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Abstract

Finding disease markers (classifiers) from gene expression data by machine learning algorithms is characterized by a high risk of

overfitting the data due the abundance of attributes (simultaneously measured gene expression values) and shortage of available

examples (observations). To avoid this pitfall and achieve predictor robustness, state-of-the-art approaches construct complex clas-

sifiers that combine relatively weak contributions of up to thousands of genes (attributes) to classify a disease. The complexity of

such classifiers limits their transparency and consequently the biological insights they can provide. The goal of this study is to apply

to this domain the methodology of constructing simple yet robust logic-based classifiers amenable to direct expert interpretation. On

two well-known, publicly available gene expression classification problems, the paper shows the feasibility of this approach, employ-

ing a recently developed subgroup discovery methodology. Some of the discovered classifiers allow for novel biological

interpretations.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Gene expression monitoring by DNA microarrays

(gene chips) provides an important source of informa-

tion that can help in understanding many biological pro-

cesses. This technology allows for novel applications,

resulting in increased understanding of disease pro-
cesses, and improved diagnosis and prediction in

medicine.
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nada.lavrac@ijs.si (N. Lavrač), zelezny@fel.cvut.cz, zelezny@biostat.
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Data collected in these applications are not suitable

for direct human explanatory analysis because a single

DNA microarray experiment results in thousands of

measured expression values and also because of the lack

of existing expert knowledge available for the analysis.

The application of various data mining and knowledge

discovery methods using machine learning algorithms
[39] seems an evident approach to take in such a prob-

lem domain. Numerous approaches have been suggested

towards exploiting state-of-the-art machine learning or

microarray data mining, including both supervised

learning (learning from data with class labels) and unsu-

pervised learning (such as conceptual clustering). A

state-of-the-art review of these various approaches can

be found in [15,40].
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In this study, we follow the supervised learning para-

digm. The database we analyze consists of a set of gene

expression measurements (examples), each correspond-

ing to a rather large number of measured expression val-

ues of a predefined family of genes (attributes). Each

measurement in the database was extracted from a tissue
of a patient with a specific disease; this disease is the

class for the given example. The standard goal of ma-

chine learning is to start from such available labeled

examples and construct classifiers that can successfully

classify new, previously unseen examples. Such classifi-

ers are important because they can be used for diagnos-

tic purposes in medicine and because they can help to

understand the dependencies between classes (diseases)
and attributes (gene expression values).

The problem of finding disease markers (classifiers)

from gene expression data by machine learning algo-

rithms is characterized by the abundance of attributes

(simultaneously measured gene expression values), and

the shortage of the available examples (patients subject

to measurements). The application of machine learning

algorithms in a domain characterized by a large number
of attributes typically calls for some dimensionality

reduction, even if the employed strategy can in principle

directly accept all the available attribute values. The ben-

efits of prior elimination of irrelevant (or weakly relevant)

attributes in data preprocessing has been recognized in

machine learning [35]: besides helping to reduce the prob-

lem complexity and the computation time, it can enable

the construction of more accurate classifiers.
From the dimensionality point of view, the gene

expression domain is specifically unfavorable, because—

as we have mentioned—the abundance of attributes is

confronted with a relatively small number of available

examples. It is known from the machine learning and sci-

entific discovery literature that such domains are prone to

overfitting: overfitted classifiers are characterized by sig-

nificantly decreased predictive accuracy on unseen sam-
ples compared to the training set accuracy, or—in other

words—by a high generalization error [14]. See [21] for

an extensive treatment of different effects of overfitting.

Informally, in domains characterized by a small number

of examples and a large number of attributes, overfitting

occurs because some artifacts (flukes) of actually irrele-

vant attribute combinations can emerge simply by means

of chance and appear significant with respect to the exam-
ples available to a machine learning algorithm.

To avoid the overfitting pitfall, state-of-the-art ap-

proaches construct complex classifiers that combine rel-

atively weak contributions of up to thousands of genes

(attributes) to classify a disease [20,45,10,36]. Predictor

robustness is achieved by the redundancy of classifiers,

realized, e.g., by voting of multiple classifiers. For exam-

ple, [20] use weighted voting of informative genes,
[45,10] employ the support vector machine (SVM) para-

digm, while in [36] scores of top ranked emerging pat-
terns are used. The achieved prediction quality on

independent test sets are very high but a drawback of

classifiers based on many attributes is that they are not

appropriate for expert interpretation. Although it is pos-

sible to extract the attributes with maximal voting

weight (in [45] such genes are called disease markers

and some of them are already identified as useful in rou-

tine clinical practice), the logical connections among the

extracted attributes are lost and the construction of ex-

pert comprehensible (disease) models remains a very dif-

ficult task.

This paper describes an approach to the detection of

rules for the classes of gene expression samples that are

much more convenient for expert interpretation, taking
gene expression data modeling as a novel challenge for

the application of the recently developed subgroup dis-

covery methodology [19]. Its goal is the induction of

classifiers in the form of explicit short rules describing

important subgroups of the target class samples,

although these simple classifiers may be of a lower pre-

dictive quality than the more complex classifiers. In-

duced rules typically include 2–5 gene expression
attributes and, in contrast to markers obtained from

voting schemes, these rules explicitly stress the impor-

tance of the correlation of the activity (or non-activity)

of genes in the selected set of attributes. The problem

with the induction of low dimensional, non-redundant

classifiers is that they are prone to overfitting the train-

ing set. The selection of an appropriate hypothesis lan-

guage as well as the reduction of the hypothesis search
space are known methods for avoiding overfitting [46].

Handling overfitting by relevancy based feature and rule

filtering are important aspects of this work. In rule

learning, the problem of this approach is that with a

strongly reduced hypothesis space it may be difficult to

induce rules that cover all/many examples from the

training set. However, the proposed subgroup discovery

approach provides a much better framework for the
application of the suggested methodology of feature

and rule relevancy than the standard separate-and-con-

quer rule learning [18].

To arrive at simple rule-based predictors, the numeric

microarray data are discretized, i.e., represented by

means of categorical values. This admittedly introduces

a superfluous degree of freedom in the choice of the dis-

cretization threshold values. We adhere to what is
apparently the most natural choice—the discretization

provided by Affymetrix, the microarray manufac-

turer—and it is part of our study to test whether inter-

esting knowledge can be discovered with such

discretized data. Naturally, by selecting this approach

the risk of overfitting, potentially leading to rules that

do not reflect genuine dependencies between classes

and gene activity values, is not automatically avoided.
The paper outline is as follows. In Section 2, the sub-

group discovery approach is presented, together with
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techniques aimed at avoiding overfitting. Section 3 dis-

cusses the results obtained on two publicly available

gene expression problem domains. Expert interpretation

of a subset of rules with high predictive value confirmed

on independent test sets is provided in Section 4, show-

ing the significance of the discovered relationships.
2. The subgroup discovery methodology

This section presents the subgroup discovery method-

ology1 originally introduced in [19]. Subgroup discovery

is a form of supervised inductive learning of subgroup

descriptions of a given target class. The descriptions
have the form of rules built as logical combination of

features. Features are logical conditions that have values

true or false, depending on the values of attributes which

describe the examples of the given problem domain.

Subgroup discovery rule learning is therefore a type of

two-class attribute based (zero order) inductive learning.

Multi-class problems can be solved as a series of two-

class problems, so that in each run one class is selected
as the target class while examples of all other classes

are treated as non-target class cases.

There is a large body of previous research on rule

induction in machine learning and data mining, and

on subgroup discovery in general. We refer the reader

to the mentioned source [19] explaining how the SD

algorithm relates to similar algorithms, such as classifi-

cation [11,38] and association [2,25] rule learners and
subgroup discovery systems [31,54].

For the purpose of the induction of subgroup

descriptions for gene expression datasets, the system

has been enhanced to be able to accept datasets with a

larger number of attributes. For performing applica-

tions in gene expression data analysis, additional tech-

niques for handling overfitting have been implemented,

described in detail in this section.

2.1. An outline of the subgroup discovery approach

Subgroup discovery [54,19] has the goal to uncover

characteristic properties of population subgroups by

building short rules which are highly significant (assur-

ing that the distribution of classes of covered instances

are statistically significantly different from the distribu-
tion in the training set) and have a large coverage (cov-

ering many target class instances).

In this work, subgroup discovery is performed by the

SD algorithm, a relatively simple iterative beam search

rule learning algorithm [19]. The SD input consists of a
1 The approach has been implemented in the on-line Data Mining
Server (DMS), publicly available at http://dms.irb.hr. DMS and its
constituting subgroup discovery algorithm SD can be tested on user
submitted domains with up to 250 examples and 50 attributes.
set of examples E (E = P [ N, P is the set of target class

examples and N the set of non-target class examples)

and the set of features F that are constructed for the given

example set. For discrete (categorical) attributes, features

have the formAttribute = value orAttribute „ value, while

for continuous (numerical) attributes they have the form
Attribute > value or Attribute 6 value. The output of the

SD algorithm is a set of rules with optimal covering prop-

erties on the given example set. As in classification rule

learning, an induced rule (subgroup description) has the

form of a (backwards) implication: Class ‹ Cond. In

terms of rule learning, the property of interest for sub-

group discovery is the target class (Class) that appears

in the rule consequent, and the rule antecedent (Cond.)
is a conjunction of features (attribute–value pairs) se-

lected from the features describing the training instances.

In the SD algorithm, subgroups are described by rules

formed of conjunctions of a small number of features.

Each rule describing a subgroup is extended with the

information about the rule qualitywhich enables the eval-

uationof induced rules. Theoutput rule form is as follows:

Class Cond½Sens; Spec�;

where Class is the target property of interest, Cond. is a

conjunction of features, Sens is the sensitivity or true po-

sitive rate, i.e., the fraction of positive cases that are cor-

rectly classified as positive, computed as |TP|/|P|, and

Spec is the specificity or true negative rate, i.e., the frac-

tion of negative cases correctly classified as negative,
computed as |TN|/|N|, for TP and TN being the sets of

true positives (target class examples covered by a rule)

and true negatives (non-target class examples not cov-

ered by the rule), respectively. Non-target class examples

covered by the rule are called false positives, FP, and

N = TN [ FP.

Features, formed of attribute–value pairs, are con-

structed in the preprocessing step of the SD algorithm.
To formalize the feature construction procedure, let val-

ues vix (x = 1, . . .,kip) denote the kip different values of

attribute Ai that appear in the target class examples

and wiy (y = 1, . . .,kin) the kin different values of Ai

appearing in the non-target class examples. A set of fea-

tures F is constructed as follows:

� For discrete attributes Ai, features of the form
Ai = vix and Ai „ wiy are generated.

� For continuous attributes Ai features of the form

Ai 6 (vix + wiy)/2 are created for all neighboring value

pairs (vix,wiy), and features Ai > (vix + wiy)/2 for all

neighbor pairs (wiy,vix).

2.2. Handling overfitting

There is no ideal solution to the problem of

data overfitting. No inductive learning algorithm can

http://www-genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi
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guarantee that the induced rules will not overfit the

training set. There are two main mechanisms that can

be used to avoid overfitting.

� Overfitting can be reduced if the hypothesis search

space is suitably restricted [14].

� In rule learning, the standard approaches to handling
the problem of overfitting is through the use of

appropriate search heuristics and stopping criteria

used in rule construction, stopping criteria used in

ruleset construction and rule truncation. For exam-

ple, most separate-and-conquer based rule learners

[18] (e.g., AQ, CN2, RIPPER, and CLASS) use heu-

ristics aimed at maximizing rule accuracy. To avoid

overfitting, these systems are capable of learning �im-
pure� rules with increased rule coverage (generality).

Accordingly, we implement both of these mechanisms

in the employed subgroup discovery methodology.

� The hypothesis search space is restricted in three

ways: through domain specific restrictions for feature

construction for functional genomics domains, out-

lined in Section 2.3, filtering of irrelevant features
described in Section 2.4 and filtering of irrelevant

rules described in Section 2.5. In the implementation

of these mechanisms, cautiousness is needed as strong

restrictions of the hypothesis search space may pre-

vent finding all the important rules. An equally

important part of the methodology for avoiding over-

fitting is that each feature that enters the subgroup

discovery process should itself be a relevant target
class descriptor.

� Increased rule coverage, resulting in rules covering

also non-target class examples, is achieved in the

SD subgroup discovery algorithm by using the fol-

lowing rule quality measure in heuristic search: |TP|/

|(FP| + g), where g is a user defined generalization

parameter. High quality rules will cover many target

class examples and a low number of non-target exam-
ples. The number of tolerated negative examples, rel-

ative to the number of covered target class cases, is

determined by parameter g. The SD beam search rule

learning algorithm is described in Section 2.6.

2.3. Domain specific feature construction

Gene expression scanners measure signal intensity as

continuous values which form an appropriate input for

data analysis. The problem is that for continuous valued

attributes there can be potentially many boundary val-

ues separating the classes, resulting in many different

features for a single attribute. There is also a possibility

to use presence call (signal specificity) values computed

from measured signal intensity values by the Affymetrix
GENECHIP software. The presence call has discrete

values A (absent), P (present), and M (marginal). The

M value can be interpreted as a �do not know state�
and for the remaining values A and P it holds that fea-

ture Attribute = A is identical to Attribute „ P; conse-

quently, for every attribute there are only two distinct
features Attribute = A and Attribute = P generated for

each gene.2

Signal intensity values are most frequently used [36]

because they impose less restrictions to the classifier con-

struction process and because the results do not depend

on the GENECHIP software presence call computation.

In the subgroup discovery approach, we prefer the use

of presence call values. The reason is that features pre-
sented by conditions like gene Ai is present or gene Aj

is absent are very natural for human interpretation.

Although the GENECHIP software presence call com-

putation may not be ideal, expert evaluation of the re-

sults demonstrates that it can enable induction of very

interesting rules both because of the ease of their inter-

pretation and because of their predictive quality.

A more important reason for using presence call val-
ues is that the approach can help in avoiding overfitting,

as the feature space is very strongly restricted: instead of

many features per attribute we have only two. Also, as

the measured gene expression values are not completely

reliable (which is reflected by the fact that for the same

sample measured values may change from one measure-

ment to another), some robustness of constructed rules

is welcome. To some extent, this can be achieved by
treating the marginal presence call attribute value M

as a �do not know� state. The value can neither be used

to support the relevancy of a feature or a rule, nor can

it be used for prediction purposes. In this way, it addi-

tionally restricts the hypothesis search space.

A drawback of this approach is that we depend on

the GENECHIP software presence call computation

which can change with time. However, the SD method-
ology is general in the sense that it can accept as its input

either A/P/M values computed by any software, or real

signal intensity values.

With respect to the feature construction process, the

following observations are worth reflecting on. The fea-

tures are restricted to simple forms only, as defined in

Section 2.1, because their complex forms may enable

that, despite testing feature covering properties, features
with insufficient supportive evidence may enter the rule

construction process. For example, for discrete attri-

butes the simple features have the form Ai = a or

Ai „ a. No complex logical forms like (Ai = a � Aj = b)

or (Ai = a � Aj = b) are acceptable. The first form is

not needed as all potential conjunctions are tested by
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the beam search procedure of the subgroup discovery

algorithm. The second form is dangerous because, for

example, the feature Ai = a may be relevant while the

feature Aj = b may be irrelevant. Their combination

Ai = a � Aj = b may be even more relevant than Ai = a

itself, which may cause that condition Aj = b may be in-
cluded into the finally constructed rules while its inclu-

sion is not justified by its covering properties on the

training set. Notice that if both conditions Ai = a and

Aj = b are relevant, it does not mean that by restricting

the form of used features some important logical combi-

nations of features will be ignored. In the subgroup dis-

covery approach, both features can build separate

subgroup descriptions and—if they are relevant—they
both have a chance to appear in the final set of induced

rules.

2.4. Feature filtering

Features are elementary ingredients of rules. But indi-

vidual features are short rules themselves. The quality of

a feature is determined by its covering property on the
training set. This section presents the methodology en-

abling the detection and elimination of irrelevant fea-

tures which significantly helps in reducing the

hypothesis space. More importantly, the methodology

ensures that only relevant features will enter the process

of rule construction which is important for avoiding

overfitting. Although this section mentions only feature

filtering, the same methodology is applicable to any log-
ical combination of features, including the complete

rules.

Definition 1. (Total irrelevancy.) A feature that has

either |TP| = 0 or |TN| = 0 is totally irrelevant.

If a feature has |TP| = 0 or |TN| = 0 it is totally

irrelevant because it is of no use in building rules that
distinguish one class from the other. A gene is called

constant-valued gene if it has, besides some M values,

either only A or only P values for all examples in the

training set. Both features generated from a constant-

valued attribute are totally irrelevant because they either

have |TP| = 0 or |TN| = 0. Table 1 presents a constant-

valued attribute and the features generated for the

given attribute. In the experiments presented in
Table 1

A table illustrating five positive and four negative examples for a given target

both features X = A and X = P are totally irrelevant

Target class samples

M A A A

Gene X

Feature X = A False True True True

Feature X = P False False False False

The first has |TN| = 0 while the second has |TP| = 0.
Section 3, the number of detected constant valued attri-

butes eliminated in preprocessing was between 12 and

40%.

In the example in Table 1, it can be also noticed that

feature f has value false for the attribute value M when

the example is in the target class and value true when the
example is in the non-target class. It means that for an

example with attribute value M, feature truth-values

do not depend on the properties of the feature but on

the class to which the example belongs.

While total irrelevancy helps in reducing the compu-

tational complexity of the machine learning task, the

main goal of applying absolute feature irrelevancy is

to ensure a minimal quality of features which are used
in the rule induction process.

Definition 2. (Absolute irrelevancy.) A feature that has

either |TP| < min_tp or |TN| < min_tn is absolutely

irrelevant, where min_tp and min_tn are user defined

constraints.

A feature with |TP| < min_tp is true for a small num-
ber of target class examples and a feature with

|TN| < min_tn is false for a small number of non-target

class examples. It is assumed that such small numbers

may be due to statistical chance so that it seems reason-

able not to use features with either of these properties in

the rule construction process. Through a conjunctive

connection of features, the generated rule will have

|TP| smaller or equal than the smallest |TP| value of
the features forming the subgroup description. In con-

trast, the rule |TN| value will be at least as large as the

largest |TN| of the used features. This is the reason

why min_tp is typically larger than min_tn and it can

be as large as the minimal estimated number of samples

that must be covered by any acceptably good subgroup

for the domain.

The problem with absolute irrelevancy is that both
min_tp and min_tn are user defined constants. Optimal

values for these constants may significantly change from

one application to another. A practical suggestion is to

start with small values of these constants and experi-

ment by increasing the values. Our experience in gene

expression domains suggests to choose min_tp = |P|/2

and min tn ¼
ffiffiffiffiffiffiffi
jN j

p
as the starting values; these

values have been used in all the experiments reported
class (the selected cancer type) in which gene X is constant-valued and

Non-target class samples

A A A M A

True True True True True

False False False True False
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in Section 3. In these experiments, the number of detected

absolutely irrelevant features was between 50 and 75%.

While the aim of using absolute relevancy is to ensure

a minimal quality that must be satisfied by every feature,

relative relevancy should ensure that only the best

among the available features will enter the rule construc-
tion process.

Definition 3. (Relative irrelevancy.) Feature f is irrele-

vant if there exists another feature frel such that true

positives of f are a subset of true positives of frel,

TP( f ) ˝ TP( frel), and true negatives of f are a subset of

true negatives of frel, TN( f ) ˝ TN(frel).

If for feature f there exists another feature frel with the

property that if in any rule f is substituted by frel, the

rule quality measured by the number of correct classifi-

cations on the example set does not decrease, then it

means that frel can be always used instead of f, and that

we actually do not need f. Relative irrelevancy is very

useful because it does not depend on user defined thresh-

old values and its usage is suggested for all machine
learning approaches [34].

If genes are described by A, P, and M values and if

there are two genes with identical values for all training

examples then one of them can be eliminated as irrele-

vant because the features based on this gene have the

same covering properties as the features based on the

other gene. If two genes X and Y do not have identical

values for all examples then if it happens that one of
the features of X is irrelevant because of the feature con-

structed as a condition of gene Y then the other feature

of X may not be irrelevant because of the other feature

of Y. But this property does not mean that attributes

can be eliminated only if there exists another attribute

with identical values; there can exist another gene Z

whose feature will make the second feature of X irrele-

vant and make the complete attribute X irrelevant as
well. This is demonstrated by an example in Table 2.

It is also possible that the second feature is absolutely

irrelevant because of a small |TP| or |TN| value.
Table 2

An example in which gene X is relatively irrelevant because its feature X = A

relatively irrelevant because of feature Z = A

Target class samples

A P A P

Gene X

Feature X = A True False True False

Feature X = P False True False True

Gene Y A P A P

Feature Y = A True False True False

Feature Y = P False True False True

Gene Z A A P A

Feature Z = A True True False True

Feature Z = P False False True False
In cases when continuous gene expression values are

used, the same conditions for feature relevancy are

applicable. But there are many features constructed

from a single gene and all of them must be detected as

irrelevant in order that a complete gene is eliminated be-

cause of its irrelevancy.
In the experiments presented in Section 3, the process

of identifying relative irrelevancy eliminated between 65

and 85% of features. Most of them are detected also as

absolutely irrelevant features. By the combination of the

conditions for absolute and relative irrelevancy it was

possible to eliminate 70–90% of features that remained

after the elimination of totally irrelevant features. The

importance of the approach is that the remaining fea-
tures satisfy some predefined quality (determined by

the absolute relevancy condition), and more impor-

tantly, that they are the best features for the domain

(according to the relative relevancy criterion).

The reader may wonder why the preselection of fea-

tures is done in a univariate way. At a first glance it

may seem possible that two feature having the TP and

TN properties of a coin toss when viewed in isolation ex-
hibit strong predictive power in combination (as is the

case in predicting x-or). It can easily be shown that if

feature f is relatively irrelevant because of feature frel
and feature g is relatively irrelevant because of feature

grel, then f � g is relatively irrelevant because of frel � grel.

This claim can be verified by first fixing one of the two

conjuncts, e.g., grel = g and showing that in this case

TP( f � g) ˝ TP( frel � g) and TN( f � g) ˝ TN( frel � g).
Next, the same relationship can be shown also for the

case when g is relatively irrelevant because of grel. Con-

sequently, if for feature f there exists another feature frel
with the property that if in any rule f is substituted by frel
the rule quality measured by the number of correct clas-

sifications |TP| and |TN| does not decrease, then it means

that frel can be always used instead of f, and that we

actually do not need f. This means that f can be elimi-
nated as irrelevant. Hence, the filtering of relatively irrel-

evant features will not hinder the construction of

relevant conjuncts.
is relatively irrelevant because of feature Y = A, and its feature X = P is

Non-target class samples

M A P M P

False True False True False

False False True True True

A P P M P

True False False True False

False True True True True

A P P A A

True False False True True

False True True False False
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2.5. Rule filtering

Any rule induced by the SD algorithm must have at

least a minimal support.3 Minimal acceptable support

for a domain is defined by the user defined min_support

parameter (see the SD algorithm in Section 2.6). If a
subrule of a rule (a subset of features forming the rule)

does not satisfy this condition then the rule as a whole

does not satisfy it either. Therefore, this condition is

built into the iterative loop of the SD algorithm and

every partial solution of best features which does not

satisfy this condition cannot be kept in the beam. Be-

sides restricting the search space, this requirement en-

ables shorter algorithm execution time. The default
value for the parameter min_support is equal toffiffiffiffiffiffi
jP j

p
=jEj, but for the gene expression data it can be as

high as |P|/2|E|. The min_support condition is tested in

step 7 of the SD algorithm described in Section 2.6.

High confidence4 of induced rules is ensured by the

definition of rule quality qg used in the search process

of the SD algorithm (Section 2.6) which prefers rules

with large |TP| and small |FP|. Although the length of in-
duced rules is not limited, the approach ensures the con-

struction of short rules; the reason is that conjunctions

of features have the property that the number of target

class examples covered by adding a conjunct to a con-

junction of features decreases. Long conjunctive rules

have a very small chance to satisfy the minimal support

condition and to be optimal with respect to rule quality

qg at the same time. In the experiments, all the induced
rules have up to four features while all those explicitly

shown in this paper and analyzed by the domain expert

have only two features. This is very favorable because

the complexity of the hypothesis space is significantly re-

stricted and enables easy expert analysis.

2.6. Algorithm SD

The goal of the subgroup discovery algorithm SD,

outlined in Fig. 1, is to search for rules that maximize

rule quality measure qg ¼ jTP j
jFP jþg. High quality rules cover

many target class examples and a low number of non-

target examples. The user can express his preferences

about rule generality (how many target class cases are

covered by the rule description) in respect to the rule

specificity (how many non-target class cases are covered
by the rule) by selecting the parameter g. For low g val-

ues (g 6 1), induced rules will have high specificity since

every false positive classification is made relatively very

�expensive�. On the other hand, by selecting a high g
3 Support is the number of correctly classified target class samples
divided by the total number of samples, |TP|/|E|.

4 Confidence (also called precision) is the fraction of all samples
classified into the target class that actually belong to the target class,
|TP|/(|TP| + |FP|).
value (g > 10 for small domains), more general rules will

be generated which can have also many false positive

predictions. Suggested g values in the SD algorithm in

the Data Mining Server are in the range between 0.1

and 100, for analyzing data sets of up to 250 examples.

In addition to parameters g and min_support, the SD
algorithm has an additional parameter which is defined

by the user, but which does not need to be adjusted fre-

quently. The beam_width parameter (default value is 100

for gene expression domains) defines the number of

solutions kept in the beam in each iteration. The output

of the algorithm is set S of beam_width different rules

with highest qg values. In the described experiments,

we have used only the first (best) solution although there
is a possibility to select a few relatively different solu-

tions using the algorithm described in [19], or to enter

the expert evaluation process with a set of a few best

rules, letting the experts select the optimal solution(s).

Moreover, the rules from set S could be used as an input

to a redundant voting classifier, but this variant is out of

the scope of this work.

The algorithm initializes all the rules in Beam and
New_beam by empty rule conditions. Their quality val-

ues qg(i) are set to zero (step 1). Rule initialization is fol-

lowed by an infinite loop (steps 2–12) that stops when,

for all rules in the beam, it is no longer possible to fur-

ther improve their quality. Rules can be improved by

conjunctively adding features from F. After the first iter-

ation, a rule condition consists of a single feature, after

the second iteration up to two features, and so forth.
The search is systematic in the sense that for all rules

in the beam (step 3) all features from F (step 4) are tested

in each iteration. For every new rule, constructed by

conjunctively adding a feature to rule body (step 5),

quality qg is computed (step 6). If the support of the

new rule is greater than min_support and if its quality

qg is greater than the quality of any rule in New_beam,

the worst rule in New_beam is replaced by the new rule.
The rules are reordered in New_beam according to their

quality qg. At the end of each iteration, New_beam is

copied into Beam (step 11). When the algorithm termi-

nates, the first rule in Beam is the rule with maximum qg.

A necessary condition (in step 7) for a rule to be in-

cluded in New_beam is its relative relevancy. A new rule

is irrelevant if there already exists a rule R in New_beam

such that true positives of the new rule are a subset of
true positives of R and true negatives of the new rule

are a subset of true negatives of R (in the same way as

relative feature irrelevancy described in Section 2.4).

After the new rule is included in New_beam it may hap-

pen that some of the existing rules in New_beam become

relatively irrelevant with respect to this new rule. Such

rules are eliminated from New_beam during its reorder-

ing (in step 8). The testing of relevancy ensures that
New_beam contains only different and relatively relevant

rules.



Fig. 1. Heuristic beam search rule construction algorithm for subgroup discovery.
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3. Experimental results

In this section, we present results obtained by apply-

ing the subgroup discovery methodology in two gene

expression problem domains.

� The first is the problem of distinguishing between

acute lymphoblastic leukemia (ALL) and acute mye-

loid leukemia (AML) described in [20]. Here, a train-

ing set with 38 samples (27 of type ALL and 11 of

type AML) and a test set with 34 samples (20 of type
ALL and 14 of type AML) have been available.

Every sample is described by expression values of

7129 genes.

� The second domain is the multi-class cancer diagnosis

problem for 14 different cancer types described in

[45]. It has 144 samples in the training set and 54 sam-

ples in the test set. Every sample is described by

expression values of 16,063 genes, where the first
7129 genes are the same as in the leukemia problem.

Training and test data sets, together with the descrip-

tion files, can be downloaded from http://www-

genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi. Given

the shortage of examples in gene expression problem do-

mains, some sources suggest to use the so-called permu-

tation test to assess the classifier accuracy, rather than
isolating an independent test set. It has been shown in

[23], however, that this alternative does not bring an

advantage over the traditional accuracy estimation to

which we thus adhere. Also note that a common tech-

nique known as leave-one-out cross-validation [21]

would be a natural assessment choice when examples

are rare. However, we have chosen to use the train/test
data splits provided by [20] and [45], respectively, to

be able to fairly compare our results with theirs.
Subgroup discovery starts from the available training

sets with pre-computed presence call values. As de-

scribed in Section 2.3, feature set F is very simple: it con-

sists only of features Attribute = A (gene expression

absent) and Attribute = P (gene expression present) gen-

erated for non-constant attributes. Features covering

fewer than min_tp = |P|/2 target class examples or fewer

than min tn ¼
ffiffiffiffiffiffiffi
jN j

p
non-target class examples as well as

all relatively irrelevant features have been eliminated in

preprocessing of the SD algorithm. The user selected

constants for the SD algorithm have been min_sup-

port = min_tp = |P|/2 and beam_width = 100. Selection

of these four constants is not critical: any beam_width

value larger than 100 and any min_support, min_tp,

and min_tn value up to 50% lower than the mentioned

values result in the induction of same subgroups. The
only observable consequence is the increase of the SD

algorithm execution time.

3.1. The AML/ALL leukemia domain

For the first domain, 2844 attributes have been de-

tected as totally irrelevant. After the elimination of

absolutely and relatively irrelevant features, 639 relevant
features remained when ALL is the target class and 622

when AML is the target class. For all generalization

parameter values in the range 0.1–50 the SD algorithm

has in both cases consistently constructed the same best

subgroups shown in Table 3.

Table 4 presents the prediction results measured on

the training set, independent test set, and on an indepen-

dent test set consisting of leukumia samples from the

http://www-genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi
http://www-genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi


Table 3

Rules induced for the leukemia domain for classes acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL)

Models for the AML/ALL leukemia domain

AML class ‹
(LEPR_leptin_receptor EXPRESSED) AND (glutathione_s_transferase_microsomal EXPRESSED)

ALL class ‹
(DF_D_component_of_complement_(adipsin) NOT EXPRESSED) AND (liver_mRNA_interferon_gamma_inducing_factor NOT

EXPRESSED)

To improve the interpretability of induced models, gene values P and A have been replaced by EXPRESSED and NOT EXPRESSED, respectively.

Table 4

Sensitivity and specificity values for the leukemia training and test set, as well as for the leukemia samples from the multi class problem

Cancer Training set Test set Leukemia from multi-class domain

Sens. Spec. Sens. Spec. Precision (%) Sens. Spec. Precision (%)

AML 11/11 27/27 9/14 18/20 82 7/10 19/20 87

ALL 26/27 11/11 19/20 13/14 95 8/20 10/10 100
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cancer multi-class domain. It can be noticed that

although the rules have good sensitivity and specificity

values5 on the training set, the measured prediction

quality on the test sets is not as good. Especially sensitiv-

ity values are not satisfactory because they are as low as

40% for the ALL rule tested on the multi-class leukemia

test set. Interestingly, measured specificity values are

much better and the lowest value 90% is measured for
the AML rule on the two-class test set. Compared to

the results reported in [20] our figures are slightly lower

than those obtained by a weighted voting approach. Dif-

ferences between results obtained on the training set and

measured on the test sets, as well as differences among

results obtained on different test sets indicate that some

overfitting took place in spite of the implemented tech-

niques of hypothesis space restriction. Although the
rules are not that good for diagnostic purposes, i.e., dis-

tinguishing between AML and ALL disease types, in-

duced rules describe some relevant—although smaller

than expected—subgroups of disease classes. Their most

significant quality is their easy interpretability as shown

by the expert evaluation in Section 4.1.

3.2. The multi-class cancer domain

The same procedure was repeated for the second do-

main. For each cancer type as the target class, a rule

(subgroup description) was constructed so that all other

cancer types were treated as non-target class examples.

In preprocessing, 2000 out of 16,063 attributes were de-

tected as totally irrelevant. After the elimination of

absolutely and relatively irrelevant features, for different
classes 3300–8500 relevant features remained which in

average presents 28% of all constructed features. The
5 In Tables 4 and 5, sensitivity and specificity values are presented
as fractions with the denominators presenting the numbers of positive
and negative examples on which the rule quality has been tested.
SD algorithm was used for all classes with the general-

ization parameter g equal to 5. Table 5 presents the sen-

sitivity and the specificity results for the training set and

the available independent test set. Additionally, the

measured precision value is computed for the test set.

From Table 5, an interesting and important relation-

ship between prediction results on the test set and the

number of target class examples in the training set can
be noticed. The obtained prediction quality on the test

set is very low for many classes, significantly lower than

those reported in [45]. For 7 out of 14 classes the mea-

sured precision is 0%. However, there are very large dif-

ferences among the results for various classes (diseases).

It can be noticed that the precision on the test set higher

than 50% has been obtained for only 5 out of 14 classes.

There are only three classes (lymphoma, leukemia, and
CNS) with more than eight training samples and for

all of them the induced rules have high precision on

the test set, while for only 2 out of 11 classes with eight

training cases (colorectal and mesothelioma) a high pre-

cision has been achieved. The classification properties

corresponding to classes with 16 and 24 target class

examples are comparable to the performances reported

for these classes in [45], yet achieved by predictors much
simpler than in the mentioned work. Consequently, we

select those for expert interpretation in Section 4.2.

The results indicate that there is a certain threshold

on the number of available training examples below

which the subgroup discovery algorithm SD is not

appropriate because it can not prevent overfitting de-

spite the techniques designed for this purpose.6 How-

ever, it seems that for only slightly larger training sets
6 Improved results could be achieved by voting of best rules induced
in several runs of the SD algorithm within the DMS covering
algorithm; this work is out of the scope of this paper, as voting of
numerous classifiers would hinder the interpretability of induced
descriptions.



Table 7

The AML/ALL domain: comparing predictive accuracy and the

number of involved genes for predictors obtained by the subgroup

discovery approach (SD), by support vector machine construction

(SVM), and by voting of informative genes [20]

Cancer Classifier Accuracy (%) No. of genes

AML SD 79.41 2

SVM I [10] 88.24 50

Voting [20] 93.94 50

ALL SD 94.11 2

SVM II [10] 94.11 50

SVM III [10] 97.05 50

The three versions of SVM correspond to three groups of predictors

with different parameterizations and different gene sets employed, as

reported by [10].

Table 5

Prediction results measured for 14 cancer types in the multi-class domain

Cancer Training set Test set

Sens. Spec. Sens. Spec. Precision (%)

Breast 5/8 136/136 0/4 49/50 0

Prostate 7/8 136/136 0/6 45/48 0

Lung 7/8 136/136 1/4 47/50 25

Colorectal 7/8 136/136 4/4 49/50 80

Lymphoma 16/16 128/128 5/6 48/48 100

Bladder 7/8 136/136 0/3 49/51 0

Melanoma 5/8 136/136 0/2 50/52 0

Uterus_adeno 7/8 136/136 1/2 49/52 25

Leukemia 23/24 120/120 4/6 47/48 80

Renal 7/8 136/136 0/3 48/51 0

Pancreas 7/8 136/136 0/3 45/51 0

Ovary 7/8 136/136 0/4 47/50 0

Mesothelioma 7/8 136/136 3/3 51/51 100

CNS 16/16 128/128 3/4 50/50 100
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it can effectively detect relevant relationships. This con-

clusion is very optimistic because we can expect signifi-

cantly larger gene expression databases to become

available in the near future.

Table 6 presents the rules for the three cancer types

with 16 and 24 training samples. Expert analysis of these

rules in presented in Section 4.2. For all three diseases, a

very good agreement in prediction results for the train-
ing and the test set can be noticed, which indicates that

no significant training data overfitting has occurred. The

sensitivity values measured on the test set are between 66

and 83% while the specificity value is always excellent

and equal or almost equal to 100%, for all the three

rules.

3.3. Comparing classification performance to previous

results

We now relate the predictive classification perfor-

mance of the five selected rules (2 for the AML/ALL do-

main and 3 for the multi-class domain) obtained by

subgroup discovery to predictors for the corresponding

classes previously reported in [20,45,10]. Due to differ-

ences in the presentation of predictive performance indi-
cators in the mentioned literature, we convert them into

a unified quantity of predictive accuracy, defined as the

proportion of correctly classified testing instances
Table 6

Rules induced for the multi-class cancer domain for cancer types with 16 (ly

Models for the multi-class cancer domain

lymphoma class ‹
(CD20_receptor EXPRESSED) AND (phosphatidyl-inositol_3_kinase_reg

leukemia class ‹
(KIAA0128_gene EXPRESSED) AND (prostaglandin_d2_synthase_gene

CNS class ‹
(fetus_brain_mRNA_for_membrane_glycoprotein_M6 EXPRESSED) AN
among all testing instances. Further, we observe the

number of genes (attributes) employed in the individual

predictors.

The results for the AML/ALL domain are summa-

rized in Table 7. We now describe the way we calculated

the classification accuracy. For the subgroup discovery

algorithm, we have two rules, each obtained by viewing

one of the classes as the target class. To assess predictive
accuracy, the two rules can be combined into a single

two-class classifier, for example by a voting mechanism

supplemented by a majority-class vote for instances not

complying to the conditions of any of the rules. Such a
mphoma and CNS) and 24 (leukemia) target class samples

ulatory_alpha_subunit NOT EXPRESSED)

NOT EXPRESSED)

D (CRMP1_collapsin_response_mediator_protein_1 EXPRESSED)



Table 8

Multi-class cancer domain: Comparing predictive accuracy and

number of involved genes for selected predictors obtained by the

subgroup discovery approach (SD) and by support vector machine

(SVM) construction [45]

Class Classifier Accuracy (%) No. of genes

Lymphoma SD 98.14 2

SVM [45] 100.00 16063

Leukemia SD 94.44 2

SVM [45] 98.14 16063

CNS SD 98.14 2

SVM [45] 100.00 16063

7 A subclass of white blood cells.
8 Blood forming.
9 A secreted signaling peptide (protein).
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classifier would however no longer satisfy our require-

ment of simplicity. Therefore, we rather view each of

the two rules as an individual binary classifier, inter-

preted under the closed-world assumption. That is, if

the AML rule antecedent is not satisfied, then ALL is

considered as the predicted class. The inverse principle
is applied for the ALL rule. Each of the two rules is thus

assigned its own accuracy value.

To calculate the predictive accuracy of the voting ap-

proach in [20], we consider that their predictor provided

a class decision in 29 of the 34 testing cases and this deci-

sion was always correct. For the five undecided cases, we

consider the accuracy of the majority vote on the test set

(20
34
¼ 58:82%). The overall accuracy value is thus calcu-

lated as 29
34
100%þ 5

34
58:82% ¼ 93:94%.

Finally, the SVMs in [10] provides a binary decision

for all testing examples, therefore the accuracy calcula-

tion is straightforward using the provided counts of

(in)correct classifications (Table 3 in [10]).

Two further notes have to be made on the numbers of

genes (attributes) involved in the respective predictors,

as quoted in Table 7. For the voting approach, Golub
et al. [20] report that the number of correct decisions

was maintained at 100% when reducing the number of

employed genes to as low as 10. However, it is not re-

ported for how many cases the reduced classifier was

able to provide a decision. Therefore, we could not cal-

culate the corresponding predictive accuracy value in the

manner described above. For the SVMs in [10], the per-

formance was also measured with the number of em-
ployed genes decreasing to as low as 4, and it was

shown to fall rather quickly (see Table 2 in [10]). For

a 4-best-genes attribute subset, the accuracy ranged

from 54 to 93%, depending on the feature ranking meth-

od and the SVM parameterization. Even these rather

low accuracies reported for the simplified classifiers

probably overestimate the accuracies on the correspond-

ing test sets. This is because they were measured by the
cross-validation procedure combining the training and

test sets for induction purposes and leaving only one

example for testing at each validation stage. Thus, the

assessed predictors were constructed from larger train-

ing sets than the predictors listed in Table 7.

Table 8 compares the predictive performance of the

selected best classifiers obtained by the subgroup discov-

ery approach in the multi-class cancer domain, with the
SVM predictors for the corresponding classes achieved

by [45] (see Fig. 4 of their paper). The accuracy for each

class is measured for a binary classification task where

all the examples of the given class are treated as positive

and all the other examples as negative. Again, we ob-

serve the number of genes employed in the respective

classifiers. Ramaswamy et al. [45] also investigate

whether the predictive accuracy is sensitive to a decreas-
ing number of available attributes (see Fig. 5 in [45]), but

we cannot use these results as they are averaged over all
classes and individual class results are not reported.

However, the fact that the average accuracy of SVM

falls from about 74% for 10,000 genes to about 57%

for 3 genes indicates that—unlike with the SD ap-

proach—satisfactory accuracy can not be expected from

SVM with a very small number of employed attributes.
4. Expert evaluation of induced models

This section provides an expert evaluation of the in-

duced subgroup descriptions by one of the authors

(J.T.), who was not involved in the rule discovery pro-

cess described above. To make the text accessible to a
reader without biological background, we provide a less

formal explanation of certain terms. In general, albeit a

simplified view, cellular processes which increase prolif-

eration (cellular division) and inhibit apoptosis (cellular

death) are consistent with a phenotype of cancerous cell.

4.1. The AML/ALL domain

Cancers which originate from hematopoietic (blood)

cells are called leukemias and lymphomas. Acute leuke-

mias can be of either lymphoid7 origin (acute lympho-

cytic leukemia, ALL) or myeloid7 origin (acute

myelogenous leukemia, AML).

The best-scoring rule for the AML disease class was

the following:

AML class:
(LEPR_leptin_receptor EXPRESSED) AND (glutathi-

one_s_transferase_microsomal EXPRESSED)

The first condition assumes the expression of the lep-

tin receptor. The obesity gene product leptin regulates

food intake, but it is also important in the regulation

of inflammation, immunity and hematopoiesis8 [16].

The leptin receptor, a single transmembrane-spanning
molecule, is a member of the cytokine9 receptor super-
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family. It is expressed on the hematopoietic stem cells

[22], and, while absent from samples of ALL, it is fre-

quently expressed in primary and secondary AML

[32]. Interaction of leptin with its receptor has prolifera-

tive and anti-apoptotic effect on AML blasts [32].

Leptin, secreted from bone marrow adipocytes,10 stimu-
lates both myeloid7 development and bone marrow

angiogenesis.11 Furthermore, it has been shown [24] that

inhibition of the leptin receptor signaling by anti-leptin

receptor antibody decreased both microvessel formation

and number of AML blasts in the bone marrow.

Regarding the second condition, Glutathion-S-trans-

ferases (GST) are liver cytosolic12 and microsomal12 en-

zymes, which metabolize toxic substances [28].
Detoxification of toxic substances (e.g., environmental

mutagens and chemotherapeutic drugs used in cancer

treatment) is important for both the development of

malignancies and their response to treatment. Whereas

the condition regards the microsomal kind of GST, most

of existing literature and knowledge is concerned with

the cytosolic kind. For example, it is known that cyto-

solic GST are polymorphic in humans and null variants
of some GST isoforms seem to increase oxidative stress

on hematopoietic stem cells. This may in turn lead to a

higher incidence of leukemia or chemotherapy resistant

disease with poorer outcome [53,27,33].

Concerning the possible leptin–GST interaction, it is

remarkable that in a study [4] of experimental hepato-

toxicity with reduced cytosomal GST in a murine model,

exogenous administration of leptin resulted in decreased
detoxification and high levels of reactive byproducts.

Again, our model assumes the elevated expression of

microsomal GST and thereby does not directly parallel

the mentioned study. However, it suggests that the lep-

tin receptor and GST may form a combined factor rele-

vant to pathophysiology of AML, and along with [4] it

motivates a further investigation of the possible interac-

tion of leptin with the GST family.
The best-scoring rule for the ALL disease class was

the following:

ALL class:

(DF_D_component_of_complement_(adipsin) NOT

EXPRESSED) AND (liver_mRNA_interferon_gam-

ma_inducing_factor EXPRESSED)

The first condition is concerned with adipsin, also
termed complement factor13 D. This is an enzyme pro-
10 ‘‘Fat cells’’.
11 Forming of vessels.
12 The adjectives cytosolic and microsomal refer to two different

locations within the cell.
13 Substance present in blood that plays role in blood-clotting and

immune response.
ducing the acylation14-stimulating protein (ASP),

which increases triglyceride synthesis in adipocytes10

[9]. Adipsin is expressed in cell lines derived from hu-

man monocytes [5], hepatocytes15 [6], astroglioma16

[7] and gastric cancer [30], but not—to our knowl-

edge—in ALL. Significantly, a recent analysis of ALL
and AML transcription profiling data identified adipsin

as one out of three best targets for investigating the ba-

sic biology of ALL/AML and their mutual distinction

[10]. Our model thus confirms this basic observation

of [10], but is more informative in that it specifically

articulates the absence of adipsin expression assumed

for the ALL class.

Interferon-gamma-inducing factor, assumed to be ex-
pressed by the second condition, was discovered in 1995

[43] and later termed interleukin-18 (IL-18). IL-18 is se-

creted by activated macrophages7 and induces high lev-

els of interferon-gamma production in T cells17 [49]. The

rule�s assumption is compatible with the previous study

[52] where increased IL-18 expression has been corre-

lated with ALL. The expression has been correlated also

with cutaneous18 natural killer lymphoma [3], cutaneous
T-cell lymphoma [3], metastatic breast cancer [37], lym-

phohistiocytosis19 [51], and high risk AML [57]. It has

been suggested that IL-18 could lead to antitumor effects

in some cancers through induction of apoptosis [42], and

that IL-18 is likely involved in the autonomy of leuke-

mic cells [58].

A remark should be made concerning the mutual

relationship of the two genes involved in the rule.
Interferon-gamma has been observed in the human

astroglioma15 cell line to stimulate the expression of

complement factors13 B and C2, closely related to

adipsin (complement factor D) [7]. Adipsin itself,

however, was refractory to the IL-18 stimulation.

This is in agreement with the simultaneous presence

of IL-18 and absence of adipsin as stipulated by

the rule.

4.2. The multi-class cancer domain

Here we discuss the discovered rules for three respec-

tive cancer classes: lymphoma, leukemia, and central

nervous system (CNS) cancers. As we have mentioned

already, leukemias and lymphomas are cancers originat-

ing from hematopoietic (blood) cells.
14 Addition of a carbohydrate group.
15 Liver cells.
16 Brain cancer.
17 Thymus-derived white blood cell. The thymus is a gland respon-

sible for maturation of some immune cells.
18 Skin-related.
19 Disease associated with high numbers of histiocytes

(macrophages).
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The following rule was found for the lymphoma class:

Lymphoma class:

(CD20_receptor EXPRESSED) AND (phospha-

tidylinositol_3_kinase_regulatory_alpha_subunit NOT

EXPRESSED)

The first condition stipulates the expression of the

CD20 receptor. CD20 receptor, a calcium channel,20 is

a lineage-specific21 B-cell22 antigen present on lymphoid

cells. CD20 lymphoid marker is used routinely in diag-

nosis of lymphomas. The identification of this gene is

thus reassuring and confirms that our search strategy

is able to detect genes already known to be characteristic

of specific malignancy such as lymphoma.
Phosphatidyl-inositol-3-kinase (PI3K), assumed not

expressed by the second condition, is a key molecule in

intracellular signaling. It transmits signals from the cel-

lular membrane to the nucleus, and its activation leads

to cytokine9 production and cell division. PI3K is also

critical for killing (cytotoxicity) of tumor cells by T

cells17 and natural killer (NK) cells7 [59]. Therefore the

absence of PI3K activation may compromise immune
surveillance and result in environment permissive for

malignant growth. While PI3K is a necessary for sur-

vival of some leukemic cells [55,1], it is conceivable that

in other malignancies, presumably driven by different

proliferation signals, the absence of PI3K (with or with-

out dysregulation of T cell and NK surveillance) could

result in clonal proliferation and lymphoma [48,59].

For the leukemia class, we have the following rule:

Leukemia class:

(KIAA0128_gene EXPRESSED) AND (prostaglan-

din_d2_synthase_gene NOT EXPRESSED)

KIAA0128 gene (Septin 6), addressed by the first con-

dition, is a member of a family of filament-forming23 pro-

teins, septins, forming heteropolymer complexes involved

in cytoskeletal organization and cell division. Septin 6 has
been identified as a fusion partner of the MLL gene in in-

fants with acute leukemias [8,44,47,17]. The MLL gene is

frequently rearranged and fused to partner genes in ALL

and AML. Out of more than 40 gene fusion partners of

MLL gene identified to-date, three are septins, and the

AML type with the Septin 6 (KIAA0128 gene)—MLL fu-

sion likely represents a subset on infant AML with com-

mon leukemogenesis pathway [29].
20 A molecule on the surface of a cell membrane that facilitates the
inflow and outflow of calcium.

21 Specific for a particular development path from a stem cell to a
differentiated (specialized) cell.

22 Bone marrow (B) derived white blood cell.
23 Forming a cellular ‘‘skeleton.’’
The second condition is concerned with the absence

prostaglandin D synthase (PGDS) expression. PGDS

is an enzyme active in the production of prostaglandins

(pro-inflammatory an anti-inflammatory molecules).

Elevated expression of PGDS has been found in brain

tumors, ovarian and breast cancer [50,26], while hema-
topoietic PGDS has not been, to our knowledge, associ-

ated with leukemias.

Viewing the rule as a whole, the absence of PGDS

expression may be a part of the ‘‘molecular signature’’

reflecting either the general tissue type (leukocytes) or

the specific, KIAA0128 (Septin 6) dependent, leukemic

process. Future studies should determine whether the

identification of Septin 6 is due to frequent Septin 6—
MLL rearrangements in our series or whether the Septin

6 expression is associated with other types of leukemia

as well. Collectively, these observations could lead to a

more general role for Septin 6 in leukemias with and

without MLL rearrangements.

Lastly, we address the rule found for the CNS class.

CNS class:

(fetus_brain_mRNA_for_membrane_glycoprotein_M6
EXPRESSED) AND (CRMP1_collapsin_response_me-

diator_protein_1 EXPRESSED)

Concerning the first condition, the membrane glyco-

protein M6 functions as a neuron-specific24 calcium

channel. Upon nerve growth factor stimulation the M6

protein appears to promote neuronal differentiation

[41], and the antibodies against M6 affect the survival
of cerebellar25 neurons [56].

As for the second condition, members of the collap-

sin/semaphorin family,26 including collapsin response

mediator protein 1, CRMP1, play an important role in

proliferation,27 and pathfinding of growing axons to

reach their targets in nervous system [12,13]. Both M6

and CRMP1 appear to have multifunctional roles in

shaping neuronal networks, and their function as sur-
vival (M6) and proliferation (CRMP1) signals may be

relevant to growth promotion and malignancy.
5. Conclusions

This study aimed to test the feasibility of inducing

simple, rule-based models for gene expression data.
We argue that a major advantage of such models is their

direct interpretability by domain experts. The prediction

results obtained on independent test sets as well expert
24 That is, it only operates in nerve cells.
25 A specific area of the brain.
26 A family of proteins regulating the growth of neurons.
27 Growth.
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analysis of induced rules demonstrate that the chosen

approach, based on the presented subgroup discovery

methodology, can be a useful tool for the detection of

relevant relationships between sample classes (diseases)

and measured gene expression values. In contrast to

other machine learning applications for gene expression
data analysis, we have started from presence call (cate-

gorical) values. Features based on presence call values

are very easy for human interpretation and this signifi-

cantly contributes to rules being accepted as comprehen-

sible disease models.

The interpretation of the subgroup discovery results

yields several biological observations: out of the five

best-scoring rules (for five respective problems) selected
for expert evaluation, two (lymphoma and leukemia clas-

ses) are judged as reassuring and three (AML, ALL, and

CNS classes) have a plausible, albeit partially speculative

explanation. Namely, the best-scoring rule for the lym-

phoma class in the multi-class cancer recognition prob-

lem (containing 16,063 attributes) contains a feature

corresponding to a gene routinely used as a marker in

diagnosis of lymphomas (CD20), while the other part
of the conjunction (the PI3K gene) seems to be a plausi-

ble biological co-factor. The best-scoring rule for the leu-

kemia class contains a gene whose relation to the disease

is directly explicable (Septin 6). In the problem of distin-

guishing AML from ALL, the best-scoring rule related

to the AML class connects in a logical conjunction two

genes, GST and leptin (out of 7192 original genes),

whose co-activity was previously under biological inves-
tigation in a model of impaired detoxification, and sup-

ports a possibility that they may form a combined

factor relevant to the etiology of AML.

In spite of the number of findings in agreement with

the bio-medical state-of-the-art, discovery of known

factors in the considered malignancies was not the ulti-

mate goal of this study. The main goal of the method-

ology is the discovery of unknown and never thought-
off relationships, in a form instantly understandable to

an expert. Such relationships can in turn be tested and

potentially validated by means of current rapidly

advancing bio-medical research and, later, clinical

trials.

Although the subgroup discovery approach empha-

sizes a strong restriction of the hypothesis space with

the intention to prevent data overfitting, the results dem-
onstrate that this phenomenon, linked to the overwhelm-

ing number of existing feature combinations in the

attribute-rich domain, can not be completely eliminated,

especially in domains and target classes with a small

number of samples. Therefore, for several target classes

(with fewer than 16 positive examples) we have not been

able to induce a well-generalizing rule submittable to

expert interpretation. It is promising, however, that the
obtained prediction quality of the induced rules grows

very rapidly with the increased size of the training set
and we expect to have significantly larger gene expression

domains in the near future from which it will be possible

to induce comprehensible, highly reliable, and highly

predictive disease models. This will help in disease pre-

diction and classification, and in attempts to better

understand the biology of malignancy, to risk stratify
cancer patients and, in future applications, to implement

treatment strategies targeted at individual patients.
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