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ME MACHINE-LEAR”G &GO- 
rithms enable the learner to extend its vocab- 
ulary with new terms if, for a given a set of 
training examples, the learner’s vocabulary 
is too restncted to solve the learning task. We 
propose a filter that selects potentially rele- 
vant terms from the set of constructed terms 
and eliminates terms that are irrelevant for 
the learning task. Restricting constructive 
induction (or predicate invention) to relevant 
terms allows a much larger explored space 
of constructed terms. The elimination of 
irrelevant terms is especially well-suited for 
learners of large time or space complexity, 
such as genetic algorithms and artificial 
neural networks. 

To illustrate our approach to feature con- 
struction and irrelevant feature elimination, 
we applied our proposed relevancy filter to 
the 20- and 24-trains East-West Challenge 
prob1ems.l The experiments show that the 
performance of a hybrid genetic algorithm, 
RL-ICET,2 improved significantly when we 
applied the relevancy filter while prepro- 
cessing the dataset. 

We can view inductive concept learning 
as a process of searching a space of concept 

THE REDUCE ALGORITHM ELIMINATES IRRELEVANT TERMS 

REDUCE TO PREPROCESS DATA FOR A HYBIUD GENETIC 
Rv LEARNRVG TASKS. I N  THIS CASE STUDI; THE AUTHORS USE 

ALGORITHM RL-ICE?: 

descriptions or hypotheses. The language 
bias determines the space of hypotheses to 
be searched. Syntactic restrictions of the 
hypothesis language and the vocabulary of 
terms in the language, as well as the vocab- 
ulary of functions and relations defined in the 
background knowledge, determine the lan- 
guage bias. 

Let’s consider a propositional learning 
task where, given a fixed set of attributes, 
training examples are represented by tuples 
of features (attribute values). If the given 
vocabulary is too restricted for the learning 
task, constructive induction3 can extend the 
hypothesis language with new terms, auto- 
matically constructed from the terms in the 
learner’s vocabulary or generated based on 
the functions and relations defined in the 
background knowledge. The problem then 
becomes how to select, from the set of con- 
structed terms, only those terms that are rel- 

evant for the given task. 
First-order learning of relational descrip- 

tions, or inductive logic pr~gramming,~  
assumes a given set of training examples, 
represented by a relational table, and back- 
ground knowledge, represented either exten- 
sionally (in the form of relational tables) or 
intentionally (in the form of rules). If the 
given language bias is too restricted for the 
learning task, predicate invention5 can invent 
definitions of new predicates from the defi- 
nitions of predicates in the background 
knowledge, thus causing bias shift. Alterna- 
tively, bias shift can occur by allowing the 
learner to switch its search to a hypothesis 

ned by a syntactically more expres- 
sive hypothesis language. 

Constructive induction and predicate in- 
vention can be invaluable for the success of 
learning. Expansion of the hypothesis lan- 
guage can, however, decrease the learner’s 
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performance, particularly in terms of effi- 
ciency. But, despite the extended hypothesis 
language, there is no guarantee that the new 
vocabulary will help the learner to induce a 
better solution, because the new terms might 
be irrelevant for the task at hand. 

To prevent uncontrolled expansion of the 
hypothesis language, we’ve developed a fil- 
ter that distinguishes the potentially relevant 
terms from those that are irrelevant for the 
learning task. We can use the relevancy fil- 
ter to eliminate the irrelevant terms while pre- 
processing the set of training examples. By 
biasing constructive induction (or predicate 
invention) to relevant terms only, the ex- 
plored space of constructed terms can be 
larger, which increases the chance of suc- 
cessfully solving the learning task. 

Our filter is directly applicable to two- 
class propositional learning problems des- 
cribed with binary-valued terms, and to those 
inductive logic programming tasks for which 
a Linus-like transformation approach is 
appl i~able .~  When applying the filter to a 
multiclass learning problem, we must trans- 
form the problem to a two-class learning 
problem; the transformation can be done the 
same way as in the well-known covering 
algorithms AQ and CN2. As this article 
describes, multivalued attributes must be 
transformed into a binary-valued literal form. 

The relevance of literals and 
features 

Let’s consider a two-class learning prob- 
lem where the training set  consists of pos- 
itive and negative examples of a concept (E 
= P U If) and examples e E E are tuples of 
truth values of terms in a hypothesis language. 
L denotes the set of all terms, called literals. 

We’ll represent the training set E as a table 
whose rows correspond to training examples 
and columns correspond to literals. An ele- 
ment in the table has the value t r u e  when 
the example satisfies the condition (literal) 
in a column of the table; otherwise its value 
is f a l s e .  

How to achieve the required propositional 
representation. If the training set does not 
have the form of truth-value tuples, a pre- 
processor has to transform the training set to 
transform it to this form. For attribute-value 
learning, the transformation procedure is 
based on analysis of the values of examples 
in the training set. For each attribute Ai ,  let 

vi, (x = 1. . kip) be the kip different val- 
ues of the attribute that appear in the positive 
examples and let wiy 0. = 1. . kin ) be the 
kin different values appearing in the nega- 
tive examples. The transformation results in 
this set of literals L: 

For discrete attributes Ai ,  literals of the 
form A ,  = vi, and Ai # wiy are gener- 
ated. 
For continuous attributes Ai ,  literals of 
the form Ai 5 ( vi, + wiy) / 2 are created 
for all neighboring value pairs (vi,, 
wiy), and literals Ai > ( vi, + wiy) / 2 for 
all neighboring pairs (wiy, vi,). 
For integer valued attributes Ai ,  literals 
are generated as if Ai were both discrete 
and continuous, resulting in literals of four 

TO PREVENT UNCONTROLLED 
EXEANSlON OF THE HYPO- 
THESIS LANGUAGE, WE’VE 
DEVELOPED A FlLTER THAT 
DISTINGUISHES THE POTEN- 
TlALLY RELEWCSANT TERMS FROM 
THOSE THAT ARE IRRELEWNT 
FOR THE LEARNING TASK. 

different forms: Ai 5 ( vi,+ wiy) /2, Ai 
> (vi+Wi,)/2,Ai=vi,andAi#wi,. 

Construction of new terms. We assume that 
new terms also have the form of literals, which 
have true or false values for the given 
training examples. Suppose that attributes Ai 
describe the original training set. Constructive 
induction can create new terms such as: 

literals that test the relations Ai = A y ,  
Ai # A j  for attributes of the same type 
(the same sets of values or continuous 
attributes), 
literals introducing internal disjunctions 
Ai = [vik v vil] or intervals Ai E 

conjunctions of features ( A i  = vik) A 

literals that test values of functions 
defined in the background knowledge, 
suchasf(Ai ,Aj ,  ... ) I v , a n d  

[VikI vi11 I 

(Aj = V j i ) ,  
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literals using the relations defined in the 
background knowledge r ( A i ,  A j )  . 

An obvious way to construct new terms is 
also by generating negations of literals (the 
so-called negative literals): for every r ( A i ,  
A j )  constructa1iteral7 r ( A i , A j ) .  

The Linus learning system proposes a gen- 
eral procedure for constructing terms based 
on the information in the background knowl- 
edge! We can use that procedure to construct 
new terms in attribute-value learning, as well 
as in first-order learning (inductive logic pro- 
gramming), where we can solve the relation 
learning tasks by using Linus’s restricted 
hypothesis language of constrained nonre- 
cursive clauses with typed variables. 

For example, consider a relation-learning 
task, where the training set consists of exam- 
ples of the target relation d a u g h t e r  ( A , ,  
A, ) and the background knowledge consists 
of definitions of a unary relation f e m a l e ,  a 
binary relation parent, and the equality rela- 
tion (=).The transformation of training exam- 
ples results in a table whose rows are truth- 
value tuples corresponding to individual 
training examples and whose columns corre- 
spond to literals, constructed by the appropri- 
ate variabilization of background-knowledge 
predicates: f e m a l e ( A l ) ,  f e m a l e ( A 2 ) ,  
p a r e n t ( A 1 ,  A , ) ,  p a r e n t ( A , ,  A , ) ,  
parent ( A , ,  Al ) , parent ( A , ,  A,  ) , and 

The variabilization of constructed literals 
is restricted to the use of variables A, and A,, 
because.in constrained clauses only the var- 
ables appearing in an induced clause’s head 
may appear in the literals of the clause’s 
body. Thus, for the target relation daugh- 
t er  ( A,,  A,  ) , the constructed literals may 
only use Al and A, in the arguments, whereas 
literals introducing new variables, such as 
parent  ( A , ,  Z )  , are disregarded. Despite 
this limitation of the hypothesis language, 
complexity analysis of the Linus transfor- 
mation approach reveals that the number of 
constructed literals is linear in the number of 
background-knowledge predicates and expo- 
nential in the number of arguments (of dif- 
ferent types) of the background-knowledge 
predicates. Therefore, eliminating irrelevant 
literals constructed by the Linus transforma- 
tion procedure is invaluable for the learner’s 
success, when the number and arity of pred- 
icates in the background knowledge is large. 

Unlike Linus’s proposed general procedure, 
our case study presents a special-purpose 
procedure for constructing new terms in the 

A, = A,. 
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East-West challenge problem, where the con- 
struction of new terms turns out to be the key 
to the learning task’s successful solution. 

Thep/n pairs of examples. Let a truth-value 
table represent the set of traming examples 
E, where columns correspond to the set of 
(positive and negative) literals L and rows are 
truth-value tuples of literals, representing 
training examples e E E. The table has two 
parts, P and N, where pare the positive exam- 
ples and Nare the negative examples. Let P 
U Ndenote the truth-value table E. 

We use these definitions and notahon:6 

0 A p / n p a i r  is a pair of training examples 
w h e r e p e  P a n d n c  N. 

0 Literal 1 E L covers a p / n  pair if in col- 
umn 1 of the table of training examples E 
the positive example p has the value 
t r u e  and the negative example n has the 
value f a l s e .  

0 E ( 1 ) denotes the set of all p /n  pairs 
covered by literal 1. 

e Literal 1 covers literal 1’ if E (  1’) L 
E(1). 

The relevance of literals. Consider a sim- 
ple learnmg problem with five traning exam- 
ples forming example set E: three positive p 
= {p, , p, , p3 } and two negatrve N = { n, , 
n2 } . Examples are described by the truth- 
values of literals 1, E L. Table 1 shows just 
some of the truth-values of E. 

To understand the meaning of p /n  pairs 
and the notions of coverage and relevance of 
literals, consider just three literals: 12, 1,, 
and I , .  Literal l2 in Table 1 appears to be 
relevant for the formation of an inductive 
hypothesis because it is true for a positive 
example and false for both negative exam- 
ples, a hypothesis constructed from 1, only 
would cover the positive example p2 and 
would not cover the negative examples n, 
and n,. Literal 1, thus appears to be a rea- 

sonable ingredient of an inductive hypothe- 
sis aimed at covering all the positive exam- 
ples and none of the negative examples. 

Literal 1, covers two p /n  pairs: E ( 1, ) 
= { p 2 / n l ,  p, /n,}.  Literal 1, is inappro- 
priate for constructing a hypothesis, because 
it does not cover any p/n pair: E ( 1,) = 0. 
Literal 1, seems to be less relevant than 1, 
and more relevant than because it covers 
one p / n  pair: E ( 1, ) = {p, /q}. Literal 1, 
covers 1, and I,, and literal 1, covers I,, 
because E ( & )  L E ( & )  c E (  1,). 

The example in Table 1 lets us reach this 
intuition: the more p /n  pairs a literal cov- 
ers, the more relevant it is for hypothesis for- 
mation. We can formalize this intuition in this 
definition: 

Literal 1‘ is irrelevant if a literal 1 E L exists 
such that 1 covers 1’ ( E (  1’) g E ( 1 ) ) .  

In other words, literal 1’ is irrelevant if it cov- 
ers a subset of p / n  pairs covered by some 
other literal 1 E L. 

Let us now assume that literals are assigned 
costs. Let c ( 1 ) denote the cost of literal 1 E 

L. We need to modify the definition of irrel- 
evance if we want to take into the account the 
costs of literals: 

Literal 1‘ is irrelevant if a literal 1 E L exists 
such that 1 covers 1’ ( E (  1’) c E ( 1 ) )  and the 
cost of 1 is lower than the cost of 1‘ (c ( 1) 2 

c(1‘)). 

In our case study, cost is a measure of com- 
plexity: the more syntactically complex the 
literal, the higher its cost. 

A filter for cost-sensitive elimination of 
irrelevant literals. If a constructive induction 
procedure generates irrelevant literals, they 
can he detected and eliminated before enter- 
ing the learning process. Figure 1 presents a 
cost-sensitive algorithm for irrelevant literal 

Table 1. Coverage of literals and p/n pairs. 

EXAMPLES LITERALS 
...... ...... ......... ...... L, 4 La 

Pi 

P3 

p P2 t r u e  t r u e  f a l s e  

“1 f a l s e  f a l s e  t r u e  
N n2 false t r u e  t r u e  

elimination. The algorithm assumes a set of 
training examples E descnbed by an initial set 
of relevant literals L, a set of constructed lit- 
erals L~~~ and the assignment of literal costs 
c ( 1) . If no costs are assigned, we assume for 
a l l I E L u L N e , : C ( I )  = l .  

Implementation issues. We can efficiently 
implement the relevancy filter using simple 
bitstring manipulation on the table of train- 
ing examples E For this purpose, we trans- 
form the table E into E,: 

Vp E P: replace t r u e  by 1 and f a l s e  

Vn E N: replace f a l s e  by 1 and t r u e  
by 0 

by 0 

In this representation, examples e E E ,  
and literals 1 E L are bitstrings. Coverage 
can now be checked by set inclusion. Recall 
that literal 1 covers literal 1’ if E ( 1’) _c 
E ( 1 ) . Thus, if 1’ has the value 1 only in 
(some of) those rows in which 1 has 1 and in 
no other rows, 1’ is irrelevant and can be 
eliminated. 

The relevancy filter assumes that the initial 
literal set consists of relevant literals. Alter- 
natively, we can consider the entire set L U 

L~~~ as a unique literal set to be checked for 
the relevance of its elements; we used this 
variant of the relevancy filter in our experi- 
ments. This algorithm, called Reduce? was 
initially developed by Dragan Gamberger 
and implemented in the Inductive Learning 
by Logic Minimization (ILLM) algorithm 
for inductive-concept learning. Reduce first 
eliminates all the useless literals li (literals 
that are f a l s e  for all p E P and those that 
are t r u e  for all n E N) and continues by 
eliminating other irrelevant literals in turn. 

Relevance of features. The term feature 
denotes apositive literal-for example, A, = 
v, A, I w, r (Ai, A j  ) . In the hypothesis lan- 
guage, the existence of one such feature 
implies the existence of two complementary 
literals: a positive and a negative literal. Sup- 
pose that we consider the feature Col or = 
black and that the attribute Color has 
three possible values: b l a c k ,  whit e, and 
r e d .  Because each feature implies the exis- 
tence of two literals, the necessary and suf- 
ficient condition that a feature can be ehmi- 
nated as irrelevant is that both of its literals 
Color = b l a c k a n d  C o l o r # b l a c k ( t h a t  
is, 7 ( Color = black) ) are irrelevant. This 
statement directly implies the procedure 
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taken in our experiment. First. we convert the 
starting feature vector to the corresponding 
literal vector, which has twice as many ele- 
ments. Next, we eliminate the irrelevant lit- 
erals and then construct the reduced set of 

G i v e n :  costs c(1) of literals inLuLNear 
Input: L- in i t ia l se to fre l evant l i t era l s ,  L,,,,-newliterals, 

I 

E =  PuN-tableof positiveandnegative 
examples, consistingoftruth-valuetuplesofL I 
for V li E 

fortlp6 Pandtlnc Nevaluatelias trueor false 
i f  V p  E P li has value fa l se  then l i  is irrelevant 
i f  Vn e N 1; has value true then 1 + is irrelevant 

features, which includes all the features that 
have at least one of their literals in the 
reduced literal vector. 

However, direct detection of irrelevant fea- 
tures (without conversion to and from the lit- 
eral form) is impossible except in the trivial 

if 1; is co;ered by any lj E L f o r  which c( lj) 2 
c ( l i )  then li is irrelevant 
else L c L U { li 1 ,  and add column of truth values of 
litotableE=PuN 

I I 

I ! 
endf or 

\ Output : L - extended set of relevant literals, E = P U N - extended \ 
case where two or more features have iden- 
tical columns in the E, table. Only in this 
case does a feature f exist whose literals f 
and f cover both literals g and 1 g of some 
other feature. Generally, if a literal of feature 
f covers some literal of feature g, the other 
literal of feature f does not cover the other 
literal of feature g. But sometimes a literal 
of some other feature h covers this other lit- 
eral of feature g. Therefore, although no such 
feature f covers both literals of feature g, 
feature gcan still turn out to be irrelevant. 

This analysis supports the approach, used 
in our study, in which the input to the learner 
is tuples of truth values of positive and neg- 
ative literals, rather than feature vectors, 
which are used in most standard approaches 
to rule induction. 

Utility study: the East-West 
Challenge 

Donald Michie and his colleagues issued 
a challenge to the international computing 
community to discover low size-complexity 
Prolog programs for classifying trains as 
eastbound or westbound'l The challenge was 
inspired by a problem posed by Ryszard 
Michalski and J.B. Larson, in 1977, where 
the task was to generate rules that will clas- 
sify trains as east- or westbound. Figure 2 
illustrates the original problem. 

Michie's original challenge included three 
separate tasks.' He later issued a second chal- 
lenge, involving a fourth task. Our experi- 
ments involve the first and fourth tasks. The 
first task had 20 trains, 10 eastbound and 10 
westbound, whereas the fourth task involved 
24 trains, 12 eastbound and 12 westbound. 
The challenge in these tasks was to discover 
the simplest rule for distinguishing the east- 
bound and westbound trains. 

For both tasks. the winner was decided by 
representing the rule as a Prolog program and 
measuring its size-complexity. The size- 
complexity was calculated as the sum of the 

I tableofpositiveandnegativeexamples, consistingof 
truth-valuetuplesofL I 

L.. 
Figure 1. The relevancy filter: an algorithm for cost-sensitive elimination of irrelevant literals. 

numbers of clause occurrences, term occur- 
rences, and atom occurrences. The perfor- 
mance on these two tasks was judged by size- 
complexity, not by accuracy on independent 
testing data (there were no independent test- 
ing data). All rules competing in the chal- 
lenge were required to achieve 100% accu- 
racy on the data. 

RL-ICET. ICET is a cost-sensitive algo- 
rithm, a hybrid of a genetic algorithm (Gref- 
enstette's Genesis) and a decision-tree induc- 
tion algorithm (Quinlan's C4.5), designed to 
generate low-cost decision trees. ICET per- 
forms a two-tiered search. On the bottom tier, 
C4.5 searches through the space of decision 
trees. On the top tier, Genesis searches 
through the space of biases. 

lCET takes feature vectors as input and 
generates decision trees as output, using its 
C4.5 component. We modified the C4.5 com- 
ponent from Quinlan's original design, so 
that its learning bias can be controlled by a 
vector of real-valued parameters, called a 
bias vector'. ICET's Genesis component 

.- 

searches in the space of bias vectors for a bias 
that optimizes the performance of the C4.5 
component, according to a given perfor- 
mance measure. ICET uses a performance 
measure that is sensitive to both the cost of 
features (the cost of acquiring information 
about an element in a feature vector) and the 
cost of classification errors (the cost of mis- 
taken classifications made by the output deci- 
sion tree).? 

Although ICET takes feature vectors as 
input and generates decision trees as output, 
the East-West Challenge involves input data 
in the form of Prolog relations and output the- 
ories in the form of Prolog programs. For the 
East-West Challenge, we extended ICET to 
handle Prolog input. This algorithm is called 
RL-ICET (Relational Learning with ICET).* 

RL-ICET is similar to the Linus learning 
system, as they both use a three-part learn- 
ing strategy? 

(1) A preprocessor translates the Prolog 
relations and predicates into a feature- 
vector format. We designed the pre- 

. . -. -. 
I 
I 
I 

. . . . 

Figure 2. The original 10-train East-West Challenge: (a) trains going east, (b) trains going west. 

MARCH/APRIL 1998 53 



kastbound([c(l rectangle, short. !iot-doaSle: n.one: 2, !(c:rcle,'l))! 
c(2, rectangle: loiig, riol-double, none, 3; I(,hexagoin, I)):  
I@, reciangle. short noi-double, peaked. 2: l(?riaiigle, I ) ) ;  
c(4. rectangle. long, not-doubla, none, 2. !(rectangle, 3))]). 

I vert the relatively 

1 compact Prolog 
description into 

- .. . . -j a feature-vector 
Figure 3. A train and its Prolog clause representation. 

processor in RL-ICET especially for the 
East-West Challenge; Linus has a gen- 
eral-purpose preprocessor. 

(2)  An attribute-value learner applies a deci- 
sion-tree induction algorithm (ICET) 
to the feature vectors. Each feature is 
assigned a cost, based on the size of the 
fragment of Prolog code that represents 
the corresponding predicate or relation. 
A low-cost decision tree corresponds 
(roughly) to a Prolog program that has a 
low size-complexity. When it searches 
for a low-cost decision tree, ICET is in 
effect searching for a low size-complex- 
ity Prolog program. 

(3) A postprocessor translates the decision 
tree into a Prolog program. RL-ICET 
performs postprocessing manually: Li- 
nus does it automatically. 

Feature construction in RL-ICET. Much of 
RL-ICET's success in the East-West Chal- 
lenge tasks are attributable to its preprocessor. 
The data about each train in the East-West 
Challenge were represented using Prolog. For 
example, the Prolog clause shown in Figure 3 
represents the train also shown in the figure. 

We used a simple Prolog program to con- 

format (tuples of 
truth-values of 
features) for use 
in decision-tree 

induction. This produced rather large fea- 
ture vectors of 1,199 elements. These large 
vectors ensure that all the features that are 
potentially interesting for the final solution 
are made available for ICET. 

To construct features, we started with 28 
predicates that apply to the cars in a train, 
such as el 1 ipse ( C) , which is true when 
the car C has an elliptical shape. For each of 
these 28 predicates, we defined a corre- 
sponding feature. All features were defined 
for whole trains, rather than single cars, 
because the problem is to classify trains. The 
feature ellipse, for example, is t r u e  
when a given train has a car with an ellipti- 
cal shape. Otherwise e l l i p s e i s  f a l s e .  

We then defined features by forming all pos- 
sible unordered pairs of the original 28 predi- 
cates. For example, the feature ellipse- 
triangle-load is t r u e  when a given 
train has a car with an elliptical shape that is 
carrying atriangle load, and falseotherwise. 
For a given train, the features ellipse and 
triangle-load can be t r u e ,  while the 
feature ellipse-triangle-load is 
false,becauseitisonly truewhenthetrain 
has a car that is both elliptical and carrying a 
triangle load. 

Table 2. Some features and their costs. 

FEATURE PROLOG FRAGMENT GOST 

ellipse has-car (T, C) , ellipse (C) . 5 

short-closed has-car(T, C), short (C), 7 

train-4 lenl(T, 4). 3 

train-hexagon has-load1 (T, hexagon) . 3 

ellipseseaked-roof has-car(T, C), ellipse(C), 9 

u-shaped-no-load has-car(T, C), u-shaped(C), 8 

closed(c1. 

arg(5, C, peaked). 

has-load(C, 0) . 
rectangle-load-infront infront(T, Cl, C2), 11 
- jagged-roof has-load0 (Cl, rectangle), 

arg(5, C2, jagged). 

Next, we defined features by forming all 
possible ordered pairs of the original 28 pred- 
icates, using the relation in f ront  ( T, cl, 
c2 ) . For example, the feature u-shape- 
frontseaked-roof is t r u e  when the 
train has a U-shaped car in front of a car with 
apeakedroof, and fa l se  otherwise. Finally, 
we added nine more predicates that apply to 
the train as a whole, such as train-4, which 
is t r u e  when the train has exactly four cars. 
Thus a train is represented by a feature vector, 
where every feature is either t r u e o r  false. 

We assigned each feature a cost, based on 
the complexity of the fragment of Prolog code 
required to represent that feature. Recallthat 
we define the complexity of a Prolog program 
as a sum of the numbers of occurrences, term, 
and atom occurrences. Table 2 shows some 
constructed features and their costs. 

A train's feature vector does not capture 
all the informalion in the original Prolog 
representation. For example, we could also 
define features by combining all possible 
unordered triples of the 28 predicates. How- 
ever, these features would likely be less use- 
ful, because they are so specific that they will 
only rarely be t r u e .  If the target concept 
should happen to be a triple of predicates, it 
could be closely approximated by the con- 
junction of the three pairs of predicates that 
are subsets of the triple. 

This kind of translation to feature-vector 
representation could apply to many other 
types of structured objects. For example, con- 
sider the problem of classifying a set of doc- 
uments. The keywords in a document are anal- 
ogous to the cars in a train. The distance 
between keywords or the order of keywords 
in a document might be useful when classify- 
ing the document, just as the in f ront  rela- 
tion might be useful when classifying trains. 

Feature elimination. The objective of our 
experiments was to show the utility of the 
Reduce literal-elimination algorithm. Our 
approach lets us generate many different fea- 
tures, which will surely include all signifi- 
cant ones, and then, before using an induc- 
tive learner, eliminate all irrelevant features 
to keep the computation as effective as pos- 
sible. We performed two separate experi- 
ments for the 20- and 24-trains problems. In 
both experiments, we used the RL-ICET pre- 
processor to generate the appropriate features 
and transform the training examples into a 
feature-vector format. This resulted in two 
training sets of 20 and 24 examples each. 

To apply the Reduce algorithm, we first 
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converted the 1,199-element starting feature 
vector to the corresponding literal vector, 
which has twice as many elements, contain- 
ing 1,199 features generated by the RLICET 
preprocessor (positive literals) as well as 
their negated counterparts (1,199 negative 
literals). After that, we eliminated the irrele- 
vant literals and, in the third phase, con- 
structed the reduced set of features, which 
includes all features that have at least one of 
their literals in the reduced literal set. 

We tested Reduce’s utility as follows. First, 
we performed 10 runs of the ICET algorithm 
on the set of training examples with 1,199 fea- 
tures. Then we performed 10 runs of ICET 
on the training examples with the reduced set 
of features selected by Reduce. 

Table 3 summarizes the results. The table 
compares the average results of 10 runs of RL- 
ICET with respect to the costs of decision trees 
and execution times. The ICET algorithm’s 
stochastic nature required us to use 10 runs: 
each time it runs, it yields a different result 
(assuming that the random number seed is 
changed). If we compared one single run of 
ICET on 1,199 features to one run of ICET on 
the reduced feature set, the outcome of the 
comparison could be due to chance. All trials 
are independent of each other. (For example, 
the results of trial 4 should not be compared to 
the results of trial 14.) Only the average results 
are relevant for the comparison. 

In the RL-ICET experiments, we mea- 
sured the performance by the cost of the deci- 
sion trees induced by ICET, as well as the 
complexity of the Prolog programs after the 
RL-ICET transformation of decision trees 
into the Prolog program form.2 In Table 3 ,  
we skip the latter, because the transforma- 

tion into the Prolog form is currently manual 
and suboptimal, which means that a tree with 
the lowest cost found by ICET is not neces- 
sarily transformed into a Prolog program 
with the lowest complexity. 

Results of the 20-trains experiment. With the 
20-train data, Reduce cut the original set of 
1,199 features to 86 features, thus reducing 
the complexity of the learning problem to 
about 7% (86/1,199) of the initial problem. 

The results show that the efficiency of 
learning significantly increased. In the initial 
problem with 1,199 features, the average time 
per experiment was approximately 2 hours 
and 17 minutes; in the 86-feature reduced 
problem setting, the average time was approx- 
imately 12 minutes. The difference between 
times tl and t2 is significant. This shows the 
utility of literal reduction for genetic algo- 
rithms, which are typically expensive in terms 
of CPU time. 

The average cost of descriptions induced 
from the 86-feature set decreased (from 20 
to 18.61, but the difference between decision 
tree costs c1 and c2 is not significant. The 
variance (and the standard deviation) of the 
costs was also decreased: the costs of the 
decision trees generated from 1,199 features 
vary more than the costs of the trees gener- 
ated from 86 features: var ( c,) = 1.6 
(sd(cl)  = 1.3) and var(c2) = 5 . 1  
(Sd( ~ 2 )  = 2.3). 

Results of the 24 trains experiment. In this 
experiment, Reduce decreased the number 
of features from 1,199 to 116, thus reducing 
the learning problem’s complexity to about 
10% (116/1,199) of the initial problem. Here, 

Table 3. Results of the experiments. 

too, the efficiency of learning significantly 
increased. In the initial problem with 1,199 
features, the average time per experiment 
was nearly two hours; in the 116-feature 
reduced problem setting, the average time 
was approximately 14 minutes. The differ- 
ence between times t, and t, is significant. 

The average cost of the decision trees 
induced from the 116-feature set also de- 
creased. The difference between decision tree 
costs c1 and c2 is significant (at the 99.99% 
confidence level). Our hypothesis that vari- 
ance (and standard deviation) of the output 
of RL-ICET can be reduced is only weakly 
supported, because the inequality of variance 
is insignificant: var ( c1) = 4 . 8  (sa ( c,) 
= 2 .2)  and var ( c2 ) = 5 .2  (sd ( c2 ) = 
2.3). 

O U R  AIM IN THIS WORK IS TO 
contribute to a better understanding of rele- 
vance for inductive-concept learning. Our 
case study shows that the construction of 
appropriate features can be crucial for the 
success of learning, and that cost-sensitive 
elimination of irrelevant features can sub- 
stantially improve learning efficiency and 
reduce the costs of induced hypotheses. 

The case study deals with an exact, noise- 
free problem in which we assume that the 
learning goal is to find a consistent and com- 
plete concept description. The choice of a 
simplified noise-free setting enabled a clear 
presentation of the notions underlying the 

20 TRAINS 24 TRAINS 
86 FEATURES 1.1 99 FEATURES 116 FEATURES 1.1 99 FEATURES 

TRIAL TIME COST TRIAL TIME COST TRIAL TIME COST TRIAL TIME COST 
tl G f2 c2 tl q t2 c.2 

1 11:05 18 
2 11:19 21 
3 1255 18 
4 11:35 18 
5 15:16 18 
6 11~35 18 
7 11:32 18 
8 11:38 18 
9 11:28 18 
10 11:18 21 

Sum 119:41 186 
Mean 1157 18.6 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Sum 
Mean 

2:21:32 
2:21:34 
2:19:15 
2:19:32 
2:16:20 
2:23:52 
2:24:09 
2:18:41 
2 3 6 5 8  
2:23:09 

23:25:02 
2 3 6 5 4  

24 1 14:35 
21 2 14:26 
20 3 1459 
20 4 14:17 
18 5 13:32 
22 6 1331 
21 7 14:29 
16 8 1354 
18 9 13:51 
20 10 14:30 

200 Sum 2:22:04 
20 Mean 1492 

20 
18 
18 
21 
18 
22 
18 
23 
23 
18 

199 
19.9 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Sum 
Mean 

1 :54:15 
1:55:29 
2:00:25 
1:56:31 
1 :56:47 
1:57:14 
1:56:52 
1 :56:33 
1 :49:08 
1 :47:46 

193 1 :oo 
1 :55:05 

27 
21 
26 
25 
25 
24 
28 
23 
27 
28 

254 
25.4 
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implemented relevancy filter. Real-life prob- 
lems require a more complex setting, involv- 
ing the use of our algorithm for noise detec- 
tion and elimination. Based on the notion of 
p/n pairs, the algorithm first heuristically 
evaluates the minimal number of literals 
needed to construct a complete and consis- 
tent hypothesis, and then detects in the train- 
ing set the potentially noisy examples a s  those 
whose elimination will decrease the number 
of literals needed for hypothesis generat i~n.~ 

Because RL-ICET originally required 
about two hours to process the 20- or 24-trains 
problems, the RL-ICET approach to induc- 
tive logic programming did not seem able to 
scale up to larger problems, with hundreds or 
thousands of instances.* However, with 
Reduce as a preprocessor, RL-ICET now 
requires under 15 minutes for the 20- or 24- 
trains problems. Reduce itself runs in sec- 
onds. The combination of Reduce and RL- 
ICET likely can scale up to much larger 
problems than were previously practical for 
RL-ICET alone. fl 
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