
for
Constructive Induction

eter Turney, ~ns~itute for ~nformation Technology, National Research Council Canada

ME MACHINE-LEAR”G &GO-
rithms enable the learner to extend its vocab-
ulary with new terms if, for a given a set of
training examples, the learner’s vocabulary
is too restncted to solve the learning task. We
propose a filter that selects potentially rele-
vant terms from the set of constructed terms
and eliminates terms that are irrelevant for
the learning task. Restricting constructive
induction (or predicate invention) to relevant
terms allows a much larger explored space
of constructed terms. The elimination of
irrelevant terms is especially well-suited for
learners of large time or space complexity,
such as genetic algorithms and artificial
neural networks.

To illustrate our approach to feature con-
struction and irrelevant feature elimination,
we applied our proposed relevancy filter to
the 20- and 24-trains East-West Challenge
prob1ems.l The experiments show that the
performance of a hybrid genetic algorithm,
RL-ICET,2 improved significantly when we
applied the relevancy filter while prepro-
cessing the dataset.

We can view inductive concept learning
as a process of searching a space of concept

THE REDUCE ALGORITHM ELIMINATES IRRELEVANT TERMS

REDUCE TO PREPROCESS DATA FOR A HYBIUD GENETIC
Rv LEARNRVG TASKS. I N THIS CASE STUDI; THE AUTHORS USE

ALGORITHM RL-ICE?:

descriptions or hypotheses. The language
bias determines the space of hypotheses to
be searched. Syntactic restrictions of the
hypothesis language and the vocabulary of
terms in the language, as well as the vocab-
ulary of functions and relations defined in the
background knowledge, determine the lan-
guage bias.

Let’s consider a propositional learning
task where, given a fixed set of attributes,
training examples are represented by tuples
of features (attribute values). If the given
vocabulary is too restricted for the learning
task, constructive induction3 can extend the
hypothesis language with new terms, auto-
matically constructed from the terms in the
learner’s vocabulary or generated based on
the functions and relations defined in the
background knowledge. The problem then
becomes how to select, from the set of con-
structed terms, only those terms that are rel-

evant for the given task.
First-order learning of relational descrip-

tions, or inductive logic pr~gramming,~
assumes a given set of training examples,
represented by a relational table, and back-
ground knowledge, represented either exten-
sionally (in the form of relational tables) or
intentionally (in the form of rules). If the
given language bias is too restricted for the
learning task, predicate invention5 can invent
definitions of new predicates from the defi-
nitions of predicates in the background
knowledge, thus causing bias shift. Alterna-
tively, bias shift can occur by allowing the
learner to switch its search to a hypothesis

ned by a syntactically more expres-
sive hypothesis language.

Constructive induction and predicate in-
vention can be invaluable for the success of
learning. Expansion of the hypothesis lan-
guage can, however, decrease the learner’s

1094-7167/98/$10.00 0 1998 IEEE IEEE INTELLIGENT SYSTEMS

performance, particularly in terms of effi-
ciency. But, despite the extended hypothesis
language, there is no guarantee that the new
vocabulary will help the learner to induce a
better solution, because the new terms might
be irrelevant for the task at hand.

To prevent uncontrolled expansion of the
hypothesis language, we’ve developed a fil-
ter that distinguishes the potentially relevant
terms from those that are irrelevant for the
learning task. We can use the relevancy fil-
ter to eliminate the irrelevant terms while pre-
processing the set of training examples. By
biasing constructive induction (or predicate
invention) to relevant terms only, the ex-
plored space of constructed terms can be
larger, which increases the chance of suc-
cessfully solving the learning task.

Our filter is directly applicable to two-
class propositional learning problems des-
cribed with binary-valued terms, and to those
inductive logic programming tasks for which
a Linus-like transformation approach is
appl i~able .~ When applying the filter to a
multiclass learning problem, we must trans-
form the problem to a two-class learning
problem; the transformation can be done the
same way as in the well-known covering
algorithms AQ and CN2. As this article
describes, multivalued attributes must be
transformed into a binary-valued literal form.

The relevance of literals and
features

Let’s consider a two-class learning prob-
lem where the training set consists of pos-
itive and negative examples of a concept (E
= P U If) and examples e E E are tuples of
truth values of terms in a hypothesis language.
L denotes the set of all terms, called literals.

We’ll represent the training set E as a table
whose rows correspond to training examples
and columns correspond to literals. An ele-
ment in the table has the value t r u e when
the example satisfies the condition (literal)
in a column of the table; otherwise its value
is f a l s e .

How to achieve the required propositional
representation. If the training set does not
have the form of truth-value tuples, a pre-
processor has to transform the training set to
transform it to this form. For attribute-value
learning, the transformation procedure is
based on analysis of the values of examples
in the training set. For each attribute Ai , let

vi, (x = 1. . kip) be the kip different val-
ues of the attribute that appear in the positive
examples and let wiy 0. = 1. . kin) be the
kin different values appearing in the nega-
tive examples. The transformation results in
this set of literals L:

For discrete attributes Ai , literals of the
form A , = vi, and Ai # wiy are gener-
ated.
For continuous attributes Ai , literals of
the form Ai 5 (vi, + wiy) / 2 are created
for all neighboring value pairs (vi,,
wiy), and literals Ai > (vi, + wiy) / 2 for
all neighboring pairs (wiy, vi,).
For integer valued attributes Ai , literals
are generated as if Ai were both discrete
and continuous, resulting in literals of four

TO PREVENT UNCONTROLLED
EXEANSlON OF THE HYPO-
THESIS LANGUAGE, WE’VE
DEVELOPED A FlLTER THAT
DISTINGUISHES THE POTEN-
TlALLY RELEWCSANT TERMS FROM
THOSE THAT ARE IRRELEWNT
FOR THE LEARNING TASK.

different forms: Ai 5 (vi,+ wiy) /2, Ai
> (vi+Wi,)/2,Ai=vi,andAi#wi,.

Construction of new terms. We assume that
new terms also have the form of literals, which
have true or false values for the given
training examples. Suppose that attributes Ai
describe the original training set. Constructive
induction can create new terms such as:

literals that test the relations Ai = A y ,
Ai # A j for attributes of the same type
(the same sets of values or continuous
attributes),
literals introducing internal disjunctions
Ai = [vik v vil] or intervals Ai E

conjunctions of features (A i = vik) A

literals that test values of functions
defined in the background knowledge,
suchasf(Ai ,Aj , ...) I v , a n d

[VikI vi11 I

(Aj = V j i) ,

MARCH /APRIL 1998

literals using the relations defined in the
background knowledge r (A i , A j) .

An obvious way to construct new terms is
also by generating negations of literals (the
so-called negative literals): for every r (A i ,
A j) constructa1iteral7 r (A i , A j) .

The Linus learning system proposes a gen-
eral procedure for constructing terms based
on the information in the background knowl-
edge! We can use that procedure to construct
new terms in attribute-value learning, as well
as in first-order learning (inductive logic pro-
gramming), where we can solve the relation
learning tasks by using Linus’s restricted
hypothesis language of constrained nonre-
cursive clauses with typed variables.

For example, consider a relation-learning
task, where the training set consists of exam-
ples of the target relation d a u g h t e r (A , ,
A,) and the background knowledge consists
of definitions of a unary relation f e m a l e , a
binary relation parent, and the equality rela-
tion (=).The transformation of training exam-
ples results in a table whose rows are truth-
value tuples corresponding to individual
training examples and whose columns corre-
spond to literals, constructed by the appropri-
ate variabilization of background-knowledge
predicates: f e m a l e (A l) , f e m a l e (A 2) ,
p a r e n t (A 1 , A ,) , p a r e n t (A , , A ,) ,
parent (A , , Al) , parent (A , , A,) , and

The variabilization of constructed literals
is restricted to the use of variables A, and A,,
because.in constrained clauses only the var-
ables appearing in an induced clause’s head
may appear in the literals of the clause’s
body. Thus, for the target relation daugh-
t er (A,, A,) , the constructed literals may
only use Al and A, in the arguments, whereas
literals introducing new variables, such as
parent (A , , Z) , are disregarded. Despite
this limitation of the hypothesis language,
complexity analysis of the Linus transfor-
mation approach reveals that the number of
constructed literals is linear in the number of
background-knowledge predicates and expo-
nential in the number of arguments (of dif-
ferent types) of the background-knowledge
predicates. Therefore, eliminating irrelevant
literals constructed by the Linus transforma-
tion procedure is invaluable for the learner’s
success, when the number and arity of pred-
icates in the background knowledge is large.

Unlike Linus’s proposed general procedure,
our case study presents a special-purpose
procedure for constructing new terms in the

A, = A,.

51

East-West challenge problem, where the con-
struction of new terms turns out to be the key
to the learning task’s successful solution.

Thep/n pairs of examples. Let a truth-value
table represent the set of traming examples
E, where columns correspond to the set of
(positive and negative) literals L and rows are
truth-value tuples of literals, representing
training examples e E E. The table has two
parts, P and N, where pare the positive exam-
ples and Nare the negative examples. Let P
U Ndenote the truth-value table E.

We use these definitions and notahon:6

0 A p / n p a i r is a pair of training examples
w h e r e p e P a n d n c N.

0 Literal 1 E L covers a p / n pair if in col-
umn 1 of the table of training examples E
the positive example p has the value
t r u e and the negative example n has the
value f a l s e .

0 E (1) denotes the set of all p /n pairs
covered by literal 1.

e Literal 1 covers literal 1’ if E (1’) L
E(1).

The relevance of literals. Consider a sim-
ple learnmg problem with five traning exam-
ples forming example set E: three positive p
= {p, , p, , p3 } and two negatrve N = { n, ,
n2 } . Examples are described by the truth-
values of literals 1, E L. Table 1 shows just
some of the truth-values of E.

To understand the meaning of p /n pairs
and the notions of coverage and relevance of
literals, consider just three literals: 12, 1,,
and I , . Literal l2 in Table 1 appears to be
relevant for the formation of an inductive
hypothesis because it is true for a positive
example and false for both negative exam-
ples, a hypothesis constructed from 1, only
would cover the positive example p2 and
would not cover the negative examples n,
and n,. Literal 1, thus appears to be a rea-

sonable ingredient of an inductive hypothe-
sis aimed at covering all the positive exam-
ples and none of the negative examples.

Literal 1, covers two p /n pairs: E (1,)
= { p 2 / n l , p, /n,}. Literal 1, is inappro-
priate for constructing a hypothesis, because
it does not cover any p/n pair: E (1,) = 0.
Literal 1, seems to be less relevant than 1,
and more relevant than because it covers
one p / n pair: E (1,) = {p, /q}. Literal 1,
covers 1, and I,, and literal 1, covers I,,
because E (&) L E (&) c E (1,).

The example in Table 1 lets us reach this
intuition: the more p /n pairs a literal cov-
ers, the more relevant it is for hypothesis for-
mation. We can formalize this intuition in this
definition:

Literal 1‘ is irrelevant if a literal 1 E L exists
such that 1 covers 1’ (E (1’) g E (1)) .

In other words, literal 1’ is irrelevant if it cov-
ers a subset of p / n pairs covered by some
other literal 1 E L.

Let us now assume that literals are assigned
costs. Let c (1) denote the cost of literal 1 E

L. We need to modify the definition of irrel-
evance if we want to take into the account the
costs of literals:

Literal 1‘ is irrelevant if a literal 1 E L exists
such that 1 covers 1’ (E (1’) c E (1)) and the
cost of 1 is lower than the cost of 1‘ (c (1) 2

c(1‘)).

In our case study, cost is a measure of com-
plexity: the more syntactically complex the
literal, the higher its cost.

A filter for cost-sensitive elimination of
irrelevant literals. If a constructive induction
procedure generates irrelevant literals, they
can he detected and eliminated before enter-
ing the learning process. Figure 1 presents a
cost-sensitive algorithm for irrelevant literal

Table 1. Coverage of literals and p/n pairs.

EXAMPLES LITERALS
...... L, 4 La

Pi

P3

p P2 t r u e t r u e f a l s e

“1 f a l s e f a l s e t r u e
N n2 false t r u e t r u e

elimination. The algorithm assumes a set of
training examples E descnbed by an initial set
of relevant literals L, a set of constructed lit-
erals L~~~ and the assignment of literal costs
c (1) . If no costs are assigned, we assume for
a l l I E L u L N e , : C (I) = l .

Implementation issues. We can efficiently
implement the relevancy filter using simple
bitstring manipulation on the table of train-
ing examples E For this purpose, we trans-
form the table E into E,:

Vp E P: replace t r u e by 1 and f a l s e

Vn E N: replace f a l s e by 1 and t r u e
by 0

by 0

In this representation, examples e E E ,
and literals 1 E L are bitstrings. Coverage
can now be checked by set inclusion. Recall
that literal 1 covers literal 1’ if E (1’) _c
E (1) . Thus, if 1’ has the value 1 only in
(some of) those rows in which 1 has 1 and in
no other rows, 1’ is irrelevant and can be
eliminated.

The relevancy filter assumes that the initial
literal set consists of relevant literals. Alter-
natively, we can consider the entire set L U

L~~~ as a unique literal set to be checked for
the relevance of its elements; we used this
variant of the relevancy filter in our experi-
ments. This algorithm, called Reduce? was
initially developed by Dragan Gamberger
and implemented in the Inductive Learning
by Logic Minimization (ILLM) algorithm
for inductive-concept learning. Reduce first
eliminates all the useless literals li (literals
that are f a l s e for all p E P and those that
are t r u e for all n E N) and continues by
eliminating other irrelevant literals in turn.

Relevance of features. The term feature
denotes apositive literal-for example, A, =
v, A, I w, r (Ai, A j) . In the hypothesis lan-
guage, the existence of one such feature
implies the existence of two complementary
literals: a positive and a negative literal. Sup-
pose that we consider the feature Col or =
black and that the attribute Color has
three possible values: b l a c k , whit e, and
r e d . Because each feature implies the exis-
tence of two literals, the necessary and suf-
ficient condition that a feature can be ehmi-
nated as irrelevant is that both of its literals
Color = b l a c k a n d C o l o r # b l a c k (t h a t
is, 7 (Color = black)) are irrelevant. This
statement directly implies the procedure

1 52 IEEE INTELLIGENT SYSTEMS

taken in our experiment. First. we convert the
starting feature vector to the corresponding
literal vector, which has twice as many ele-
ments. Next, we eliminate the irrelevant lit-
erals and then construct the reduced set of

G i v e n : costs c(1) of literals inLuLNear
Input: L- in i t ia l se to fre l evant l i t era l s , L,,,,-newliterals,

I

E = PuN-tableof positiveandnegative
examples, consistingoftruth-valuetuplesofL I
for V li E

fortlp6 Pandtlnc Nevaluatelias trueor false
i f V p E P li has value fa l se then l i is irrelevant
i f Vn e N 1; has value true then 1 + is irrelevant

features, which includes all the features that
have at least one of their literals in the
reduced literal vector.

However, direct detection of irrelevant fea-
tures (without conversion to and from the lit-
eral form) is impossible except in the trivial

if 1; is co;ered by any lj E L f o r which c(lj) 2
c (l i) then li is irrelevant
else L c L U { li 1 , and add column of truth values of
litotableE=PuN

I I

I !
endf or

\ Output : L - extended set of relevant literals, E = P U N - extended \
case where two or more features have iden-
tical columns in the E, table. Only in this
case does a feature f exist whose literals f
and f cover both literals g and 1 g of some
other feature. Generally, if a literal of feature
f covers some literal of feature g, the other
literal of feature f does not cover the other
literal of feature g. But sometimes a literal
of some other feature h covers this other lit-
eral of feature g. Therefore, although no such
feature f covers both literals of feature g,
feature gcan still turn out to be irrelevant.

This analysis supports the approach, used
in our study, in which the input to the learner
is tuples of truth values of positive and neg-
ative literals, rather than feature vectors,
which are used in most standard approaches
to rule induction.

Utility study: the East-West
Challenge

Donald Michie and his colleagues issued
a challenge to the international computing
community to discover low size-complexity
Prolog programs for classifying trains as
eastbound or westbound'l The challenge was
inspired by a problem posed by Ryszard
Michalski and J.B. Larson, in 1977, where
the task was to generate rules that will clas-
sify trains as east- or westbound. Figure 2
illustrates the original problem.

Michie's original challenge included three
separate tasks.' He later issued a second chal-
lenge, involving a fourth task. Our experi-
ments involve the first and fourth tasks. The
first task had 20 trains, 10 eastbound and 10
westbound, whereas the fourth task involved
24 trains, 12 eastbound and 12 westbound.
The challenge in these tasks was to discover
the simplest rule for distinguishing the east-
bound and westbound trains.

For both tasks. the winner was decided by
representing the rule as a Prolog program and
measuring its size-complexity. The size-
complexity was calculated as the sum of the

I tableofpositiveandnegativeexamples, consistingof
truth-valuetuplesofL I

L..
Figure 1. The relevancy filter: an algorithm for cost-sensitive elimination of irrelevant literals.

numbers of clause occurrences, term occur-
rences, and atom occurrences. The perfor-
mance on these two tasks was judged by size-
complexity, not by accuracy on independent
testing data (there were no independent test-
ing data). All rules competing in the chal-
lenge were required to achieve 100% accu-
racy on the data.

RL-ICET. ICET is a cost-sensitive algo-
rithm, a hybrid of a genetic algorithm (Gref-
enstette's Genesis) and a decision-tree induc-
tion algorithm (Quinlan's C4.5), designed to
generate low-cost decision trees. ICET per-
forms a two-tiered search. On the bottom tier,
C4.5 searches through the space of decision
trees. On the top tier, Genesis searches
through the space of biases.

lCET takes feature vectors as input and
generates decision trees as output, using its
C4.5 component. We modified the C4.5 com-
ponent from Quinlan's original design, so
that its learning bias can be controlled by a
vector of real-valued parameters, called a
bias vector'. ICET's Genesis component

.-

searches in the space of bias vectors for a bias
that optimizes the performance of the C4.5
component, according to a given perfor-
mance measure. ICET uses a performance
measure that is sensitive to both the cost of
features (the cost of acquiring information
about an element in a feature vector) and the
cost of classification errors (the cost of mis-
taken classifications made by the output deci-
sion tree).?

Although ICET takes feature vectors as
input and generates decision trees as output,
the East-West Challenge involves input data
in the form of Prolog relations and output the-
ories in the form of Prolog programs. For the
East-West Challenge, we extended ICET to
handle Prolog input. This algorithm is called
RL-ICET (Relational Learning with ICET).*

RL-ICET is similar to the Linus learning
system, as they both use a three-part learn-
ing strategy?

(1) A preprocessor translates the Prolog
relations and predicates into a feature-
vector format. We designed the pre-

. . -. -.
I
I
I

. . . .

Figure 2. The original 10-train East-West Challenge: (a) trains going east, (b) trains going west.

MARCH/APRIL 1998 53

kastbound([c(l rectangle, short. !iot-doaSle: n.one: 2, !(c:rcle,'l))!
c(2, rectangle: loiig, riol-double, none, 3; I(,hexagoin, I)):
I@, reciangle. short noi-double, peaked. 2: l(?riaiigle, I)) ;
c(4. rectangle. long, not-doubla, none, 2. !(rectangle, 3))]).

I vert the relatively

1 compact Prolog
description into

- -j a feature-vector
Figure 3. A train and its Prolog clause representation.

processor in RL-ICET especially for the
East-West Challenge; Linus has a gen-
eral-purpose preprocessor.

(2) An attribute-value learner applies a deci-
sion-tree induction algorithm (ICET)
to the feature vectors. Each feature is
assigned a cost, based on the size of the
fragment of Prolog code that represents
the corresponding predicate or relation.
A low-cost decision tree corresponds
(roughly) to a Prolog program that has a
low size-complexity. When it searches
for a low-cost decision tree, ICET is in
effect searching for a low size-complex-
ity Prolog program.

(3) A postprocessor translates the decision
tree into a Prolog program. RL-ICET
performs postprocessing manually: Li-
nus does it automatically.

Feature construction in RL-ICET. Much of
RL-ICET's success in the East-West Chal-
lenge tasks are attributable to its preprocessor.
The data about each train in the East-West
Challenge were represented using Prolog. For
example, the Prolog clause shown in Figure 3
represents the train also shown in the figure.

We used a simple Prolog program to con-

format (tuples of
truth-values of
features) for use
in decision-tree

induction. This produced rather large fea-
ture vectors of 1,199 elements. These large
vectors ensure that all the features that are
potentially interesting for the final solution
are made available for ICET.

To construct features, we started with 28
predicates that apply to the cars in a train,
such as el 1 ipse (C) , which is true when
the car C has an elliptical shape. For each of
these 28 predicates, we defined a corre-
sponding feature. All features were defined
for whole trains, rather than single cars,
because the problem is to classify trains. The
feature ellipse, for example, is t r u e
when a given train has a car with an ellipti-
cal shape. Otherwise e l l i p s e i s f a l s e .

We then defined features by forming all pos-
sible unordered pairs of the original 28 predi-
cates. For example, the feature ellipse-
triangle-load is t r u e when a given
train has a car with an elliptical shape that is
carrying atriangle load, and falseotherwise.
For a given train, the features ellipse and
triangle-load can be t r u e , while the
feature ellipse-triangle-load is
false,becauseitisonly truewhenthetrain
has a car that is both elliptical and carrying a
triangle load.

Table 2. Some features and their costs.

FEATURE PROLOG FRAGMENT GOST

ellipse has-car (T, C) , ellipse (C) . 5

short-closed has-car(T, C), short (C), 7

train-4 lenl(T, 4). 3

train-hexagon has-load1 (T, hexagon) . 3

ellipseseaked-roof has-car(T, C), ellipse(C), 9

u-shaped-no-load has-car(T, C), u-shaped(C), 8

closed(c1.

arg(5, C, peaked).

has-load(C, 0) .
rectangle-load-infront infront(T, Cl, C2), 11
- jagged-roof has-load0 (Cl, rectangle),

arg(5, C2, jagged).

Next, we defined features by forming all
possible ordered pairs of the original 28 pred-
icates, using the relation in f ront (T, cl,
c2) . For example, the feature u-shape-
frontseaked-roof is t r u e when the
train has a U-shaped car in front of a car with
apeakedroof, and fa l se otherwise. Finally,
we added nine more predicates that apply to
the train as a whole, such as train-4, which
is t r u e when the train has exactly four cars.
Thus a train is represented by a feature vector,
where every feature is either t r u e o r false.

We assigned each feature a cost, based on
the complexity of the fragment of Prolog code
required to represent that feature. Recallthat
we define the complexity of a Prolog program
as a sum of the numbers of occurrences, term,
and atom occurrences. Table 2 shows some
constructed features and their costs.

A train's feature vector does not capture
all the informalion in the original Prolog
representation. For example, we could also
define features by combining all possible
unordered triples of the 28 predicates. How-
ever, these features would likely be less use-
ful, because they are so specific that they will
only rarely be t r u e . If the target concept
should happen to be a triple of predicates, it
could be closely approximated by the con-
junction of the three pairs of predicates that
are subsets of the triple.

This kind of translation to feature-vector
representation could apply to many other
types of structured objects. For example, con-
sider the problem of classifying a set of doc-
uments. The keywords in a document are anal-
ogous to the cars in a train. The distance
between keywords or the order of keywords
in a document might be useful when classify-
ing the document, just as the in f ront rela-
tion might be useful when classifying trains.

Feature elimination. The objective of our
experiments was to show the utility of the
Reduce literal-elimination algorithm. Our
approach lets us generate many different fea-
tures, which will surely include all signifi-
cant ones, and then, before using an induc-
tive learner, eliminate all irrelevant features
to keep the computation as effective as pos-
sible. We performed two separate experi-
ments for the 20- and 24-trains problems. In
both experiments, we used the RL-ICET pre-
processor to generate the appropriate features
and transform the training examples into a
feature-vector format. This resulted in two
training sets of 20 and 24 examples each.

To apply the Reduce algorithm, we first

IEEE INTELLIGENT SYSTEMS 54

converted the 1,199-element starting feature
vector to the corresponding literal vector,
which has twice as many elements, contain-
ing 1,199 features generated by the RLICET
preprocessor (positive literals) as well as
their negated counterparts (1,199 negative
literals). After that, we eliminated the irrele-
vant literals and, in the third phase, con-
structed the reduced set of features, which
includes all features that have at least one of
their literals in the reduced literal set.

We tested Reduce’s utility as follows. First,
we performed 10 runs of the ICET algorithm
on the set of training examples with 1,199 fea-
tures. Then we performed 10 runs of ICET
on the training examples with the reduced set
of features selected by Reduce.

Table 3 summarizes the results. The table
compares the average results of 10 runs of RL-
ICET with respect to the costs of decision trees
and execution times. The ICET algorithm’s
stochastic nature required us to use 10 runs:
each time it runs, it yields a different result
(assuming that the random number seed is
changed). If we compared one single run of
ICET on 1,199 features to one run of ICET on
the reduced feature set, the outcome of the
comparison could be due to chance. All trials
are independent of each other. (For example,
the results of trial 4 should not be compared to
the results of trial 14.) Only the average results
are relevant for the comparison.

In the RL-ICET experiments, we mea-
sured the performance by the cost of the deci-
sion trees induced by ICET, as well as the
complexity of the Prolog programs after the
RL-ICET transformation of decision trees
into the Prolog program form.2 In Table 3 ,
we skip the latter, because the transforma-

tion into the Prolog form is currently manual
and suboptimal, which means that a tree with
the lowest cost found by ICET is not neces-
sarily transformed into a Prolog program
with the lowest complexity.

Results of the 20-trains experiment. With the
20-train data, Reduce cut the original set of
1,199 features to 86 features, thus reducing
the complexity of the learning problem to
about 7% (86/1,199) of the initial problem.

The results show that the efficiency of
learning significantly increased. In the initial
problem with 1,199 features, the average time
per experiment was approximately 2 hours
and 17 minutes; in the 86-feature reduced
problem setting, the average time was approx-
imately 12 minutes. The difference between
times tl and t2 is significant. This shows the
utility of literal reduction for genetic algo-
rithms, which are typically expensive in terms
of CPU time.

The average cost of descriptions induced
from the 86-feature set decreased (from 20
to 18.61, but the difference between decision
tree costs c1 and c2 is not significant. The
variance (and the standard deviation) of the
costs was also decreased: the costs of the
decision trees generated from 1,199 features
vary more than the costs of the trees gener-
ated from 86 features: var (c,) = 1.6
(sd(cl) = 1.3) and var(c2) = 5 . 1
(Sd(~ 2) = 2.3).

Results of the 24 trains experiment. In this
experiment, Reduce decreased the number
of features from 1,199 to 116, thus reducing
the learning problem’s complexity to about
10% (116/1,199) of the initial problem. Here,

Table 3. Results of the experiments.

too, the efficiency of learning significantly
increased. In the initial problem with 1,199
features, the average time per experiment
was nearly two hours; in the 116-feature
reduced problem setting, the average time
was approximately 14 minutes. The differ-
ence between times t, and t, is significant.

The average cost of the decision trees
induced from the 116-feature set also de-
creased. The difference between decision tree
costs c1 and c2 is significant (at the 99.99%
confidence level). Our hypothesis that vari-
ance (and standard deviation) of the output
of RL-ICET can be reduced is only weakly
supported, because the inequality of variance
is insignificant: var (c1) = 4 . 8 (sa (c,)
= 2 .2) and var (c2) = 5 .2 (sd (c2) =
2.3).

O U R AIM IN THIS WORK IS TO
contribute to a better understanding of rele-
vance for inductive-concept learning. Our
case study shows that the construction of
appropriate features can be crucial for the
success of learning, and that cost-sensitive
elimination of irrelevant features can sub-
stantially improve learning efficiency and
reduce the costs of induced hypotheses.

The case study deals with an exact, noise-
free problem in which we assume that the
learning goal is to find a consistent and com-
plete concept description. The choice of a
simplified noise-free setting enabled a clear
presentation of the notions underlying the

20 TRAINS 24 TRAINS
86 FEATURES 1.1 99 FEATURES 116 FEATURES 1.1 99 FEATURES

TRIAL TIME COST TRIAL TIME COST TRIAL TIME COST TRIAL TIME COST
tl G f2 c2 tl q t2 c.2

1 11:05 18
2 11:19 21
3 1255 18
4 11:35 18
5 15:16 18
6 11~35 18
7 11:32 18
8 11:38 18
9 11:28 18
10 11:18 21

Sum 119:41 186
Mean 1157 18.6

11
12
13
14
15
16
17
18
19
20

Sum
Mean

2:21:32
2:21:34
2:19:15
2:19:32
2:16:20
2:23:52
2:24:09
2:18:41
2 3 6 5 8
2:23:09

23:25:02
2 3 6 5 4

24 1 14:35
21 2 14:26
20 3 1459
20 4 14:17
18 5 13:32
22 6 1331
21 7 14:29
16 8 1354
18 9 13:51
20 10 14:30

200 Sum 2:22:04
20 Mean 1492

20
18
18
21
18
22
18
23
23
18

199
19.9

11
12
13
14
15
16
17
18
19
20

Sum
Mean

1 :54:15
1:55:29
2:00:25
1:56:31
1 :56:47
1:57:14
1:56:52
1 :56:33
1 :49:08
1 :47:46

193 1 :oo
1 :55:05

27
21
26
25
25
24
28
23
27
28

254
25.4

MARCH/APRIL 1998 55

On the Web
Access http://comptlter.org/intelligent
for information about /€€,Eh
Systems.

Subscription,Change of Address
Send change-of-address requests
for mogazine subscriptions to
address.change@ieee.org.
Be sure to specify intelligent Sysfems.

Membership Change of Address
Send change-of-address requests for
the membership directory to
directory.updates@computer.org.

Missing or Damaged Copies
If you are missing an issue or you
received a damaged copy, contact
membership@computer.org.

Reprints of Articles
For prim information or i o order reprints, ,

send e-maii to ni.dn.Jis@ro~nputer.org or j
fax(714) 821-4010.

Reprint Permission
To obtain permission to reprint an
article, tontc;ct William Hagen, !€E€
Copyrights nnd Trademarks Manager;
at whogen@ieee.org.

implemented relevancy filter. Real-life prob-
lems require a more complex setting, involv-
ing the use of our algorithm for noise detec-
tion and elimination. Based on the notion of
p/n pairs, the algorithm first heuristically
evaluates the minimal number of literals
needed to construct a complete and consis-
tent hypothesis, and then detects in the train-
ing set the potentially noisy examples a s those
whose elimination will decrease the number
of literals needed for hypothesis generat i~n.~

Because RL-ICET originally required
about two hours to process the 20- or 24-trains
problems, the RL-ICET approach to induc-
tive logic programming did not seem able to
scale up to larger problems, with hundreds or
thousands of instances.* However, with
Reduce as a preprocessor, RL-ICET now
requires under 15 minutes for the 20- or 24-
trains problems. Reduce itself runs in sec-
onds. The combination of Reduce and RL-
ICET likely can scale up to much larger
problems than were previously practical for
RL-ICET alone. fl

Acknowledgments
This research was supported by the Slovenian

Ministry of Science and Technology, the Croatian
MinisQ of Science, the National Research Coun-
cil of Canada, and ESPRIT Project 20237, Induc-
tive Logic Programming 2. We’re grateful to Don-
ald Michie for stimulating this work.

References
I . D. Michie et al., “To the Intemational Com-

puting Community: A New East-West Chal-
lenge,” Oxford Univ. Computing Laboratory,
Oxford, UK, 1994; ftp://ftp.comlab.ox.ac.uk/
pubPackageslILPITrainsihains. tar.Z.

2. P. Tumey, “Low Size-Complexity Inductive
Logic Programming: The East-West Chal-
lenge as a Problem in Cost-Sensitive Classi-
fication,” in Advances in Inductive Logic Pro-
gramming, IOS Press, Amsterdam, 1996, pp.
308-321.

3. R.S. Michalski, “ATheory and Methodology
of Inductive Learning.” in Machine Learning:
An Arti$cial Intelligence Approach, R.
Michalski, J. Carbonell, andT. Mitchell, eds..
Tioga, Palo Alto, Calif.. 1983, pp. 83-134.

4. N. Lavrad, and S. Dieroski, Inductive Logic
Programming: Techniques and Applications,

Ellis Horwood, Hemel Hempstead, UK, 1994.

5. I. Stahl, “Predicate Invention in Inductive
Logic Programming,” in Advances in Induc-
tive Logic Programming, L. De Raedt, ed.,
IOS Press, 1996.

6. N. Lavrad, D. Gamberger, and P. Turney.
“Cost-Sensitive Feature Reduction Applied
to a Hybrid Genetic Algorithm,” Proc. Sev-
enth Int’l Workshop an Algorithmic Learning
T h e o q [ALT-96), Springer-Verlag, Berlin,
1996, pp. 1277134.

7. D. Gamberger, N. Lavrat, and S. Dieroski,
“Noise Elimination in Inductive Concept
Learning: A Case Study in Medical Diagnosis,”
Proc. Severitit Int’l Workshop on Algorithmic
Leaming Theory, Springer, 1996, pp. 199-212.

Nada LavraEis a senior research associate at the
Department of Intelligent Systems, J. Stefan Insti-
tute. Ljubljana, Slovenia. and a visiting professor
it the Klagenfurt University, Austria. Her main
research interest is machine learning, in particu-
Lar inductive logic programming and intelligent
data analysis in medicine. She received a BSc in
technical mathematics and MSc in computer
science. from Ljubljana University and a PhD
in technical sciences from Maribor University,
Slovenia. She is coauthor of KARDIO: A Study in
Deep and Qualitative Knowledge for Expert Sys-
tems (MIT Press, 1989) and Inductive Logic Pro-
gramming: Techniques and Applications (Ellis
Horwood. 1993). and coeditor of Intelligent Data
Analysis in Medicine and Phamiacology (Kluwer,
1997). Contact her at the J. Stefan Inst., Jamova
39, 1000 Ljubljana, Slovenia: nada.lavrac@ijs.si.

Dragan Gamberger is a research assistant at the
Rudjer Boskovic Institute in Zagreb, Croatia.
His research interests include the application
of machine learning, inductive learning by logic
minimization, knowledge discovery in databases,
knowledge representation, noise elimination,
Occam’s razor, and predicate invention. He
received a BSc in electrical engineering, an MSc
in electrical engineering, and a PhD in computer
science, all from the University of Zagreb. Con-
tact him at the Rudjer Boskovic Inst., Dept. of
Physics, Information Systems Lab, Bijenicka 54,
10,000 Zagreb, Croatia; gamber@faust.irb.hr.

Peter Turney is a research officer in the Interac-
tive Information Group of Canada’s National
Research Council. His research interests include
the application of machine learning to industrial
applications, information retrieval. evolutionary
computation, machine learning with cost con-
straints, context-sensitive learning, feature selec-
tion for machine learning, and bias shift for leam-
ing algorithms. He received a BA, MA, and PhD
in philosophy, all from the University of Toronto.
He is an editorial board inember for the Joumal of
Art$cial Intelligence Research and belongs to the
Canadian Society for Computational Studies of
Intelligence and theA.A-41. Contact him at the Inst.
for Information Technology, Nat’l Research Coun-
cil, M-50 Montreal Rd., Ottawa, ON, KIA 0R6,
Canada; peter@ ai.iit.nrc.ca

IEEE INTELLIGENT SYSTEMS

http://comptlter.org/intelligent
mailto:address.change@ieee.org
mailto:directory.updates@computer.org
mailto:membership@computer.org
mailto:whogen@ieee.org
ftp://ftp.comlab.ox.ac.uk

