow execution, and the Provenance suite, which records service invocations, intermediate and 
final workflow results.

Taverna workflows can be designed and executed in several ways, to serve different types of workflow users. First, the 
Taverna Workbench—once downloaded to a local machine—provides an environment for scientists to develop new work-
flows and test new analysis methods, by either developing workflows from scratch, or by composing them from existing 

17 http :/ /lrec2014 .lrec-conf .org/.
18 http :/ /glicom .upf .edu /OIAF4HLT/.
19 http :/ /www.mygrid .org .uk/.
20 http :/ /soaplab .sourceforge .net /soaplab2/.
21 http :/ /www.taverna .org .uk/.
22 https :/ /www.biocatalogue .org/.
23 http :/ /www.myexperiment .org/.
24 http :/ /www.biovel .eu/.
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workflows. Second, workflows can be executed directly through a Taverna Server, which is an environment for serving fin-
ished workflows to a larger community of scientists. Here, a single installation of the Server provides access to a collection 
of workflows, normally through a web interface, called the Taverna Player; in this case, no installation or in-depth knowl-
edge of the workflows is required, but workflows cannot be changed nor can new workflows be added to the collections. 
The third mode of execution is via a Taverna Lite installation, which provides an intermediate solution, as it allows users 
not only to run workflows through the web but also to upload new workflows from e.g., myExperiment or other sources. 
This means that Taverna Lite installations require user authentication, but no local software installation by regular users, as 
workflow execution also occurs on a server.

The Taverna Workbench, as the most sophisticated means of composing workflows, needs to be first downloaded and 
installed on a local machine (Windows, Linux or Mac OS X). For third-party services that require a login, Taverna allows 
credentials to be added at run-time, or to be stored in a purpose-built credential manager. The Workbench allows users 
to identify and combine services by dragging and dropping them onto the workflow design panel. The services can be 
from third parties (using e.g., WSDL or REST), but typically also contain local scripts for formatting data and managing 
service compatibility, known as shim services. Most workflows will need shim services as the analysis services are not 
usually designed to work together and, therefore, often have incompatible input and output formats. A workflow can also 
contain nested workflows, so workflows can be components of other workflows. Nested workflows can, for example, control 
retrieval of data from asynchronous services. Here the nested workflow is executed repeatedly until results are available 
and the control links between its output and downstream services pause the remainder of the workflow until all preceding 
results are available. As the workflow runs, the results panel shows progress through the workflow and iterations over data, 
as well as any errors if there are problems with executions.

The Taverna Server, which executes workflows, can also be downloaded and configured to run with or without login 
restrictions. It is written in Java, has to be installed on Unix and uses Tomcat with, for secure mode, HTTPS and SSL host 
certificate. There are various public installations of the Taverna Server, with the best know being the already mentioned 
BioVeL portal with workflows from the area of biodiversity.

As mentioned, Taverna is currently the most developed and advanced (open source) Workflow Management System, 
with a host of features and connection capabilities, including fine-grained access management. It is also very popular, e.g., 
myExperiment currently contains over 2000 Taverna workflows. By far the largest part of the user community is from the 
field of bioinformatics and other life sciences, where Taverna workflows are typically used in the areas of high-throughput 
analyses or for evidence gathering methods involving data mining.

Given the power and versatility of Taverna and other myGrid platforms, it is surprising that—apart from a few basic 
workflows submitted by various individuals—there are few public NLP workflows have been so far implemented in it. In 
connection with biomedical informatics, there is one published experiment in text mining [25], which has given rise to 
further research and there is also one platform that makes use of the myGrid building blocks for the purposes of NLP, 
which is the subject of Section 6.2.2.

6.2.2. PANACEA
In PANACEA25 [34], a FP7 project that ran 2010–2012, the objective was to automate the stages involved in the acqui-

sition, production, updating and maintenance of language resources required by machine translation systems, and by other 
applications for processing of natural language.

The architecture of this factory is based on deploying NLP tools as Web Services using SoapLab to generate them for 
command-line software, this being the standard mode of invocation for most current NLP tools. These individual services 
can then be combined in the Taverna Workbench and deployed on a Taverna Server.

In the scope of PANACEA various enhancements have been made to the underlying technology, e.g., the possibility to limit 
in SoapLab the amount of direct data that SOAP messages can transfer; various bugs were also identified and reported to the 
developers. A common interchange format for the language resources (esp. annotated corpora) was also defined [33], in the 
first instance XCES [17], because that was previously used by most of the project partners, but in the final version the format 
moved to the more current Linguistic Annotation Format (LAF) and Graph-based Format for Linguistic Annotations (GrAF) 
developed in the scope of the ISO/TC37/SC4 technical committee [19]. Finally, the IPR and other legal issues connected to 
sharing possibly proprietary tools and esp. resources were also considered in PANACEA [1].

The concrete results of the project are made available via ELDA,26 the European Evaluations and Language resources 
Distribution Agency, and consist of:

• the PANACEA Registry,27 currently describing 163 services (not all freely available);
• the PANACEA MyExperiment28 installation, which allows exploring workflows, but allows executing them only after 

registration.

25 http :/ /panacea-lr.eu/.
26 http :/ /www.elda .org/
27 http :/ /registry.elda .org/.
28 http :/ /myexperiment .elda .org/.
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The actual web services mostly run on machines (SoapLab or Taverna servers) of the project partners. It should be noted 
that the ELDA installation is made with an eye to commercializing the platform.

While the PANACEA platform is in place and operational, there does not seem to be any great up-take of this service by 
the NLP community. An inspection of the PANACEA MyExperiment shows that the platform receives few new workflows or 
web services, and most of those fairly specific ones by the (ex)project partners.

6.2.3. ARGO
Tsujii lab at the University of Tokyo had a long tradition in combining NLP with biomedical informatics. For example, 

they were the creators of the GENIA corpus [26], the first and best known biomedical corpus annotated with linguistic 
information. In connection with their work on NLP for bioinformatics a workflow for text mining U-compare29 [24], which 
includes NLP annotation services was developed. U-compare is implemented as an independent Java application, using the 
Apache UIMA30 framework. This work was later integrated into Taverna, in the already mentioned work by [25].

Recently, a new workflow management system has been developed on the basis of U-compare, now in the context of 
the National Centre for Text Mining (NaCTeM) at the University of Manchester, called ARGO31 [37,38]. ARGO offers the 
usual array of features, accessed through a browser based interface: the user can upload documents, compose workflows 
and execute them. A novelty introduced by ARGO is that workflows can have interactive components as well, where the 
execution of the workflow pauses to receive input from the user. This is useful for workflows which allow for manual 
annotation of corpora by the user, and ARGO offers several such workflows. However, ARGO does not seem to have any 
sophisticated utilities for cataloguing available web services or workflows, nor a system of access permissions.

As far as its architecture goes, ARGO continues to be based on UIMA, and uses REST for communication between the 
components, so other services or workflows can call ARGO defined web services as well. It supports import and export 
(deserializations and serializations) into RDF, which is the de-facto language of the Semantic Web. The requirement that 
web services need compatible I/O formats is in ARGO resolved with a powerful system based on cascaded finite-state 
transducers called Type Mapper [39], which allows for developing needed shim services.

6.2.4. WebLicht
The European Research Infrastructure CLARIN32 aims to provide the researchers unified single sign-on access to a plat-

form which integrates language-based resources and advanced tools. This is to be implemented by the construction and 
operation of a shared distributed infrastructure that aims at making language resources, technology and expertise available 
to the humanities and social sciences research communities. CLARIN is a distributed data infrastructure, with national sites 
in a number of European countries. These sites provide access to language data repositories, to services and workflows to 
work with language data, and to expertise that enables researchers to use these resources and tools.

In the scope of national CLARIN portals, various workflows have been developed, with the German WebLicht33 [15]
being the most advanced. While WebLicht is, in some respects, similar to PANACEA, the focus here is not on providing web 
services for human language technology research, but rather producing annotated corpora for use in linguistic research. 
Nevertheless, the methods are similar, as on both platforms most web services are devoted to the linguistic annotation of 
textual input.

WebLicht does not, as does PANACEA, use the myGrid tools and platforms but rather developed its own infrastructure, 
starting from the wrappers to make the included tools into RESTful web services, to its centralized repository, and the Web 
editor enabling the composition of the workflows (or toolchains, as they are known in WebLicht, as they are typically limited 
to one input and one output). As opposed to PANACEA, WebLicht does cover all the standard linguistic annotation steps, for 
a number of languages, and with often several tools being available for an annotation step. The WebLicht repository includes 
information about the type of inputs and outputs of individual services, which allows controlling the workflow construction 
process in the editor to allow connecting only tools that have matching I/O specifications. For example, a part-of-speech 
tagger needs a tokenizer to be applied to a text before it can be called. As in PANACEA, WebLicht also imposes standards 
on the I/O interchange format: it uses TCF (Text Corpus Format) [13], a format similar but slimmer than ISO LAF/GrAF, but 
also provides conversion to LAF/GrAF. With TCF the text and annotations are in one XML file, but with stand-off annotation, 
with each processing step adding a layer of annotation.

The Web (2.0) based WebLicht editor allows the construction of workflows and their invocation (after a CLARIN(-DE) 
recognized log-in) and viewing or saving the results. WebLicht has a dedicated viewer, which allows displaying an annotated 
corpus in tabular format (for tokens and their annotations), lists (for sentences) or as a graphic (for parse trees).

While the WebLicht platform is not open source, the initiative is open to adding new partners who are interested in 
contributing tools and services. This typically involves wrapping the tools to be contributed to make them RESTful and to 
take care of I/O requirements, installing this web service on a local machine and then registering them to the WebLicht 

29 http :/ /u-compare .org/.
30 https :/ /uima .apache .org/.
31 http :/ /argo .nactem .ac .uk/
32 http :/ /www.clarin .eu/.
33 weblicht.sfs.uni-tuebingen.de/.
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central repository. Currently, such third-party web services are provided for Finnish, by the University of Helsinki, and 
Romanian, by their Academy of Sciences.

6.2.5. Language Grid
The Language Grid34 [20] is a multilingual Internet service platform, developed by Language Grid Project (started in 

2006) at the Japanese National Institute of Information and Communications Technology. The Language Grid is based on 
the service-oriented architecture (SOA), a web-oriented version of the pipeline architecture typically employed by NLP tools. 
As other Workflow Management Systems it provides three main functions: language service registration and deployment, 
language service search, and language service composition and execution. Importantly, Language Grid also offers access to a 
large number of language resources such as online dictionaries and bi-lingual corpora.

In contrast to e.g., myGrid, geared towards running and reproducing scientific experiments, the Language Grid is much 
more application oriented, with a focus on enabling communication in multilingual communities (via machine translation), 
the best known example being the support of farming in rural communities in Vietnam, by enabling computer mediated 
communication between Vietnamese youth and Japanese experts in agriculture. This is also reflected in its architecture, 
where the users, services and workflows (or “composite services”) are centrally administered. And while running such web 
services is easy with the provided graphical interface, constructing them is more complicated: workflows are composed 
using WS-BPEL (Web Service Business Process Execution Language) as XML files, rather than in a dedicated Web based 
or locally installed visual editor. Although Eclipse does provide a visual BPEL editor, which can be used for this process, 
workflow construction is still more complicated than with e.g., Taverna.

The Language Grid is Open source and the first European node, known as Linguagrid35 [4] was established in Italy in 
2010.

6.2.6. LAPPS Grid
The Language Grid Server also serves as the basis for the U.S. Language Application (LAPPS) Grid project36 [18]. LAPPS 

is especially interesting in three aspects. First, it uses advanced standards for data encoding and exchange, in particular 
the JSON-based serialization for Linked Data (JSON-LD). The JavaScript Object Notation (JSON) is a lightweight, text-based, 
language-independent data interchange format that defines a small set of formatting rules for the portable representation 
of structured data. Because it is based on the W3C Resource Definition Framework (RDF), JSON-LD is simple to map to and 
from other graph-based formats, in particular the already mentioned ISO LAF/GrAF [19]. It also enables services to reference 
categories and definitions in web-based repositories and ontologies, such as those of ISOcat.37

Second, it uses the Open Advancement approach (developed in the making of IBM’s Watson [10]) for component- and 
application-based evaluation, that has been successful in enabling rapid identification of frequent error categories within 
modules and documents, thus contributing to more effective investment of resources in both research and application 
assembly. The LAPPS Grid thus envisions scenarios where it is possible for users to rapidly (re)configure and automatically 
evaluate a (changed) pipeline on a chosen dataset and metrics.

Third, workflows are planned to incorporate a comprehensive model for addressing constraints on the intellectual prop-
erty used in the LAPPS Grid, making it maximally open to users ranging from open source developers to commercial users 
of language services.

6.3. Comparison with TextFlows

The previous sections presented the more widely used Workflow Management Systems, with a focus on those that are 
also or primarily used for NLP and that support distributed and/or remote processing. So, for example, we do not treat 
Moa38 (not to be confused with MOA,39 an open source framework for data stream mining) and similar systems that are 
meant to develop workflows on a local server. In this section we compare the overviewed systems, together with TextFlows 
along several dimensions that affect the usefulness of each system. In the following section we first present an overview 
table and then discuss the salient dimension.

6.3.1. Open source
The first dimension, summarized in Table 3, concerns the question whether the Workflow Management Systems is open 

source, i.e., whether it is possible to download the complete system and install it on local server(s). This is important in 
cases where the system is to be an internal one, not accessible to third parties, e.g., for data privacy protection or where local 
modifications to the system are desired. In the general case, this option is not really needed, as it is much easier to simply 
use the official system. Nevertheless, it is desirable to at least have this option available. Of the surveyed systems, Taverna 

34 http :/ /langrid .org/.
35 http :/ /www.linguagrid .org/.
36 http :/ /lapps .anc .org/.
37 http :/ /www.isocat .org/
38 http :/ /moa .readthedocs .org/.
39 http :/ /moa .cms .waikato .ac .nz/
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Table 3
Comparison of NLP platforms regarding open source.

Taverna Yes (Java)
PANACEA No
ARGO No
WebLicht No
Language Grid Yes (Java, PostgreSQL, Tomcat)
TextFlows Yes (Python)

Table 4
Comparison of NLP platforms regarding workflow sharing.

Taverna With myExperiment, BioCatalogue, etc.
PANACEA Own installation of BioCatalogue and MyExperiment
ARGO Local registry
WebLicht Local registry
Language Grid Local registry
TextFlows Local registry

Table 5
Comparison of NLP platforms regarding simplicity of use.

Taverna Difficult
PANACEA Difficult
ARGO Easy for workflow composition
WebLicht Easy for workflow composition
Language Grid Difficult
TextFlows Easy for workflow composition

is available under OS, and can be installed on all major platforms (Windows, Mac, Linux) with precompiled distributions or 
in source Java and has few prerequisites; Language Grid (available from SourceForge) also runs on all platforms and requires 
PostgreSQL and Tomcat, with the set-up being rather complicated. TextFlows is also open source and publicly available with 
all the prerequisites wrapped in the installation script.

6.3.2. Workflow sharing
All systems offer workflow sharing, as this is the essence of building such systems, however, they differ in whether the 

platform itself provides the registry and exploration service of registries or whether they make use of associated services 
for workflow sharing and discovery. As can be seen from Table 4, most systems provide their own sharing platform, with 
the exception of Taverna and PANACEA, both of which use myExperiment as a social network platform and BioCatalogue 
(and, in the case of Taverna, other catalogues as well) as a registry for public web services.

6.3.3. Simplicity of use
This dimension, summarized in Table 5 describes how difficult it is to start using a particular system, not so much from 

the point of view of executing ready-made workflows but of designing workflows and adding new web services to the 
platforms. Taverna provides a dedicated Workflow Management System, which is, however, mostly due to the variety of 
options, reportedly quite difficult to master, also because the details of web service communication have to be understood 
by the user and complex types decomposed into atomic parts. It is also possible to add new web services using SoapLab. 
The composition of workflows in PANACEA follows that of Taverna, so the same (dis)advantages apply. ARGO provides 
a Web-based interface, which allows for graphical composition of workflows. It also provides a sophisticated system for 
adding new web services, including a testing environment. WebLicht supports web-based workflow composition, with the 
registry constraining which web services can be attached to the workflow, depending on their I/O requirements; however, 
new web services cannot be added by users. Language Grid does enable composition of new workflows, but this is an 
off-line and rather complicated process. Finally, TextFlows offers, via a web interface, easy composition of workflows. Adding 
new web SOAP-based services with WSDL available is also trivial (based on the user-supplied URL of WSDL, new workflow 
components are created automatically from service’s functions).

6.3.4. I/O protocols
This dimension, summarized in Table 6, concerns input/output protocols. The options supported by the communication 

protocols between the web services in a workflow have mostly to do with the age of the system: the older ones typically 
prefer WSDL and SOAP, while the newer ones choose the simpler REST.40

40 Note that the WSDL protocol referred to here is version 1.0 or 1.1; WSDL 2.0 offers (limited) support for RESTful web services.
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Table 6
Comparison of NLP platforms regarding I/O protocols.

Taverna WSDL+SOAP, REST
ARGO REST
PANACEA WSDL+SOAP
WebLicht REST
Language Grid WSDL+SOAP
TextFlows WSDL+SOAP, REST, JSON-WSP

When dealing with NLP workflows, standards become very important. NLP components in the main perform pipeline 
processing, where each tool/service adds another layer of annotation to the base text where it typically needs to have 
access to previous annotations. Furthermore, the input text might itself contain annotations, such as document structure. 
The wish for interoperability lead to the development of standards for text (corpus) annotation; however there exist a 
number of such standards and best practices, and different systems use different ones. TAVERNA, not being targeted toward 
NLP, is standard agnostic, and relies on implementers of workflows to provide the necessary conversion (shiv) services, i.e., 
conversion routines to the format that the downstream service(s) expect. In the context of NLP it is also possible to develop 
shiv services that convert not only outputs but also inputs, taking one of the commonly accepted standards as the pivot 
encoding. This is the route taken by PANACEA, where each web service is wrapped to accept and produce an output: for 
primary data this is an XCES encoded file, while text annotations use the LAF/GrAF standard with stand-off annotations. 
ARGO is based on UIMA and does not enforce any NLP standards in its pipelines. However, ARGO did pioneer a new method 
of aligning I/O requirements of component web services: rather than relying on shiv services, which need programming 
skills, it supports a Type Mapper, i.e., a dedicated rule-based analytic for transcribing feature structures between types 
needed for particular web services. It also supports export and type mapping to RDF.

WebLicht uses a local format TCF, which is, however, quite similar to ISO LAF/GrAF and conversion to these is provided. 
In WebLicht all web services are expected to use TCF, where the conversion is typically implemented as a wrapper around 
each annotation tool. Furthermore, the WebLicht Registry included information about the prerequisites for each web service 
and allows only chaining web services that do not violate these constraints. Language Grid has a very different scheme from 
most other services, and the details of how the interfaces are to be configured are rather hard to come by. In general, it 
defines an ontology of Web services, which then specifies also their I/O formats. As the focus is on dictionaries and machine 
translation, it is these kinds of formats that are defined. Finally, TextFlows, as Taverna, does not impose any standards in its 
I/O formats. Mostly plain text, JSON, XML and, for efficiency, serialized Python data structures and objects (in particular, the 
AnnotatedDocumentCorpus instances) are exchanged between workflow components.

7. Conclusions and directions for future work

This paper presented TextFlows, an open source platform featuring workflow components for text mining and natural 
language processing. TextFlows provides a common graphical user interface and joins several text mining, visualization 
and machine learning libraries under a single unifying platform, expanding their usability for researchers, practitioners and 
non-experts. The architecture of the platform is scalable, allows for many users and workflow and dataset sharing.

The usability of the platform was demonstrated on three illustrative use cases, showing that components developed 
for different systems and in different programming languages can be run within a single coherent system and may be 
represented as a visually constructed workflow available on the web. The ease of sharing the completed workflows and 
results over the web allows for TextFlows to become a central integration platform for many text mining and natural 
language processing tasks. We have compared our work to related platforms and shown the differences, benefits, and 
drawback of using TextFlows instead of other text mining platforms.

There are several directions for future work. We plan to expand the TextFlows widget repository with additional text 
preprocessing components (such as chunking, term extraction, syntactic parsing), extend the batch of weighting schemes 
for generating the BoW models, and include various algorithms for clustering. We also plan to extend the literature-based 
discovery package to include more widgets for cross-domain bridging term discovery. Furthermore, we will connect the 
platform to various external tools to better assist the user in the process of exploration and visualization of results, such as 
TopicCircle [22] for cluster visualization.

Second, by using public data on user workflows, submitted to the public version of the TextFlows platform, we will 
construct a recommender system based on the data on previously executed workflows that will enable computer-assisted 
construction of text mining workflows and bring the platform even closer to non-experts in terms of usability.

A current weakness of TextFlows is the inability to deal with very large data. As part of future work we plan to integrate 
the stream mining and big data mining features of ClowdFlows to the TextFlows platform. This will allow performing natural 
language processing on a larger scale, as well as preforming different tasks on streams of data such as website news feeds, 
or real time data from social networks such as Twitter and Facebook.

Finally, we wish to simplify the installation procedures of TextFlows to private servers by providing one-click deployment 
to services such as Amazon Elastic Compute Cloud (EC2) and Microsoft Azure.
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We have released the sources of the TextFlows platform under an open source MIT license, available at https :/ /github .
com /xflows /textflows. Detailed deployment instructions are provided with the source code. A public installation of the 
platform is available for online use at http :/ /textflows .org.
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