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Abstract Subgroup discovery (SD) methods can be used to find interesting subsets of
objects of a given class. While subgroup describing rules are themselves good explana-
tions of the subgroups, domain ontologies can provide additional descriptions to data and
alternative explanations of the constructed rules. Such explanations in terms of higher level
ontology concepts have the potential of providing new insights into the domain of investi-
gation. We show that this additional explanatory power can be ensured by using recently
developed semantic SD methods. We present a new approach to explaining subgroups
through ontologies and demonstrate its utility on a motivational use case and on a gene
expression profiling use case where groups of patients, identified through SD in terms
of gene expression, are further explained through concepts from the Gene Ontology and
KEGG orthology. We qualitatively compare the methodology with the supporting factors
technique for characterizing subgroups. The developed tools are implemented within a new
browser-based data mining platform ClowdFlows.
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1 Introduction

The paper first addresses the task of subgroup discovery, initially defined by Klosgen
(1996) and Wrobel (1997), which is based both on classification and association discov-
ery approaches. The goal is to find subgroups of individuals that are statistically important
according to some property of interest of a given population of individuals. For example,
a subgroup should be as large as possible and exhibit the most unusual distribution of the
target class compared to the rest of the population.

Subgroup discovery methods can be used to find descriptions of objects of a given
class—in binary as well as in multi-class problems. Subgroup descriptions, formed as rules
with a class label in the rule conclusion and a conjunction of attribute values in the rule
condition, typically provide sufficiently informative explanations of the discovered sub-
groups. However, with the expansion of the Semantic Web and the availability of numerous
domain ontologies which provide domain background knowledge and semantic descriptors
to the data, we are faced with the challenge of using this publicly available information
also to provide explanations of rules initially discovered by standard symbolic data mining
and machine learning algorithms. Approaches which would enhance symbolic rule learning
with the capability of providing explanations of the rules also in terms of higher-level con-
cepts than those used in rule descriptors, have a potential of providing new insights into the
domain of investigation.

To give a simple example, suppose a standard subgroup discovery algorithm produces
two rules for a dataset with patients (with the class cancer=0/1) and genes as attributes:

Ry : (cancer =1) < (ga =1 A (gp=1)A(gc =0)
Ry : (cancer =1) <~ (ga=0)A(gp=1A(gp=1)

Each rule defines a subgroup of patients for which the right-hand side is true. These
rules are by themselves explanatory in terms of single genes. But due to the existence of
genetic regulatory networks, there are complex dependency structures between genes, e.g.,
multiple genes might be associated with a certain biological function. Using an ontology
of biological knowledge (see next paragraph), we can find higher-level patterns on top of
the gene-level patterns (such as rules Ry and R»). We propose that this can be achieved, for
example, by taking R and R, as the new classes and inducing new higher-level patterns by
grouping the single genes into higher-level concepts defined by the ontology. An example
higher-level rule E| (which we call an explanation) is:

Ei:(cls=Ry) < (c1=1)

E states that the patients defined by subgroup R (the new target class) are characterized
by the higher-level concept ¢ (e.g., a biological function), in contrast to patients from R».
This is a higher-level statement, which takes into account multiple genes which are asso-
ciated with the particular biological function c¢y. This association knowledge is provided
beforehand by the domain ontology.

We must emphasize that this explanatory step is not limited only to subgroup discovery.
Essentially, the explanatory stage can be applied on any sets of examples that are of interest
to the user, provided that a suitable ontology exists.

In this paper we show that such an additional explanatory step can be performed by
using recently developed semantic subgroup discovery approaches (Podpecan et al. 2011a;
Vavpeti¢ and Lavra¢ 2013). The new methodology is show-cased on two use cases: a
motivational use case of bank customers and on a gene expression profiling real-life use
case.
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The motivational use case showcases the methodology on a simple use case with banking
customers and three simple ontologies, in order to illustrate the steps of the methodology.

In the gene expression use case, groups of patients of a selected grade of breast cancer,
identified through subgroup discovery in terms of gene expression, are further explained
through terms from the Gene Ontology' (GO) and Kyoto Encyclopedia of Genes and
Genomes? (KEGG) and Entrez® gene-gene interaction data. The motivation for the use case
in breast cancer patient analysis comes from the experts’ assumption that there are several
subtypes of breast cancer. Hence, in addition to distinguish between patients with breast
cancer (the positive cases) and healthy patients, the challenge is first to identify breast can-
cer subtypes by finding subgroups of patients followed by inducing explanations in terms
of identical biological functions, processes and pathways of genes, characterizing different
molecular subtypes of breast cancer.

With the two use cases we demonstrate that the proposed approach is general and can be
applied in any application area, provided the existence of domain specific ontologies.

The main contributions of the present work are as follows. First, inducing explanations
of subgroups (or, e.g., clusters of instance), regardless of how the subgroups were detected,
in terms of knowledge encoded in a domain ontology. Second, we have made our approach
readily available on the web, as a reusable data mining workflow, which we hope will be a
valuable resource for scientists, enabling them to use the workflow on new data, as well as
adapt it for other use cases.

In addition, this work upgrades our early results (Vavpetic et al. 2012) in several ways.
First, we have fully integrated our approach with the microarray analysis SegMine sys-
tem (Podpecan et al. 2011a). Researchers using our tools can now also use the results of our
methodology to query the Biomine search engine (Eronen and Toivonen 2012). Biomine
essentially merges a large number of public biological databases into a common graph.
The nodes in this graph are biological entities, while the edges are relations between them.
Biomine offers advanced probabilistic graph search algorithms that can discover the parts
of the graph most relevant to the given query. Examples of queries are: finding a neigh-
borhood of a set of nodes or a graph connecting two sets of nodes. Biomine also offers a
visualization tool for the user to explore the resulting subgraph.

Next, compared to our previous work where we made our tools available in the
Orange4WS (Podpecan et al. 2011b) data mining platform, we have now moved to a new
browser-based platform ClowdFlows (Kranjc et al. 2012). The main benefits of moving to
ClowdFlows are: (a) no installation is required prior to using our tools (apart from an inter-
net connection and a web browser), (b) scientific workflows and data can be shared by
sharing a single URL, and (c) users can easily clone and adapt existing workflows to their
own needs. We give an overview of the implementation, as well as discuss the pros and cons
of the approach. In addition, the related work and the methodology are described in much
more detail, enabling detailed methodology understanding and enabling its modification
(upgrades by other researchers).

Additionally, the paper shows that the methodology is generally applicable for explaining
groups of instances in any domain in which domain concepts are organized into ontologies
and where data descriptions (attributes or attribute values) correspond to concepts from the
ontologies. This is demonstrated with the two distinct use cases.

Thttp://www.geneontology.org/
2http://www.genome jp/kegg/
3http://www.ncbi.nlm.nih. gov/sites/gquery
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Finally, we compare our approach to the related supporting factors (Gamberger and
Lavra¢ 2003) methodology, which is also used to characterize subgroups and can be of
great help to the interpretation of subgroup discovery patterns of domain experts. The
experiments show that supporting factors are more useful when concentrating on specific
low-level attributes or features is desirable, but when more general descriptions are needed,
they are not as easy to interpret as the method presented in this paper. This restriction is
more apparent on gene expression data, since the supporting factors are given in terms of
genes.

The paper is structured as follows. Section 2 discusses the related work. The proposed
methodology is presented in detail in Section 3. The ClowdFlows platform and the imple-
mentation of the methodology are described in Section 4. In Section 5 the methodology is
applied to two use case scenarios: a motivational use case and a use case with breast cancer
gene expression (microarray). The presented methodology is also compared to the support-
ing factors methodology on the second use case. Section 6 concludes the paper and presents
the plans for further work.

2 Related work

This section discusses the work related to the main steps of the proposed methodology.
Given a complex multi-step approach, the related work covers subgroup discovery, contrast
mining, subgroup explanation, and semantic data mining. Mining of enriched gene sets from
gene expression data is also relevant for the biomedical use case presented in Section 5
(analysis of breast cancer data) which is used to evaluate the proposed methodology.

Subgroup discovery The problem of subgroup discovery was defined by Klosgen (1996)
and Wrobel (1997) as search for population subgroups which are statistically interesting
and which exhibit unusual distributional characteristics with respect to the property of inter-
est. Subgroup descriptions are conjunctions of attributes and values which characterize the
selected class of individuals. Several algorithms were developed for mining interesting sub-
groups using exhaustive search or using heuristic approaches: Explora (Klosgen 1996),
APRIORI-C (Jovanoski and Lavra¢ 2001), APRIORI-SD (Kavsek and Lavra¢ 2006), SD-
Map (Atzmiiller and Puppe 2006), SD (Gamberger and Lavra¢ 2002), CN2-SD (Lavrac
et al. 2004). These algorithms employ different heuristics to asses the interestingness of the
discovered rules, which is usually defined in terms of rule unusualness and size.

Contrast mining Mining of contrasts in data has been recognized as one of the the fun-
damental tasks in data mining (Webb et al. 2003). The underlying idea is to discover and
understand contrasts (differences) between objects of different classes, different time peri-
ods, spatial locations, objects within a class or various combinations of these. One of the first
algorithms which has explicitly addressed the task of mining contrast sets is the STUCCO
algorithm, developed by Bay and Pazzani (2001). It searches for conjunctions of attributes
and values (contrast sets) which exhibit different levels of support in mutually exclusive
groups, STUCCO enforces statistically sound results by employing testing for statistical
significance and p-value correction along with minimum support threshold. Mining for con-
trasting sets is also related to exception rule mining as defined by Suzuki (1997, 2006)
where the goal is to discover rare deviating patterns which complement strong base rules
to form rule pairs. Suzuki (2006) defines an exception as something different from most
of the rest of the data which can be also seen as a contrast to given data and/or existing
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domain knowledge. A recent approach developed by Langohr et al. (2013), which proposes
contrasting subgroup discovery, is closely related to the methodology presented in this
paper. It extends classical subgroup discovery using a three-step approach and allows for the
discovery of subgroups which cannot be found with classical subgroup discovery. Two sub-
group discovery steps are complemented by the intermediate, contrast set definition step. In
this intermediate step, the user explicitly defines two contrasting classes using set-theoretic
functions and the subgroups discovered in the first step. In this way, generalized subgroups
consisting of members from different classes can be discovered. While the approach is gen-
eral and can be used on any data, it is especially well-suited for domains such as systems
biology and biomedicine where comparing e.g., different time points in experimental data
or several subtypes of a disease is a typical task.

Subgroup explanation The need of developing methods for presenting contrast sets to the
user has already been recognized by Gamberger and Lavra¢ (2002) and Webb et al. (2003).
Kralj Novak et al. (2009) have shown that contrast set mining, emerging pattern min-
ing (Dong and Li 1999) as well as subgroup discovery can be viewed as variants of rule
learning by providing appropriate definitions of compatibility; they also presented several
subgroup visualization approaches, enabling subgroup comparison in terms of their size
and distributional unusualness. However, to the best of our knowledge, neither different
subgroup discovery algorithms nor the relatively efficient contrast/exceptional pattern min-
ing algorithms like STUCCO (Bay and Pazzani 2001) and PEDRE (Suzuki 1997) address
the representation and explanation of subgroups/contrasts using the available background
knowledge and ontologies.

Semantic data mining While subgroup descriptions in the form of rules are relatively good
descriptions of subgroups there is also abundance of background knowledge in the form
of taxonomies and ontologies readily available to be incorporated to provide better high-
level descriptions and explanations of discovered subgroups. Especially in the domain
of systems biology the GO ontology, KEGG orthology and Entrez gene-gene interaction
data are good examples of structured domain knowledge. The challenge of incorporating
domain ontologies in data mining was addressed in the recent work on semantic data mining
(SDM) (Hilario et al. 2011; Lavrac et al. 2011; Lawrynowicz and Potoniec 2011; Vavpeti¢
and Lavrac¢ 2013; Z4kova et al. 2006).

Using a data mining ontology for meta-learning has been proposed in Hilario et al.
(2011). In meta-learning the task is to use data mining techniques to improve base-level
learning. The data mining ontology is used to (1) incorporate specialized knowledge of
algorithms, data and workflows and to (2) structure the search space when searching for
frequent patterns.

In Lawrynowicz and Potoniec (2011), they introduce an algorithm named Fr-ONT for
frequent concept mining expressed in ££1T DL. In contrast to our work, the task they are
solving is frequent concept mining and the hypothesis language they are using is ££1T
description logic.

In Zakovi et al. (2006) an engineering ontology of CAD (Computer-Aided Design) ele-
ments and structures is used as background knowledge to extract frequent product design
patterns in CAD repositories and discovering predictive rules from CAD data.

This work is built upon the SDM toolkit developed by Vavpeti¢ and Lavra¢ (2013). The
toolkit includes two semantic data mining systems: SDM-SEGS and SDM-Aleph. SDM-
SEGS is an extension of the earlier domain-specific algorithm SEGS (Trajkovski et al.
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2008) which allows for semantic subgroup discovery in gene expression data. SEGS con-
structs gene sets as combinations of GO ontology terms, KEGG orthology terms, and terms
describing gene-gene interactions obtained from the Entrez (Maglott et al. 2005) database.
SDM-SEGS extends and generalizes this approach by allowing the user to input any set
of ontologies in the OWL format and an empirical data collection which is annotated by
domain ontology terms. SDM-SEGS employs ontologies to constrain and guide the top-
down search of a hierarchically structured space of induced hypotheses. SDM-Aleph, which
is built using the popular ILP system Aleph (Srinivasan 2007) does not have the limita-
tions of SDM-SEGS, imposed by the domain-specific algorithm SEGS, and can accept any
number of OWL ontologies as background knowledge which is then used in the learning
process.

Semantic data mining and link discovery in enriched gene set analysis In the domain of sys-
tems biology, the SegMine methodology (Podpecan et al. 2011a) enables semantic analysis
of microarray data by integrating the SEGS algorithm, GO and KEGG, and the Biomine
system which integrates several public databases with a sophisticated algorithm for link dis-
covery. Parts of the SegMine methodology can be reused in the methodology proposed in
this paper for the specific use case of gene expression profiling. For example, link discov-
ery can provide additional and potentially new information about the discovered important
genes, subgroups and ontology terms.

Characterizing outliers In Angiulli et al. (2013), they consider a related task of charac-
terizing attributes that account for a small group of anomalous examples-outliers. They
define the notion of exceptional property and exceptionality score. They are designed to
work especially with small samples. In contrast to our work, they focus mainly on small,
anomalous groups of examples. The second main difference is that they do not try to gen-
eralize over the given attributes, since the exceptional properties are in terms of the original
attributes.

Supporting factors The most relevant related work is the work by Gamberger and Lavrac
(2003). In their work, they deal with characterizing subgroups through supporting factors.
Supporting factors are features with significantly different value distributions that are not
part of the subgroup description. Supporting factors are important, e.g., for medical deci-
sion making, which requires as much supportive evidence as possible. We compare our
methodology with supporting factors in Section 5.2.

3 Methodology

Semantic subgroup discovery approaches such as SEGS, SDM-SEGS and SDM-Aleph can
serve as explanatory subsystems in the presented methodology to semantically describe and
explain contrasting groups in input data. This section presents the steps of the proposed
methodology. The first step involves finding relevant sets of instances (relevant to the user)
by applying a subgroup discovery algorithm, thus creating a new labeling for the instances
in terms of their subgroup membership. The second step deals with ranking the attributes
according to their ability to distinguish between the subgroups. The third step of the method-
ology induces symbolic explanations of a selected target set of instances (subgroup detected
in the first step) by using ontological concepts.
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We must emphasize again that the methodology consists of several steps, which are not
novel by themselves, but are used in a novel fashion; also, each step of the components can
be easily interchanged with several alternatives.

3.1 Identifying interesting sets of instances and creating a new labeling

To find a potentially interesting set of instances, the user can choose from a number of data
mining algorithms. Data mining platforms such as Weka (Hall et al. 2009), Orange (DemSar
et al. 2004), Orange4WS (Podpecan et al. 2009) and ClowdFlows (Kranjc et al. 2012) offer
various clustering, classification and visualization techniques. A potentially interesting set
of instances can be a cluster of instances, instances in a node of a decision tree, a set of
instances revealed by a visualization method, a set of instances covered by a subgroup
description, and others; in the following paragraphs we concentrate on subgroup discovery,
but other techniques that define some sort of sets of examples can be used analogously (e.g.,
clustering; the user chooses between clusters instead of subgroups).

First, some basic notation needs to be established. Let D = {ej, e, ..., e,} be a dataset
of classified instances, called examples in the rest of this paper. Examples are defined by
values of a set of attributes A = {ay, az, ..., an} and a continuous or discrete target variable
y (note that unsupervised methods do not require a target variable). Let v;; denote the value
of attribute a; for example e;.

In the following, subgroups and clusters are represented as sets of examples. Let S4 and
Sp denote two sets of examples (S4 U Sp € D) that are of interest to the user who wants
to determine which groups of attributes (expressed as ontological concepts) differentiate S4
from Sp. Note that for subgroup descriptions the following must also hold: S4 N Sp = ¥,
since it is typical that subgroups can overlap. This condition is of course not necessary for
other settings like clustering.

Regardless of how S4 and Sp have been constructed, the new re-labeled dataset D’ is
formed as follows. The target variable y is replaced by a binary target variable y’ and for
each example ¢; the new label ¢’ is defined as:

o |1 ifeiesa
- 0, ifei S SB

Note that if D is unlabeled, the new target variable y’ is added to the domain. We now
illustrate how to determine S4 and Sp using a subgroup discovery (SD) approach.
SD algorithms induce symbolic subgroup descriptions of the form

y=c)<«tHABA...11

where 7; is a conjunct of the form (a; = v;;). If g; is continuous and the selected subgroup
discovery algorithm can deal with continuous attributes, #; can also be defined as an interval
such that (a; > v;;) or (a; < v;;). An example subgroup description constructed from the
well known UCI lenses * dataset is:

(lenses = hard) < (prescription = myope) N
(astigmatic = yes) A (tear rate = normal)

A subgroup description R can be also viewed as a set of constraints (conjuncts #;) on
the dataset, and the corresponding subgroup as a set of examples cov(R) which satisfy the
constraints, i.e., examples covered by rule R.

“http://archive.ics.uci.edu/ml/datasets/Lenses
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If the user is presented with a set of subgroup descriptions R = {R{, Ra, ..., Ry}, then
the set of examples S4 can be defined as S4 = cov(R;). For subgroup discovery Sp typ-
ically represents all other examples Sp = D \ S4, because subgroups often overlap. For
clustering Sp can be a single other cluster or a union of several clusters, depending on the
user’s preference.

To give a trivial example, suppose the subgroup discovery procedure returns three sub-
group descriptions R = {Rj, R, R3} on the previously mentioned UCI lenses dataset.
These are as follows:

Ry : (lenses = hard) < (age = young)
Ry :  (lenses = soft) < (astigmatic = no)
R3 : (lenses = none) < (prescription = hypermetrope)

For example, R; covers all examples that have the attribute-value age = young; these
examples constitute the rule’s coverage.

The user can then select S4 and Sp, to give an example, as follows S4 = cov(R;) and
Sp = D\ S4. In this scenario S4 contains examples covered by R; and Sp contains all
examples not covered by Rj.

3.2 Ranking of attributes

Once the re-labeled dataset D’ is available, the attributes are assigned ranks according to
their ability to distinguish between the two sets of examples S4 and Sp. The resulting
ordered attributes and their scores will be used as input examples in the next step of the
methodology. The generalizations of the attributes made via the ontological background
knowledge will be the constituents of the resulting explanations.

To calculate the ranks, any attribute quality measure can be used, but in practice attribute
ranking using the ReliefF (Robnik-Sikonja and Kononenko 2003) algorithm has proven to
yield reliable scores for this methodology to work. In contrast to myopic measures (e.g.,
Gain Ratio), ReliefF takes into account the context of other attributes when evaluating an
attribute. This is an important benefit when applying this methodology to datasets such as
microarray data since it is known that there are dependencies among many genes.

The ReliefF algorithm works as follows. A random subset of examples of size m < n is
chosen. Each attribute starts with a ReliefF score of 0. For each randomly selected example
e; and each class c, k nearest examples are selected. The algorithm then goes through each
attribute ¢; and nearest neighbor e; (i # j), and updates the score of the attribute as follows:

— if ¢; and e; belong to the same class and at the same time have different values of q;,
then the attribute’s score is decreased;

— if the examples have different attribute values and belong to different classes, then the
attribute’s score is increased.

This step of the methodology results in a list of ReliefF attribute scores L =
[(a1,71), ..., (am, rm)] where r; is the ReliefF score representing the ability of attribute a;
to distinguish between sets S4 and Sp.

3.3 Inducing explanations using ontologies
At this stage of the methodology a semantic subgroup discovery algorithm (Lavrac et al.

2011; Vavpeti¢ and Lavrac 2013) is applied to generate explanations using the list of ranked
attributes L.
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First, we need to formalize the notion of an ontology. An ontology is a conceptualization
of a certain domain in terms of concepts and relationships between these concepts. An
ontology is a directed acyclic graph, i.e., with no paths starting and ending on the same
vertex, with concepts C = {c1, ¢z, ...c,} as vertices and relations R = {ry,r2,...r,} as
edges. Each relation is defined as a set of pairs of concepts: r; = {(cj, cx)lcj, cx € C}h
Commonly used relationships are subClassOf (commonly referred to as is-a) and partOf. In
this section we use the Gene Ontology as an example, which uses only these two relations.

Concepts and relations consistute the so-called 7-box (the terminology). In order to con-
nect the data (ranked attributes) to the ontology, we also require the A-box (the assertions).
These we can view as a mapping M = {(a;, cj)|a; € A, cj € C} of objects (in our case,
attributes) onto concepts from the ontology. In the case of the Gene Ontology use case, the
gene annotations represent our A-box, which defines which genes are annotated by which
ontological concept (e.g., a biological function).

Each subgroup description (rule) induced by a semantic subgroup discovery algorithm
represents one explanation, and each explanation is a conjunction of ontological concepts.
The assumption here is that a domain ontology O =< C, R > is available and that a
mapping M between the attributes (or attribute values; we assume attributes in the rest of
this section) and ontological concepts exists. For example, in the case of microarray data,
an attribute (gene) IDH1 is mapped to (annotated by) the ontological concept Isocitrate
metabolic process from the Gene Ontology, indicating that this gene takes part in this par-
ticular biological process. Thus, when translated into our methodology, each ontological
concept, as well as each explanation, defines a set of attributes.

In other words, an existing semantic subgroup discovery algorithm is at this stage applied
in a novel way - the algorithm internals are identical compared to when used for a standard
subgroup discovery task.

Annotations enable the explanations to have strictly defined semantics, and from a data
mining perspective, this information enables the algorithm to generalize better than by using
attribute values alone. The explanations can be made even richer if additional relations
among the attributes (or ontological concepts) are included in the explanations. Using the
microarray example, genes are known to interact, and this information can be directly used
to form explanations.

Currently, there are four publicly available SDM systems that can be used for the purpose
of inducing explanations:

—  SEGS (Trajkovski et al. 2008), a domain specific system for analyzing microarray data
using the Gene Ontology, KEGG orthology, and Entrez gene-gene interactions,

— SDM-SEGS (Vavpeti¢ and Lavrac¢ 2013), the general purpose version of SEGS, that
enables the use of OWL ontologies, but is limited to a maximum of four ontologies,
i.e., the user needs to specify the rule language by defining up to four new roots of their
ontology,

— SDM-Aleph (Vavpeti¢ and Lavra¢ 2013), a general purpose SDM system based on the
ILP system Aleph, that can use any number of OWL ontologies,

— Hedwig (Vavpeti€ et al. 2013), a new subgroup discovery SDM system, which builds
upon the benefits of both SDM-SEGS and SDM-Aleph. Namely, it support the full
RDFS ontology language and exploits the subClassof hierarchy to efficiently structure
the search space.

All four systems focus on inducing explanations in the form of rules with conjuncts
corresponding to ontological concepts. To illustrate how explanations are induced, consider
that SEGS or SDM-SEGS (they have the same rule construction algorithm, but different
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rule selection process) is selected to be used on a microarray domain. The algorithm used by
SEGS and SDM-SEGS is the simplest of the four and is good for illustrating the semantic
nature of the learning process, but it has its drawbacks. Namely, due to its simplicity only the
subClassOf relation is exploited and one additional relation between the genes/attributes.
SDM-Aleph is similar, except that it imposes no restrictions on the number of relations. On
the other hand, Hedwig has no such limitations. The background knowledge can contain
arbitrary relations, with subClassOf having a special status in that it is exploited to structure
the search space.

Note that in the following description, genes can be thought of as instances or examples,
since the algorithm is not limited only to genes. The idea behind SEGS as well as SDM-
SEGS, illustrated on the problem of finding explanations for top-ranked genes, is as follows
(Fig. 1 shows the rule construction algorithm in pseudo code).

The set of explanations/subgroup descriptions is constructed using top-down bounded
exhaustive search according to the user-defined constraints (e.g., minimum support). The
algorithm considers all explanations that can be formed by taking one concept from each
ontology as a conjunct.

The input list L of ranked genes is first split into two classes. The set of genes above a
selected threshold value is the set of differentially expressed genes for which a set of rules
is constructed (these rules describe sets of genes which distinguish set S4 from set Sp).

The construction procedure starts with a default rule fop(X) <, with an empty set of
conjuncts in the rule condition, which covers all the genes. With fop(X) we denote the
target concept, which is in this case a set of attributes that near or at the top of the list L—
thus good at distinguishing between the two sets. Next, the algorithm tries to conjunctively
add the root concept of the first ontology (yielding e.g., top(X) < biological process(X))
and if the new rule satisfies all of the size constraints (MIN SIZE - minimum number

functionconstruct (rule, conj, k):

newSet = intersect (set (rule), set(conj))

if newSet.size > MIN_SIZE:
rule.add (conj)
if 0 < rule.terms.size < MAX TERMS:
rules.add (rule)

if rule.size < max(MAX_TERMS, MAX ONT) :
construct (rule, ontologies [k+1], k+1
rule.remove (conj)

for eachchild _inchildren(conj) :
if set(child) .size > MIN_SIZE:
construct (rule, child, k)

interactingSet = intersect (set (rule), interacts(set(conj)))
if interactingSet.size > MIN_SIZE:
rule.add (’interacts(’ conj ’)’)
if rule.terms.size < MAX TERMS:
rules.add (rule)

returnrules

Fig. 1 Rule construction procedure of (SDM-)SEGS
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of genes coverd by a rule, MAX TERMS - maximum number of conjunctions in a single
rule), it adds it to the rule set and recursively tries to add the root concept of the next
ontology (e.g., top(X) <« biological process(X) Amolecular function(X)). In the next step
all the child concepts of the current conjunct/concept are considered by recursively calling
the procedure. Due to the transitivity of the subClassOf relation between concepts in the
ontologies, the algorithm can employ an efficient pruning strategy. If the currently evaluated
rule does not satisfy the size constraints, the algorithm can prune all rules which would be
generated if this rule were further specialized.

Additionally, the user can specify gene interaction data by specifying the interacts rela-
tion. In this case, for each concept which the algorithm tries to conjunctively add to the
rule, it also tries to add its interacting counterpart. For example, if the current rule is
top(X) <« c1(X) and the algorithm tries to add the term/concept c2(X), then it also
separately tries to append a compound term interacts(X,Y) A c2(Y).

In SEGS, the constructed explanations are assigned scores using several established
methods (e.g., GSEA Subramanian et al. 2005) and the significance of the explanations is
evaluated using permutation testing (Trajkovski et al. 2008).

In our setting, the resulting descriptions correspond to subgroups of attributes (e.g.,
genes) which enable distinguishing between sets S4 and Sp. The interpretation is simple,
due to the ontological concepts (conjuncts). Consider the following subgroup description:

top(X) < immune system process(X)Aplasma membrane(X)A

interacts(X, Y)A T cell receptor signaling pathway(Y).

This rule can be interpreted as follows. One of the top groups of genes (attributes) that are
capable of distinguishing S4 from Sp, are the genes which take part in the immune system
process, are part of the plasma membrane and interact with genes that are part of the T cell
receptor signaling pathway.

4 Implementation

The described methodology was implemented in ClowdFlows (Kranjc et al. 2012), a pub-
licly available workflow environment. We have extended the original implementation in the
Orange4WS (Podpecan et al. 2011b) platform in order to make the experimental data and
workflow, as well as the individual re-usable components easily accessible. As the Clowd-
Flows user interface runs entirely in a web browser there are no software requirements.
Moreover, the developed workflows and the results of their execution can be shared by pro-
viding a link to the workflow. In the following we summarize the new implementation along
with the most relevant features of ClowdFlows.

4.1 The ClowdFlows platform

ClowdFlows is a new generation platform for data mining which is implemented as a web
application. It is based on the concept of visual programming which denotes the construction
of complex procedures (workflows) from smaller building blocks (widgets) on a canvas.
ClowdFlows offers a large collection of implemented algorithms, procedures and visualiza-
tions from different scientific fields: data mining, natural language processing, text mining,
systems biology and inductive logic programming. New components can be implemented
in the ClowdFlows server application or can be imported as web services. All included
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components are available as widgets and can be used in the construction of data analysis
workflows.

Two of the most important features of ClowdFlows are its graphical user interface and
the database, which stores all information about components, workflows, data, and results.
The graphical user interface, which runs as a web application, allows the user to interac-
tively construct the workflow by placing the appropriate component on the canvas, set their
paramenters, connects inputs and outputs and execute them. The database, on the other
hand, stores all vital information and enables sharing of the constructed solutions, data, and
experimental results by making the workflow accessible under a unique public URL. This
greatly simplifies the evaluation of experimental results.

4.2 Implementation of the methodology workflow

The proposed methodology was implemented as a ClowdFlows workflow. Widgets from
different ClowdFlows packages (such as utility widgets, e.g., Load dataset) as well as sev-
eral newly developed components were deployed. First, the subgroup discovery package
was used (some of these widgets are based on the Subgroup Discovery toolkit for Orange?).
Second, the SDM-toolkit (Vavpeti¢ and Lavra¢ 2013) and the SegMine tools (Podpecan
et al. 2011a) from our previous work were also moved to ClowdFlows. Having these wid-
gets made available within the platform, we were able to connect them into a workflow
implementing our methodology. Figures 3 and 4 show two ClowdFlows workflows using
our methodology for two use cases. Since the developed widgets are self-contained units
with a well defined task, they can be re-used for other tasks as well (the roles of particular
widgets are discussed in more detail Section 5).

5 Use cases

In this section we present the application of our methodology on two use cases. The first is
a motivational use case intended to illustrate the methodology as well as showing how it can
be applied using the ClowdFlows platform. The second use case is an application on real-
world gene expression microarray data. On the second use case, we also apply the related
supporting factors approach and qualitatively compare it to our approach.

5.1 Illustrative use case

This subsection further illustrates and motivates the use of the methodology on an easy-
to-understand toy use case. First, we describe the dataset and cast the problem in our
new framework. Next, we present the workflow developed for solving the toy problem by
explaining each of the workflow’s components.

This use case is an adaptation of the proof-of-concept semantic data mining dataset from
Vavpeti¢ and Lavra¢ (2013). Consider a bank which has the following data about its cus-
tomers: place of living, employment, bank services used, which includes the account type,
possible credits and insurance policies and so on. The attributes of the dataset are binary.

Shttp://kt.ijs.si/petra kralj/SubgroupDiscovery/
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Table 1 Table of bank

customers described by several Doctor Nurse Munich Rome Classic Gold ... Big spender

attributes and class ‘big spender’
1 0 0 0 1 0 yes
1 0 0 0 0 1 yes
0 0 1 0 0 1 ... yes
1 0 0 0 1 0 yes
0 0 0 0 0 1 yes
0 0 0 0 0 1 no
0 1 0 0 1 0 no
0 0 0 0 1 0 no
0 0 0 0 0 1 no
0 0 0 0 1 0 no

For example, the attribute-value pair Doctor=1 indicates that a particular customer is a doc-
tor. The bank also labeled the clients as ‘big spenders’ or not and wants to find patterns
describing big spenders. Table 1 presents a subset of the training data.

Suppose we also have three ontologies available as background knowledge for this
problem: an ontology of banking services, an ontology of locations and an ontology of occu-
pations, shown in Fig. 2. Note that the attributes of the dataset correspond to the leaves of
the ontologies.

BankingService

<" Insurance "y " Loan ) " Deposit )

Fig. 2 The ontologies of banking services, locations and occupations. Concepts with omitted sub-concepts
are drawn with a dashed line
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In terms of our methodology, we first want to find descriptions of customers that are big
spenders. After finding and selecting an interesting subgroup, we wish to use the knowl-
edge of the domain ontologies to explain what are the differences between this subgroup of
customers compared to the other customers.

Figure 3 shows a workflow developed to solve the described problem using our
methodology. The workflow neatly follows the steps outlined in Section 3.

Step 1 Identifying interesting sets of instances and creating a new labeling, consists of
the following components: the dataset is first uploaded (Load dataset widget),
then standard subgroup discovery is run (Build subgroups widget) and the user is
prompted to select one or more interesting subgroups (Select subgroups widget).
The examples are then re-labeled, where the examples in the selected subgroup(s)
represent one class, while the rest represents the other class (Query data with
subgroups and Table from sets of examples widgets).

Step 2 Ranking of attributes, consists of a single Ranker widget, which uses the ReliefF
algorithm to assign a score to each of the attributes and outputs a list of pairs
(attribute, score).

Step 3 Inducing explanations using ontologies, is composed of one main widget: SDM-
Aleph. This widget calls the SDM-Aleph web service, which employs the ontolo-
gies and the Aleph ILP system to produce subgroups. The widget accepts the list
of ranked attributes, the OWL ontologies and the mapping between attribute names
and ontology concepts (Load mapping and Load ontology widgets; note that these
are actually Load file to string widgets renamed to reflect what they do). The
SDM-Aleph widget returns a set of subgroups, which is displayed by the Display
subgroups widget.

This public workflow contains an example experiment (using the dataset described
above), where we have used the following settings. In the Build subgroups widget we
used the SD (Gamberger and Lavra¢ 2002) subgroup discovery algorithm with 20 %
minimum support. In the Select subgroups widget we (arbitrarily) selected the subgroup
(Big spender = yes) < (Cosenza = 0) A (Gold = 1). This subgroup contains customers
that are not from Cosenza and have a Gold bank account.

In the Query data with subgroups, Table from sets of examples and Ranker widgets we
used the default settings. In the SDM-Aleph widget, we set the data format to ‘list” and the
cutoff parameter to 10 (this indicates that the input list will be split into two classes by the

oot | NS 1 ar
Select subgroups
Build subgroups .
. = il i = = .
d T Lt 43 [}
byl = Display subgroups
Load Dataset Query data with - Ranker g
m subgrovps Table from sets of
= examples
Lok >
Load mapping Load ontology SOM-Aleph
p i —

Load ontalogy Load cntalogy

Fig. 3 The workflow implementing the solution to the motivational use case in ClowdFlows. The workflow
can be found at http://clowdflows.org/workflow/1283/
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Aleph system at the tenth attribute). This is necessary because the Ranker widget outputs a
list of attributes and their scores; alternatively an Orange dataset can be used.

The best scoring subgroup found by SDM-Aleph is top(X) < Account(X). What is
important to note from this simple example is that the Account ontological concept does not
appear among the dataset attributes (leaves of the ontologies). This means that the expla-
nation was found by generalizing the leaves (Gold, Classic and Student accounts) into the
more general concept Account (see the first ontology in Fig. 2 to see the relation between
these concepts). The explanation indicates that the main difference between the selected
subgroup of customers and all other customers is in the type of the account they have.
This is intuitive, since the selected subgroup contains the majority of customers with Gold
accounts, while other customers have either Classic or Student accounts.

5.2 Biomedical use case

This subsection presents and discusses the application of the presented methodology on
gene expression data. More specifically, we evaluate the methodology on the breast cancer
dataset using our implementation of the methodology as a workflow in the ClowdFlows
platform.

The gene expression dataset used in our analysis is the dataset published by Sotiriou et al.
(2006) (GEO series GSE2990). It is a merge of the KJX64 and KJ125 datasets and contains
expression values of 12,718 genes from 189 patients with primary operable invasive breast
cancer. It also provides 22 metadata attributes such as age, grade, tumor size and survival
time. We used the expert-curated re-normalized and binarized version of the dataset from
the InSilico database (Taminau et al. 2011). Within the InSilico framework, the raw data was
renormalized using fRMA (McCall et al. 2010) and a genetic barcode (0/1) was generated
based on whether the expression of a gene was significantly higher (K standard deviations)
than the no expression level estimated on a reference of approx. 800 samples. In this setting
gi = 1 means that gene g; is over-expressed and g; = 0 means that it is not. The ultimate
goal of the experiment was to induce meaningful high-level semantic descriptions of sub-
groups found in the data which could provide important information in the clinical decision
making process.

Our main motivation for developing the presented methodology is to descriptively char-
acterize various breast cancer subtypes, while in the experiments presented here we focus
on describing breast cancer grades, which enables us to focus on the evaluation of the
methodology.

The conducted experiment on the presented dataset in the ClowdFlows environment
employs processing components (widgets) in a complex data analysis workflow which is
shown in Fig. 4.

In the first step, the Load Dataset widget is used to read the breast cancer patient data,
i.e., a binarized version of the gene expression data (note that the frozen robust multiar-
ray analysis (fRMA) normalization (McCall et al. 2010) is also available from the InSilico
web page). As the GSE2990 dataset does not have pre-specified classes we have selected
the Grade attribute as the target attribute using the Select Attributes widget. According
to Elston and Ellis (1991) and Galea et al. (1992), histologic grade of breast carcino-
mas provides clinically important prognostic information. Approximately one half of all
breast cancers are assigned histologic grade 1 or 3 status (low or high risk of recur-
rence) but a substantial percentage of tumors (30-60 %) are classified as histologic grade
2 (intermediate risk of recurrence) which is not informative for clinical decision making
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Fig. 4 A workflow implementing the proposed methodology in ClowdFlows (first part). The workflow was
split into two parts in order to be more easily readable. The workflow can be found at http://clowdflows.org/
workflow/911/

(Sotiriou et al. 2006). Obviously, to increase the prognostic value of tumor grading, further
refinement of histologic grade 2 status is necessary (Sotiriou et al. 2006).

The third step of the workflow is to use the Select data widget to remove 17 unclassified
examples for which the histologic grade is unknown. Although these examples may con-
tain important information, this would require using unsupervised methods (e.g. clustering)
instead of supervised subgroup discovery algorithms used in our experiments (note, how-
ever, that subgroup discovery in the presented workflow can easily be replaced by clustering
or some other unsupervised method).
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Next, attribute (gene) selection is performed using two gene filtering components which
allow filtering the genes according to two scoring methods: fold change and t-test. Removal
of unimportant genes is needed to reduce the search space of subgroup discovery methods
to avoid the high-dimensionality problem. In our approach we have selected the genes in
two stages: first, only the genes with a fold change of > 1 are selected, and second, only the
genes with p-value < 0, 01 given by the t-test are selected. This yields a total of 399 genes
to be used in the subgroup discovery process.

The Build subgroups widget implements SD (Gamberger and Lavra¢ 2002), APRIORI-
SD (Kavsek and Lavra¢ 2006) and CN2-SD (Lavra¢ et al. 2004) subgroup discovery
algorithms while the Subgroup Bar visualization component provides a facility of bar
chart visualization, while the Select subgroups widget allows the selection of particular
subgroups. The selected subgroups are used to query the original data (Query data with sub-
groups) to obtain the covered set of examples which are then merged with the rest of the data
(Table from sets of examples). As a result it is possible to rank the genes in the re-constructed
dataset according to their ability to differentiate between the discovered subgroups and the
rest of the data. The ranking of genes is performed by the Gene ranker widget implementing
the ReliefF algorithm.

Finally, the computed ranking is sent to the SEGS widget which calls the web service
implementing the SEGS semantic subgroup discovery algorithm (SDM-SEGS and SDM-
Aleph can also be used). As the SEGS algorithm has large time and space requirements
it is implemented as a web service which allows it to run on a powerful server. SEGS
induces rules providing explanations of the top ranked attributes by building conjunctions
of ontology terms from the GO ontology, KEGG orthology, and interacting terms using the
Entrez gene-gene interactions database as described in Section 3.3. In our experiments we
have used the latest updates of the ontologies and annotations provided by NCBI® and the
Gene Ontology project.

The subgroup discovery analysis yielded two large subgroups (Table 2) of Grade 3
patients. Using the GeneCards’ on-line tool, we have confirmed that all of the genes from
the subgroup descriptions are typically differentially expressed (up-regulated) in breast
cancer tissue when compared with normal tissue.

In the rest of this section we focus on the larger subgroup #1, for which we have gen-
erated explanations (Table 3). A total of 90 explanations with p-value < 0.05 (estimated
using permutation testing) were found. Due to space restrictions we display only the top
10 explanations generated by SEGS (for a complete list open the workflow from Fig. 4).
For example, Explanation #1 describes genes which are annotated by GO/KEGG terms:
chromosome and cell cycle.

In the study by Sotiriou et al. (2006) where the expression profiles of Grade 3 and Grade 1
patients were compared, the genes that are associated with histologic grade were shown to
be mainly involved in cell cycle regulation and proliferation (uncontrollable division of cells
is one of the hallmarks of cancer). The explanations of Subgroup #1 of Grade 3 patients
in Table 3 agree with their findings. In general, the explanations describe genes that take
part in cell cycle regulation (Explanations #1-#10), cell division (Explanation #3) and other
components that indirectly affect cell division (e.g., Explanations #4 and #5: microtubules
are structures that pull the cell apart when it divides).

Shttp://www.ncbi.nlm.nih.gov/gene

7http://www.genecards.org
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Table 2 The best-scoring subgroups found using CN2-SD with default parameters for the Grade 3 patients

# Subgroup description TP FP
1 Grade =3 <~ DDX39A = 1 ADDX47 = 1 ARACGAP1 = 1 AZWINT =1 APITPNB=1 43 5
2 Grade =3 < TPX2=1ADDX47 =1 APITPNB =1 AHN1 =1 26 0

TP and FP are the true positive and false positive rates, respectively

In our implementation, the user can choose one of the explanations (i.e., gene sets)
to query the Biomine database (Eronen and Toivonen 2012). The Biomine engine offers
advanced probabilistic graph searching techniques that can be used to find a neighborhood
of the set of genes, or a graph connecting two separate gene sets. The result of both is a
subgraph that can be explored with the Biomine visualizer widget. Figure 5 shows a part of
the neighborhood graph for the gene set of explanation #2. In this particular case, the figure
shows three types of nodes (gene, biological process and pathway) and the links between
the nodes signify how are the nodes related (participates in, codes for).

To sum up, our study shows that by using our methodology one can automatically repro-
duce the observations noted in the earlier work by Sotiriou et al. This can encourage the
researchers to apply the presented methodology in similar exploratory analytics tasks. Given
the easy access and adaptability of the software the methodology can be simply reused in
other domains, which is demonstrated in the next section on financial news articles.

5.3 Supporting factors comparison

In this subsection we present the results of the related supporting factors (Gamberger and
Lavrac 2003) methodology, which is also used to characterize subgroups and can be of great
help to domain experts in the interpretation of subgroup discovery patterns. Supporting
factors are features that have statistically significantly different distributions in the positive
examples of a selected subgroup, when compared to the control examples (negative cases)
in the whole population and by themselves do not appear in the subgroup description. The
difference is measured using the y 2-test of independence.

Table 3 The explanations for the patients from subgroup #1 from Fig. 3

# Explanation p-value

1 chromosome A cell cycle 0.000

2 cellular macromolecule metabolic process A intracellular non-membrane-bounded 0.000
organelle A cell cycle ’

3 cell division A nucleus A cell cycle 0.000

4 regulation of mitotic cell cycle A cytoskeletal part 0.000

5 regulation of mitotic cell cycle A microtubule cytoskeleton 0.000

6 regulation of G2/M transition of mitotic cell cycle 0.000

7 regulation of cell cycle process A chromosomal part 0.000

8 regulation of cell cycle process A spindle 0.000
enzyme binding A regulation of cell cycle process A intracellular non-membrane-

9 0.000
bounded organelle

10 ATP binding A mitotic cell cycle A nucleus 0.005

‘We omit the variables from the rules for better readability. Note that since the p-values are estimations, some
can also have a value of 0

@ Springer



J Intell Inf Syst

Layout Labels Selection Help

werticipgtes [n P53 signaling pathway

9 lati 0.
BiologicalProcess Pathway (rmo)

partic pates in

Bublb participates in
participates in Gene {rno) —-—

\

\ participates in

anaphase-promoting ¢

\
participatés in BiologicalProcess \ particpatss in

\

Cdc20 \
articipates in
ey

\

participates in

participates in v,\ .
participates in \ particip.
codqs for
! Cdec2
\ Gene (rno)
positive regulation o. patdpatanin 1 \
DuolngucalPrn:uln cenbl \\
Gene (rno) \
S 1 \
Close

4

Fig. 5 The Biomine visualizer showing a part of a neighborhood graph for explanation #2 from Table 3

The methodology proposed in the present paper consists of several steps, where each
step can be executed with multiple alternatives. The supporting factors methodology fits the
best as a replacement to the last step. In this experiment, we assumed that all but the last
step—explanation of subgroups—is the same as with our approach.

To be directly comparable to our results, we selected subgroup #1 (Fig. 2) as the target
subgroup to characterize using supporting factors. We used a confidence level of 99 %
(p = 0.01) and we report the best 10 supporting factors (Table 4).

The main differnce that we can see is that supporting factors are represented as single
genes, and the technique does not try to generalize over the genes and associate them with
concepts from the gene ontology. This can of course be desirable for many use cases, but in
this genomics experiment the characterization is not instantly obvious, since an additional
look-up of individual genes is required by the domain expert.

On the other hand, the reported genes reaffirm the higher-level explanations produced
by our methodology. For example, again using the GeneCards tool, we can find that the
TPX2 gene is required for normal assembly of microtubules during apoptosis (cell death).

Table 4 Subgroup #1 from Fig. 2 and its top 10 supporting factors calculated with a confidence value of
99 % (p = 0.01)

Subgroup description Supporting factors
Grade = 3 <— DDX39A =1 ADDX47 =1 TPX2, MAD2L1, CCNB2, CDK1, NUSAPI,
ARACGAP1 =1 AZWINT = 1 APITPNB = 1 CENPA, SNRPDI, GINS1, ASPM, PRCI
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CCNB2 plays a key role in the control of the cell cycle and NUSAPI is another microtubule-
associated protein. The GINS1 plays an essential role in the initiation of DNA replication.

To sum up, the supporting factors approach can be important in domains where extra
supportive evidence is needed (e.g., medical decision support), since it lists specific features
that support a given subgroup. On the other hand, it does not provide a more general con-
text, such as is possible using semantic subgroup discovery methods. Of course, the expert
could also benefit from using these two methodologies side-by-side, since they characterize
subgroups at two different levels of abstraction.

6 Conclusions

In this paper we presented a methodology for explaining subgroups or sets of instances
using higher-level ontological concepts. First, a subgroup of instances is identified (e.g.,
using subgroup discovery or clustering), which is then characterized using ontological con-
cepts thus providing insight into the main differences between the given subgroup and the
remaining data.

We made the developed tools available for the ClowdFlows platform. Due to this imple-
mentation the tools are easily accessible, since ClowdFlows requires only an internet
connection and a web browser.

As demonstrated by the two use cases, the proposed approach is general and can be
employed in any application area, provided the existence of available domain ontologies
and annotated data to be analyzed. In this paper, the real-life use case is from the genomics
domain.

As the experts assume that there are several molecular subtypes of breast cancer, our
main research interest of the genomics use case is to employ the presented methodology
to descriptively characterize the hypothesized cancer subtypes. Hence, in addition to dis-
tinguishing between patients with breast cancer (the positive cases) and healthy patients,
the challenge is to identify breast cancer subtypes by finding subgroups of patients which
would be explained by the same gene functions, processes in which the genes interact. The
approach presented in this paper has the potential of discovering groups of patients which
correspond to the subtypes while explaining them using ontology terms describing gene
functions, processes and pathways; in this paper, we applied the methodology to describe
breast cancer grades with the aim of evaluation.

Using subgroup discovery we have identified two main subgroups that characterize
Grade 3 breast cancer patients. These were then additionally explained using Gene Ontol-
ogy concepts and KEGG pathways and the explanations (rules or subgroup descriptions of
gene sets) agree with previous findings characterizing grades using microarray profiling.

Furthermore, compared to the related supporting factors approach, which is also used to
characterize subgroups, the experiments show that supporting factors are more useful when
concentrating on specific low-level attributes or features is desirable, but when more general
descriptions are needed, they are not as easy to interpret as the method presented in this
paper. This restriction is even more apparent on gene expression data, since the supporting
factors are given in terms of single genes.

The results of the conducted experiments show the capabilities of the presented approach.
In further work we will employ the methodology to detecting and characterizing subtypes
of breast cancer. In further work, we will apply this methodology to other domains, as well
as advance the level of exploitation of domain ontologies for providing explanations of the
results of data mining.
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