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Abstract

The paper presents an approach to molecular energy miriarizasing Constraint
Logic Programming (CLP) as a preprocessor to a moleculahamcs minimization pro-

gram such as CHARMM. The use of CLP enables the definitionropld constraints that
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sufficiently describe relations in a molecule, thus lingtihe search space of the globally
optimal solution. The approach was used on the problem oinm#ing the energy of the
alanine dipeptide and N-methylalanylacetamide. An apprate 3-D structure produced
by a CLP system was used as an initial structure for the CHARdMdgram that considers
all relations in such a structure and performs energy opétian. With this initial struc-
ture, computed in about one minute of CPU time, the optimaitem (global minimum)
was found in only few seconds, while calculating the samet®ol with CHARMM alone

took 15 hours. All calculations were performed on HP/735.

1 Introduction

Flexible molecular systems such as oligopeptides posses many local minima motehgal
energy surface. Conventional algorithms, for example the steepest descenbfiibfate gra-
dients [16], Newton-Raphson, and others used for the minimization of the energyfuocti
these surfaces usually find the nearest minimum from the initial molecuatste. Conforma-
tional studies of dipeptides [18] suggest that the lowest energy minima are thpopodhted
ones. The information about the global energy minimum is also very useful in ayafie
studies such as harmonic analysis of the vibrational frequencies[19]. The stfdheeaylobal
minimum can be used for the evaluation of the quality of the parameterizatitie ehtpirical
force field.

In the past there have been several attempts to deal with the global minirobrermr(see
[17, 21, 22] and references therein) but none is efficient enough to be routinely usedpn-c
tational chemistry.

The motivation for this paper is to considerably speed up exhaustive conformastgameh

for small molecules. The idea is to use Constraint Logic Programming (CLs®)thirfind an



approximate, crude solution to the molecular energy minimization problem. Thicsothen
provides an initial structure for a classical energy minimization sy$tenCHARMM (Figure
1). The main advantage of using CLP is its flexibility in combining symbolic and nigaler
constraints, and the possibility to use different domain-specific constramiuteon strategies
within the same framework.

The current implementation permits the use of the algorithm on molecules of up tor86 a
only. The proposed method was tested on two small molecules, namely the alg@pgde

and N-methylalanylacetamide shown in Figures 5b and 6b.

2 Problem formulation in CLP

2.1 Constraint Logic Programming

Constraint Logic Programming (CLP, [6, 4]) is a generalization of logic progreaqifii]. Uni-
fication, the basic operation in logic programs, is replaced by a more generabm&mn of
constraint satisfaction over a specific computation domain. An instance gfetheral CLP
scheme is obtained by selecting a computation domain, a set of allowed autsstrad design-
ing a solver for the constraints. CLP combines the advantages of logic programmahay-(de
ative semantics, nondeterminism, partial answers) with the efficiehsgecialized constraint
satisfaction algorithms.

There exist several instances of the general CLP scheme, implemented, iE€L'PS
[2], or SICStus Prolog [11]. The most common are: CBP{— a solver for constraints over
the Boolean domain, CLEX) — a solver for constraints ovefinite domains, and a solver for
systems of linear equations and inequalities over the domaiteafs — CLP{), or over the

domain of rationals — CLRD).



In this study we used ECPS [2] which provides an implementation of CLPJ with a
large repertoire of available predicates and constraints over finite dom@&inB(F) allows
for an explicit manipulation of constraints over finite domains through the concejuroéin
variables[10]. Domain variables range over finite sets of atomic values and as moresiniss
are imposed on the variables these sets become smaller. Constraintepmegaped in such
a way to ensure some form of local consistency, engde; arc-, or path-(of some length)
consistency5] and are combined with backtrack search in the reduced solution space. For

exampleforward-checkingas introduced in [9] essentially ensures arc-consistency.

2.2 Molecular energy minimization

There are several computer-based approaches to molecular energy miomizahe ap-
proach selected in this work can be viewed as a preprocessing step to emengyzation

by CHARMM [1]. In this work, the idea is to constrain the space of possible solufamns
CHARMM in such a way that the globally optimal solution will easily be reacirem an ap-
proximate solution determined in preprocessing; CHARMM is then used just foefinement

of the approximate solution proposed by the preprocessor. Being a preprocessor to GHARM
the proposed CLP approach thus assumes the same potential field (cost functiomeaklgefi
CHARMM.

2.2.1 Cost constraints

In the molecular energy minimization problem, there is a cost function whictchlae min-
imized. The cost function is taken from the empirical potential used by CHRMRMhich is
composed of several terms [1]. In our approach, we consider constant bond lengths and bond

angles, and the torsion energy is neglected for simplicity reasons. Consegtientbtiowing



two terms are used for energy computation:

¢ Van der Waals interaction potential

A B
Eyaw = Z 12 76

exel(i,j)=1 Tij T'ij

e electrostatic potential

Ea=C Yy 24
excl(ij)=1 i

where A and B are constants depending on atoms that appear in a pair (i, j) of atoms, C is a
constanC’’ = ;——, ¢; andg; are electric charges of atoms; is the distance between atoms, and
excl(i, j) = 1 when the corresponding atoms are at least three bonds apa#t(@/éi, j) = 0
if atoms are connected by bonds or bond angles, ©if; in order to eliminate symmetrical
computations).

The cost functior? = E, g + E,; is formulated in ECEPS[2]. It can be viewed as a func-
tion that needs to be minimized by a CLP constraint solver. However, dug nori-linearity,
we had to implement a special search procedure for dealing with such coropktxants (see

Section 2.3).

2.2.2 Distance constraints

The selected CLP model of a molecule consists of distances of pairs of atomsfdrheation
about bonds and angles is taken from the CHARMM parameter file. The predefined bonds and
angles constrain the possible distances of other atoms.

A constraint for two pairs of bonded atoms involves six distances (Figure 2pli8ed con-
straints between these six distances are all the possible triangular itiequlat can be stated

between the two bonds. Since each distance appears in two consecutive bondsecwdenol



each change of possible values of a distance propagates to all the involvedintsis&t&on-

straint that relates six distances is written in the CLP language E€]2] as follows:

dists _cnstr( R12, R34, R14, R23, R24, R13 ) :-
triangle_ineq _cnstr( R12, R23, R13 ),
triangle_ineq _cnstr( R34, R14, R13 ),
triangle_ineq_cnstr( R12, R14, R24 ),

triangle_ineqg_cnstr( R34, R23, R24 ).

triangle_ineq cnstr( Distl, Dist2, Dist3 ) :-
Distl + Dist2 >= Dist3,
Dist2 + Dist3 >= Distl,
Dist3 + Distl >= Dist2.

Note that the above variabl&$ j correspond to;; distances between atoms occurring in
the Van der Waals and electrostatic interaction potential cost functidvesfirBt constraint can
be read as follows: a constraint between six distances of two pairs of borated holds if
the triangular inequality constraints between triples of specified distdnodes The triangular
inequality constraint, relating three distances forming a triangle, isutated according to the
obvious geometrical properties that hold for the edges of a triangle.

A disadvantage of these simple constraints is a wider interval of possiblachstalues as
opposed to exact boundary values of intervals. The advantage of such simple canistthait

computational efficiency.As a consequence, some distance values that are consistent with the

1The exact computation of distances would be possible by explicitlgidering the given information about the
angles; however, in order to reduce the computational complexity, Wwerrabnsidered more relaxed constraints

thus trading exactness for efficiency.



constrains are impossible in real situations. Therefore, the constraintslstailde viewed as

abstractions of real distance values but rather as their approximations.

2.3 Constraint propagation by CLP

Our implementation uses two types of constraints: arithmetic constrainissandlefined con-
straints.

Inequality constraints are built-in arithmetic constraints and are cdeipleandled by the
ECL'PS system. Each inequality constraint consists of three finite domain variedpes-
senting distances. An upper and a lower bound of each variable are adjusted tangper
lower bounds of the other two variables. For inst&ndfedomains ofDi st 1, Di st 2 and
Dist3arel..5, 1..2and4..5respectively,andaninequality¥stl + Dist2 >=
Di st 3 then the lower bound of the variabl® st 1 is increased to 2. The domain change
causes the other constraints containing@het 1 variable to adjust their variables’ domains
according to the new domain of the variablest 1.

On the other hand, the cost function constraints are user-defined. They are also incor

porated into the ECIPS system propagation mechanism, but we had to implement proce-

dure of variables’ domains adjustment. Actually, only the tedqgy,, = ﬁ‘? — % and
(%) (%)

Eo,; = C% are implemented as user-defined constraints. The summation used in the cost
function Evaw = Xeseiijy=1 Evaw,; aNd Egp = 3 00.5)=1 Eer;;) 1S @ built-in arithmetic con-
straint and is handled in a similar way as the inequality constraints. Ifrghéerm, the upper

and lower bounds of the variablés,, andr;; must be adjusted, while in the second term

the upper and lower bounds of the variables. andr;; must be adjusted. All other items in

2According to the lower bound dbi st 3 the sum ofDi st 1 + Di st 2 must be at least 4. The variable
Di st 2 can contribute at most 2 to the sum and therefore, at least 2 must be cutrifyuthe variabl®i st 1.

The domain of the variablBi st 1 thus shrinks t@®. . 5.
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the terms are constants. The second term is linear and relations betwedatega domains
are quite straightforward. This is not the case in the first term which is meadli It must be
considered that the function is not monotone. Therefore, not only upper and lower bounds of
r;; are computed but also a valuegf where the fun(:tioq?—]_2 — % has the extreme.

A strategy for traversing the search space is branch-and-bound (see Figures8)wé&
select a distance variable with the largest interval of possible valAésrwards, we halve
the interval and continue with two subproblems, each having one half of values ofe¢htede
variable. This loop of partitioning the problem into smaller subproblems is repestil only
small intervals for distances remain. Exact distances (an interttabne value only) are almost
impossible due to numerical errors.

At every step of partitioning the algorithm decides which subproblem will be ddivst.
The decision depends on electric charges of atoms associated with adseistiace. If the
electric charges have the same sign then a subproblem with an upper half ofube egthe
selected distance is solved first, otherwise the search algorithetssalesubproblem with a
lower half of the values of the selected distance. In principle, all branafé® search space
have to be traversed in order to find the minimum energy. However, once agyesfethe
whole molecule is computed, all branches that lead to higher energies can be prunged. Thi
cut-off energy is updated whenever a new minimum energy is found.

Searching for an optimal solution has an exponential complexity. There is no gessral
to overcome this complexity and still get an optimal solution. Neverthethessearch space
can be pruned with additional constraints. These constraints can be a resuledfrsoniedge
about the molecule (i.e., NMR distances), or energy bounds got from some heuristichahtgorit
which can highly reduce the number of 3-D structure candidates. The main advantage of our

approach is that it is easy to incorporate various types of constraints into fadéd@ulation



of the problem.
Our approach currently uses only the energy upper bound constraint. The size of molecules

which can be solved with such search space pruning is thus limited to aboutr36. at

3 Case studies

3.1 Alanine dipeptide

An alanine dipeptide consists of two alanine amino acids (Figure 4). Theretagethler 23
atoms. Each of the 22 bonds has a known distance, and each of the 39 triples of connected
atoms has a known angle.

A model of the alanine dipeptide, built from the distances of each pair of atoms, has 253

distances. Each pair of atoms determines the constants which are usedastthunction.

3.1.1 An approximate solution by CLP

The CLP system computes an approximate solution which minimizes the cost fun€hen.
output of the CLP program are 253 distances (note that some of these are known in advance,
i.e., distances of bonded atoms). These distances are then input to the staricands éscility
in the CHARMM program. Since the number of distances is complete the programfeadsi
the unique solution to satisfy all the distances. The structure which satSEE distances
is shown in Figure 5a. CLP needed about one minute of CPU time on HP/735 to find the
approximate solution.

It is possible to design a procedure which would output the approximate solution directly
from the CLP program by a transformation from the internal to Cartesian cotedindhis

facility would eliminate the additional step of preparing the input for the stahicestraints in



the CHARMM program.

3.1.2 The results of refinement using CHARMM

The coordinates, representing an approximate solution, are input to CHARMM [1hwbro-
putes, without any constraints, an actual 3-D structure of the alanine dipeptoen ¢ Fig-
ure 5b.

Alanine dipeptide is a small molecule, so we can evaluate its 3-D struzywrsing a classi-
cal optimization approach by exhaustive conformational search. Using 3 torargiak there
are36 x 36 x 36 initial structures and all the resultant minima are presented in Table1l. T
prove that the initial torsional angle step size of idenough we repeated the calculation using
the step size of 5 The number and values of minima found remained the same as reported
in Table 1. This result can be used for comparing our approach with other known apoache
With CLP we got the approximate structure within one minute computation time ancgewly
eral additional seconds are necessary to get the proper 3-D structure withMIMARUNNINg
from scratch (without proposing an approximate initial structure), it took CMMRL5 hours
to find the optimal solution. The RMS difference between the approximate CLRw&dmom
Figure 5a and the refined one in Figure 5b which represents the global minimum, i8.0.88
The approximate structure is significantly different from the global minimum, loeit both
rather lie in the region of the potential energy surface which has no high bartveedrethem.
Therefore, the CHARMM ABNR [1] minimizer reached the final global minimunirthe

approximate structure without difficulties.
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3.2 N-methylalanylacetamide

A N-methylalanylacetamide has altogether 22 atoms and 21 bonds. The global minintusn of t
structure was determined previously in reference [20] using the same paraia®in our study.
The CLP structure and the corresponding refined CHARMM structure are showguires 6a
and 6b, respectively. The latter is identical to the one reported in [20]. THW® &fference

between the approximate CLP structure and the refined CHARMM structure if1.12

4 Conclusions

The paper proposes a method for speeding-up molecular energy minimization using a molec
ular mechanics minimization program CHARMM. For small molecules, subatapeed-up
can be achieved by first computing an approximation to the global energy minimunhend t
running CHARMM for the refinement of the approximate solution. This study proposes an
approach to approximate minimal energy computation using Constraint Logic Progrgmmi
(CLP). The CLP system succeeded to find approximate structures of the algreptidi and
the N-methylalanylacetamide which are close to their global minima sats@ndard numer-
ical minimization algorithm CHARMM is then able to locate the precise dlatiaima on the
potential energy surfaces. In both case studies, preprocessing using Cli€dresalspeed-up
of three orders of magnitude (1 minute vs. 15 hours).

The method presented in this paper can easily be modified to other empiricati@dtenc-
tions used in program packages such as GROMOS [12], AMBER [13], DISCOVERafith
others. Due to the large number of energy calculations the method is probably not doitable
ab initio methods using quantum potentials.

Due to the computational complexity of constraint propagation, the proposed CLP approach
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is currently limited to small molecules of up to approximately 30 atoms.eiisibns of the
method to larger systems are currently being investigated. Heuristiclses applied instead
of the limited exhaustive search as used in this study. Thus, in addition tapttreximate
molecular structure, the energy minimum is approximated as well. Firstiengmais on a
cyclic sextapeptide indicate that such an approximation also provides a goodgspaint

for the CHARMM energy minimization. The estimated size of tractable problean thus be

increased to about 100 atoms.
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Table caption

Table 1 All the minima found by exhaustive search at 38ep size for each of the three angles.

Anglesy, 1, w have the usual meaning.
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Figures captions

Fig. 1 Interaction between CLP and CHARMM.

Fig. 2 The distances between atoms that constitute two bonds: A1-A2 and A3-A4.

Fig. 3 Partitioning a problem into subproblems by halving variable domains and updating the

cutoff minimum energy.

Fig. 4 The schematic structure of the alanine dipeptide.

Fig. 5 The structure of the alanine dipeptide (a) approximate found by CLP and (b) refined by
CHARMM.

Fig. 6 The structure of the N-methylalanylacetamide (a) approximate found by CLP and (b)
refined by CHARMM.
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Table
Table 1. All the minima found by exhaustive search &t 4&p size for each of the three

angles. Angles, ¥, w have the usual meaning.

Angles [] Energy

P w © kcal/mole

81.8| -1.7 | -43.3 | -54.0511
-61.8 9.5 | 30.3| -49.0296
-74.7| 111.3| -72.8 | -42.5722
83.3|-104.9| 64.7 | -33.8062
96.9| -96.8| 62.8 | -33.5976

-73.3| -8.9 | -165.8| 0.7919

* This structure is shown in Figure 5b.
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