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Expert-Guided Subgroup Dis
overy:Methodology and Appli
ationDragan Gamberger dragan.gamberger�irb.hrRudjer Bo�skovi�
 Institute, Bijeni�
ka 5410000 Zagreb, CroatiaNada Lavra�
 nada.lavra
�ijs.siJo�zef Stefan Institute, Jamova 391000 Ljubljana, Slovenia Abstra
tThis paper presents an approa
h to expert-guided subgroup dis
overy. The main stepof the subgroup dis
overy pro
ess, the indu
tion of subgroup des
riptions, is performed bya heuristi
 beam sear
h algorithm, using a novel parametrized de�nition of rule qualitywhi
h is analyzed in detail. The other important steps of the proposed subgroup dis
overypro
ess are the dete
tion of statisti
ally signi�
ant properties of sele
ted subgroups andsubgroup visualization: statisti
ally signi�
ant properties are used to enri
h the des
rip-tions of indu
ed subgroups, while the visualization shows subgroup properties in the formof distributions of the numbers of examples in the subgroups. The approa
h is illustratedby the results obtained for a medi
al problem of early dete
tion of patient risk groups.1. Introdu
tionThis paper addresses the problem of subgroup dis
overy whi
h 
an be de�ned as: givena population of individuals and a property of those individuals we are interested in, �ndpopulation subgroups that are statisti
ally `most interesting', e.g., are as large as possibleand have the most unusual statisti
al (distributional) 
hara
teristi
s with respe
t to theproperty of interest (Kl�osgen, 1996; Wrobel, 1997, 2001). Its main 
ontribution is a newmethodology supporting the pro
ess of expert-guided subgroup dis
overy. Spe
i�
ally, weintrodu
e a novel parametrized de�nition of rule quality used in a heuristi
 beam sear
halgorithm, a rule subset sele
tion algorithm in
orporating example weights, the dete
tion ofstatisti
ally signi�
ant properties of sele
ted subgroups, and a novel subgroup visualizationmethod. An in-depth analysis of the proposed quality measure is provided as well. Theproposed methodology has been applied to the medi
al problem of dete
ting and des
ribingpatient groups with high risk for artheros
leroti
 
oronary heart disease (CHD).1The paper organization is as follows. Algorithms for subgroup dete
tion and sele
tion,whi
h are the main ingredients of the expert-guided subgroup dis
overy methodology, aredes
ribed in Se
tion 2. Se
tion 3 presents: the 
oronary heart disease risk group dete
tionproblem, the dis
overed patient risk groups, their statisti
al 
hara
terization, visualiza-tion, medi
al interpretation and evaluation, in
luding a dis
ussion on the expert's role in1. Algorithms for subgroup dete
tion and sele
tion have been implemented in the on-line Data Mining Server(Gamberger & �Smu
, 2001), publi
ly available at http://dms.irb.hr whi
h 
an be tested in domainswith up to 250 examples. A more sophisti
ated implementation of the algorithms is not available forpubli
 use.

2002 AI A

ess Foundation and Morgan Kaufmann Publishers. All rights reserved.
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the subgroup dis
overy pro
ess. Se
tion 4 provides an in-depth analysis of the proposedrule quality measure for subgroup dis
overy in
luding an experimental 
omparison with asele
ted 
ost-based quality measure. Finally, Se
tion 5 provides links to the related work.2. Subgroup Dis
overy: Rule Indu
tion and Sele
tionThis se
tion des
ribes the two main steps of the overall subgroup dis
overy pro
ess: indu
-tion and sele
tion of interesting subgroups. These two steps, as well as the whole des
riptiveindu
tion pro
ess assume a
tive expert involvement.2.1 The Task of Expert-Guided Subgroup Dis
overyThe task of expert-guided subgroup dis
overy addressed in this work di�ers slightly fromthe subgroup dis
overy task de�ned in Se
tion 1 and proposed by (Kl�osgen, 1996; Wrobel,1997). Instead of de�ning an optimal measure for automated subgroup sear
h and sele
tion,here the goal is to support the expert in performing 
exible and e�e
tive sear
h of a broadrange of optimal solutions. As a 
onsequen
e, the de
ision of whi
h subgroups will besele
ted to form the �nal solution is left to the expert. The task of the subgroup dis
overyalgorithm is to enable the dete
tion of rules des
ribing potentially optimal subgroups, whi
hare 
hara
terized by the property that they are 
orre
t for many target 
lass 
ases (patientswith 
oronary heart disease, in the example domain used in this work) and in
orre
t forall, or most of, non-target 
lass 
ases (healthy subje
ts). Target 
lass 
ases in
luded intoa subgroup are 
alled true positives while non-target 
lass 
ases in
orre
tly in
luded into asubgroup are 
alled false positives.The parti
ular expert-guided subgroup dis
overy task addressed in this work assumesthe 
ollaboration of the expert and the data analyst in repeatedly running a subgroupdis
overy algorithm with a goal of �nding rules des
ribing population subgroups whi
h:� have suÆ
iently large 
overage,� have a positive bias towards target 
lass 
ase 
overage (have a suÆ
iently large truepositive/false positive ratio)� are suÆ
iently diverse for dete
ting most of the target population, and� ful�ll other experts' subje
tive measures of a

eptability: understandability, simpli
ityand a
tionability.In ea
h iteration, the task of the subgroup dis
overy algorithm is to suggest one ormore potentially optimal solutions. Se
tion 2.2 des
ribes a heuristi
 sear
h algorithm SD,whi
h 
an be used to 
onstru
t many rules that are optimal with respe
t to an expertsele
ted generalization parameter. Sin
e many of the indu
ed rules 
an be very similar,both in terms of their 
overage and the sele
ted features, the RSS algorithm des
ribed inSe
tion 2.3 
an be used to sele
t a small number of distin
t rules that are o�ered to the expertas potentially optimal solutions. Alternatively, subgroup dis
overy 
an be implementedwithin a `weighted' 
overing algorithm DMS, as is the 
ase in the publi
ly available DataMining Server (Gamberger & �Smu
, 2001), whi
h generates up to three best subgroups inevery iteration. 502



Expert-Guided Subgroup Dis
overy2.2 The Subgroup Dis
overy AlgorithmThe goal of the subgroup dis
overy algorithm SD, outlined in Figure 1, is to sear
h for rulesthat maximize qg = TPFP+g , where TP are true positives, FP are false positives, and g is ageneralization parameter. High quality rules 
over many target 
lass examples and a lownumber of non-target examples. The number of tolerated non-target 
lass 
ases, relative tothe number of 
overed target 
lass 
ases, is determined by parameter g. For low g (g � 1),indu
ed rules will have high spe
i�
ity (low false alarm rate) sin
e 
overing of every singlenon-target 
lass example is made relatively very `expensive'. On the other hand, by sele
tinga high g value (g > 10 for small domains), more general rules will be generated, 
overingalso non-target 
lass instan
es.Algorithm SD: Subgroup Dis
overyInput: E = P [N (E training set, jEj training set size,P positive (target 
lass) examples, N negative (non-target 
lass) examples)L set of all de�ned features (attribute values), l 2 LParameter: g (generalization parameter, 0:1 < g, default value 1)min support (minimal support for rule a

eptan
e)beam width (maximal number of rules in Beam and New Beam)Output: S = fTargetClass Condg (set of rules formed of beam width best 
onditions Cond)(1) for all rules in Beam and New Beam (i = 1 to beam width) doinitialize 
ondition part of the rule to be empty, Cond(i) fginitialize rule quality, qg(i) 0(2) while there are improvements in Beam do(3) for all rules in Beam (i = 1 to beam width) do(4) for all l 2 L do(5) form a new rule by forming a new 
ondition as a 
onjun
tion of the
ondition from Beam and feature l, Cond(i) Cond(i) ^ l(6) 
ompute the quality of a new rule as qg = TPFP+g(7) if TPjEj � min support and if qg is larger than any qg(i) in New Beamand if the new rule is relevant do(8) repla
e the worst rule in New Beam with the new rule andreorder the rules in New Beam with respe
t to their quality(9) end for features(10) end for rules from Beam(11) Beam New Beam(12) end whileFigure 1: Heuristi
 beam sear
h rule 
onstru
tion algorithm for subgroup dis
overy.Varying the value of g enables the expert to guide subgroup dis
overy in the TP=FPspa
e, in whi
h FP (plotted on the X-axis) needs to be minimized, and TP (plotted on theY -axis) needs to be maximized. The TP=FP spa
e is similar to the ROC (Re
eiver Op-erating Chara
teristi
) spa
e (Provost & Faw
ett, 2001). The 
omparison of the ROC andTP=FP spa
e and the gq heuristi
 are analyzed in detail in Se
tions 2.4 and 4, respe
tively.503
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Algorithm SD takes as its input the 
omplete training set E and the feature set L,where features l 2 L are logi
al 
onditions 
onstru
ted from attribute values des
ribing theexamples in E. For dis
rete (
ategori
al) attributes, features have the form Attribute =value or Attribute 6= value, for numeri
al attributes they have the form Attribute > valueor Attribute < value. To formalize feature 
onstru
tion, let values vix (x = 1::kip) denotethe kip di�erent values of attribute Ai that appear in the positive examples and wiy (y =1::kin) the kin di�erent values of Ai appearing in the negative examples. A set of featuresL is 
onstru
ted as follows:� For dis
rete attributes Ai, features of the form Ai = vix and Ai 6= wiy are generated.� For 
ontinuous attributes Ai, similar to Fayyad and Irani (1992), features of the formAi � (vix + wiy)=2 are 
reated for all neighboring value pairs (vix; wiy), and featuresAi > (vix + wiy)=2 for all neighboring pairs (wiy; vix).� For integer valued attributes Ai, features are generated as if Ai were both dis
reteand 
ontinuous, resulting in features of four di�erent forms: Ai � (vix + wiy)=2,Ai > (vix + wiy)=2, Ai = vix, and Ai 6= wiy.There is no theoreti
al upper value for the user-re�ned g parameter, but in pra
ti
e thesuggested upper limit should not ex
eed the number of training examples. For instan
e,suggested g values in the Data Mining Server are in the range between 0.1 and 100, foranalysing data sets of up to 250 examples. The 
hoi
e of g should be adjusted both to thesize of the data set and to the proportion of positive examples in the set.Algorithm SD has two additional parameters whi
h are typi
ally not adjusted by theuser. The �rst is min support (default value is pP=E, where P is the number of target
lass examples in E) whi
h indire
tly de�nes the minimal number of target 
lass exampleswhi
h must be 
overed by every subgroup. The se
ond is beam width (default value is 20)whi
h de�nes the number of solutions kept in ea
h iteration. The output of the algorithmis set S of beam width di�erent rules with highest qg values. The rules have the form of
onjun
tions of features from L.The algorithm initializes all the rules in Beam and New beam by empty rule 
onditions.Their quality values qg(i) are set to zero (step 1). Rule initialization is followed by an in�niteloop (steps 2{12) that stops when, for all rules in the beam, it is no longer possible to furtherimprove their quality. Rules 
an be improved only by 
onjun
tively adding features fromL. After the �rst iteration, a rule 
ondition 
onsists of a single feature, after the se
onditeration up to two features, and so forth. The sear
h is systemati
 in the sense that forall rules in the beam (step 3) all features from L (step 4) are tested in ea
h iteration. Forevery new rule, 
onstru
ted by 
onjun
tively adding a feature to rule body (step 5) qualityqg is 
omputed (step 6). If the support of the new rule is greater than min support andif its quality qg is greater than the quality of any rule in New beam, the worst rule inNew beam is repla
ed by the new rule. The rules are reordered in New beam a

ording totheir quality qg. At the end of ea
h iteration, New beam is 
opied into Beam (step 11).When the algorithm terminates, the �rst rule in Beam is the rule with maximum qg.A ne
essary 
ondition (in step 7) for a rule to be in
luded in New beam is that it mustbe relevant. The new rule is irrelevant if there exists a rule R in New beam su
h that truepositives of the new rule are a subset of true positives of R and false positives of the new rule504



Expert-Guided Subgroup Dis
overyare a superset of false positives of R. A detailed analysis of relevan
e, presented by Lavra�
,Gamberger, and Turney (1998), is out of the main s
ope of this paper. After the new rule isin
luded in New beam it may happen that some of the existing rules in New beam be
omeirrelevant with respe
t to this new rule. Su
h rules are eliminated from New beam duringits reordering (in step 8). The testing of relevan
e ensures that New beam 
ontains onlydi�erent and relevant rules.In Algorithm SD, rule quality measure qg serves two purposes: �rst, rule evaluation, andse
ond, evaluation of features and their 
onjun
tions with high potential for the 
onstru
tionof high quality rules in subsequent iterations. The analysis of this quality measure inSe
tion 4 shows that for the �rst purpose, a measure assigning di�erent 
osts to falsepositives and false negatives 
ould perform equally well, but for the purpose of guiding thesear
h the qg measure is advantageous.2.3 Rule Subset Sele
tionThis se
tion des
ribes how to redu
e the number of generated rules to a relatively smallnumber of diverse rules. Redu
ing the rule set is desirable be
ause expe
ting experts toevaluate a large set of rules is unfeasible, and se
ond, experiments demonstrate that thereare subsets of very similar rules whi
h use almost the same attribute values and have similarpredi
tion properties.The weighted 
overing approa
h proposed for 
on�rmation rule subset sele
tion (Gam-berger & Lavra�
, 2000) de�nes diverse rules as those that 
over diverse sets of target 
lassexamples. The approa
h, implemented in Algorithm RSS outlined in Figure 2, 
an not guar-antee statisti
al independen
e of the sele
ted rules, but it ensures the diversity of generatedsubsets.Algorithm RSS: Rule Subset Sele
tionInput: S set of rules for the target 
lassP target 
lass examplesParameter: number (required number of sele
ted rules in output set SS)Output: SS set of relatively independent rules for the target 
lass(1) initialize SS  fg (empty set of sele
ted rules)(2) for every e 2 P do 
(e) 1(3) repeat number times(4) sele
t from S the rule with the highest weight P 1=
(e) where summation isover the set P 0 � P of target 
lass examples 
overed by the rule(5) for every e 2 P 0 
overed by the sele
ted ruledo 
(e) 
(e) + 1(6) eliminate the sele
ted rule from S(7) add the sele
ted rule into set SS(8) end repeat Figure 2: Heuristi
 rule subset sele
tion algorithm.505
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Input to Algorithm RSS are the set of all target 
lass examples P and the set of rulesS. Its output is a redu
ed set of rules SS, SS � S. The user adjustable parameter numberdetermines how many rules will be sele
ted for in
lusion in output set SS. For every examplee 2 P there is a 
ounter 
(e). Initially, the output set of sele
ted rules is empty (step 1)and all 
ounter values are set to 1 (step 2). Next, in ea
h iteration of the loop (steps 3to 8), one rule is added to the output set (step 7). From set S, the rule with the highestweight value is sele
ted. For ea
h rule, weight is 
omputed so that 1=
(e) values are addedfor all target 
lass examples 
overed by this rule (step 4). After rule sele
tion, the ruleis eliminated from set S (step 6) and 
(e) values for all target 
lass examples 
overed bythe sele
ted rule are in
remented by 1 (step 5). This is the 
entral part of the algorithmwhi
h ensures that in the �rst iteration all target 
lass examples 
ontribute the same value1=
(e) = 1 to the weight, while in the following iterations the 
ontributions of examples areinverse proportional to their 
overage by previously sele
ted rules. In this way the examplesalready 
overed by one or more sele
ted rules de
rease their weights while rules 
overingmany yet un
overed target 
lass examples whose weights have not been de
reased will havea greater 
han
e to be sele
ted in the following iterations.In the publi
ly available Data Mining Server, RSS is implemented in an outer loop forSD. Figure 3 gives the pseudo 
ode of algorithm DMS. In its inner loop, DMS 
alls SD andsele
ts from its beam the single best rule to be in
luded into the output set SS. To enableSD to indu
e a di�erent solution at ea
h iteration, example weights 
(e) are introdu
ed andused in the quality measure whi
h is de�ned as follows:qg = PTP 1
(e)FP + g :This is the same quality measure as in SD ex
ept that the weights of true positive examplesare not 
onstant and equal to 1 but de�ned by expression 1
(e) , 
hanging from iteration toiteration.The main reason for the des
ribed implementation is to ensure the diversity of indu
edsubgroups even though, be
ause of the short exe
ution time limit on the publi
ly availableserver, a low beam width parameter value in Algorithm SD had to be set (the defaultvalue is 20). Despite the favorable diversity of rules a
hieved through Algorithm DMS, theapproa
h has also some drawba
ks. The �rst drawba
k is that the same rule 
an be dete
tedin di�erent iterations of Algorithm DMS, despite of the 
hanges in the 
(e) values. The moreimportant drawba
k is that heuristi
 sear
h with a small beam width value may preventthe dete
tion of some good quality subgroups. Therefore during exploratory appli
ations,applying a single SD exe
ution with a large beam width followed by a single run of RSSappears to be a better approa
h.2.4 Subgroup Sear
h and Evaluation in the ROC and TP/FP Spa
eThe goal of this se
tion is to 
larify the relation between the ROC spa
e whi
h is usuallyused for evaluating 
lassi�er performan
e, and the TP=FP spa
e whi
h is being sear
hedby the qg heuristi
 in the SD algorithm.Evaluation of indu
ed subgroups in the ROC spa
e (ROC: Re
eiver Operating Char-a
teristi
, Provost & Faw
ett, 2001) shows their performan
e in terms of TPr and FPr,506



Expert-Guided Subgroup Dis
overy
Algorithm DMS: Data Mining Server subgroup 
onstru
tionInput: E = P [N (E training set, jEj training set size,P positive (target 
lass) examples,N negative (non-target 
lass) examples)L set of all de�ned features (attribute values), l 2 LParameter: number (required number of sele
ted rulesin output set SS)g (generalization parameter, 0:1 < g < 100, default value 1)min support (minimal support for rule a

eptan
e)beam width (number of rules in the beam)Output: SS set of relatively independent rules for the target 
lass(1) initialize SS  fg (empty set of sele
ted rules)(2) for every e 2 P do 
(e) 1(3) repeat number times(4) 
all Algorithm SD to 
onstru
t a rule with maximalquality qg = PTP 1
(e)FP+g(5) for every e 2 P 0 
overed by the 
onstru
ted ruledo 
(e) 
(e) + 1(6) add the 
onstru
ted rule into set SS(7) end repeatFigure 3: Iterative subgroup 
onstru
tion in the Data Mining Server.where TPr is the sensitivity of a 
lassi�er measuring the fra
tion of positive 
ases thatare 
lassi�ed as positive, and FPr is the false alarm measuring the fra
tion of in
orre
tly
lassi�ed negative 
ases: TPr = TPTP+FN = TPPos , and FPr = FPTN+FP = FPNeg . A point in theROC spa
e shows 
lassi�er performan
e in terms of false alarm rate FPr (plotted on theX-axis) that should be as low as possible, and sensitivity TPr (plotted on the Y -axis) thatshould be as high as possible (see Figure 5 in Se
tion 3.2).The ROC spa
e is appropriate for measuring the su

ess of subgroup dis
overy, sin
esubgroups whose TPr=FPr tradeo� is 
lose to the diagonal 
an be dis
arded as uninterest-ing. Conversely, interesting rules/subgroups are those suÆ
iently distant from the diagonal.Those rules whi
h are most distant from the diagonal de�ne the points in the ROC spa
efrom whi
h a 
onvex hull is 
onstru
ted. The area under the ROC 
urve de�ned by sub-groups with the best TPr=FPr tradeo� 
an be used as a quality measure for 
omparingthe su

ess of di�erent learners or subgroup miners. In subgroup 
onstru
tion, the dataanalyst 
an try to a
hieve the desired TPr=FPr tradeo� by building rules using di�erentdata mining algorithms, by di�erent parameter settings of a sele
ted data mining algorithmor by applying a 
ost-sensitive data mining algorithm that takes into the a

ount di�erentmis
lassi�
ation 
osts.The qg measure in the SD algorithm that needs to be maximized, tries to �nd subgroupsthat are as far as possible from the diagonal of the ROC spa
e in the dire
ion of the leftupper 
orner (with TPr equal to 100% and FPr equal to 0%). Note, however, that thea
tual 
omputation, as implemented in Algorithm SD, is not performed in terms of TPr and507
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FPr, as assumed in the ROC analysis, but rather in terms of TP and FP in the so-
alledTP=FP spa
e. The reason is the improved 
omputational eÆ
ien
y of 
omputing the qgvalue whi
h is used as a sear
h heuristi
 for 
omparing the quality of rules for a given, �xeddomain. For a �xed domain, the TP=FP spa
e is as appropriate as the ROC spa
e: theROC spa
e is namely equivalent to the normalized TP=FP spa
e where Pos and Neg arenormalization 
onstants for Y and X axes, respe
tively. The TP=FP spa
e and the ROCspa
e are illustrated in Se
tion 3.2 by Figures 4 and 5, respe
tively.3. The Des
riptive Indu
tion Pro
essThe indu
tion of subgroups, des
ribed in Se
tion 2.2, represents the main step of the pro-posed des
riptive indu
tion pro
ess. This step 
orresponds to the data mining step of thestandard pro
ess of knowledge dis
overy in databases (KDD). The overall des
riptive indu
-tion pro
ess, proposed in this paper, is 
omparable to the standard KDD pro
ess (Fayyad,Piatetsky-Shapiro, & Smyth, 1996), with some parti
ularities of the task of subgroup dis-
overy.The proposed expert-guided subgroup dis
overy pro
ess 
onsists of the following steps:1. problem understanding2. data understanding and preparation3. subgroup dete
tion4. subgroup subset sele
tion5. statisti
al 
hara
terization of subgroups6. subgroup visualization7. subgroup interpretation8. subgroup evaluationSe
tion 3.1, illustrating steps 1 and 2, presents a medi
al problem used as a 
ase studyfor applying the proposed des
riptive indu
tion methodology. Tools for supporting sub-group dete
tion and sele
tion in steps 3 and 4 were des
ribed in detail in Se
tions 2.2 and2.3, while the results of expert-guided subgroup dete
tion and sele
tion are outlined in Se
-tion 3.2. Methods and results of steps 5{8 for this domain are outlined in Se
tions 3.3{3.6,respe
tively.The proposed des
riptive indu
tion pro
ess is iterative and intera
tive. It is iterative,sin
e many steps may need to be repeated before a satisfa
tory solution is found. It is alsointera
tive, assuming expert's involvement in most of the phases of the proposed des
riptiveindu
tion pro
ess. The expert's role in the patient risk group dete
tion appli
ation isdes
ribed in Se
tion 3.7. 508



Expert-Guided Subgroup Dis
overy3.1 The Problem of Patient Risk Group Dete
tionEarly dete
tion of artheros
leroti
 
oronary heart disease (CHD) is an important and dif-�
ult medi
al problem. CHD risk fa
tors in
lude artheros
leroti
 attributes, living habits,hemostati
 fa
tors, blood pressure, and metaboli
 fa
tors (Goldman et al., 1996). Theirs
reening is performed in general pra
ti
e by data 
olle
tion in three di�erent stages.A Colle
ting anamnesti
 information and physi
al examination results, in
luding risk fa
-tors like age, positive family history, weight, height, 
igarette smoking, al
ohol 
on-sumption, blood pressure, and previous heart and vas
ular diseases.B Colle
ting results of laboratory tests, in
luding information about risk fa
tors like lipidpro�le, glu
ose toleran
e, and trombogeni
 fa
tors.C Colle
ting ECG at rest test results, in
luding measurements of heart rate, left ven-tri
ular hypertrophy, ST segment depression, 
ardia
 arrhythmias and 
ondu
tiondisturban
es.Our goal was to 
onstru
t at least one relevant and interesting subgroup, 
alled a patternin the rest of the work, for ea
h stage, A, B, and C, respe
tively.A database with 238 patients representing typi
al medi
al pra
ti
e in CHD diagnosis,
olle
ted at the Institute for Cardiovas
ular Prevention and Rehabilitation, Zagreb, Croatia,was used for subgroup dis
overy. The database is in no respe
t a good epidemiologi
alCHD database re
e
ting a
tual CHD o

urren
e in a general population, sin
e about 50%of gathered patient re
ords represent CHD patients. Nevertheless, the database is veryvaluable sin
e it in
ludes re
ords of di�erent types of the disease. Moreover, the in
ludednegative 
ases (patients who do not have CHD) are not randomly sele
ted persons butindividuals with some subje
tive problems or those 
onsidered by general pra
titioners aspotential CHD patients, and hen
e sent for further investigations to the Institute. Thisbiased data set is appropriate for CHD risk group dis
overy, but it is inappropriate formeasuring the su

ess of CHD risk dete
tion and for subgroup performan
e estimation ingeneral medi
al pra
ti
e.3.2 Results of Expert-Guided Subgroup Dete
tion and Sele
tionThe pro
ess of expert-guided subgroup dis
overy was performed as follows. For every datastage A, B and C, the DMS algorithm was run for values g in the range 0.5 to 100, and a�xed number of sele
ted output rules equal to 3. The rules indu
ed in this iterative pro
esswere shown to the expert for sele
tion and interpretation. The inspe
tion of 15{20 rules forea
h data stage triggered further experiments. Con
rete suggestions of the medi
al expertinvolved in this study were to limit the number of features in the rule body and to tryto avoid the generation of rules whose features would involve expensive and/or unreliablelaboratory tests. Consequently, we have performed the further experiments by intentionallylimiting the feature spa
e and the number of iterations in the main loop of the SD algorithm(steps 2-12 of Algorithm SD).In this iterative pro
ess, the expert has sele
ted �ve interesting CHD risk groups. Table 1shows the indu
ed subgroups, together with the values of g and the rule signi�
an
e. Inthe subgroup dis
overy terminology proposed in this paper, the features appearing in the509
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onditions of rules des
ribing the subgroups are 
alled the prin
ipal fa
tors. The des
ribediterative pro
ess was su

essful for data at stages B and C, but it turned out that anamnesti
data on its own (stage A data) is not informative enough for indu
ing subgroups, i.e., itfailed to ful�l the expert's 
riteria of interestingness. Only after engineering the domain, byseparating male and female patients, were interesting subgroups dis
overed. See Se
tion 3.7for more details on the expert's involvement in this subgroup dis
overy pro
ess.Expert Sele
ted Subgroups g SigA1 CHD  positive family history AND 14 95%age over 46 yearA2 CHD  body mass index over 25 kgm�2 AND 8 99%age over 63 yearsB1 CHD  total 
holesterol over 6.1 mmolL�1 AND 10 99.9%age over 53 years ANDbody mass index below 30 kgm�2B2 CHD  total 
holesterol over 5.6 mmolL�1 AND 12 99.9%�brinogen over 3.7 gL�1 ANDbody mass index below 30 kgm�2C1 CHD  left ventri
ular hypertrophy 10 99.9%Table 1: Indu
ed subgroups in the form of rules. Rule 
onditions are 
onjun
tions of prin-
ipal fa
tors. Subgroup A1 is for male patients, subgroup A2 for female patients,while subgroups B1, B2, and C1 are for male and female patients. The subgroupsare indu
ed from di�erent attribute subsets with 
orresponding g parameter valuesgiven in 
olumn g. The last 
olumn Sig 
ontains information about the signi�
an
eof the rules 
omputed by the �2 test.Separately for ea
h data stage, we have investigated whi
h of the indu
ed rules are thebest in terms of the ROC spa
e, i.e., whi
h of them are used to de�ne the ROC 
onvex hull.At stage B, for instan
e, seven rules are on the 
onvex hull shown in Figures 4 and 5 forthe TP=FP and the ROC spa
e, respe
tively. Two of these rules, X1 and X2, indi
atedin the �gures, are listed in Table 2. Noti
e that the expert-sele
ted subgroups B1 and B2are signi�
ant, but are not among those lying on the 
onvex hull. The reason for sele
tingexa
tly those two rules at stage B are their simpli
ity (
onsisting of three features only),their generality (
overing relatively many positive 
ases) and the fa
t that the used featuresare, from the medi
al point of view, inexpensive laboratory tests.3.3 Statisti
al Chara
terization of SubgroupsThe next step in the proposed des
riptive indu
tion pro
ess starts from the dis
overedsubgroups. In this step, statisti
al di�eren
es in distributions are 
omputed for two pop-ulations, the target and the referen
e population. The target population 
onsists of truepositive 
ase (CHD patients in
luded into the analyzed subgroup), whereas the referen
epopulation are all available non-target 
lass examples (all the healthy subje
ts).510
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Best Indu
ed Subgroups g SigX1 CHD  age over 61 years AND 4 99.9%trygli
erides below 1.85 mmolL�1 ANDhigh density lipoprotein below 1.25 mmolL�1X2 CHD  body mass index over 25 AND 16 99.9%high density lipoprotein below 1.25 mmolL�1 ANDuri
 a
id below 360 mmolL�1 ANDglu
ose below 7 mmolL�1 AND�brinogen over 3.7 gL�1Table 2: Two of the best indu
ed subgroups indu
ed for stage B. Their position in theTP=FP and the ROC spa
e are marked in Figures 4 and 5, respe
tively.

Figure 4: The TP=FP spa
e presenting the
onvex hull of subgroups indu
edusing the quality measure qg =TP=(FP + g) at data stage B. La-bels B1 and B2 denote positionsof subgroups sele
ted by the med-i
al expert, and X1 and X2 twoof the seven subgroups forming theTP=FP 
onvex hull.
Figure 5: The same subgroups as in Fig-ure 4 shown in the ROC spa
e in-stead of the TP=FP spa
e. Theequivalen
e of these two spa
es
an be easily noti
ed. In theROC spa
e a thin line 
onne
tingpoints (0,0) and (100,100) repre-sents rule positions with signi�-
an
e equal zero.Statisti
al di�eren
es in distributions for all the des
riptors (attributes) between thesetwo populations is tested using the �2 test with 95% 
on�den
e stage (p = 0:05). For thispurpose numeri
al attributes have been partitioned in up to 30 intervals so that in everyinterval there are at least 5 instan
es. Among the attributes with signi�
antly di�erentdistributions there are always those that form the features des
ribing the subgroups (theprin
ipal fa
tors), but usually there are also other attributes with signi�
antly di�erent valuedistributions. These attributes are 
alled supporting attributes, and the features formed oftheir values that are 
hara
teristi
 for the dis
overed subgroups are 
alled supporting fa
tors.511
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Supporting fa
tors are very important to a
hieve pattern des
riptions that are reason-ably 
omplete and a

eptable for medi
al pra
ti
e, as medi
al experts dislike short rulesand prefer rules in
luding as mu
h supportive eviden
e as possible (Kononenko, 1993).In this work, the role of statisti
al analysis is to dete
t meaningful supporting fa
tors,whereas the de
ision whether they will be used to support user's 
on�den
e in the subgroupdes
ription is left to the expert. In the CHD appli
ation the expert has de
ided whetherthe proposed fa
tors are indeed interesting, how reliable they are or how easily they 
an bemeasured in pra
ti
e. In Table 3, expert sele
ted supporting fa
tors are listed next to theindividual CHD risk groups, ea
h des
ribed by a list of prin
ipal fa
tors.Prin
ipal Fa
tors Supporting Fa
torsA1 positive family history psy
hoso
ial stressage over 46 year 
igarette smokinghypertensionoverweightA2 body mass index over 25 kgm�2 positive family historyage over 63 years hypertensionslightly in
reased LDL 
holesterolnormal but de
reased HDL 
holesterolB1 total 
holesterol over 6.1 mmolL�1 in
reased trigly
erides valueage over 53 yearsbody mass index below 30 kgm�2B2 total 
holesterol over 5.6 mmolL�1 positive family history�brinogen over 3.7 mmolL�1body mass index below 30 kgm�2C1 left ventri
ular hypertrophy positive family historyhypertensiondiabetes mellitusTable 3: Indu
ed subgroup des
riptions (prin
ipal fa
tors) and their statisti
al 
hara
teri-zations (supporting fa
tors).3.4 Subgroup VisualizationA novel visualization method 
an be used to visualize the output of any subgroup dis
overyalgorithm, provided that the output has the form of rules with a target 
lass in their
onsequent. It 
an also be used as a method for visualizing standard 
lassi�
ation rules.Subgroup visualization, as des
ribed in this se
tion, allows us to 
ompare distributionsof di�erent subgroups. The approa
h assumes the existen
e of at least one numeri
 (orordered dis
rete) attribute of expert's interest for subgroup analysis. The sele
ted attributeis plotted on the X-axis of the diagram. The Y -axis represents a 
lass, or more pre
isely,the number of instan
es of a given 
lass. Both dire
tions of the Y -axis (Y + and Y �) areused to indi
ate the number of instan
es. In Figure 6, for instan
e, the X-axis representsage, the Y +-axis denotes 
lass 
oronary heart disease (CHD) and Y � denotes 
lass `healthy'512
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overy(non-CHD). Out of four graphs at the Y + side, three represent indu
ed subgroups (A1, A2and C1) of CHD patients, and the fourth shows the age distribution of the entire populationof CHD (all CHD) patients. The graphs at the Y � side show the distribution of non-CHD(all healthy) patients in the training set and the distribution of healthy subje
ts in
ludedinto the subgroup A2 (dashed line).

Figure 6: Distributions of the numbers of CHD patients (all CHD) and healthy subje
ts(all healthy) in terms of age (in years). Graphs A1, A2, and C1 represent thedistributions of CHD patients belonging to the 
orresponding subgroups. Thedashed line represents healthy subje
ts in
luded in subgroup A2.

Figure 7: Distributions of the numbers of CHD patients (all CHD) and healthy subje
ts(all healthy), as well as the distributions of patients for subgroups B1 and B2 interms of age (in years). The dashed line represents healthy subje
ts in
luded insubgroup B1.On purpose, the graphs of subgroups A1 and C1 in Figure 6 show only the 
overageof positive 
ases (CHD patients), and in Figure 7 the graph of subgroup B2 shows only513



Gamberger & Lavra�


Figure 8: Distributions of all CHD patients and those des
ribed by patterns A1 and B2, aswell as all healthy subje
ts and those in
luded into pattern B2 (dashed line) interms of total 
holesterol value in mmolL�1.the 
overage of positive 
ases, whereas the graphs of A2 in Figure 6 and B1 in Figure 7indi
ate that the des
riptions of subgroups 
over positive 
ases (CHD patients) as well assome negative 
ases (healthy individuals). Ex
ept for the 
orre
t visualization of subgroupsA2 and B1 and of the entire CHD and non-CHD distribution, Figures 6 and 7 have beensimpli�ed in order to enable a better understanding of the visualization method, by showingjust the 
overage of positive 
ases.In medi
al domains we typi
ally use the Y + side to represent the number of positive
ases (CHD patients, in this paper) in order to reveal properties of indu
ed patterns forsubgroups of these patients. On the other hand, the Y � side is reserved to reveal propertiesof these same patterns (or other patterns) for the negative 
ases (patients without CHD).One of the advantages of using Y + and Y � as proposed above is that in binary 
lassi�
ationproblems the 
omparison of the area under the graph of a subgroup and the graph of theentire population visualizes the fra
tions of TPPos = TPTP+FN at the Y + side (sensitivity TPr),and FPNeg = FPTN+FP at the Y � side (false alarm rate FPr), where Pos and Neg stand for thenumbers of positive and negative 
ases in the entire population, respe
tively. For instan
e,in the visualization of subgroup B1 in Figure 7 the area under the dashed line on the Y �side represents the numbers of mis
lassi�ed training instan
es of subgroup B1. In this way,the sensitivity and false alarm rate 
an be estimated for pattern B1 from Figure 7. Thesame information for pattern B2 
an be found in Figure 8, showing subgroups A1 and B2in terms of attribute `total 
holesterol value'.The proposed visualization method 
an be adapted to visualize subgroups also in termsof value distributions of dis
rete/nominal attributes. An approa
h to su
h visualizationis presented in Figure 9. However, due to bar 
hart representation, it is more diÆ
ult to
ompare several subgroups in one visualization.In general, it is not ne
essary that Y + and Y � denote two opposite 
lasses. If appro-priate, they may denote any two 
lasses, or even any two di�erent attribute values, whi
hthe expert would like to 
ompare. 514



Expert-Guided Subgroup Dis
overy

Figure 9: Distribution of CHD patients and healthy subje
ts with respe
t to stress values(low, high, and very high) for the entire population and the �ve indu
ed patterns.

Figure 10: Distribution of CHD patients and healthy subje
ts with respe
t to exer
ise ECGST segment depression in millimeters (1mm 
orresponds to 0.1 mV). Large dif-feren
e between total healthy and ill populations 
an be noti
ed, but di�eren
esamong patterns are very small. Patterns A1 and C1 are sele
ted as extreme
ases. The dashed line presents healthy persons in
orre
tly des
ribed by pat-tern C13.5 Subgroup Interpretation through VisualizationSubgroup visualization is very valuable for expert interpretation of subgroup dis
overy re-sults. From Figures 6 and 7 it 
an be seen that there is no signi�
ant di�eren
e between515
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CHD patients and healthy subje
ts regarding their age, but that there are signi�
ant dif-feren
es among the dete
ted patterns. Figure 8 illustrates a similar e�e
t for the total
holesterol values although it is known that total 
holesterol is an important risk fa
tor forthe CHD disease. This observation shows that the problem of CHD risk group dete
tion 
antypi
ally not be solved by 
onsidering single features and demonstrates the appropriatenessof the suggested approa
h whi
h tries to generate subgroup des
riptions whi
h are a logi
al
onjun
tion of a few 
orrelated features.Figure 10 is also interesting, sin
e it is very di�erent from other �gures. Noti
e thatexer
ise ECG ST segment depression was not used as an attribute in the training data(whi
h 
ontained only attributes that are available at stages A, B and C); exer
ise ECG STsegment depression, long term ECG re
ording and e
ho
hardiography are not available forearly risk group dete
tion sin
e they 
an be 
olle
ted/measured only in spe
ialized medi
alinstitutions. Figure 10 
learly demonstrates signi�
ant di�eren
es between all CHD and allhealthy subje
ts in terms of exer
ise ECG ST segment depression values, demonstratingthat this measurement, if available, is an ex
ellent disease indi
ator. But it also shows that,although it is known that patterns A1 and C1 
over di�erent disease subpopulations, theybehave very similarly in terms of the exer
ise ECG ST segment depression property.3.6 Subgroup EvaluationIn order to evaluate the dis
overed risk groups, the medi
al expert has tested the indu
edsubgroup patterns on an independent set of 70 people (50 CHD patients and 20 non-CHD
ases from the same hospital). The results for these patients, summarized in Table 4, showthat the patterns are su

essful in dete
ting CHD patients. About 90% of CHD patientswere in
luded into at least one of the �ve patterns. The dete
ted sensitivity values (TPr)for patterns A1, B2, and C1 are signi�
antly higher than the values 
omputed on the setof patients used for subgroup dis
overy. For the other two patterns the values do not di�ersigni�
antly. Note that the a

ura
y values are relatively high, despite the relatively highfalse positive rate (FPr): a lower FPr 
ould have been a
hieved by sele
ting lower valuesof the generalization parameter g, at a 
ost of dete
ting subgroups with lower 
overage ofpositive 
ases. Training set Test setTPr FP r A

ura
y TPr FPr A

ura
yA1 47.5% 26.8% 59.4% 84.8% 77.8% 80.0%A2 48.4% 6.7% 81.2% 41.2% 27.3% 70.0%B1 28.8% 9.4% 72.7% 36.0% 20.0% 81.8%B2 32.4% 12.6% 69.2% 42.0% 15.0% 87.5%C1 23.4% 5.5% 78.8% 82.0% 40.0% 83.7%Table 4: Summary of results obtained on the training set and on an independent set of70 persons (50 CHD patients and 20 non-CHD 
ases from the same hospital),measured in terms of TPr, FPr and A

ura
y.516
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overy3.7 The Expert's Role in Subgroup Dis
overyThe CHD 
ase study illustrates that expert-guided indu
tion is an iterative pro
ess in whi
hthe expert 
an 
hange the requested generality of the indu
ed subgroups and the subset ofattributes (features) that are made available for rule 
onstru
tion. In this way it is possibleto indu
e di�erent patterns (subgroups) from the same data set. The sele
tion of one or moresubgroups representing the �nal solution is left to the expert; the de
ision depends both onrule predi
tion properties (like the number of true positives and the tolerated number offalse positives), as well as subje
tive properties like the understandability, unexpe
tednessand a
tionability of indu
ed subgroup des
riptions (Silbers
hatz & Tuzhilin, 1995), whi
hdepend on the features used in the 
onditions of indu
ed rules. In the appli
ation des
ribedin this paper, the main subje
tive a

eptability 
riteria were understandability, simpli
ityand a
tionability.Partitioning the CHD risk group problem into three data stages A{C was 
ompletelybased on the expert's understanding of the typi
al diagnosti
 pro
ess. From the ma
hinelearning point of view this a�e
ts the sele
tion of subsets of attributes that are used indi�erent experiments. Moreover, at data stage A the partitioning of the example set hasbeen used as well. At this data stage there are only a few attributes that 
ould have beenused for rule indu
tion. The expert's understanding of the domain suggested that the CHDpopulation be partitioned into two subpopulations based on the sex of patients, making itsigni�
antly easer to indu
e interesting subgroups. This partitioning resulted in patternsA1 and A2.Alternatively, partitioning 
an be performed also in the phase of performing statisti
al
hara
terization of dis
overed subgroups, by further splitting the dete
ted subgroups inseveral parts (e.g., di�erentiating between male and female patients that are true positive
ases for the subgroup) and then 
omparing attribute value distributions for these parts.Any signi�
ant di�eren
e in this distribution may be potentially interesting as part of thesubgroup des
ription. As a basis for subgroup partitioning one may use either some dete
tedsupporting risk fa
tor or any other attribute or attribute 
ombination whi
h is potentiallyinteresting based on the existing expert knowledge.There has been some e�ort devoted also to automating the pro
ess of partitioning ex-ample sets by a method of unsupervised learning, but its presentation is out of the mains
ope of this work (�Smu
, Gamberger, & Krsta�
i�
, 2001).From the methodologi
al point of view it is interesting to noti
e that the expert appre-
iated the indu
ed subgroups 
overing many target 
lass 
ases (with true positive rate ofat least 20%) and with false positive rate as low as possible, with the intention to keep itbelow 10%. But in sele
ting a rule, its predi
tion quality has not been the most importantfa
tor. The ne
essary 
ondition for sele
ting a rule was that the expert was able to re
ognize
onne
tions among features building the rule that are medi
ally reasonable. In this sense,short rules are signi�
antly more intuitive; it 
an be noti
ed from Table 1 that all rulessele
ted by the expert have at most three features de�ning the prin
ipal risk fa
tors. Thefa
t that the expert did not sele
t subgroups with an optimal TP=FP ratio is illustrated byFigures 16{18 in Se
tion 4.2, whi
h show the positions of the patterns A1{C1 in the TP=FPspa
e and the TP=FP 
onvex hulls indu
ed for data stages A{C, 
onne
ting points with517
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the optimal 
overage properties. It 
an be noti
ed that none of the expert sele
ted patternsis lying on the TP=FP 
onvex hull but the sele
ted patterns are 
lose to the 
onvex hull.4. Analysis of the Proposed Rule Quality Measure Used in Heuristi
Sear
hIt is well known from the ROC analysis, that in order to a
hieve the best results, thedis
overed rules should be as 
lose as possible to the top-left 
orner of the ROC spa
e. Thismeans that in the TPr=FPr tradeo�, TPr should be as large as possible, and FPr as smallas possible. Similarly, in the TP=FP spa
e, TP should be as large as possible, and FP assmall as possible.In this work the quality measure qg = TP=(FP + g) using generalization parameterg has been de�ned. This se
tion explains why this quality measure has been sele
ted, in
omparison with other more intuitive quality measure like a 
ost-based measure q
 involving`
ost' parameter 
.4.1 Comparison of the qg and q
 Heuristi
sOur experien
e in di�erent medi
al appli
ations indi
ates that intuitions like \how expensiveis every FP predi
tion in terms of additional TP predi
tions made by a rule" are usefulfor understanding the problem of dire
ting the sear
h in the TP=FP spa
e. Suppose thatthe de�nition of 
ost parameter 
 is based on the following argument: \For every additionalFP , the rule should 
over more than 
 additional TP examples in order to be better."Based on su
h reasoning, it is possible to de�ne a quality measure q
, using the followingTP=FP tradeo�: q
 = TP � 
 � FP:Quality measure q
 is easy to use be
ause of the intuitive interpretation of parameter 
. Ithas also a ni
e property when used for subgroup dis
overy: by 
hanging the 
 value we 
anmove in the TP=FP spa
e and sele
t the optimal point based on parameter 
.In Algorithm SD, the quality measure qg, using a di�erent TP=FP tradeo� is used:qg = TP=(FP + g), where g is the generalization parameter.If a subgroup dis
overy algorithm employs exhaustive sear
h (or if all points in theTP=FP spa
e are known in advan
e) then the two measures qg and q
 are equivalent inthe sense that every optimal solution lying on the 
onvex hull 
an be dete
ted by usingany of the two heuristi
s; only the values that must be sele
ted for parameters g and 
 aredi�erent. In this 
ase, q
 might be even better be
ause its interpretation is more intuitive.However, sin
e Algorithm SD is a heuristi
 beam sear
h algorithm, the situation isdi�erent. Subgroup dis
overy is an iterative pro
ess, performing one or more iterations(typi
ally 2{5) until good rules are 
onstru
ted by forming 
onjun
tions of features in therule body. In this pro
ess, a rule quality measure is used for rule sele
tion (for whi
hthe two measures qg and q
 are equivalent) as well as for the sele
tion of features and their
onjun
tions that have high potential for the 
onstru
tion of high quality rules in subsequentiterations; for this use, rule quality measure qg is better than q
. Let us explain why.Suppose that we have a point (a rule) R in the TP=FP spa
e, where TP and FP areits true and false positives, respe
tively. For a sele
ted g value, qg 
an be determined for518
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overythis rule R. It 
an be shown that all points that have the same quality qg as rule R lie ona line de�ned by the following fun
tion:tp = TP � fpFP + g + TP � gFP + g = TP � (fp+ g)FP + g :In this fun
tion, tp represents the number of true positives of a rule with quality qg whi
h
overs exa
tly fp negative examples. By sele
ting a di�erent fp value, the 
orrespondingtp value 
an be determined by this fun
tion. The line, determined by this fun
tion, 
rossesthe tp axis at point TP0 = TP � g=(FP + g) and the fp axis at point �g. This is shown inFigure 11. The slope of this line is equal to the quality of rule R, whi
h equals TP=(FP+g).
fp

tp

R

FP

TP

TP0

-g

points with same
quality
qg=TP/(FP+g)

Figure 11: Properties of rules with the samequality qg: Figure 12: Rules with highest quality in-
luded into the beam for qg =TP=(FP + g).In the TP=FP spa
e, points with higher quality than qg are above this line, in thedire
tion of the upper left 
orner. Noti
e that in the TP=FP spa
e the top-left is thepreferred part of the spa
e: points in that part represent rules with the best TP=FPtradeo�. This reasoning indi
ates that points that will be in
luded in the beam must alllie above the line of equal weights qbeam whi
h is de�ned by the last rule in the beam. Ifrepresented graphi
ally, �rst beam width number of rules, found in the TP=FP spa
e whenrotating the line from point (0; P os) in the 
lo
kwise dire
tion, will be in
luded in the beam.The 
enter of rotation is point (�g; 0). This is illustrated in Figure 12.On the other hand, for the q
 quality measure de�ned by q
 = TP�
�FP the situation issimilar but not identi
al. Points with the same quality lie on a line tp = 
 � (fp�FP )+TP ,but its slope is 
onstant and equal to 
. Points with higher quality lie above the line in thedire
tion of the left upper 
orner. The points that will be in
luded into the beam are the�rst beam width points in the TP=FP spa
e found by a parallel movement of the line withslope 
, starting from point (0; P os) in the dire
tion towards the lower right 
orner. Thisis illustrated in Figure 13.Let us now assume that we are looking for an optimal rule whi
h is very spe
i�
. Inthis 
ase, parameter 
 will have a high value while parameter g will have a very small value.The intention is to �nd the same optimal rule in the TP=FP spa
e. At the �rst stage ofrule 
onstru
tion only single features are 
onsidered and most probably their quality as the519
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Figure 13: Rules with highest quality in-
luded in the beam for q
 = TP �
 � FP . Figure 14: Pla
ement of interesting fea-tures in the TP=FP spa
e afterthe �rst iteration.�nal solution is rather poor. See Figure 14 for a typi
al pla
ement of potentially interestingfeatures in the TP=FP spa
e.The primary fun
tion of these features is to be good building blo
ks so that by 
onjun
-tively adding other features, high quality rules 
an be 
onstru
ted. By adding 
onjun
tions,solutions generally move in the dire
tion of the left lower 
orner. The reason is that 
on-jun
tions 
an redu
e the number of FP predi
tions. However, they redu
e the number ofTP 's as well. Consequently, by 
onjun
tively adding features to rules that are 
lose to theleft lower 
orner, the algorithm will not be able to �nd their spe
ializations nearer to theleft upper 
orner. Only the rules that have high TP value, and are in the upper part of theTP=FP spa
e, have a 
han
e to take part in the 
onstru
tion of interesting new rules.Figure 15 illustrates the main di�eren
e between quality measures qg and q
: the formertends to sele
t more general features from the right upper part of the TP=FP spa
e (pointsin the so-
alled `g spa
e'), while the later `prefers' spe
i�
 features from the left lower 
orner(points in the so-
alled `
 spa
e'). In 
ases when 
 is very large and g is very small, the e�e
t
an be so important that it may prevent the algorithm from �nding the optimal solutioneven with a large beam width. Noti
e, however, that Algorithm SD is heuristi
 in its natureand no statements are true for all 
ases. This means that in some, but very rare 
ases, aquality measure based on parameter 
 may result in a better �nal solution.4.2 Experimental Evaluation of the Heuristi
sFor the purpose of 
omparing the qg and q
 measures, a TP=FP 
onvex hull for ea
h ofthe two measures has been 
onstru
ted. The pro
edure was repeated for stages A{C. TheTP=FP 
onvex hulls for the qg measure were 
onstru
ted so that for di�erent g valuesmany subgroups were 
onstru
ted. Among them those lying on the 
onvex hull in theTP=FP spa
e were sele
ted: this resulted in 
onvex hulls presented by the thi
k lines inFigures 16{18. The thin lines represent the TP=FP 
onvex hulls obtained in the same wayfor subgroups indu
ed by the q
 measure, for 
 values between 0.1 and 50.Figures 16-18 for stages A{C demonstrate that both 
urves agree in the largest part ofthe TP=FP spa
e, but that for small FP values the qg measure is able to �nd subgroups520
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Figure 15: The quality q
 employing the 
parameter tends to sele
t pat-terns (points) with small TPvalues, while quality qg employ-ing the g parameter will in
ludealso many patterns with largeTP values (from the right partof the TP=FP spa
e) that havea 
han
e to be used in build-ing 
onjun
tions of high qualityrules.
overing more positive examples. A

ording to the analysis in the previous se
tion, thiswas the expe
ted result. In order to make the di�eren
e more obvious only the left part ofthe TP=FP spa
e is shown in these �gures. Figure 16: The left part of the TP=FPspa
e presenting the TP=FP
onvex hulls of subgroups in-du
ed using quality measuresqg = TP=(FP + g) (thi
k line)and q
 = TP � 
 � FP (thinline) at data stage A. LabelsA1{C1 denote positions of sub-groups sele
ted by the medi
alexpert as interesting risk groupdes
riptions.

Figure 17: The left part of the TP=FP 
on-vex hulls representing subgroupsindu
ed at data stage B. Figure 18: The left part of the TP=FP
onvex hulls representing sub-groups indu
ed at data stage C.521
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The di�eren
es between the TP=FP 
onvex hulls for qg and q
 measures may seem smalland insigni�
ant, but in reality it is not so. The majority of interesting subgroups (this
laim is supported also by patterns A1{C1 sele
ted by the domain expert) are subgroupswith a small false positive rate whi
h lie in the range in whi
h qg works better. In addition,for subgroups with FP = 0 the true positive rate in our examples was about two timeslarger for subgroups indu
ed with qg than with q
. Furthermore, note that for stages A andB there are two out of �ve subgroups (A2 and C1) whi
h lie in the gap between the TP=FP
onvex hulls. If the q
 measure instead of qg measure were used in the experiments withCHD domain, at least subgroup A2 
ould not have been dete
ted.5. Related WorkThis se
tion provides 
omparisons and links to related work in subgroup dis
overy, measuresof interestingness, evaluation measures and visualization.5.1 Subgroup Dis
overyThe need for user intera
tivity in subgroup dis
overy is addressed by Wrobel S. et al. (1996),des
ribing a system developed in the KESO European resear
h proje
t (Knowledge Extra
-tion for Statisti
al OÆ
es) and in the systems EXPLORA (Kl�osgen, 1996) and MIDOS(Wrobel, 1997, 2001). EXPLORA treats the learning task as a single relation problem, i.e.,all the data are assumed to be available in one table (relation), whereas MIDOS extendsthis task to multi-relation databases, whi
h is related to a number of other learning tasks(De Raedt & Dehaspe, 1997; Mannila & Toivonen, 1996; Wrobel & D�zeroski, 1995), mostlyin the �eld of Indu
tive Logi
 Programming (D�zeroski & Lavra�
, 2001; Lavra�
 & D�zeroski,1994).The most important features of EXPLORA and MIDOS, related to this paper, 
on
ernthe use of heuristi
s for subgroup dis
overy; the measures of interestingness and the sear
hheuristi
s are outlined in separate se
tions below. A related approa
h to our approa
hto rule subset sele
tion, presented in Se
tion 2.3, is Gebhardt's (1991) work on subgroupsuppression.Note that some approa
hes to asso
iation rule indu
tion 
an also be used for subgroupdis
overy. For instan
e, the APRIORI-C algorithm (Jovanoski & Lavra�
, 2001), whi
happlies asso
iation rule indu
tion to 
lassi�
ation rule indu
tion, outputs 
lassi�
ation ruleswith guaranteed support and 
on�den
e with respe
t to a target 
lass. If a rule satis�es alsoa user-de�ned signi�
an
e threshold, an indu
ed APRIORI-C rule is an independent `
hunk'of knowledge about the target 
lass, whi
h 
an be viewed as a subgroup des
ription withguaranteed signi�
an
e, support and 
on�den
e. Similarly, the 
on�rmation rule 
on
ept,introdu
ed by Gamberger and Lavra�
 (2000) and used as a basis for the subgroup dis
overyalgorithm in this paper, utilizes the minimal support requirement as a measure whi
h mustbe satis�ed by every rule in order to be in
luded in the indu
ed 
on�rmation rule set.Both above mentioned approa
hes to subgroup dis
overy exploit the information about
lass membership. One of the main reasons why these approa
hes are of interest for sub-group dis
overy is that, unlike the 
lassi
al 
lassi�
ation rule indu
tion algorithms su
h asCN2 (Clark & Niblett, 1989) and AQ (Mi
halski, Mozeti�
, Hong, & Lavra�
, 1986), they donot use the 
overing algorithm. In 
overing algorithms only the �rst few indu
ed rules may522
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overybe of interest as subgroup des
riptors with suÆ
ient 
overage. Subsequently indu
ed rulesare indu
ed from biased example subsets, e.g., subsets in
luding only positive examplesnot 
overed by previously indu
ed rules. This bias 
onstrains the population for subgroupdis
overy in a way that is unnatural for the subgroup dis
overy pro
ess whi
h is, in general,aimed at dis
overing interesting properties of subgroups of the entire population.Re
ent approa
hes to subgroup dis
overy aim at over
oming the problem of this inap-propriate bias of the standard 
overing algorithm. The re
ently developed subgroup dis-
overy algorithms CN2-SD (Lavra�
, Fla
h, Kav�sek, & Todorovski, 2002) and RSD (Lavra�
,�Zelezn�y, & Fla
h, 2002) use the so-
alled weighted 
overing algorithm, similar to the oneimplemented in Algorithm DMS des
ribed in this paper.Instan
e weights play an important role in boosting (Freund & Shapire, 1996) andalternating de
ision trees (S
hapire & Singer, 1999). Instan
e weights have been usedalso in variants of the 
overing algorithm implemented in rule learning approa
hes su
h asSLIPPER (Cohen, 1999), RL (Lee, Bu
hanan, & Aronis, 1998) and DAIRY (Hsu, Soderland,& Etzioni, 1998). A variant of the weighted 
overing algorithm has been used also in the
ontext of 
on�rmation rule subset sele
tion (Gamberger & Lavra�
, 2000), used as a basisfor the rule subset sele
tion algorithm RSS des
ribed in this paper.5.2 Measures of InterestingnessVarious rule evaluation measures and heuristi
s have been studied for subgroup dis
overy,aimed at balan
ing the size of a group (referred to as fa
tor g by Kl�osgen, 1996) withits distributional unusualness (referred to as fa
tor p). The properties of fun
tions that
ombine these two fa
tors have been extensively studied (the so-
alled \p-g-spa
e").Similarly, the weighted relative a

ura
y heuristi
, de�ned asWRA

(Class Cond) =p(Cond) � (p(ClassjCond)� p(Class)) and used by Todorovski, Fla
h, and Lavra�
 (2000),trades o� generality of the rule (p(Cond), i.e., rule 
overage) and relative a

ura
yp(ClassjCond)� p(Class). This heuristi
 is a reformulation of one of the measures used inEXPLORA.Besides su
h `obje
tive' measures of interestingness, some `subje
tive' measure of in-terestingness of dis
overed patterns 
an be taken into the a

ount, su
h as a
tionability(`a pattern is interesting if the user 
an do something with it to his or her advantage')and unexpe
tedness (\a pattern is interesting to the user if it is surprising to the user")(Silbers
hatz & Tuzhilin, 1995).5.3 Subgroup Evaluation MeasuresEvaluation of indu
ed subgroups in the ROC spa
e (Provost & Faw
ett, 2001) shows 
las-si�er performan
e in terms of false alarm or false positive rate FPr = FPTN+FP (plotted onthe X-axis) that needs to be minimized, and sensitivity or true positive rate TPr = TPTP+FN(plotted on the Y -axis) that needs to be maximized. The ROC spa
e is appropriate formeasuring the su

ess of subgroup dis
overy, sin
e subgroups whose TPr=FPr tradeo� is
lose to the diagonal 
an be dis
arded as insigni�
ant. An appropriate approa
h to evalu-ating a set of indu
ed subgroups is by using the area under the ROC 
onvex hull de�ned bysubgroups with the best TPr=FPr tradeo� as a quality measure for 
omparing the su

essof di�erent learners. 523
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Alternatives to the area under the ROC 
onvex hull 
omputation are other standardevaluation measures used in rule learning, su
h as predi
tive a

ura
y or, in the 
ase oftime/eÆ
ien
y 
onstraints that need to be taken into the a

ount, the tradeo� measuresDEA (Keller, Paterson, & Berrer, 2000) and Adjusted Ratio of Ratios (ARR) (Brazdil,Soares, & Pereira, 2001) that 
ombine a

ura
y and time to assess relative performan
e.Optimized a

ura
y is, however, not the ultimate goal of subgroup dis
overy. In additionto the area under the ROC 
onvex hull quality measure, other important su

ess measuresare rule signi�
an
e (measuring the distributional unusualness of a subgroup), rule 
overage(measuring how large is a dis
overed subgroup), rule size and size of a rule set (measuringthe simpli
ity and understandability of dis
overed knowledge). These measures were usedto evaluate the results of the CN2-SD subgroup dis
overy algorithm (Lavra�
 et al., 2002).5.4 Subgroup VisualizationData visualization methods have been part of statisti
s and data analysis resear
h for manyyears. This resear
h 
on
entrated primarily on plotting one or more independent variablesagainst a dependent variable in support of exploratory data analysis (Tukey, 1977; Lee,Ong, & Quek, 1995; Unwin, 2000).The visualization of analysis results has, however, gained only re
ently some attentionwith the proliferation of data mining (Card, Ma
kinlay, & Shneidermann, 1999; Fayyad,Grinstein, & Wierse, 2002; Keim & Kriegel, 1996; Simo�, Noirhomme-Fraiture, & Boehlen,2001). The visualization of analysis results primarily serves four purposes: better illustratethe pattern to the end user, enable the 
omparison of patterns, in
rease pattern a

eptan
e,and enable pattern editing and support for \what-if questions". The re
ent interest inthe visualization of analysis results was spawned by the often overwhelming number and
omplexity of data mining results.Readers interested in 
omparing the visualization method proposed in this paper withother subgroups visualization methods 
an �nd the visualization of subgroups A1{C1 in thejoint work by Gamberger, Lavra�
, and Wetts
here
k (2002).6. Con
lusionsThis paper presents a novel subgroup dis
overy algorithm integrated into the end to endknowledge dis
overy pro
ess. The dis
ussion and empiri
al results point out the importan
eof e�e
tive expert-guided subgroup dis
overy in the TP=FP spa
e. Its main advantages arethe possibility to indu
e knowledge at di�erent levels of generalization (a
hieved by tuningthe g parameter of the subgroup dis
overy algorithm) used in the rule quality measurethat ensures the indu
tion of high quality rules also in the heuristi
 subgroup dis
overypro
ess. The paper argues that expert's involvement in the indu
tion pro
ess is ne
essaryfor su

essful a
tionable knowledge generation.The proposed expert-guided subgroup dis
overy pro
ess 
onsists of the following steps:problem understanding, data understanding and preparation, subgroup dis
overy, subgroupsubset sele
tion, statisti
al 
hara
terization of subgroups, subgroup visualization, their in-terpretation and evaluation. The main steps, des
ribed in detail in this paper, are subgroupdis
overy and the sele
tion of a subset of diverse subgroups, followed by the statisti
al 
har-a
terization of subgroups that adds supporting fa
tors to the indu
ed subgroup des
riptions.524
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overySupporting fa
tors represent redundant information about subgroups, but, in our opinion,their fun
tion is extremely important in pattern des
ription, be
ause they help the expertsto obtain a more 
omplete 
hara
terization and better understanding of subgroups. More-over, they in
rease the expert's 
on�den
e that the pattern is appropriate for the problemthat he is trying to solve. In addition, subgroup visualization helps in understanding therelationships among patterns and gives visual insights into their sensitivity and false alarmrate.The presented approa
h to des
riptive indu
tion uses expert knowledge at every step.Our intention was not to build a system that will repla
e experts but rather to provide amethodology that will help experts in the knowledge dis
overy pro
ess. In our view, thepossibility of guiding the indu
tion pro
ess is an advantage of this approa
h.A
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