
An Extended Transformation Approach to
Inductive Logic Programming

NADA LAVRAČ
Jožef Stefan Institute
and
PETER A. FLACH
University of Bristol

Inductive logic programming (ILP) is concerned with learning relational descriptions that typically
have the form of logic programs. In a transformation approach, an ILP task is transformed into an
equivalent learning task in a different representation formalism. Propositionalization is a particu-
lar transformation method, in which the ILP task is compiled to an attribute-value learning task.
The main restriction of propositionalization methods such as LINUS is that they are unable to deal
with nondeterminate local variables in the body of hypothesis clauses. In this paper we show how
this limitation can be overcome, by systematic first-order feature construction using a particular
individual-centered feature bias. The approach can be applied in any domain where there is a clear
notion of individual. We also show how to improve upon exhaustive first-order feature construction
by using a relevancy filter. The proposed approach is illustrated on the “trains” and “mutagenesis”
ILP domains.

Categories and Subject Descriptors: I.2.3 [Artificial Intelligence]: Deduction and Theorem Prov-
ing—Logic programming; I.2.4 [Artificial Intelligence]: Knowledge Representation Formalisms
and Methods—Predicate logic; I.2.6 [Artificial Intelligence]: Learning—Concept learning;
Induction

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Data mining, inductive logic programming, machine learning,
relational databases

1. INTRODUCTION

Inductive logic programming (ILP) [Muggleton 1992; Muggleton and De Raedt
1994; Lavrač and Džeroski 1994; Bergadano and Gunetti 1995; Nienhuys-
Cheng and de Wolf 1997] is a research area that has its backgrounds in induc-
tive machine learning and computational logic. ILP research aims at a formal
framework as well as practical algorithms for inductive learning of relational
descriptions that typically have the form of logic programs. From computational

Authors’ addresses: N. Lavrač, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; email:
Nada.Lavrac@ijs.si; P.A. Flach, University of Bristol, Woodland Road, Bristol BS8 1UB, United
Kingdom; email: Peter.Flach@bristol.ac.uk.
Permission to make digital/hard copy of all or part of this material without fee for personal or
classroom use provided that the copies are not made or distributed for profit or commercial advan-
tage, the ACM copyright/server notice, the title of the publication, and its date appear, and notice
is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on
servers, or to redistribute to lists requires prior specific permission and/or a fee.
C© 2001 ACM 1529-3758/01/1000–0458 $5.00

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001, Pages 458–494.

An Extended Transformation Approach to Inductive Logic Programming • 459

logic, ILP has inherited its sound theoretical basis, and from machine learning,
an experimental approach and orientation toward practical applications. ILP
research has been strongly influenced also by computational learning theory,
and recently by knowledge discovery in databases [Fayyad et al. 1995] which
led to the development of new techniques for relational data mining.

In general, an ILP learner is given an initial theory T (background knowl-
edge) and some evidence E (examples), and its aim is to induce a theory H
(hypothesis) that together with T explains some properties of E. In most cases
the hypothesis H has to satisfy certain restrictions, which we shall refer to as
the bias. Bias includes prior expectations and assumptions, and can therefore
be considered as the logically unjustified part of the background knowledge.
Bias is needed to reduce the number of candidate hypotheses. It consists of the
language bias L, determining the hypothesis space, and the search bias which
restricts the search of the space of possible hypotheses.

The background knowledge used to construct hypotheses is a distinctive fea-
ture of ILP. It is well known that relevant background knowledge may substan-
tially improve the results of learning in terms of accuracy, efficiency, and the
explanatory potential of the induced knowledge. On the other hand, irrelevant
background knowledge will have just the opposite effect. Consequently, much
of the art of inductive logic programming lies in the appropriate selection and
formulation of background knowledge to be used by the selected ILP learner.

This work shows, that by devoting enough effort to the construction of fea-
tures, to be used as background knowledge in learning, even complex relational
learning tasks can be solved by simple propositional rule learning systems. In
propositional learning, the idea of augmenting an existing set of attributes with
new ones is known under the term constructive induction. A first-order coun-
terpart of constructive induction is predicate invention. This work takes the
middle ground: we perform a simple form of predicate invention through first-
order feature construction, and use the constructed features for propositional
learning. In this way we are able to show that the traditional limitations of
transformation-based approaches such as the limited hypothesis language of
LINUS (i.e., no local variables in clause bodies) and its successor DINUS (only
determinate local variables) [Lavrač and Džeroski 1994] can be alleviated by
means of nondeterminate first-order feature construction.

Our approach to first-order feature construction can be applied in the so-
called individual-centered domains, where there is a clear notion of individual.
Such domains include classification problems in molecular biology, for example,
where the individuals are molecules. Individual-centered representations have
the advantage of a strong language bias, because local variables in the bodies of
rules either refer to the individual or to parts of it. However, not all domains are
amenable to the approach we present in this paper—in particular, we cannot
learn recursive clauses, and we cannot deal with domains where there is not a
clear notion of individual (e.g., many program synthesis problems).

This paper first presents the main ILP setting, called the predictive ILP set-
ting, and outlines some transformations of this basic setting (Section 2). Among
these, propositionalization approaches to ILP are studied in detail, in particu-
lar the LINUS propositionalization approach (Section 3). The main goal of this

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

460 • N. Lavrač and P. A. Flach

work is to show that the traditional limitations of LINUS and DINUS can be
alleviated by means of nondeterminate feature construction used to define the
LINUS background knowledge on the basis of structural properties (Section 4).
We can improve upon exhaustive first-order feature construction by using a
filter for eliminating irrelevant features (Section 5). The proposed approach
to learning of nondeterminate clauses through first-order feature construction
is illustrated by the “trains” and “mutagenesis” ILP domains. Related work is
discussed in Section 6.

2. THE FRAMEWORK OF INDUCTIVE LOGIC PROGRAMMING

In its most general form, induction consists of inferring general rules from
specific observations (also called examples, data-cases, etc.). This section intro-
duces the basic ILP setting, which deals with inducing first-order classification
rules. The definitions given below are fairly standard, except for a distinction
between foreground and background predicates that was introduced in [Flach
and Kakas 2000] in order to distinguish between abduction and induction. We
also discuss some transformations of the basic setting, which are intended to
reformulate the problem into an equivalent but easier solvable one.

2.1 The Basic ILP Setting

In learning of first-order classification rules, the induced rules should entail
the observed examples. Roughly speaking, the examples establish partial ex-
tensional specifications of the predicates to be learned or foreground predicates,
and the goal is to find intensional definitions of those predicates. In the general
case, this requires suitably defined auxiliary or background predicates (sim-
ple recursive predicates such as member/2 and append/3 notwithstanding). The
induced set of rules or inductive hypothesis then provides an intensional con-
nection between the foreground predicates and the background predicates; we
will sometimes call such rules foreground-background rules. We will also use
the terms facts to refer to extensional knowledge, and rules to refer to inten-
sional knowledge. The terms “knowledge” or “theory” may refer to both facts
and rules. Thus, predictive induction infers foreground-background rules from
foreground facts and background theory.

Definition 2.1 (Predictive ILP). Let PF and NF be sets of ground facts over
a set of foreground predicates F , called the positive examples and the nega-
tive examples, respectively. Let TB, the background theory, be a set of clauses
over a set of background predicates B. Let L be a language bias specifying
a hypothesis language HL over F ∪ B (i.e., a set of clauses). A predictive ILP
task consists in finding a hypothesis H ⊆HL such that ∀p∈ PF : TB ∪H |= p and
∀n∈NF : TB ∪H 6|=n.

The subscripts F and B are often dropped, if the foreground and background
predicates are understood. Also, sometimes positive examples and negative
examples are collectively referred to as examples E.

Definition 2.1 is underspecified in a number of ways. First, it does not rule
out trivial solutions like H = P unless this is excluded by the language bias

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

An Extended Transformation Approach to Inductive Logic Programming • 461

(which is not often the case, since the language bias cannot simply exclude
ground facts, because they are required by certain recursive predicate defini-
tions). Furthermore, the definition does not capture the requirement that the
inductive hypothesis correctly predicts unseen examples. It should therefore be
seen as a general framework, which needs to be further instantiated to capture
the kinds of ILP tasks addressed in practice. We proceed by briefly discussing
a number of possible variations, indicating which of these we can handle with
the approach proposed in this paper.

Clauses in T and H are often restricted to definite clauses with only pos-
itive literals in the body. Some ILP algorithms are able to deal with normal
clauses which allow negated literals in the body. One can go a step further and
allow negation over several related literals in the body (so-called features). The
transformation-based method we describe in Section 4 can handle each of these
cases.

In a typical predictive ILP task, there is a single foreground predicate to be
learned, often referred to as the target predicate. In contrast, multiple pred-
icate learning occurs when |F |> 1. Multiple predicate learning is hard if the
foreground predicates are mutually dependent, i.e., if one foreground predicate
acts as an auxiliary predicate to another foreground predicate, because in that
case the auxiliary predicate is incompletely specified. Approaches to dealing
with incomplete background theory, such as abductive concept learning [Kakas
and Riguzzi 1997], can be helpful here. Alternatively, multiple predicate learn-
ing may be more naturally handled by a descriptive ILP approach [Flach and
Lachiche 2001], which is not intended at learning of classification rules but
at learning of properties or constraints that hold for E given T . In this pa-
per we restrict attention to predictive ILP tasks where there is a single target
predicate.

The problems of learning recursive rules, where a foreground predicate is
its own auxiliary predicate, are related to the problems of multiple predicate
learning. In general, recursive rules are not amenable to transformation into
propositional form without combinatorial explosion. We will not deal with learn-
ing recursive programs in this paper.

Definition 2.1 only applies to boolean classification problems. The definition
could be extended to multiclass problems, by supplying the foreground predicate
with an extra argument indicating the class. In such a case, a set of rules
has to be learned for each class. It follows that we can also distinguish binary
classification problems in which both the positive and negative class have to
be learned explicitly (rather than by negation-as-failure, as in the definition).
Most learning tasks in this paper are of this binary classification kind.

In individual-centered domains there is a notion of individual, e.g., molecules
or trains, and learning occurs at the level of individuals only. Often, individ-
uals are represented by a single variable, and the foreground predicates are
either unary predicates concerning boolean properties of individuals, or binary
predicates assigning an attribute-value or a class-value to each individual. It
is however also possible that individuals are represented by tuples of variables
(see Section 3.1.2 for an example). Local variables referring to parts of indi-
viduals are introduced by so-called structural predicates. Individual-centered

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

462 • N. Lavrač and P. A. Flach

representations allow for a strong language bias for feature construction,
and form the basis for the extended propositionalization method presented in
Section 4.

Sometimes a predictive ILP task is unsolvable with the given background
theory, but solvable if an additional background predicate is introduced. For
instance, in Peano arithmetic, multiplication is not finitely axiomatizable un-
less the definition of addition is available. The process of introducing additional
background predicates during learning is called predicate invention. Even when
learning nonrecursive theories, in which case an equivalent hypothesis without
the invented predicates is guaranteed to exist, predicate invention can be use-
ful to guide learning, and to identify additional useful domain knowledge.1 As
mentioned in the introduction, in this paper we systematically construct new
features to be used in learning, which can be seen as a simple form of predicate
invention.

Finally, sometimes an initial foreground-background hypothesis H0 may be
given to the learner as a starting point for hypothesis construction. Such a
situation occurs for example in incremental learning, where examples become
available and are processed sequentially. Equivalently, we can perceive this as
a situation where the background theory also partially defines the foreground
predicate(s). This is usually referred to as theory revision. In this paper, we only
address nonincremental learning without initial theory.

2.2 Transformations of the Basic Setting

The predictive ILP framework as discussed above has several degrees of free-
dom: the language biases for background knowledge and hypotheses, whether
to use general background rules or only specific background facts, etc. One way
of understanding these different possible settings is by studying the conditions
under which one can be transformed into the other. In this section we briefly
discuss some of these transformations, including an extreme form called propo-
sitionalization, which compiles a predictive ILP task down to an attribute-value
learning task.

2.2.1 Flattening. The background theory defines a number of auxiliary
predicates for use in the bodies of hypothesis clauses. Many of these will be
defined intensionally, but some may be specified extensionally. Typically, back-
ground facts occur as artefacts of using a function-free representation. We may
either have a function-free hypothesis language, or function-free background
theory and examples as well. The transformation to a function-free language
is called flattening [Rouveirol 1994].

Example 2.2 (Flattening). Suppose our background theory contains the
usual definition of append/3:

append([],Ys,Ys).
append([X|Xs],Ys,[X|Zs]):-append(Xs,Ys,Zs).

1Predicate invention can be seen as an extreme form of multiple predicate learning where some of
the foreground predicates have no examples at all.

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

An Extended Transformation Approach to Inductive Logic Programming • 463

Given a few foreground facts such as p([1,2],[2,1]), p([2],[2]) and
p([],[]), the definition of naive reverse may be induced:

p([],[]).
p([H|T],L):-p(T,LT),append(LT,[H],L).

If a function-free hypothesis language is required, we will need to emulate
the list functor as a predicate cons/3 in our background theory, with the
cons(H,T,[H|T]) definition. The flattened (i.e., function-free) definition of naive
reverse then becomes

p([],[]).
p(HT,L):-cons(H,T,HT),p(T,LT),cons(H,[],HL),append(LT,HL,L).

If we require a function-free language altogether, then we need to introduce
names for complex terms such as [1,2]. The above examples would then also
need to be flattened to p(list12,list21), p(list2,list2), and p(null, null),
and the cons/3 predicate would be defined extensionally by an enumeration of
ground facts such as cons(1,list2,list12) and cons(2,null,list2).

The extensional definition of cons/3 in Example 2.2 constitutes a set of back-
ground facts, whereas the definition of append/3 remains intensional, even
when flattened. Where appropriate, we will use the superscript i (e) to refer
to intensional (extensional) background knowledge, i.e., T =Ti ∪T e.

2.2.2 Propositionalization. Consider a simple learning task in which all
predicates in the hypothesis language are unary, there are no function sym-
bols, and hypothesis rules have a single universally quantified variable. In this
case we can compile examples and background knowledge into a single exten-
sional table, as follows. The table contains one column for each predicate in
the hypothesis language, and one row for each example. Given an example,
we set the value in the column for the foreground predicate to true if it is a
positive example, and to false if it is a negative example. We then query the
background knowledge to obtain the truth values in the other columns. The
propositionalization approach will be further explained in Sections 3 and 4.

This transformation is similar to flattening in that it generates extensional
background knowledge—however, it is different in that the new background
facts replace the original background rules. This is so, because the table contains
all the information needed to determine, for any example and any hypothesis
rule, whether that rule correctly classifies the example. Moreover, the dataset
contained in the table can be handled by any propositional or attribute-value
learner, hence the name propositionalization for this transformation.2

We will have much more to say about propositionalization in the sections
to come. For the moment, it suffices to make some general remarks. First of
all, the condition that hypothesis rules are built from unary predicates with a
single universally quantified variable is sufficient, but not necessary for propo-
sitionalization to be applicable. In general, the process is equally applicable if

2See Flach [1999] for a discussion why attribute-value representations are usually called “propo-
sitional.”

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

464 • N. Lavrač and P. A. Flach

the hypothesis language consists of definite rules with all variables occurring
in the body also occurring in the head (so-called constrained rules), provided
these rules are nonrecursive and stratifiable. It is possible to transform an
unconstrained rule with existential variable(s) in the body into a constrained
rule by introducing additional background predicates “hiding” the existential
variables. This is the basis of the propositionalization method presented in
Section 4.

Furthermore, the extensional dataset constructed by propositionalization
need not be completely boolean. For instance, in a multiclass learning problem
the head predicate would actually be a function, and the corresponding column
would contain all possible class values. The same happens if some of the back-
ground predicates used in the hypothesis language are replaced by functions.

Finally, not all propositionalization approaches actually generate the ex-
tensional dataset. For instance, the first-order Bayesian classifier 1BC [Flach
and Lachiche 1999] performs propositionalization only conceptually in decid-
ing what first-order features (i.e., conjunctions of atoms) to generate, then eval-
uates those features directly on the first-order dataset. The main difference
between attribute-value learning and ILP is that in attribute-value learning
the attributes to be used in hypotheses are exactly those which are used to de-
scribe the examples, while the fundamental problem of ILP is to decide which
features to use for constructing hypotheses. Propositionalization approaches
use all features that can be constructed under a propositionalization transfor-
mation.

2.2.3 Saturation. For completeness, we note that the above process of “ex-
tensionalizing” intensional background knowledge is a transformation in its
own right known as saturation [Rouveirol 1994] or bottom-clause construc-
tion [Muggleton 1995], which is also applicable outside the context of propo-
sitionalization. It can be understood as the construction of a ground clause
p(x j) :−Be(x j), where p(x j) denotes the example (i.e., the foreground predi-
cate p applied to the individual x j), and Be(x j) is a conjunction of all ground
facts regarding x j that can be derived from the background knowledge (here, it
is usually assumed that the background knowledge is partitioned in parts de-
scribing individual examples, and a general part). In general, Be(x j) will have a
different format (and may even be infinite) for each individual x j ; only in propo-
sitionalization approaches they all have the same, fixed format. Notice, that if
we saturate all examples this way, we obtain a “background-free” statement
of the predictive ILP task as induction from ground clauses: find a hypothesis
H ⊆HL such that H |= p(x j) : −Be(x j) for all j .

3. THE LINUS TRANSFORMATION METHOD

This section presents a method for effectively using background knowledge in
learning both propositional and relational descriptions. The LINUS algorithm
is a descendant of the learning algorithm used in QuMAS (Qualitative Model
Acquisition System) which was used to learn functions of components of a qual-
itative model of the heart in the KARDIO expert system for diagnosing car-
diac arrhythmias [Bratko et al. 1989]. The method, implemented in the system

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

An Extended Transformation Approach to Inductive Logic Programming • 465

LINUS, employs propositional learners in a more expressive logic programming
framework.

3.1 Learning with LINUS

LINUS is an ILP learner which induces hypotheses in the form of constrained
deductive hierarchical database (DHDB) clauses (a formal definition of DHDB
and DDB clauses is introduced in Section 3.2). As input it takes training ex-
amples E, given as ground facts, and background knowledge T in the form
of (possibly recursive) deductive database (DDB) clauses. The main idea of
LINUS is to transform the problem of learning relational DHDB descriptions
into an attribute-value learning task [Lavrač et al. 1991]. This is achieved by
the so-called DHDB interface. The interface transforms the training examples
from the DHDB form into the form of attribute-value tuples. This results in
an extensional table, as introduced in Section 2.2.2. The most important fea-
ture of this interface is that by taking into account the types of the arguments
of the target predicate, applications of background predicates and functions
are considered as attributes for attribute-value learning.3 Existing attribute-
value learners can then be used to induce if-then rules. Finally, the induced
if-then rules are transformed back into the form of DHDB clauses by the DHDB
interface.

The LINUS algorithm can be viewed as a toolkit of learning techniques.
These include a decision tree learner and two rule learners among which CN2
[Clark and Niblett 1989; Clark and Boswell 1991] has been used in our ex-
periments. Recently, LINUS has been upgraded with an interface to MLC++
[Kohavi et al. 1996].

3.1.1 The Algorithm. The LINUS learning algorithm is outlined in
Figure 1. Notice that the algorithm is given a type signature ¿ , defining the
types of arguments of foreground and background predicates. In general,
possible types include predefined atomic types such as integers, reals and
booleans; user-defined enumerated types; tuple types (Cartesian products); con-
structor types; and predefined compound types like lists and sets.4 Originally,
LINUS could deal only with a typed Datalog representation, i.e., all types are
atomic and either user-defined by enumerating its constants, or numerical. One
could argue that this is not a real restriction, since compound types can be flat-
tened as explained in Section 2.2.1. However, this means the type structure
cannot be used as a declarative bias to guide learning. We overcome this limita-
tion and define a declarative bias for compound type structures in Section 4.4.

3An application of a background predicate and function actually results in a call of a propositional
feature (determined by the types of predicate/function arguments) obtained by instantiating the
arguments of the background predicate/function by values defined by the training examples. If the
call of a predicate succeeds, the call results in value true; otherwise the call returns value false.
A call to a function returns the computed function value. Examples in Sections 3.1.2 and 3.1.3
illustrate the case for background predicates but not for functions.
4Not all of these types are available in every language—e.g., Prolog handles tuples and lists by
means of constructors (functors), and sets can be seen as higher-order terms [Lloyd 1999].

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

466 • N. Lavrač and P. A. Flach

Fig. 1. The LINUS transformation algorithm.

3.1.2 A Sample Run of LINUS on a Chess Endgame Problem. Let us il-
lustrate LINUS on a simple example. Consider the problem of learning illegal
positions on a chess board with only two pieces, white king and black king. The
target predicate illegal(WKf,WKr,BKf,BKr) states that the position in which
the white king is at (WKf,WKr) and the black king at (BKf,BKr) is illegal. Argu-
ments WKf and BKf are of type file (with values a to h), while WKr and BKr are
of type rank (with values 1 to 8). Background knowledge is represented by two
symmetric predicates adjFile(X,Y) and adjRank(X,Y), which can be applied
on arguments of type file and rank, respectively, and express that X and Y
are adjacent. The built-in symmetric equality predicate X= Y, which works on
arguments of the same type, may also be used in the induced clauses.

What follows is the description of the individual steps of the algorithm.

Step 1. First, the sets of positive and negative facts are established. In our
domain, one positive example (illegal endgame position, labeled⊕) and
two negative examples (legal endgame positions, labeled ª) are given:

% illegal(WKf,WKr,BKf,BKr).
illegal(a,6,a,7). ⊕
illegal(f,5,c,4). ª
illegal(b,7,b,3). ª

Step 2. The given facts are then transformed into attribute-value tuples. To
this end, the algorithm first determines the possible applications of the
background predicates on the arguments of the target predicate, taking
into account argument types. Each such application is considered as an
attribute. In our example, the set of attributes determining the form of
the tuples is the following:

〈WKf=BKf, WKr=BKr, adjFile(WKf,BKf), adjRank(WKr,BKr)〉
ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

An Extended Transformation Approach to Inductive Logic Programming • 467

Table I. Propositional Form of the illegal Position Learning Problem

Propositional features
Class WKf=BKf WKr=BKr adjFile(WKf,BKf) adjRank(WKr,BKr)

true true false false true

false false false false true

false true false false false

Since predicates adjFile and adjRank are symmetric, their other two
possible applications adjFile(BKf,WKf) and adjRank(BKr,WKr) are not
considered as attributes for learning.5

The tuples, i.e., the values of the attributes, are generated by calling the
corresponding predicates with argument values from the ground facts
of predicate illegal. In this case, the attributes can take values true
or false. For the given examples, the following tuples are generated:

% 〈WKf=BKf, WKr=BKr, adjFile(WKf,BKf), adjRank(WKr,BKr)〉
〈 true, false, false, true 〉 ⊕
〈 false, false, false, true 〉 ª
〈 true, false, false, false 〉 ª

These tuples are generalizations (relative to the given background
knowledge) of the individual facts about the target predicate. This step
is actually the propositionalization step described in Section 2.2.2; to
make the connection with that section, note that the above tuples form
a propositional table shown in Table I.

Step 3. Next, an attribute-value rule learner is used to induce a set of if-then
rules from the above tuples:

Class = true if (WKf=BKf) = true ∧ adjRank(WKr,BKr) = true

Step 4. Finally, the induced if-then rules for Class = true are transformed
back into DHDB clauses. In our example, we get the following clause:

illegal(WKf,WKr,BKf,BKr):-WKf=BKf, adjRank(WKr,BKr).

In summary, the learning problem is transformed from a relational to an
attribute-value form and solved by an attribute-value learner. The induced
hypothesis is then transformed back into the relational form.

3.1.3 A Sample Run of LINUS on a Family Relations Problem. The al-
gorithm is illustrated also on a simple ILP problem of learning family re-
lationships. The task is to define the target predicate daughter(X,Y), which
states that person X is a daughter of person Y, in terms of the background
predicates female, parent, and equality. All the variables are of type person,

5It should be noted that if the user so chooses the arguments of the target predicate—WKf, WKr,
BKf and BKr—may be included in the selected set of attributes for learning (see Section 3.2.2,
item 1 of Definition 3.4, allowing for a binding of a variable to a value to appear in clause
body, e.g., WKf=a), so that the form of the tuples would be as follows: 〈WKf, WKr, BKf, BKr, WKf=BKf,

WKr=BKr, adjFile(WKf,BKf), adjRank(WKr,BKr)〉.

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

468 • N. Lavrač and P. A. Flach

Table II. A Simple Family Relationships Problem

Training examples Background knowledge
daughter(sue,eve). ⊕ parent(eve,sue). female(ann).

daughter(ann,pat). ⊕ parent(ann,tom). female(sue).

daughter(tom,ann). ª parent(pat,ann). female(eve).

daughter(eve,ann). ª parent(tom,sue).

Table III. Propositional Form of the daughter Relationship Problem

Variables Propositional features
C X Y X=Y f(X) f(Y) p(X,X) p(X,Y) p(Y,X) p(Y,Y)

⊕ sue eve false true true false false true false

⊕ ann pat false true false false false true false

ª tom ann false false true false false true false

ª eve ann false true true false false false false

which is defined as person={ann, eve, pat, sue, tom}. There are two positive and
two negative examples of the target predicate. The training examples and the
background predicates (excluding the built-in predicate equality) are given in
Table II.

Step 1. Positive and negative examples are explicitly given, as shown in
Table II.

Step 2. Transformation of the ILP problem into attribute-value form is per-
formed as follows. The possible applications of the background predi-
cates on the arguments of the target predicate are determined, tak-
ing into account argument types. Each such application introduces
a new attribute. In our example, all variables are of the same type
person. The corresponding attribute-value learning problem is given in
Table III, where f stands for female, m for male, and p for parent. In
this table, variables stand for the arguments of the target predicate,
and propositional features denote the newly constructed attributes of
the propositional learning task. When learning function-free DHDB
clauses, only the new attributes are considered for learning. If we
remove the function-free restriction, the arguments of the target pred-
icate (named variables in Table III) are used as attributes in the propo-
sitional task as well (see Section 3.2.2 for a more detailed explanation).

Step 3. In the third step, an attribute-value learning program induces the fol-
lowing if-then rule from the tuples in Table III:

Class = true if female(X) = true ∧ parent(Y,X) = true

Step 4. In the last step, the induced if-then rules are transformed back into
DHDB clauses. In our example, we get the following clause:

daughter(X,Y):-female(X),parent(Y,X).

Note that the same result can be obtained on a similar learning problem,
where the target predicate daughter(X,Y) is to be defined in terms of the

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

An Extended Transformation Approach to Inductive Logic Programming • 469

Table IV. Intensional Background Knowledge for
Learning the daughter Relationship

mother(eve,sue). parent(X,Y):- female(ann).

mother(ann,tom). mother(X,Y). female(sue).

father(pat,ann). parent(X,Y):- female(eve).

father(tom,sue). father(X,Y).

background predicates female, male, and parent, given the background knowl-
edge from Table IV. It illustrates that in this approach intensional background
knowledge in the form of nonground clauses can be used in addition to ground
facts.

3.1.4 Discussion. The chess endgame domain in Section 3.1.2 is a sim-
plified example of an individual-centered domain: the individuals are endgame
positions (i.e., 4-tuples of white king file and rank and black king file and rank),
and the concept to be learned is a property of such positions. In the family do-
main (Section 3.1.3), however, there is no clear choice of individual. On the one
hand, we could choose persons as individuals, but then we could only learn
properties of persons, and not the daughter predicate as in the example. Tak-
ing pairs of individuals would solve this problem, but would lead to awkward
definitions, as we would need background predicates to refer to the first or sec-
ond person in a pair, or to swap persons in a pair as required by the daughter
predicate:

daughter pair(P):-first(P,X),female(X),swap(P,P1),parent pair(P1).

The third alternative, taking whole family trees as individuals, suffers from
the same problem as the first, namely that daughter is not a property of the
individual.

More generally, one can draw a distinction between concept learning, on the
one hand, and program synthesis on the other. Concept learning, and classifica-
tion problems in general, is inherently individual-centered, as belonging to the
concept or to a certain class is a property of the individual. Program synthesis,
on the other hand, typically involves some calculation to determine the value of
one argument of the target predicate, given the others. It can be trivially trans-
formed into a boolean classification problem, by ignoring the modes and viewing
it as a predicate rather than a function, but this ignores crucial information and
makes the task even harder. The extended transformation method we present
in Section 4 is especially suited for concept learning and classification tasks,
but not for program synthesis tasks.

3.2 The LINUS Language Bias

As already mentioned in Section 3.1, LINUS induces hypotheses in the form of
constrained deductive hierarchical database (DHDB) clauses. As input it takes
training examples E, given as ground facts, and background knowledge T in
the form of (possibly recursive) deductive database (DDB) clauses. Variables
are typed.

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

470 • N. Lavrač and P. A. Flach

Table V. Relating Database and Logic Programming Terminology

DDB terminology LP terminology
relation name p predicate symbol p
attribute of relation p argument of predicate p
tuple<a1, . . . , an> ground fact p(a1, . . . , an)
relation p − definition of predicate p −

a set of tuples a set of ground facts

This section first introduces the definitions of DHDB and DDB clauses in the
database terminology and in the logic programming terminology, and continues
by describing the actual LINUS language bias.

3.2.1 The Terminology. Deductive databases extend relational databases
by allowing for both extensional and intensional definitions of relations. The
logic programming school in deductive databases [Lloyd 1987] argues that de-
ductive databases can be effectively represented and implemented using logic
and logic programming. Table V relates the basic deductive database [Ullman
1988] and logic programming [Lloyd 1987] terms.

Notice in Table V that a definition of a predicate is introduced as a set of
ground facts. In general, of course, a predicate definition is a set of program
clauses with the same predicate symbol (and arity) in their heads. A program
clause is a clause of the form

L : −L1, . . . , Lm

where L is an atom, and each of L1, . . . , Lm is a literal of the form L or not L,
where L is an atom. A normal program is a set of program clauses.

The following definitions are adapted from [Lloyd 1987] and [Ullman 1988].

Definition 3.1 (Deductive Database). A Datalog clause is a program clause
with no function symbols of nonzero arity (i.e., only variables and constants can
be used as predicate arguments). A constrained clause is a program clause in
which all variables in the body also appear in the head. A database clause is a
typed program clause of the form

L : −L1, . . . , Lm

where L is an atom and L1, . . . , Lm are literals. A deductive database (DDB) is
a set of database clauses.

Database clauses use variables and function symbols in predicate argu-
ments. As recursive predicate definitions are allowed, the language is substan-
tially more expressive than the language of relational databases. If we restrict
database clauses to be nonrecursive, we obtain the formalism of deductive hi-
erarchical databases.

Definition 3.2 (Deductive Hierarchical Database). A level mapping of a
database is a mapping from its set of predicates to the nonnegative integers;
the value of a predicate under this mapping is called its level. A deductive hier-
archical database (DHDB) is a deductive database which has a level mapping

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

An Extended Transformation Approach to Inductive Logic Programming • 471

such that for every database clause the level of its body predicates is less than
the level of its head predicate.

While the expressive power of DHDB is the same as that of a relational
database, DHDB allows intensional relations which can be much more com-
pact than a relational database representation.

3.2.2 The LINUS Language Bias of Constrained Clauses

Definition 3.3 (LINUS Background Knowledge). There are two kinds of
background predicates defined in the background knowledge TB.

(1) Utility functions f j are predicates with input/output mode declarations.
When applied to ground input arguments from the training examples, util-
ity functions compute the unique ground values of their output arguments.

(2) Utility predicates qi have only input arguments and can be regarded as
boolean utility functions having values true or false only.

Definition 3.4 (LINUS Literals). The body of an induced clause in LINUS
is a conjunction of literals, each having one of the following four forms:

(1) a binding of a variable to a value, e.g., X =a;
(2) an equality of pairs of variables, e.g., X =Y ;
(3) an atom with a predicate symbol (utility predicate) and input arguments

which are variables occurring in the head of the clause, e.g., qi(X , Y); and
(4) an atom with a predicate symbol (utility function) having as input ar-

guments variables which occur in the head of the clause, and out-
put arguments with an instantiated (computed) variable value, e.g.,
f j (X , Y , Z), Z =a, for X , Y being input, and Z being an output argument.

In the above, X and Y are variables from the head of the clause, and a is
a constant of the appropriate type. Literals of form (2) and (3) can be either
positive or negated. Literals of the form X =a under items (1) and (4) may also
have the form X>a and/or X<a, where a is a real-valued constant.

Notice that the output argument of a utility function can only be used to form
equalities and inequalities with constants. This restriction is alleviated in the
DINUS algorithm (see Section 3.3).

Definition 3.5 (LINUS Hypothesis Language). The LINUS hypothesis lan-
guage L is restricted to constrained deductive hierarchical database (DHDB)
clauses. In DHDB variables are typed and recursive predicate definitions are
not allowed. In addition, all variables that appear in the body of a clause have
to appear in the head as well, i.e., only constrained clauses are induced.

The attributes given to propositional learners are (1) the arguments of the
target predicate, (2)–(3) binary-valued attributes resulting from applications
of utility predicates, and (4) output arguments of utility functions. Attributes
under (1) and (4) may be either discrete or real-valued. For cases (2) and (3) an
attribute-value learner will use conditions of the form A= true or A= false

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

472 • N. Lavrač and P. A. Flach

in the induced rules, where A is a feature (an attribute) (cf. examples in Sec-
tions 3.1.2 and 3.1.3). These are transcribed to literals A and not A, respectively,
in the DHDB clauses. For case (1) an attribute-value learner will formulate con-
ditions of the form X =a, X >a, or X <a, which can be immediately used in
DHDB clauses. For case (4), in addition to the conditions Z =a, Z >a, and
Z<a, the literal f j (X , Y , Z) has to be added to the DHDB clause so that the
value of Z can be computed from the arguments of the target predicate.

3.3 DINUS: Extending LINUS to Learn Determinate Clauses

As explained in the previous section, LINUS cannot induce clauses with vari-
ables that occur in the body but not in the head. In this section we briefly outline
a method that upgrades LINUS to learn a restricted class of clauses with de-
terminate local variables (variables that occur only in the body, and that have
only one possible binding given the bindings of the other variables).

We use the following definition of determinacy, adapted from [Džeroski et al.
1992].

Definition 3.6 (Determinacy). A predicate definition is determinate if all of
its clauses are determinate. A clause is determinate if each of its literals is
determinate. A literal is determinate if each of its variables that do not appear
in preceding literals has, for the given E ∪TB, exactly one binding given the
bindings of its variables that appear in preceding literals.

Determinate literals are a natural extension of the utility functions used in
LINUS, in the sense that their output arguments are used as input arguments
to arbitrary literals.

Example 3.7 (Determinate Grandmother). In the grandmother(X,Y) defini-
tion below, a new variable Z has been introduced in both clauses by a determi-
nate literal (the value of variable Z is uniquely defined by the value of variable
Y, since child Y has only one father and only one mother Z).

grandmother(X,Y):-father(Z,Y),mother(X,Z).
grandmother(X,Y):-mother(Z,Y),mother(X,Z).

The logically equivalent definition below of the predicate grandmother is in
general nondeterminate.

Example 3.8 (Nondeterminate Grandmother). Exchanging the literals in
the clauses for grandmother in Example 3.7 does not change their logical
meaning.

grandmother(X,Y):-mother(X,Z),father(Z,Y).
grandmother(X,Y):-mother(X,Z),mother(Z,Y).

However, the resulting clauses may be nondeterminate since, for the given
dataset, the value of variable Z is not necessarily uniquely defined by the value
of variable X, since mother X can have more than one child Z.

While LINUS allows only global variables from the head of a clause to appear
in the literals in clause body (constrained clauses), using determinacy allows

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

An Extended Transformation Approach to Inductive Logic Programming • 473

for a restricted form of local variables to be introduced in the body of an induced
clause. This approach to learning of determinate clauses is implemented in the
system DINUS [Džeroski et al. 1992; Lavrač and Džeroski 1992; 1994].

Compared to the LINUS algorithm outlined in Figure 1, the DINUS learning
algorithm consists of the same main steps. Steps 2 and 4, outlined below, are
more elaborate in DINUS.

—In step 2, the ILP problem is transformed to propositional form as follows.
—The algorithm first constructs, from background predicates B, a list of

determinate literals that introduce new local variables of depth at most i.
These literals are not used for learning as they do not discriminate between
positive and negative examples (due to determinacy, the new variables
have a unique binding for each example, and the literals are evaluated
true for all examples, positive and negative).

—Next, it constructs, from background predicates B, a list of literals using
as arguments only variables from the head literal and new determinate
variables. These literals form the features (attributes) to be used for learn-
ing in step 3. For these features, for each example, their truth value is
determined by calls to background knowledge TB.

—In step 4, the induced propositional description is transformed back to a set
of determinate DHDB clauses, by adding the necessary determinate literals
which introduced the new variables.

A more detailed description of the algorithm and examples of its performance
can be found in Lavrač and Džeroski [1992; 1994].

4. EXTENDING LINUS TO LEARN NONDETERMINATE CLAUSES

In this section we describe how the DINUS restriction of determinate literals
can be overcome, by employing a so-called individual-centered representation.
We start by discussing feature construction as an important, possible separate
step, in rule construction. We continue by describing a benchmark ILP problem
that is essentially nondeterminate, and show that by employing the proposed
feature construction approach the LINUS hypothesis language can be extended
to learning of nondeterminate DHDB clauses.

4.1 Motivation for Upgrading LINUS

The original LINUS algorithm, described in Section 3, cannot induce clauses
with variables that occur in the body but not in the head. Its extension DI-
NUS, described in Section 3.3, enables learning of a restricted class of DHDB
clauses with determinate local variables (these have only one possible binding
given the bindings of the other variables). The determinacy restriction is due
to the nature of the algorithm: to be in line with the “nature” of attribute-value
learning, it is natural that one training example is represented by one tuple
(one feature vector). If DINUS were to allow for nondeterminacy, one train-
ing example would have got expanded to a number of tuples (their number
being the product of numbers of possible bindings of new variables). Such an
approach would enable handling multiple-instance problems [Dietterich et al.

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

474 • N. Lavrač and P. A. Flach

1997], which would need to be accompanied by a modification of the covers rela-
tion for hypotheses (testing whether an example is satisfied by the hypothesis).
Such an approach, as successfully proposed by Zucker and Ganascia [1996] (see
Section 6 on related work), deviates from the basic “nature” of attribute-value
learning. In our work we try to keep the “nature” of attribute-value learning by
a transformation approach that results in keeping all the information inherent
to one training example in one tuple, and using an arbitrary attribute-value
learner to perform induction. Thus Section 4 shows how to extend LINUS to
learning of nondeterminate DHDB clauses, without violating this principle of
“natural” transformation to an attribute-value learning problem.

Why is it interesting to extend the LINUS propositionalization approach
as opposed to using inductive logic programming systems that can do learn-
ing without transforming a learning problem to an attribute-value form? Some
of the pros and cons are outlined below. The most obvious obvious pros are
the much wider understanding and acceptance of attribute-value learning, and
the variety of available algorithms, including public domain software such as
WEKA [Witten and Frank 2000]. Whereas the main limitation is the inability
of the transformation approaches to learn recursive hypotheses. There is also
a tradeoff between constructing features in advance, as done in transforma-
tion approaches, and the advantageous “while learning” feature construction
as done by ILP systems. Despite this advantageous feature of ILP, there are at
least two disadvantages. The first concerns the use of negation. As shown in the
results of Experiments 4.13 and 4.12 in Section 4.5, rules can be constructed
using the negation in clause body, constructed features, and/or individual fea-
tures. In ILP this is hard to be achieved. The second point relates to building of
libraries of constructed features for similar types of tasks, whose utility is shown
by Srinivasan and King’s [1996] approach to predicate invention achieved by
using a variety of predictive learning techniques to learn background knowl-
edge predicate definitions (see Section 6 for more details).

A deeper understanding of the utility of transformation approaches to rela-
tional learning as compared to using ILP systems can be found in [De Raedt
1998] which provides an in-depth discussion of the relation between attribute-
value learning and ILP.

4.2 Motivation for Feature Construction

Consider the task of rule construction. We assume that rules are implications
consisting of a body (antecedent) and a head (consequent). A typical approach
to rule construction is to select a head corresponding to a class, and then con-
structing an appropriate body. Not all rule learning algorithms follow this
approach: for instance, CN2 [Clark and Niblett 1989] maintains a beam of
best bodies, evaluated w.r.t. information gain (i.e., with maximal improvement
in the distribution of classes among the covered examples), and then assign-
ing a rule head (class assignment) maximizing classification accuracy. As an-
other example, association rule learning algorithms, e.g., APRIORI [Agrawal
et al. 1996], first search for the most promising bodies (frequent itemsets),
and then construct association rules from two frequent itemsets such that one

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

An Extended Transformation Approach to Inductive Logic Programming • 475

includes the other. In these two cases, body construction is the main step of rule
construction.

Usually, a rule body is a conjunction of (possibly negated) literals, where a
literal can be an attribute-value pair or a Prolog literal. Typically, such con-
junctions are constructed literal by literal. For instance, FOIL [Quinlan 1990]
selects the literal with maximal information gain. It is well-known that this
leads to problems with literals introducing new local variables, since these
literals do not improve the class distribution unless they are combined with
another literal which consumes the variable. There exist various attempts to
solve this problem, e.g., look-ahead search which searches for more than one
literal at a time. However, this approaches the problem in an ad-hoc fashion.
The main issue is that in ILP it is unnatural to separate literals which share
variables other than the one(s) occurring in the head of the rule; they should be
added as one chunk. Such chunks of related literals are what we call first-order
features.

Defining a rule body as consisting of features, where a feature is a conjunction
of literals, also has the advantage of added expressiveness if we allow features
to be negated. This would have the effect of allowing disjunctions of negated
literals in the body. It also illustrates that body bias and feature bias are really
two different things: e.g., we can allow negation of features but not of literals
within features, or vice versa. The added expressiveness can be considerable.
For instance, suppose that we define a body as a conjunction of possibly negated
features, and a feature as a conjunction of possibly negated literals. The effect
would be that any boolean combination of literals would be expressible in this
combined body-feature bias.

How can features be constructed? A natural choice—to which we will re-
strict ourselves in this paper—is to define a feature as a conjunction of (pos-
sibly negated) literals. Features describe subsets of the training set that are
for some reason unusual or interesting. For instance, the class distribution
among the instances described by the feature may be different from the class
distribution over the complete training set in a statistically significant way. Al-
ternatively, the feature may simply be shared by a sufficiently large fraction of
the training set. In the first case, the feature is said to describe an interesting
subgroup of the data, and several propositional and first-order systems exist
that can discover such subgroups (e.g., Explora [Klösgen 1996], MIDOS [Wrobel
1997], and Tertius [Flach and Lachiche 2001]). In the second case, the feature
is said to describe a frequent itemset, and again several algorithms and sys-
tems exist to discover frequent itemsets (e.g., APRIORI [Agrawal et al. 1996]
and WARMR [Dehaspe and Toivonen 1999]). Notice that the systems just men-
tioned are all discovery systems, which perform descriptive rather than predic-
tive induction. Indeed, feature construction is a discovery task rather than a
classification task.

In this section we introduce a simple learning problem that will be used to
illustrate different notions introduced in this paper. The learning task is to dis-
cover low size-complexity Prolog programs for classifying trains as Eastbound
or Westbound [Michie et al. 1994]. The problem is illustrated in Figure 2. We
illustrate two possible representations of this learning problem in Prolog.

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

476 • N. Lavrač and P. A. Flach

Fig. 2. The 10-train East-West challenge.

Example 4.1 (East-West Challenge in Prolog, Nonflattened). Using a term-
based (i.e., nonflattened) representation, the first train in Figure 2 can be rep-
resented as follows:

eastbound([c(rect,short,single,no, 2,l(circ,1)),
c(rect,long, single,no, 3,l(hexa,1)),
c(rect,short,single,peak,2,l(tria,1)),
c(rect,long, single,no, 2,l(rect,3))], true).

Here, a train is represented as a list of cars; a car is represented as a six-tuple
indicating its shape, length, whether it has a double wall or not, its roof shape,
number of wheels, and its load; finally, a load is represented by a pair indicating
the shape of the load and the number of objects. A possible inductive hypothesis,
stating that a train is eastbound if it has a short open car, is as follows:

eastbound(T,true):-member(T,C),arg(2,C,short),arg(4,C,no).

Example 4.2 (East-West Challenge in Prolog, Flattened). A flattened rep-
resentation of the same data, using function-free ground facts, is as follows:

eastbound(t1,true).

hasCar(t1,c11). hasCar(t1,c12).
cshape(c11,rect). cshape(c12,rect).
clength(c11,short). clength(c12,long).
cwall(c11,single). cwall(c12,single).
croof(c11,no). croof(c12,no).
cwheels(c11,2). cwheels(c12,3).
hasLoad(c11,l11). hasLoad(c12,l12).
lshape(l11,circ). lshape(l12,hexa).
lnumber(l11,1). lnumber(l12,1).

hasCar(t1,c13). hasCar(t1,c14).
cshape(c13,rect). cshape(c14,rect).
clength(c13,short). clength(c14,long).

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

An Extended Transformation Approach to Inductive Logic Programming • 477

cwall(c13,single). cwall(c14,single).
croof(c13,peak). croof(c14,no).
cwheels(c13,2). cwheels(c14,2).
hasLoad(c13,l13). hasLoad(c14,l14).
lshape(l13,tria). lshape(l14,rect).
lnumber(l13,1). lnumber(l14,3).

Using this representation, the above hypothesis would be written as

eastbound(T,true):-hasCar(T,C),clength(C,short),croof(C,no).

Strictly speaking, the two representations in Examples 4.1 and 4.2 are
not equivalent, since the order of the cars in the list in the first representa-
tion is disregarded in the second. This could be fixed by using the predicates
hasFirstCar(T,C) and nextCar(C1,C2) instead of hasCar(T,C). For the mo-
ment, however, we stick to the above flattened representation; essentially, this
means that we interpret a train as a set of cars, rather than a list. Under this
assumption, and assuming that each car and each load is uniquely named,
the two representations are equivalent. As a consequence, the two hypothe-
sis representations are isomorphic: hasCar(T,C) corresponds to member(T,C);
clength(C,short) corresponds to arg(2,C,short); and croof(C,no) corre-
sponds to arg(4,C,no). This isomorphism between flattened and nonflattened
hypothesis languages is a feature of what we call individual-centered represen-
tations [Flach 1999].

4.3 Identification of First-Order Features

In attribute-value learning, features only add expressiveness if the body bias
allows negation of features. However, in first-order learning features occupy a
central position. The distinguishing characteristic of first-order learning is the
use of variables that are shared between some but not all literals. If there are
no such variables, i.e., all variables occur in all literals, then the only function
of variables is to distinguish literals occurring in rules from literals occurring
in examples. If this distinction does not need to be represented syntactically
but is maintained by the learning algorithm (the Single Representation Trick),
the variables can be dispensed with altogether, thus reducing the rule to a
propositional one.

Definition 4.3 (Global and Local Variables). The variables occurring in the
head of the rule are called global variables. Variables occurring only in the body
are called local variables. A rule in which there are no local variables is called
constrained; a constrained rule in which every global variable occurs once in
every literal is called semipropositional.

Global variables are assumed to be universally quantified, and the scope of the
universal quantifier is the rule. Local variables, called existential variables in
logic programming terminology, are existentially quantified, and the scope of
the existential quantifier is the rule body.

The key idea of first-order features is to restrict all interaction between
local variables to literals occurring in the same feature. This is not really a

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

478 • N. Lavrač and P. A. Flach

restriction, as in some cases the whole body constitutes a single feature. How-
ever, often the body of a rule can be partitioned into separate parts which only
share global variables.

Example 4.4 (Single vs. Multiple Features). Consider the following Prolog
rule, stating that a train is eastbound if it contains a short car and a closed car:

eastbound(T,true):-hasCar(T,C1),clength(C1,short),
hasCar(T,C2),not croof(C2,no).

The body of this clause consists of two features: hasCar(T,C1),clength(C1,
short) or “has a short car” and hasCar(T,C2),not croof(C2,no) or “has a
closed car.” In contrast, the following rule

eastbound(T,true):-hasCar(T,C),clength(C,short),not croof(C,no).

contains a single feature expressing the property “has a short closed car.”

It is easy to recognize the first-order features in any given rule, by focusing
on the use of local variables.

Definition 4.5 (First-Order Features). For any two body literals L1 and L2
of a given rule, L1 and L2 belong to the same equivalence class, L1 ∼lv L2 iff
they share a local variable. Clearly, ∼lv is reflexive and symmetric, and hence
its transitive closure =lv is an equivalence relation inducing a partition on the
body. The conjunction of literals in an equivalence class is called a first-order
feature.6

Example 4.6 (First-Order Features). Consider the following clause:

eastbound(T,true):-hasCar(T,C),hasLoad(C,L),lshape(L,tria).

In this clause the entire rule body is a single first-order feature: ∃ C,L:
hasCar(T,C) ∧ hasLoad(C,L) ∧ lshape(L,tria). This feature is true of any
train which has a car which has a triangular load.

We note the following simple result, which will be used later.

PROPOSITION 4.7 (PROPOSITIONALIZING RULES). Let R be a Prolog rule, and let
R ′ be constructed as follows. Replace each feature F in the body of R by a literal
L consisting of a new predicate with R’s global variable(s) as argument(s), and
add a rule L: −F. R ′ together with the newly constructed rules is equivalent to
R, in the sense that they have the same success set.

By construction, R ′ is a semipropositional rule.

Example 4.8 (Propositionalizing Rules). Consider again the following Pro-
log rule R:

eastbound(T,true):-hasCar(T,C1),clength(C1,short),
hasCar(T,C2),not croof(C2,no).

6The concept of first-order feature as defined here has been developed in collaboration with Nicolas
Lachiche.

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

An Extended Transformation Approach to Inductive Logic Programming • 479

By introducing the following background rules

hasShortCar(T):-hasCar(T,C),clength(C,short).
hasClosedCar(T):-hasCar(T,C),not croof(C,no).

we can reexpress R as the following semipropositional rule R ′:

eastbound(T,true):-hasShortCar(T),hasClosedCar(T).

Notice that R ′ contains only global variables, and therefore is essentially a
propositional rule. R ’s first-order features have been confined to the background
theory. Thus, provided we have a way to construct the necessary first-order
features, body construction in ILP is essentially propositional.

By recognizing the above property, an ILP problem can be transformed into a
propositional learning problem, provided that appropriate first-order features
can be constructed.

4.4 A Declarative Bias for First-Order Feature Construction

Definition 4.5 suggests how to recognize features in a given clause, but it does
not impose any restrictions on possible features and hence cannot be used as a
declarative feature bias. In this section we define such a feature bias, following
the term-based individual-centered representations introduced by Flach et al.
[1998] and further developed by Flach and Lachiche [1999]. Such representa-
tions collect all information about one individual in a single term, e.g., a list
of 6-tuples as in the train representation of Example 4.1. Rules are formed
by stating conditions on the whole term, e.g., length(T,4), or by referring to
one or more subterms and stating conditions on those subterms. Predicates
which refer to subterms are called structural predicates: they come with the
type of the term, e.g., list membership comes with lists, projections (n different
ones) come with n-tuples, etc. Notice that projections are determinate, while
list membership is not. In fact, the only place where nondeterminacy can occur
in individual-centered representations is in structural predicates.

Individual-centered representations can also occur in flattened form. In this
case each of the individuals and most of its parts are named by constants, as
in Example 4.2. It is still helpful to think of the flattened representation to
be obtained from the term-based representation. Thus, hasCar corresponds to
list/set membership and is nondeterminate (i.e., one-to-many), while hasLoad
corresponds to projection onto the sixth component of a tuple and thus is deter-
minate (i.e., one-to-one). Keeping this correspondence in mind, the definitions
below for the nonflattened case can be easily translated to the flattened case.

We assume a given type structure defining the type of the individual. In what
follows, “atomic type” refers to a type with atomic values (booleans, integers,
characters, etc.); “compound type” refers to a type whose values have structure
(lists, records, strings, etc.); and “component type” refers to one of the types
making up a compound type (e.g., record is a component type of list of records).

Definition 4.9 (Structural Predicates). Let ¿ be a given type signature,
defining a single top-level type in terms of component types. A structural pred-
icate is a binary predicate associated with a compound type in ¿ representing

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

480 • N. Lavrač and P. A. Flach

the mapping between that type and one of its component types. A functional
structural predicate, or structural function, maps to a unique subterm, while a
nondeterminate structural predicate is nonfunctional.

In general, we have a structural predicate or function associated with each
compound type in ¿ . In addition, we have utility predicates as in LINUS (called
properties in [Flach and Lachiche 1999]) associated with each atomic component
type, and possibly also with compound component types and with the top-level
type (e.g., the class predicate). Utility predicates differ from structural predi-
cates in that they do not introduce new variables.

Example 4.10 (Structural and Utility Predicates). For the East-West chal-
lenge we use the following type signature. train is declared as the top-level
set type representing an individual. The structural predicate hasCar nondeter-
ministically selects a car from a train. car is defined as a 6-tuple. The first 5
components of each 6-tuple are atomic values, while the last component is a
2-tuple representing the load, selected by the structural function hasLoad. In
addition, the type signature defines the following utility predicates (properties):
eastbound is a property of the top-level type train; the following utility predi-
cates are used on the component type car: cshape, clength, cwall, croof, and
cwheels; and lshape and lnumber are properties of the (second level) component
type load.

To summarize, structural predicates refer to parts of individuals (these are
binary predicates representing a link between a compound type and one of its
components; they are used to introduce new local variables into rules), whereas
utility predicates present properties of individuals or their parts, represented by
variables introduced so far (they do not introduce new variables). The language
bias expressed by mode declarations used in other ILP learners such as Progol
[Muggleton 1995] or WARMR [Dehaspe and Toivonen 1999] partly achieves
the same goal by indicating which of the predicate arguments are input (denot-
ing a variable already occurring in the hypothesis currently being constructed)
and which are output arguments, possibly introducing a new local variable.
However, mode declarations constitute a body bias rather than a feature bias.

Declarations of types, structural predicates, and utility predicates define the
feature bias. The actual first-order feature construction will be restricted by
parameters that define the maximum number of literals constituting a feature,
maximal number of variables, and the number of occurrences of individual
predicates.

Definition 4.11 (First-Order Feature Construction). A first-order feature of
an individual is constructed as a conjunction of structural predicates and utility
predicates which is well-typed according to ¿ . Furthermore

(1) there is exactly one variable with type ¿ , which is free (i.e., not quantified)
and which will play the role of the global variable in rules;

(2) each structural predicate introduces a new existentially quantified local
variable, and uses either the global variable or one of the local variables
introduced by other structural predicates;

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

An Extended Transformation Approach to Inductive Logic Programming • 481

(3) utility predicates do not introduce new variables (this typically means that
one of their arguments is required to be instantiated);

(4) all variables are used either by a structural predicate or a utility predicate.

The following first-order feature could be constructed in the above feature
bias, allowing for 4 literals and 3 variables:

hasCar(T,C),hasLoad(C,L),lshape(L,tria)

4.5 Using First-Order Features in LINUS

In the previous sections we have argued that feature construction is a cru-
cial notion in inductive rule learning. We have given precise definitions of fea-
tures in first-order languages such as Prolog. First-order features bound the
scope of local variables, and hence constructing bodies from features is essen-
tially a propositional process that can be solved by a propositional rule learner
such as CN2. In this section we show the usefulness of this approach by solv-
ing two nondeterminate ILP tasks with the transformation-based rule learner
LINUS [Lavrač and Džeroski 1994].

We provide LINUS with features defining background predicates, as sug-
gested by Proposition 4.7. For instance, in the trains example we add clauses
of the following form to the background knowledge:

train42(T):-hasCar(T,C),hasLoad(C,L),lshape(L,tria).

LINUS would then use the literal train42(T) in its hypotheses. Such literals
represent propositional properties of the individual.

In the two experiments reported on in this section we simply provide LINUS
with all features that can be generated within a given feature bias (recall that
such a feature bias includes bounds on the number of literals and first-order
features).

Experiment 4.12 (LINUS Applied to the East-West Challenge). We ran
LINUS on the 10 trains in Figure 2, using a nondeterminate background
theory consisting of all 190 first-order features with up to two utility predicates
and up to two local variables. Using CN2, the following rules were found (to
improve readability, we have expanded the features used in the rules):

eastbound(T,true):-
hasCar(T,C1),hasLoad(C1,L1),lshape(L1,tria),lnumber(L1,1),
not (hasCar(T,C2),clength(C2,long),croof(C2,jagged)),
not (hasCar(T,C3),hasLoad(C3,L3),clength(C3,long),lshape(L3,circ)).

eastbound(T,false):-
not (hasCar(T,C1),cshape(C1,ellipse)),
not (hasCar(T,C2),clength(C2,short),croof(C2,flat)),
not (hasCar(T,C3),croof(C3,peak),cwheels(C3,2)).

These rules were found allowing negation in the body, but not within features.
If negation is also allowed within the feature bias, the following simple rules
are induced:

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

482 • N. Lavrač and P. A. Flach

eastbound(T,true):-
hasCar(T,C),clength(C,short),not croof(C,no).

eastbound(T,false):-
not (hasCar(T,C),clength(C,short),not croof(C,no)).

That is, a train is eastbound if and only if it has a short closed car.

The mutagenesis learning task [Muggleton et al. 1998] concerns predicting
which molecular compounds cause DNA mutations. The mutagenesis dataset
consists of 230 classified molecules; 188 of these have been found to be amenable
to regression modeling, and the remaining 42, to which we restrict attention
here, as “regression-unfriendly.” The dataset furthermore includes two hand-
crafted indicator attributes I1 and Ia to introduce some degree of structural
detail into the regression equation; following some experiments in [Muggleton
et al. 1998] we did not include these indicators.

Experiment 4.13 (LINUS Applied to Mutagenesis). We ran LINUS on the
42 regression-unfriendly molecules, using a nondeterminate background the-
ory consisting of all 57 first-order features with one utility literal concerning
atoms (i.e., discarding bond information). Using CN2, the following rules were
found:

mutag(M,false):-not (has_atom(M,A),atom_type(A,21)),
logP(M,L),between(1.99,L,5.64).

mutag(M,false):-not (has_atom(M,A),atom_type(A,195)),
lumo(M,Lu),between(-1.74,Lu,-0.83),
logP(M,L),L>1.81.

mutag(M,false):-lumo(M,Lu),Lu>-0.77.

mutag(M,true):-has_atom(M,A),atom_type(A,21),
lumo(M,Lu),Lu<-1.21.

mutag(M,true):-logP(M,L),between(5.64,L,6.36).
mutag(M,true):-lumo(M,Lu),Lu>-0.95,

logP(M,L),L<2.21.

Three out of six clauses contain first-order features. Notice how two of these
concern the same first-order feature “having an atom of type 21”—incidentally,
such an atom also features in the (single) rule found by Progol on the same
dataset. Running CN2 with only the lumo and logP attributes produced eight
rules; thus, this experiment suggests that first-order features can enhance the
understandability of learned rules. Furthermore, we also achieved higher pre-
dictive accuracy: 83% with first-order features (as opposed to 76% using only
lumo and logP). This accuracy is the same as achieved by Progol, having access
to bond information and further structural background knowledge [Muggleton
et al. 1998].

5. IRRELEVANT LITERAL ELIMINATION

In the two experiments reported on in the previous section we provided
LINUS with all features that can be generated within a given feature bias.

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

An Extended Transformation Approach to Inductive Logic Programming • 483

Alternatively, we can use a descriptive learner such as Tertius [Flach and
Lachiche 2001] to generate only features that correlate sufficiently with the
class attribute, or we can apply a relevancy filter [Lavrač et al. 1998] to elim-
inate irrelevant features from the set of exhaustively generated features, as
shown in this section.

Some features defined by the hypothesis language bias may be irrelevant
for the given learning task. This section shows that irrelevant features can
be detected and eliminated in preprocessing. Besides reducing the hypothesis
space and facilitating the search for the solution, the elimination of irrelevant
features may contribute to a better understanding of the problem domain. For
example, this may be important in data analysis where irrelevant features may
indicate that some measurements are not needed.

The problem of relevance was addressed in early research on inductive con-
cept learning [Michalski 1983]. Basically one can say that all learners are con-
cerned with the selection of “good” features to be used to construct the hy-
pothesis. This problem has attracted much attention in the context of feature
selection in attribute-value learning [Caruana and Freitag 1994; John et al.
1994; Skalak 1994].

We give definitions of irrelevant features and outline an algorithm that
enables their elimination (for a detailed study of relevance see Lavrač et al.
[1999]).

5.1 The p/n Pairs of Examples and Relevance of Features

Consider a two-class learning problem where the training set E consists of
positive and negative examples of a concept (E = P ∪N), and where examples
e∈ E are tuples of truth-values of features. The set of all features in the given
language bias is denoted by L.

Assume that the training set E is represented as a table where rows cor-
respond to training examples and where columns correspond to (positive and
negated) features L. An element in the table has the value true when the ex-
ample satisfies the condition (feature) in the column of the table; otherwise its
value is false. The table is divided in two parts, P and N , where P are the
positive examples, and N are the negative examples. Let P ∪ N denote the
truth-value table E.

Let us introduce the following definitions and notation:

Definition 5.1 (p/n Pairs of Examples). Let E = P ∪N , where P are posi-
tive and N are negative examples. A p/n pair is a pair of training examples
where p∈ P and n∈N .

Definition 5.2 (Coverage of p/n Pairs). Let L denote a set of features. A fea-
ture l ∈ L covers a pi/nj pair if the feature has value true for pi and value false
for nj .

Notice that in the standard machine learning terminology we may reformu-
late the definition of coverage of p/n pairs as follows: feature l covers a p/n
pair if l covers (has value true for) the positive example p and does not cover
(has value false for) the negative example n.

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

484 • N. Lavrač and P. A. Flach

The notion of p/n pairs can be used to prove important properties of features
for building complete and consistent concept descriptions. Assuming that L is
rich enough to allow for a complete and consistent hypothesis H to be induced
from the set of training examples E, the following result can be proved [Lavrač
et al. 1999].

PROPOSITION 5.3. Let L′ ⊆ L. A complete and consistent hypothesis H can be
found using only features from the set L′ if and only if for each possible p/n pair
from the training set E there exists at least one feature l ∈ L′ that covers the p/n
pair.

This proposition points out that when deciding about the relevance of fea-
tures it will be significant to detect which p/n pairs are covered by the feature.
Second, it suggests to directly detect useless features as those that do not cover
any p/n pair. In addition, an important property of pairs of features can now
be defined: the property of the so-called coverage of features.

Definition 5.4 (Coverage of Features). Let l ∈ L. Let E(l) denote the set of
all p/n pairs covered by feature l . Feature l covers feature l ′ if E(l ′) ⊆ E(l).

Definition 5.5 (Irrelevance of Features). Feature l ′ ∈ L is irrelevant if there
exists another feature l ∈ L such that l covers l ′ (E(l ′)⊆ E(l)).

5.2 The Relevancy Filter

It can be shown that if a feature l ′ ∈ L is irrelevant then for every complete and
consistent hypothesis H =H(E, L) (built from example set E and feature set
L) whose description includes feature l ′, there exists a complete and consistent
hypothesis H ′ =H(E, L′), built from the feature set L′ = L\{l ′} that excludes
l ′ [Lavrač et al. 1999]. This theorem is the basis of an irrelevant feature elimi-
nation algorithm, outlined below.

The relevancy filter, called REDUCE, was initially developed and imple-
mented in the ILLM (Inductive Learning by Logic Minimization) algorithm for
inductive concept learning [Gamberger 1995]. The REDUCE algorithm [Lavrač
et al. 1998] first eliminates all the useless features li (features that are false
for all p∈ P and features that are true for all n∈N) and continues by the
elimination of other irrelevant features in turn. The algorithm for filtering of
irrelevant features is given in Figure 3.

Note that usually the term feature is used to denote a positive literal (or a
conjunction of positive literals; let us, for the simplicity of the arguments below,
assume that a feature is a single positive literal). In the hypothesis language,
the existence of one feature implies the existence of two complementary literals:
a positive and a negated literal. Since each feature implies the existence of two
literals, the necessary and sufficient condition for a feature to be eliminated as
irrelevant is that both of its literals are irrelevant.

This observation directly implies the procedure taken in our experiments.
First we convert the starting feature vector to the corresponding literal vector
which has twice as many elements. After that, we eliminate the irrelevant
literals and, in the third step, we construct the reduced set of features which

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

An Extended Transformation Approach to Inductive Logic Programming • 485

Fig. 3. An algorithm for irrelevant feature elimination.

includes all the features which have at least one of their literals in the reduced
literal vector.

It must be noted that direct detection of irrelevant features (without con-
version to and from the literal form) is not possible except in the trivial case
where two (or more) features have identical values for all training examples.
Only in this case a feature f exists whose literals f and ¬ f cover both literals
g and ¬g of some other feature. In a general case if a literal of feature f covers
some literal of feature g then the other literal of feature g is not covered by the
other literal of feature f . But it can happen that this other literal of feature g
is covered by a literal of some other feature h. This means that although there
is no such feature f that covers both literals of feature g , feature g can still
turn out to be irrelevant.

5.3 Results of Experiments

The objective of the experiments was to show the utility of the feature elimi-
nation algorithm REDUCE in the context of feature construction. The idea of
the proposed approach is to allow the generation of a large number of different
features, which will surely include all significant ones, and then, prior to the
use of an inductive learner, eliminate all irrelevant features in order to keep
the computation as effective as possible. Experiments were performed for two
different feature biases.

Experiment 5.6 (The Trains Example with 190 Features). In this experi-
ment, 190 features were generated with up to two local variables and up to
two utility predicates. In order to apply the REDUCE algorithm we first con-
verted the starting feature vector of 190 features to the corresponding feature
vector which has twice as many elements, containing 190 initial features (pos-
itive features) as well as their negated counterparts (190 negated features).
After that, we applied the relevancy filter and, in the third phase, constructed

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

486 • N. Lavrač and P. A. Flach

the reduced set of features which includes all the features which have at least
one of their positive or negated feature in the reduced feature set.

Irrelevant feature elimination resulted in eliminating 174 features as irrel-
evant, keeping the following 16 features in the relevant feature set:

hasCar(T,C),cshape(C,u_shaped)
hasCar(T,C),clength(C,long)
hasCar(T,C),croof(C,jagged)
hasCar(T,C),croof(C,peak)
hasCar(T,C),cwheels(C,3)
hasCar(T,C),hasLoad(C,L),lshape(L,rect)
hasCar(T,C),hasLoad(C,L),lshape(L,tria)
hasCar(T,C),clength(C,long),cwheels(C,2)
hasCar(T,C),clength(C,short),croof(C,flat)
hasCar(T,C),hasLoad(C,L),cshape(C,rect),lshape(L,tria)
hasCar(T,C),hasLoad(C,L),clength(C,long),lshape(L,circ)
hasCar(T,C),hasLoad(C,L),clength(C,short),lshape(L,circ)
hasCar(T,C),hasLoad(C,L),cwall(C,double),lshape(L,tria)
hasCar(T,C),hasLoad(C,L),cwall(C,single),lshape(L,circ)
hasCar(T,C),hasLoad(C,L),croof(C,no),lshape(L,rect)
hasCar(T,C),hasLoad(C,L),croof(C,no),lshape(L,circ)

By using only these 16 features for learning, CN2 induced the following rules:

eastbound(T,false):-
not (hasCar(T,C1),croof(C1,peak)),
not (hasCar(T,C2),clength(C2,short),croof(C2,flat)),
not (hasCar(T,C3),hasLoad(C3,L3),cwall(C3,double),lshape(L3,tria)).

eastbound(T,true):-
not (hasCar(T,C4),croof(C4,jagged)),
hasCar(T,C5),hasLoad(C5,L5),lshape(L5,tria),
not (hasCar(T,C6),hasLoad(C6,L6),clength(C6,long),lshape(L6,circ)).

Experiment 5.7 (The Trains Example with 564 Features). This experiment
was repeated on an extended set of 564 features, containing up to two local
variables and up to three utility predicates. The same methodology of feature
elimination was used, and the resulting relevant feature set again had only 16
relevant features:

hasCar(T,C),clength(C,long)
hasCar(T,C),croof(C,jagged)
hasCar(T,C),croof(C,peak)
hasCar(T,C),hasLoad(C,L),lshape(L,rect)
hasCar(T,C),hasLoad(C,L),lshape(L,tria)
hasCar(T,C),clength(C,long),cwheels(C,2)
hasCar(T,C),clength(C,short),croof(C,flat)
hasCar(T,C),hasLoad(C,L),cshape(C,rect),lshape(L,tria)
hasCar(T,C),hasLoad(C,L),clength(C,long),lshape(L,circ)
hasCar(T,C),hasLoad(C,L),cwall(C,double),lshape(L,tria)

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

An Extended Transformation Approach to Inductive Logic Programming • 487

hasCar(T,C),hasLoad(C,L),croof(C,no),lshape(L,rect)
hasCar(T,C),hasLoad(C,L),croof(C,no),lshape(L,circ)
hasCar(T,C),cshape(C,rect),clength(C,short),cwall(C,single)
hasCar(T,C),hasLoad(C,L),cshape(C,rect),clength(C,short),

lshape(L,circ)
hasCar(T,C),hasLoad(C,L),cshape(C,rect),cwall(C,single),

lshape(L,circ)
hasCar(T,C),hasLoad(C,L),clength(C,short),cwall(C,single),

lshape(L,circ)

The last four features are outside the feature bias used in the previous experi-
ment, as they contain three utility predicates.

Using these features, the following rules were induced:

eastbound(T,false):-
hasCar(T,C1),clength(C1,long),
not (hasCar(T,C2),croof(C2,peak)),
not (hasCar(T,C3),clength(C3,short),croof(C3,flat)).

eastbound(T,true):-
not (hasCar(T,C4),croof(C4,jagged)),
hasCar(T,C5),hasLoad(C5,L5),lshape(L5,tria),
not (hasCar(T,C6),hasLoad(C6,L6),clength(C6,long),lshape(L6,circ)).

Only the rule for negative examples got changed. Notice that none of the fea-
tures with three utility predicates appears in these rules (i.e., they could have
been learned in the previous experiment as well).

6. RELATED WORK

In propositional learning, the idea of augmenting an existing set of attributes
with new ones is known under the term constructive induction. The problem
of feature construction has been studied extensively (see, for instance, Pagallo
and Haussler [1990], Wnek and Michalski [1991], Oliveira and Sangiovanni-
Vincentelli [1992], and Koller and Sahami [1996]). A first-order counterpart of
constructive induction is predicate invention (see Stahl [1996] for an overview
of predicate invention in ILP).

The work presented in this paper is in the mid-way: we perform a simple
form of predicate invention through first-order feature construction, and use
the constructed features for propositional learning.

6.1 Closely Related Approaches

Closely related approaches to the propositionalization of relational learn-
ing problems include Turney’s RL-ICET algorithm [Turney 1996], Kramer
et al.’s [1998] stochastic predicate invention approach, and Srinivasan and
King’s [1996] approach to predicate invention achieved by using a variety of
predictive learning techniques to learn background knowledge predicate defi-
nitions. These approaches are described in some more detail below.

In the East-West challenge problem, Turney’s RL-ICET algorithm achieved
one of the best results [Turney 1996]. Its success was due to exhaustive feature

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

488 • N. Lavrač and P. A. Flach

construction, introducing new propositional features for all combinations of up
to three Prolog literals. To minimize size complexity, costs of features were
computed and taken into account by a cost-sensitive decision tree induction
algorithm ICET.

In previous work [Lavrač et al. 1998] we reported on the adaptation of
Turney’s approach to LINUS, resulting in 1066-long binary feature vectors used
for learning by a propositional learning algorithm. Using the relevancy filter
presented in Section 5 resulted in significant feature reduction to only 86 rele-
vant features, which enabled more effective learning of low-cost hypotheses.

The approach used by Kramer et al. [1998] can be viewed as an extension
of Turney’s approach. It is much more sophisticated due to the following main
reasons:

—predicate invention (instead of feature construction);
—stochastic search of best features of variable length (instead of an exhaustive

propositional feature construction for all combinations of up to three literals);
—a fitness function optimizing description length (similar to Turney’s costs of

features) as well as other criteria (generality/specificity and variability) used
to guide the search of best features (fitness used in feature construction as
opposed to using all features by a cost-sensitive learning algorithm).

Like Kramer, Srinivasan and King [1996] perform propositionalization
through predicate invention, which is, however, performed through hypothe-
sis generation by using a variety of techniques, including

—statistical techniques (e.g., linear regression);
—propositional learning (e.g., rule and decision tree learning);
—inductive logic programming (e.g., learning hypotheses by P-Progol).

This approach was initially investigated in early experiments by
GOLEM [Muggleton and Feng 1990] in the protein secondary structure pre-
diction problem [Muggleton et al. 1992], where the same algorithm GOLEM
was used on the same dataset in several runs to generate additional predicates
to be considered in learning. This approach was followed by Mizoguchi et al.
[1996], and finally developed into a sophisticated data mining methodology
by Srinivasan and King. The recently developed “repeat learning framework”
[Khan et al. 1998] further elaborates this approach.

6.2 Other Related Approaches

The line of research related to LINUS is reported by Zucker and Ganascia [1996;
1998] Fensel et al. [1995], Geibel and Wysotzki [1996], Sebag and Rouveirol
[1997], Cohen [1996], and others.

Zucker and Ganascia [1996; 1998] proposed to decompose structured exam-
ples into several learning examples, which are descriptions of parts of what
they call the “natural example.” The transformation results in a table with
multiple rows corresponding to a single example. Note that a problem which
is reformulated in this way is not equivalent to the original problem. Although
it is not clear whether this approach could successfully be applied to arbitrary

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

An Extended Transformation Approach to Inductive Logic Programming • 489

graph structures, for example, their system REMO solves the problem of learn-
ing structurally indeterminate clauses, much in line with the extended LINUS
propositionalization approach presented in this paper. Their definition of struc-
tural clauses whose bodies contain exclusively structural literals, and their al-
gorithm for learning structurally indeterminate clauses can be seen as one of
the predecessors of the extended LINUS approach. Recent work by Chevaleyre
and Zucker [2000] further elaborates on the issue of transformed representa-
tions for multiple-instance data.

Fensel et al. [1995] achieve the transformation from the first-order repre-
sentation to the propositional representation by ground substitutions which
transform clauses to ground clauses. As a consequence they introduce a new
definition of positive and negative examples: instead of ground facts they regard
ground substitutions as examples. For every possible ground substitution (de-
pending on the number of variables and the alphabet), there is one example in
the transformed problem representation. Each background predicate, together
with the variable it uses, defines a binary attribute. Like in the previous ap-
proach, an example is not described by a single row in the resulting table, but
by several rows.

Geibel and Wysotzki [1996] propose a method for feature construction in a
graph-based representation. The features are obtained through fixed-length
paths in the neighborhood of a node in the graph. This approach distin-
guishes between “context-dependent node attributes of depth n” and “context-
dependent edge attributes of depth n.” A context-dependent node attribute
An(G)[i, i] is defined as follows: For each node i in each example graph G, we
define the context of i (of depth n) as all length-n paths from node i and to node
i itself. Each such context is used to define a feature. The feature value for an
example graph is the number of occurrences of the corresponding context in it.
Analogously, a context-dependent edge attribute An(G)[i, j] is defined in terms
of all length-n paths from node i to node j in a graph G.

Sebag and Rouveirol [1997] developed STILL, an algorithm that performs
“stochastic matching” in the test whether a hypothesis covers an example. It
operates in the so-called Disjunctive Version Space framework, where for each
positive example E, one is interested in the space of all hypotheses covering
E and excluding all negative examples Fi. In order to transfer the idea of
disjunctive version spaces to first-order logic, STILL reformulates first-order
examples in a propositional form. Like in the work by Fensel et al., substitutions
are handled as attribute-value examples. In contrast to LINUS and REMO,
this reformulation is bottom-up rather than top-down. It is not performed for
the complete dataset, but only for one so-called seed example E and for the
counterexamples Fi. The reformulation is one-to-one (one example, one row)
for the seed example, and one-to-many (one example, several rows) for the
counterexamples. Since it would be intractable to use all possible substitutions
for the counterexamples, STILL stochastically samples a subset of these. STILL
uses a representation, which effectively yields black-box classifiers instead of
intelligible features.

Cohen [1996] introduced the notion of “set-valued features,” which can
be used to transform certain types of background knowledge. A value of a

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

490 • N. Lavrač and P. A. Flach

set-valued feature is allowed to be a set of strings. This type of feature can
easily be incorporated in existing propositional learning algorithms. Some first-
order learning problems (e.g., text categorization) can be propositionalized in
this way.

7. CONCLUSIONS AND FURTHER WORK

This work points out that there is a tradeoff between how much effort a learner
puts in the following steps of the hypothesis generation process: rule construc-
tion, body construction, and feature construction. We have shown, that by de-
voting enough effort to feature construction, even complex relational learning
tasks can be solved by simple propositional rule learning systems. We perform
a simple form of predicate invention through first-order feature construction,
and use the constructed features for propositional learning. In this way we have
been able to show that the traditional limitations of transformation-based ap-
proaches such as LINUS (i.e., no local variables in clause bodies) and its suc-
cessor DINUS (only determinate local variables) can be alleviated by means of
nondeterminate first-order feature construction.

While incorporating feature construction extends the capabilities of LINUS
and DINUS, it also introduces restrictions in that it is only applicable to
individual-centered domains, where there is a clear notion of individual. The
advantage of such domains is that they enable the use of a strong feature bias,
without which exhaustive feature construction would be unfeasible. Typical in-
stances of learning tasks we can handle are concept learning and classification
tasks; typical instances we cannot handle are program synthesis tasks. We do
not see this as a strong limitation, since concept learning and program synthe-
sis are two very different tasks, which are probably not solvable with one and
the same learning method.

While in this work feature construction was exhaustive within a given fea-
ture bias, in future work we intend to study two nonexhaustive approaches. The
first is to use a filter for eliminating irrelevant features, as done in the work
by Lavrač et al. [1998] and demonstrated above with some experiments. One
may further reduce the set of relevant features by selecting a quasi-minimal
set of features needed for hypothesis construction, as proposed by Lavrač et al.
[1995]. As an alternative approach, we plan to use a descriptive learner such
as Tertius [Flach and Lachiche 2001] for constructing features that correlate
significantly with the class attribute.

Postscript

We are pleased to be able to dedicate this paper to Bob Kowalski on the occasion
of his 60th birthday. His work on the use of logic and logic programming in
artificial intelligence has always been a source of inspiration. While the term
“inductive generalization” does appear on the final pages of Logic for problem
solving, induction remains one of the very few reasoning forms Bob has not
tried his hand at—yet. We hope our paper will inspire him to consider taking
up this challenge as well.

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

An Extended Transformation Approach to Inductive Logic Programming • 491

ACKNOWLEDGMENTS

We thank the three anonymous reviewers for many helpful suggestions. We
are grateful to Nicolas Lachiche for joint work on feature construction in 1BC,
to Dragan Gamberger for joint work on irrelevant literal elimination, and to
Sašo Džeroski and Marko Grobelnik for the collaboration in the development
of LINUS. The work reported in this paper was partially supported by the
British Royal Society, the British Council, the Slovenian Ministry of Science
and Technology, and the Esprit Framework V project Data Mining and De-
cision Support for Business Competitiveness: A European Virtual Enterprise
(IST-1999-11495).

REFERENCES

AGRAWAL, R., MANNILA, H., SRIKANT, R., TOIVONEN, H., AND VERKAMO, A. 1996. Fast discovery of
association rules. In Advances in Knowledge Discovery and Data Mining, U. Fayyad, G. Piatetski-
Shapiro, P. Smyth, and R. Uthurusamy, Eds. AAAI Press, 307–328.

BERGADANO, F. AND GUNETTI, D. 1995. Inductive Logic Programming: From Machine Learning to
Software Engineering. The MIT Press.

BRATKO, I., MOZETIČ, I., AND LAVRAČ, N. 1989. KARDIO: A Study in Deep and Qualitative Knowledge
for Expert Systems. MIT Press, Cambridge, MA.

CARUANA, R. AND FREITAG, D. 1994. Greedy attribute selection. In Proceedings of the 11th Interna-
tional Conference on Machine Learning. Morgan Kaufmann, 28–36.

CHEVALEYRE, Y. AND ZUCKER, J. 2000. Noise-tolerant rule induction from multi-instance data. In
Proceedings of the ICML-2000 workshop on Attribute-Value and Relational Learning: Crossing
the Boundaries, L. De Raedt and S. Kramer, Eds.

CLARK, P. AND BOSWELL, R. 1991. Rule induction with CN2: Some recent improvements. In Proc.
Fifth European Working Session on Learning. Springer, Berlin, 151–163.

CLARK, P. AND NIBLETT, T. 1989. The CN2 induction algorithm. Machine Learning 3, 4, 261–
283.

COHEN, W. 1996. Learning trees and rules with set-valued features. In Proceedings of the 14th
National Conference on Artificial Intelligence. AAAI Press, 709–716.

DE RAEDT, L. 1998. Attribute-value learning versus inductive logic programming: The miss-
ing links. In Proceedings of the 8th International Conference on Inductive Logic Programming,
D. Page, Ed. Lecture Notes in Artificial Intelligence, vol. 1446. Springer-Verlag, 1–8.

DEHASPE, L. AND TOIVONEN, H. 1999. Discovery of frequent datalog patterns. Data Mining and
Knowledge Discovery 3, 1, 7–36.

DIETTERICH, T., LATHROP, R., AND LOZANO-PEREZ, T. 1997. Solving the multiple-instance problem
with axis-parallel rectangles. Artificial Intelligence 89, 31–71.

DŽEROSKI, S., MUGGLETON, S., AND RUSSELL, S. 1992. PAC-learnability of determinate logic pro-
grams. In Proceedings of the 5th ACM Workshop on Computational Learning Theory. ACM Press,
128–135.

FAYYAD, U., PIATETSKY-SHAPIRO, G., SMYTH, P., AND R. UTHURUSAMY, E. 1995. Advances in Knowledge
Discovery and Data Mining. The MIT Press.

FENSEL, D., ZICKWOLFF, M., AND WIESE, M. 1995. Are substitutions the better examples? Learning
complete sets of clauses with Frog. In Proceedings of the 5th International Workshop on Inductive
Logic Programming, L. De Raedt, Ed. Department of Computer Science, Katholieke Universiteit
Leuven, 453–474.

FLACH, P. A., GIRAUD-CARRIER, C., AND LLOYD, J. 1998. Strongly typed inductive concept learning.
In Proceedings of the 8th International Conference on Inductive Logic Programming, D. Page, Ed.
Lecture Notes in Artificial Intelligence, vol. 1446. Springer-Verlag, 185–194.

FLACH, P. A. AND LACHICHE, N. 1999. 1BC: A first-order Bayesian classifier. In Proceedings of the
9th International Workshop on Inductive Logic Programming, S. Džeroski and P. A. Flach, Eds.
Lecture Notes in Artificial Intelligence, vol. 1634. Springer-Verlag, 92–103.

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

492 • N. Lavrač and P. A. Flach

FLACH, P. A. 1999. Knowledge representation for inductive learning. In Symbolic and Quantita-
tive Approaches to Reasoning and Uncertainty (ECSQARU’99), A. Hunter and S. Parsons, Eds.
Lecture Notes in Artificial Intelligence, vol. 1638. Springer-Verlag, 160–167.

FLACH, P. A. AND KAKAS, A. C. 2000. Abductive and inductive reasoning: background and issues.
In Abductive and inductive reasoning: essays on their relation and integration, P. A. Flach and
A. C. Kakas, Eds. Kluwer Academic Publishers.

FLACH, P. A. AND LACHICHE, N. 2001. Confirmation-guided discovery of first-order rules with Ter-
tius. Machine Learning 42, 1/2, 61–95.

GAMBERGER, D. 1995. A minimization approach to propositional inductive learning. In Pro-
ceedings of the 8th European Conference on Machine Learning. Springer-Verlag, 151–
160.

GEIBEL, P. AND WYSOTZKI, F. 1996. Relational learning with decision trees. In Proceedings of the
12th European Conference on Artificial Intelligence. 428–432.

JOHN, G., KOHAVI, R., AND PFLEGER, K. 1994. Irrelevant features and the subset selection problem.
In Proceedings of the 11th International Conference on Machine Learning. Morgan Kaufmann,
190–198.

KAKAS, A. AND RIGUZZI, F. 1997. Learning with abduction. In Proceedings of the 7th International
Workshop on Inductive Logic Programming, S. Džeroski and N. Lavrač, Eds. Lecture Notes in
Artificial Intelligence, vol. 1297. Springer-Verlag, 181–188.

KHAN, K., MUGGLETON, S., AND PARSON, R. 1998. Repeat learning using predicate invention. In
Proceedings of the 8th International Conference on Inductive Logic Programming, D. Page, Ed.
Lecture Notes in Artificial Intelligence, vol. 1446. Springer-Verlag, 165–174.

KLÖSGEN, W. 1996. Explora: A multipattern and multistrategy discovery assistant. In Advances
in Knowledge Discovery and Data Mining, U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R.
Uthurusamy, Eds. AAAI Press, 249–271.

KOHAVI, R., SOMMERFIELD, D., AND DOUGHERTY, J. 1996. Data mining using MLC++: A machine
learning library in C++. In Tools with Artificial Intelligence. IEEE Computer Society Press.
http://www.sgi.com/Technology/mlc.

KOLLER, D. AND SAHAMI, M. 1996. Toward optimal feature selection. In Proceedings of the 13th
International Conference on Machine Learning. 284–292.

KRAMER, S., PFAHRINGER, B., AND HELMA, C. 1998. Stochastic propositionalization of non-
determinate background knowledge. In Proceedings of the 8th International Conference on In-
ductive Logic Programming, D. Page, Ed. Lecture Notes in Artificial Intelligence, vol. 1446.
Springer-Verlag, 80–94.

LAVRAČ, N. AND DŽEROSKI, S. 1992. Background knowledge and declarative bias in inductive con-
cept learning. In Proceedings 3rd International Workshop on Analogical and Inductive Inference,
K. Jantke, Ed. Springer-Verlag, 51–71. (Invited paper).

LAVRAČ, N. AND DŽEROSKI, S. 1994. Inductive Logic Programming: Techniques and Applications.
Ellis Horwood.

LAVRAČ, N., DŽEROSKI, S., AND GROBELNIK, M. 1991. Learning nonrecursive definitions of relations
with LINUS. In Proceedings of the 5th European Working Session on Learning, Y. Kodratoff, Ed.
Lecture Notes in Artificial Intelligence, vol. 482. Springer-Verlag, 265–281.

LAVRAČ, N., GAMBERGER, D., AND DŽEROSKI, S. 1995. An approach to dimensionality reduction in
learning from deductive databases. In Proceedings of the 5th International Workshop on Inductive
Logic Programming, L. De Raedt, Ed. Department of Computer Science, Katholieke Universiteit
Leuven, 337–354.

LAVRAČ, N., GAMBERGER, D., AND JOVANOSKI, V. 1999. A study of relevance for learning in deductive
databases. Journal of Logic Programming 40, 2/3 (August/September), 215–249.

LAVRAČ, N., GAMBERGER, D., AND TURNEY, P. 1998. A relevancy filter for constructive induction.
IEEE Intelligent Systems 13, 2 (March–April), 50–56.

LLOYD, J. 1987. Foundations of Logic Programming, 2nd ed. Springer, Berlin.
LLOYD, J. 1999. Programming in an integrated functional and logic language. Journal of Func-

tional and Logic Programming 1999, 3 (March).
MICHALSKI, R. 1983. A theory and methodology of inductive learning. In Machine Learning: An

Artificial Intelligence Approach, R. Michalski, J. Carbonell, and T. Mitchell, Eds. Vol. I. Tioga,
Palo Alto, CA, 83–134.

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

An Extended Transformation Approach to Inductive Logic Programming • 493

MICHIE, D., MUGGLETON, S., PAGE, D., AND SRINIVASAN, A. 1994. To the international computing
community: A new East-West challenge. Tech. rep., Oxford University Computing laboratory,
Oxford, UK.

MIZOGUCHI, F., OHWADA, H., DAIDOJI, M., AND SHIRATO, S. 1996. Learning rules that classify ocular
fundus images for glaucoma diagnosis. In Proceedings of the 6th International Workshop on
Inductive Logic Programming, S. Muggleton, Ed. Lecture Notes in Artificial Intelligence, vol.
1314. Springer-Verlag, 146–162.

MUGGLETON, S., Ed. 1992. Inductive Logic Programming. Academic Press.
MUGGLETON, S. 1995. Inverse entailment and Progol. New Generation Computing, Special issue

on Inductive Logic Programming 13, 3–4, 245–286.
MUGGLETON, S. AND DE RAEDT, L. 1994. Inductive logic programming: Theory and methods. Journal

of Logic Programming 19/20, 629–679.
MUGGLETON, S. AND FENG, C. 1990. Efficient induction of logic programs. In Proceedings of the 1st

Conference on Algorithmic Learning Theory. Ohmsha, Tokyo, Japan, 368–381.
MUGGLETON, S., KING, R., AND STERNBERG, M. 1992. Protein secondary structure prediction us-

ing logic. In Proceedings of the 2nd International Workshop on Inductive Logic Programming,
S. Muggleton, Ed. Report ICOT TM-1182. 228–259.

MUGGLETON, S., SRINIVASAN, A., KING, R., AND STERNBERG, M. 1998. Biochemical knowledge discovery
using Inductive Logic Programming. In Proceedings of the first Conference on Discovery Science,
H. Motoda, Ed. Springer-Verlag, Berlin.

NIENHUYS-CHENG, S.-H. AND DE WOLF, R. 1997. Foundations of Inductive Logic Programming. Lec-
ture Notes in Artificial Intelligence, vol. 1228. Springer-Verlag.

OLIVEIRA, A. AND SANGIOVANNI-VINCENTELLI, A. 1992. Constructive induction using a non-greedy
strategy for feature selection. In Proceedings of the 9th International Workshop on Machine
Learning. 354–360.

PAGALLO, G. AND HAUSSLER, D. 1990. Boolean feature discovery in empirical learning. Machine
Learning 5, 71–99.

QUINLAN, J. 1990. Learning logical definitions from relations. Machine Learning 5, 239–266.
ROUVEIROL, C. 1994. Flattening and saturation: Two representation changes for generalization.

Machine Learning 14, 2, 219–232.
SEBAG, M. AND ROUVEIROL, C. 1997. Tractable induction and classification in first-order logic via

stochastic matching. In Proceedings of the 15th International Joint Conference on Artificial In-
telligence. Morgan Kaufmann, 888–893.

SKALAK, D. 1994. Prototype and feature selection by sampling and random mutation hill climbing
algorithms. In Proceedings of the 11th International Conference on Machine Learning. Morgan
Kaufmann, 293–301.

SRINIVASAN, A. AND KING, R. 1996. Feature construction with inductive logic programming:
A study of quantitative predictions of biological activity aided by structural attributes.
In Proceedings of the 6th International Workshop on Inductive Logic Programming,
S. Muggleton, Ed. Lecture Notes in Artificial Intelligence, vol. 1314. Springer-Verlag, 89–
104.

STAHL, I. 1996. Predicate invention in inductive logic programming. In Advances in Inductive
Logic Programming, L. De Raedt, Ed. IOS Press, 34–47.

TURNEY, P. 1996. Low size-complexity inductive logic programming: The East-West challenge con-
sidered as a problem in cost-sensitive classification. In Advances in Inductive Logic Programming,
L. De Raedt, Ed. IOS Press, 308–321.

ULLMAN, J. 1988. Principles of Database and Knowledge Base Systems. Vol. I. Computer Science
Press, Rockville, MA.

WITTEN, I. AND FRANK, E. 2000. Data Mining: Practical Machine Learning Tools and Techniques
with Java Implementations. Morgan Kaufmann.

WNEK, J. AND MICHALSKI, R. 1991. Hypothesis-driven constructive induction in AQ17: A method
and experiments. In Proceedings of IJCAI-91 Workshop on Evaluating and Changing Represen-
tations in Machine Learning. Sydney, 13–22.

WROBEL, S. 1997. An algorithm for multi-relational discovery of subgroups. In Proceedings of the
1st European Symposium on Principles of Data Mining and Knowledge Discovery, J. Komorowski
and J. Zytkow, Eds. Springer-Verlag.

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

494 • N. Lavrač and P. A. Flach

ZUCKER, J. AND GANASCIA, J. 1998. Learning structurally indeterminate clauses. In Proceedings of
the 8th International Conference on Inductive Logic Programming, D. Page, Ed. Lecture Notes
in Artificial Intelligence, vol. 1446. Springer-Verlag, 235–244.

ZUCKER, J.-D. AND GANASCIA, J.-G. 1996. Representation changes for efficient learning in structural
domains. In Proceedings of the 13th International Conference on Machine Learning, L. Saitta,
Ed. Morgan Kaufmann, 543–551.

Received March 2000; revised February 2001; accepted February 2001

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.

