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Abstract. Machine learning methods have been applied in a variety of medical domains in order to improve medical decision
making. Improved medical diagnosis and prognosis can be achieved through automatic analysis of patient data stored in
medical records, i.c., by learning from past experience. Given patient records with corresponding diagnoses, machine
learning methods are abie to classify new cases either through constructing explicit rules that generalize the training cases
(e.g., rule induction) or by storing (some of) the training cases for reference (instance-based learning). This paper presents
the methodologies of rule induction and instance-based learning and their application to medical diagnosis, in particular,
the problem of early diagnosis of rheumatic diseases. It also discusses the possibility to use existing expert knowledge to
support the learning process and the utility of such knowledge.
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1. Introduction

Current trends in medical decision making show awareness of the need of introducing formal
techniques, as well as intelligent data analysis techniques that enable the extraction of knowledge,
regularities, trends and representative cases from patient data stored in medical records. Formal
techniques include decision theory [13] and symbolic reasoning technology [22], as well as methods at
their intersection, such as probabilistic belief networks [30]. Intelligent data analysis techniques include
machine learning, clustering, data visualization, and interpretation of time-ordered data (derivation and
revision of temporal trends and other forms of temporal data abstraction).

This paper is concerned with methods for intelligent data analysis in medicine, in particular machine
learning methods [23, 25]. Machine learning methods can be classified into three major groups [25]:
inductive learning of symbolic rules (such as induction of rules [6, 24], decision trees [32] and induction
of logic programs [18]), statistical or pattern-recognition methods (such as k-nearest neighbors or
instance-based learning [1, 8], discriminate analysis and Bayesian classifiers), and artificial neural
networks [33] (such as networks with backpropagation learning, Kohonen’s self-organizing network
and Hopfield’s associative memory).

The importance of machine learning methods is due to the fact that the gap between data gener-
ation/storage and data comprehension is widening in all fields of human activity, also in medicine.
Overcoming this gap is crucial for improving performance. Thus, medical decision making needs
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to be supported by arguments based on basic medical and pharmacological knowledge as well as
knowledge extracted from data by techniques of machine learning in the form of regularities, trends
and typical cases.

Machine learning methods have been applied in a variety of medical domains in order to improve
medical decision making [17]. These include diagnostic and prognostic problems in oncology [2],
liver pathology [21], neuropsychology [27], and gynaecology [29]. Improved medical diagnosis and
prognosis may be achieved through automatic analysis of patient data stored in medical records, i.e.,
by learning from past experiences.

Given patient records with corresponding diagnoses, machine learning methods are able to diagnose
new cases. More specifically, given is a set of examples with known classifications. An example is
described by the values of a fixed collection of features (attributes): A;, ¢ € {1,...,n}. Each attribute
can either have a finite set of values (discrete) or take real numbers as values (continuous). A particular
example e; is thus a vector of attribute values: e; = (vij,...,vn;). Each example is assigned one
of N possible values of the class C' (classifications): c;, 7+ € {1,...,N}. The class of example e;
will be denoted by c;. For instance, in the domain of early diagnosis of rheumatic diseases, described
in detail in Section 4, the patient records comprise 16 anamnestic attributes. Some of these are
continuous (e.g., age, duration of morning stiffness) and some are discrete (e.g., joint pain, which
can be arthrotic, arthritic, or not present at all). There are eight possible diagnoses: degenerative
spine diseases, degenerative joint diseases, inflammatory spine diseases, other inflammatory diseases,
extra-articular rheumatism, crystal-induced synovitis, non-specific rheumatic manifestations, and non-
rheumatic diseases.

To classify (diagnose) new cases, machine learning methods can take different approaches. One is
to construct explicit symbolic rules that generalize the training cases (rule induction). The induced
rules can then be used to classify new cases. Another approach is to store (some of) the training cases
for reference (instance-based learning). New cases can then be classified by comparing them to the
reference cases.

This paper presents the methodologies of rule induction [6, 23] and instance-based leaming [1,
8, 37] and their application to medical diagnosis. It describes in detail the rule induction algorithm
CN2 [5, 10] (Section 2) and the k-nearest neighbor-based learning algorithm of Wettschereck [37]
(Section 3). It then describes the problem of early diagnosis of rheumatic diseases [15, 20, 31] and the
application of the two machine learning methodologies to this problem (Section 4). The possibility
to use existing expert knowledge to support the learning process and the utility of such knowledge is
discussed in Section 5. Section 6 concludes with a discussion of the advantages and disadvantages of
each on the two machine learning methodologies.

2. Rule induction with CN2

Given a set of classified examples, a rule induction system constructs a set of if-then rules. An
if-then rule has the form:

IF condition THEN conclusion.

The condition contains one or more attribute tests of the form A; = v; for discrete attributes and
A; < v; or A; > v; for continuous attributes. The conclusion part has the form C = c;, assigning a
particular value c¢; to the class C. We say that an example is covered by a rule if the attribute values
of the example obey the conditions in the IF part of the rule.
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Table 1
An example if-then rule induced by CN2 in the domain of early diagnosis of rheumatic diseases

IF Sex = male
AND Age > 46
AND Number_ of_painful_joints > 3
AND Skin_manifestations = psoriasis
THEN Diagnosis = Crystal_induced_synovitis

An example rule induced in the domain of early diagnosis of rheumatic diseases, described in detail
in Section 4, is given in Table 1. It assigns the diagnosis of crystal-induced synovitis to male patients
older than 46 that have more than three painful joints and psoriasis as a skin manifestation.

In our experiments, we used the rule induction system CN2 [5, 6, 10]. CN2 uses the covering
approach to construct a set of rules for each possible class c¢; in turn: when rules for class c; are
being constructed, examples of this class are positive, all other examples are negative. The covering
approach works as follows: CN2 constructs a rule that correctly classifies some examples, removes
the positive examples covered by the rule from the training set and repeats the process until no more
examples remain. To construct a single rule that classifies examples into class c;, CN2 starts with a
rule with an empty antecedent (IF part) and the selected class c; as a consequent (THEN part). The
antecedent of this rule is satisfied by all examples in the training set, and not only those of the selected
class. CN2 then progressively refines the antecedent by adding conditions to it, until only examples
of the class c¢; satisfy the antecedent. To allow for handling imperfect data, CN2 may construct a set
of rules which is imprecise, i.e., does not classify all examples in the training set correctly.

Consider a partially built rule. The conclusion part is already fixed and there are some (possibly
none) conditions in the IF part. The examples covered by this rule form the current training set.
For discrete attributes, all conditions of the form A; = v;, where v; is a possible value for A;, are
considered for inclusion in the condition part. For continuous attributes, all conditions of the form
Ai < (vik + Vikt1))/2 and A; > (vig + Vi(r41))/2 are considered, where v and vjg41) are two
consecutive values of attribute A; that actually appear in the current training set. For example, if the
values 4.0, 1.0, and 2.0 for attribute A appear in the current training set, the conditions A < 1.5,
A>1.5, A<3.0,and A > 3.0 will be considered.

Note that both the structure (set of attributes to be included) and the parameters (values of the
attributes for discrete ones and boundaries for the continuous ones) of the rule are determined by
CN2. Which condition will be included in the partially built rule depends on the number of examples
of each class covered by the refined rule and the heuristic estimate of the quality of the rule. The
heuristic estimates are mainly designed to estimate the performance of the rule on unseen examples
in terms of classification accuracy. This is in accord with the task of achieving high classification
accuracy on unseen cases.

Suppose a rule covers p positive and n negative examples. Its accuracy can be estimated by the
relative frequency of positive examples covered, computed as p/(p + n). This heuristic was used in
early rule induction algorithms. It prefers rules which cover examples of only one class. The problem
with this metric is that it tends to select very specific rules supported by only a few examples. In the
extreme case, a maximally specific rule will cover (be supported by) one example and hence have an
unbeatable score using the metrics of apparent accuracy (scores 100% accuracy). Apparent accuracy
on the training data, however, does not adequately reflect true predictive accuracy, i.e., accuracy on
new testing data. It has been shown [14] that rules supported by few examples have very high error
rates on new testing data.
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The problem lies in the estimation of the probabilities involved, i.e., the probability that a new
example is correctly classified by a given rule. If we use relative frequency, the estimate is only good
if the rule covers many examples. In practice, however, not enough examples are available to estimate
these probabilities reliably at each step. Therefore, probability estimates that are more reliable when
few examples are given should be used.

A more recent version of CN2 [5] uses the Laplace estimate to estimate the accuracy of rules. This
estimate is more reliable than relative frequency. If a rule covers p positive and n negative examples,
its accuracy is estimated as (p + 1)/(p + n + N), where N is the number of possible classes.

Unfortunately, the Laplace estimate relies on the assumption that all classes are equally probable
a priori, an assumption which is rarely true in practice. We have therefore extended CN2 [10] to
enable the use of an even more sophisticated probability estimate, i.e., the m-estimate [3]. The m-
estimate takes into account the prior probabilities of each class, and combines them with the evidence
provided by the examples covered by the particular rule. The parameter m controls the role of the
prior probabilities and the evidence provided by the examples: higher m gives more weight to the
prior probabilities and less to the examples. Higher values of m are thus appropriate for examples
that contain more noise. If a rule that predicts class ¢; covers p positive and n negative examples, its
accuracy is estimated to be (p + mp;)/(p + n + m) [3], where p; is the prior probability of class c;.
In CN2, p; is estimated from the complete training set by relative frequency.

CN2 can also use a significance measure to enforce the induction of reliable rules. A rule is deemed
reliable (significant) if the class distribution of the examples it covers is significantly different from
the prior class distribution as given by the entire training set. This is measured by the likelithood
ratio statistic [5]. Suppose the rule covers r; examples of class ¢;, ¢ € {1,...,N}. Let ¢; =
ri/(ri ++-- + rn) and let p; be the prior probability of class c;. The value of the likelihood ratio
statistic is then

N
21+ +7N) Y 0108, (qi/pi)-

i=1

This statistic is distributed as x? with N — 1 degrees of freedom. If its value is above a specified
significance threshold, the rule is deemed significant.

CN2 can induce a set of if-then rules which is either ordered or unordered. In the first case, the
rules are considered precisely in the order specified: given an example to classify, the class predicted
by the first rule that covers the example is returned. In the second case, all rules are checked and
all the rules that cover the example are taken into account. Conflicting decisions are resolved by
taking into account the number of examples of each class (from the training set) covered by each
rule. Suppose we have a two-class problem and two rules with coverage (10, 2) and (4, 40) apply, i.e.,
the first rule covers 10 examples of class ¢; and 2 examples of class c;, while the second covers 4
examples of class ¢; and 40 examples of class ¢;. The ‘summed’ coverage would be (14,42) and the
example is assigned class c;. The recent version of CN2 [10] can give probabilistic classifications: in
the example above, we divide the coverage (14,42) with the total number of examples covered (56)
and obtain as an answer the probability distribution (0.25,0.75). This means that the probability of
the example belonging to class c; is 1/4, while for ¢, that probability is 3/4.

Another feature of the latest version of CN2 [10] is the possibility to measure the information score
[16] of induced rules. The information score is a performance measure which is not biased by the
prior class distribution. It accounts for the possibility to achieve high accuracy easily in domains
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with a very likely majority class: classifying into the majority class by returning the prior probability
distribution all the time gives a zero information score.

Let the correct class of example ex be c, its prior probability P(ci) and the probability returned
by the classifier P'(ck). The information score of this answer is

Ie) = { —log P(ck) + log P'(cy), P'(ck) = P(ck),
¢ log(1 ~ P(ck)) — log(1 — P'(ck)), P'(ck) < P(ck).

As I(ey) indicates the amount of information about the correct classification of e, gained by the
classifier’s answer, it is positive if P'(cy) > P(ck), negative if the answer is misleading (P'(ci) <
P(ck)) and zero if P'(cx) = P(ck).

The relative information score I, of the answers of a classifier on a testing set consisting of exam-
ples ey, ez,. .., e belonging to one of the classes ci,c;,...,cn can be calculated as the ratio of the
average information score of the answers and the entropy of the prior distribution of classes.

_ % x Ei:l I(ex) .
— N P(c;) x log P(c;)

CN2 handles examples that have missing values for some attributes in a relatively
straightforward fashion. If an example has an unknown value of attribute A, it is not covered by
rules that contain conditions that involve attribute A. Note that this example may be covered by rules
that do not refer to attribute A in their condition part.

In our experiments, CN2 was used to induce sets of unordered rules. The rules were required to
be highly significant (at the 99% level) and thus reliable. Except for the significance threshold and
the search heuristic settings described below, the parameter settings of CN2 were the default ones
(see [S]).

Both the Laplace estimate and the m-estimate were used: we give results for both of them. To
select the appropriate value for the parameter m, we used the following methodology. Fifteen different
values of the parameter m were tried (0, 0.01, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 and
1024), as suggested by earlier experiments [3, 10]. For a given learning problem, we thus induced
15 sets of rules and chose the best according to the relative information score on the training set.
This procedure allows us to choose the right level of fitting: overfitting is prevented by applying the
significance threshold. Given this methodology, experiments on the entire dataset of patient records
were performed, as well as experiments on subsets of this dataset (see Sections 4 and 5). The best
values of m ranged between 16 and 128 depending on the presence of background knowledge and
the choice of subsets of cases for training and testing.

r

3. Instance-based learning

Instance-based learning (IBL) algorithms [1] use specific instances to perform classification tasks,
rather than using generalizations such as induced if-then rules. IBL algorithms are also called lazy
learning algorithms, as they simply save some or all of the training examples and postpone all effort
towards inductive generalization until classification time. They assume that similar instances have
similar classifications: novel instances are classified according to the classifications of their most
similar neighbors.
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IBL algorithms are derived from the nearest-neighbor pattern classifier [7, 12]. The nearest-neighbor
(NN) algorithm is one of the best known classification algorithms and an enormous body of research
exists on the subject (see, for example, [8]). In essence, the NN algorithm treats attributes as dimen-
sions of an Euclidean space and examples as points in this space. In the training phase, the classified
examples are stored without any processing. When classifying a new example, the Euclidean distance
between that example and each of the training examples is calculated and the class of the closest
training example is assigned to the new example.

The more general k-NN method takes the k nearest training examples and determines the class of
the new example by majority vote. In improved versions of k-NN, the votes of each of the k nearest
neighbors are weighted by the respective proximity to the new example {11]. An optimal value of k&
may be determined automatically from the training set by using leave-one-out cross-validation [35].
In our experiments, the best k& from the range (1,75) was chosen in this manner.

Finally, the contribution of each attribute to the distance may be weighted, in order to avoid problems
caused by irrelevant features [36]. The feature weights are determined on the training set by using
one of a number of alternative feature-weighting methods. In our experiments, we used the k-NN
algorithm as implemented by Wettschereck [37], which includes the improvements described above.
A more detailed description of how distance computation, classification, and feature weighting is
performed, is given below.

Given two examples z = (z),...,2Zy) and y = (y1, ..., Yn), their distance is calculated as

n
distance(z,y) = Zwi x difference(z;, ¥;)?,

i=1

where w; is a non-negative weight value assigned to feature A; and the difference between attribute
values is defined as follows

|z; — yi| if feature A; is continuous,
difference(z;, y;) = § 0 if feature A; is discrete and z; = v;,
1 otherwise.

When classifying a new instance z, k-NN selects the set K of k nearest-neighbors according to
the distance defined above. The vote of each of the k nearest-neighbors is weighted by its proximity
(inverse distance) to the new example. The probability P(z,c;, K) that instance z belongs to class ¢;
is estimated as

> zck Tc;/distance(z, x)
Y zek 1/distance(z, z) ’

where z is one of the k nearest neighbors of z and z.; is 1 if x belongs to class c;. The class c; with
the largest value of P(z,c;, K) is assigned to the unseen example z.

Before training (respectively, before classification), the continuous features are normalized by sub-
tracting the mean and dividing by the standard deviation so as to ensure that the values output by the
difference function are in the range (0, 1). All features have then an equal maximum and minimum
potential effect on distance computations. However, this bias handicaps k-NN as it allows redundant,
irrelevant, interacting or noisy features to have as much effect on distance computation as other fea-
tures, thus causing k-NN to perform poorly. This observation has motivated the creation of many
methods for computing feature weights.

P(Z,Cj,K) =
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The purpose of a feature weighting mechanism is to give low weight to features that provide no
information for classification (e.g., very noisy or irrelevant features), and to give high weight to
features that provide reliable information. The mutual information [34] I(C, A) between the class
C and attribute A is thus a natural quantity with which the feature A is weighted in the k-NN
implementation of Wettschereck [37] that we employed in our experiments.

The mutual information [34] between two variables is defined as the reduction in uncertainty
concerning the value of one variable that is obtained when the value of the other variable is known. If
an attribute provides no information about the class, the mutual information will be zero. The mutual
information between the random variables X and Y is defined as I(X,Y) = H(X) — H(X|Y),
where H(X) is the entropy of the random variable X with probability mass function P(z), defined
as H(X) = —)__log, P(z). For discrete X and Y/, it can be also calculated as

P(z,y)
P(z)P(y)’

For continuous variables, probability densities have to be used instead of probability masses and
integrals instead of sums. The probabilities involved are in our case estimated from the training
examples.

Unknown values in the examples are handled through a modification of the distance function
between examples. Only features that have known values are used in calculating the distance, and the
number of features for which both examples have known values is taken into account. The modified
distance function is thus

I(X,Y)=>_P(z,y)log,
T,y

d(z,y) = Z w; x diff (x;,y;)2/+/number of features i for which both z; and y; are known,

i=1

where diff (x;,y;) = O if either z; or y; are unknown and diff(z;, y;) = difference(x;, y;) otherwise.

4. Early diagnosis of rheumatic diseases

Correct diagnosis in the early stage of a rheumatic disease is a difficult problem. Having passed all
the investigations, many patients cannot be reliably diagnosed after their first visit to the specialist.
The reason is that anamnestic, clinical, laboratory and radiological data of patients with different
rheumatic diseases are frequently similar. In addition, the diagnosis can also be incorrect due to the
subjective interpretation of data [31].

4.1. Patient data

Data about 462 patients were collected at the University Medical Center in Ljubljana, Slovenia [31].
There are over 200 different rheumatic diseases which can be grouped into three, six, eight or twelve
diagnostic classes. Eight diagnostic classes were considered, as in the experiments of Karali¢ and
Pirnat [15]. Table 2 gives the names of the diagnostic classes and the numbers of patients belonging
to each class.

To facilitate the comparison with earlier experiments in rule induction in this domain [20], the
experiments were performed on anamnestic data, without taking into account data about patients’
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Table 2

The eight diagnostic classes and the corresponding numbers of patients
Class Name Number of patients
Al Degenerative spine diseases 158

A2 Degenerative joint diseases 128

Bl Inflammatory spine diseases 16

B234  Other inflammatory diseases 29

C Extra-articular rheumatism 21

D Crystal-induced synovitis 24

E Non-specific rheumatic manifestations 32

F Non-rheumatic diseases 54

clinical manifestations, laboratory and radiological findings. The sixteen anamnestic attributes are as
follows: sex, age, family anamnesis, duration of present symptoms (in weeks), duration of rheumatic
diseases (in weeks), joint pain (arthrotic, arthritic), number of painful joints, number of swollen
joints, spinal pain (spondylotic, spondylitic), other pain (headache, pain in muscles, thorax, abdomen,
heels), duration of morning stiffness (in hours), skin manifestations, mucosal manifestations, eye
manifestations, other manifestations and therapy.

Out of 462 patient records, eight were incomplete; twelve attribute values were missing (for at-
tributes sex and age). This was not problematic since both CN2 and k-NN can handle missing data.
The data are very noisy, i.e., unreliable, for the following reasons:

— Anamnestic data are by nature very noisy since they are, in fact, patients’ own description of
the disease, only interpreted by a specialist for rheumatic diseases. Interpretation of this data is
subjective and therefore extremely unreliable.

— The grouping of about 200 different diagnoses into only eight diagnostic classes is problematic.
For degenerative diseases (classes Al and A2) many examples are available. Nearly 74% of all
the data set consists of patient records for these two diagnostic classes, together with the class
of non-rheumatic diseases (see Table 2). Furthermore, some diagnostic classes are relatively
non-homogeneous, having few common characteristics.

— Some of the patients had more than one diagnosis, but only one diagnosis was included in the
example set.

— Data were collected by different medical doctors without achieving their collective consensus.

4.2. Results of rule induction on the entire dataset

In the first group of experiments, the data about all 462 patients were used. The Laplace and the
m-estimate were used within CN2. A 99% significance threshold was applied within CN2. With
the Laplace estimate, CN2 induced a set of 30 rules (102 conditions), with classification accuracy of
51.7% and relative information score of 22%. These results are taken from [20]. With the m-estimate,
m = 64 proved to be the best value, yielding a set of 21 rules (102 conditions) with accuracy of
63.6% and a relative information score of 45%. There are fewer rules when the m-estimate is used
(although rules are longer on the average) and much higher accuracy and relative information score
are achieved. This indicates that the use of the m-estimate allows for a better fit to the training set in
the presence of a high significance threshold.

A selection of the 21 rules (one for each diagnostic class) is given in Table 3. Take, for example,
the second rule in Table 3: it assigns the diagnosis of degenerative joint diseases to a female patient
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older than 47 with arthrotic joint pain, no more than 18 painful joints and no spinal pain. The rule
is supported by 47 examples with that diagnosis, but also covers eight cases that were diagnosed
otherwise (three with degenerative spine diseases, two with non-specific rheumatic manifestations,
and three with non-rheumatic diseases): this is indicated by the numbers in the square brackets given
after the diagnosis. )

Table 3
A selection of rules for early diagnosis of rheumatic diseases induced with CN2 using the m-estimate

IF Age < 55
AND 3 < Duration_of_present_symptoms < 113
AND Duration_of_rheumatic_diseases < 13
AND Number_of_swollen_joints < 3
AND Spinal_pain = spondylotic
AND Duration_of _morning stiffness < 1.25
AND Skin_manifestations = no
THEN Diagnosis = Degenerative_spine:diseases [58 4 0 0 2 0 1 3]

IF Sex = female
AND Age > 47
AND Joint_pain = arthrotic
AND Number_of_painful_joints < 19
AND Spinal_pain = no
THEN Diagnosis = Degenerative_joint_diseases [3 47 0 0 0 0 2 3]

IF Sex = male
AND Number_of_painful_joints < 3
AND Spinal_pain = spondylitic
THEN Diagnosis = Inflammatory_spine_diseases [9 0 12 1 0 0 0 1]

IF Age < 67
AND Number_of_painful_joints > 1
AND Number_of_swollen_joints > 0
AND Other_pain = no
AND Duration_of_morning_stiffness > 0.35
AND Skin_manifestations = no
AND Eye_manifestations = no
THEN Diagnosis = Other_inflammatory_diseases [2 2 0 11 0 0 0 0]

IF 20 < Age < 39
AND 0 < Duration_of_present_symptoms < 21
AND Duration_of_rheumatic_diseases < 3
AND Number_of_painful_joints < 6
AND Number_of_swollen_joints < 1
~ AND Duration_of_morning stiffness < 0.1
AND Mucosal_manifestations = no
AND Eye_manifestations = no
THEN Diagnosis = Extraarticular_rheumatism [4 0 1 0 12 0 2 4]

IF Sex = male
AND 28 < Age < 74
AND Joint_pain = arthritic
AND Number_of_painful_joints < 11
AND Spinal_pain = no
AND Duration_of_morning stiffness < 1.5
AND Eye_manifestations = no
THEN Diagnosis = Crystal_induced_synovitis [0 1 0 1 0 12 1 0]
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Table 3
(continued)

IF 18 < Age < 33
AND Family anamnesis = no
AND Duration_of_present_symptoms > 1
AND Duration_of_rheumatic_diseases < 12
AND Spinal_pain = no
AND Other_manifestations = no
THEN Diagnosis = Nonspecific_rheumatic_manifestations [4 1 0 3 4 1 17 5]

IF Age < 62
AND Joint_pain = no
AND Number_of_painful_joints < 1
AND Number_of_swollen_joints < 1
AND Spinal_pain = no
THEN Diagnosis = Nonrheumatic_diseases [6 3 01 51 5 19]

The induced diagnostic rules have an explicit symbolic form and can be understood and interpreted
by specialists. The rules induced by CN2 with the Laplace estimate were shown to a specialist for
rheumatic diseases. The analysis of rules by the expert has shown that most rules were consistent
with the expert knowledge, although not very characteristic for specific diagnoses [20].

4.3. Performance evaluation on unseen cases

Since the ultimate test of the quality of induced rules is their performance on unseen examples, the
second group of experiments was performed on ten different random partitions of the data set into
70% training and 30% testing examples. These are the same partitions as used by Lavrac et al. [20],
from where the results of CN2 with the Laplace estimate are taken.

4.3.1. Results of rule induction

When using the m-estimate within CN2, the optimal value of m, chosen on each of the training
partitions, was 32 for five partitions, 64 for four partitions and 128 for one partition. Judging by the
high optimal values for the parameter m the data contains a relatively high degree of noise. This
agrees with the opinion of the medical expert and earlier experiences with applying machine learning
approaches in this domain.

The relative information scores of the induced rules are given in Table 4, while the classification
accuracies are given in Table 5. Both tables display performance results on unseen cases. Table 5
also contains performance results for the k-NN algorithm, discussed in the following subsection.

To compare the results of CN2 with the m-estimate and CN2 with the Laplace estimate, we used
the two-tailed statistical ¢-test for dependent samples. The six percentage points difference in the
relative information scores is significant at the 99.99% level. The one percentage point difference in
the accuracy is not significant even at the 50% level. We can conclude that CN2 with the m-estimate
performs clearly better, as it achieves a much higher relative information score and an insignificantly
lower classification accuracy.

4.3.2. Results of instance-based learning

Given the whole training set of 462 instances, k-NN stores all of them, without performing any
generalization. Its classification accuracy on the training set is thus 100%, regardless of the use
of feature weights. The weights assigned to the features are shown in Table 6. Six attributes are
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Table 4
Relative information scores of rules derived by CN2
with the m-estimate and the Laplace estimate, measured
on the testing set for each of the ten partitions

Partition CN2 CN2
m-estimate (%) Laplace estimate (%)

1 24 17

2 27 20

3 23 17

4 27 17

5 21 21

6 27 15

7 28 21

8 22 21

9 27 16
10 28 23
Average 25 19

Table 5

Classification accuracy of rules derived by CN2 with the m-estimate and the Laplace estimate,
as well as classification accuracy of the k-NN algorithm without and with feature weights,
measured on the testing set for each of the ten partitions

Partition CN2 CN2 k-NN k-NN
m-estimate (%) Laplace estimate (%) no weights (%) with weights (%)

1 45.3 475 46.8 47.5
2 41.7 453 51.1 46.0
3 439 51.1 48.9 51.1
4 49.6 44.6 46.0 46.8
5 338 46.0 453 439
6 46.8 49.6 53.2 54.0
7 41.7 44.6 453 51.8
8 424 41.0 44.6 49.0
9 47.5 439 48.2 54.7

10 48.2 39.6 42.5 475

Average 44.1 45.3 47.2 492

highly relevant to the diagnostic task at hand: these are the number of swollen joints, the duration of
rheumatic diseases, the duration of moming stiffness, the duration of present symptoms, the number
of painful joints, and age. Mucosal manifestations and family anamnesis seem to be irrelevant.

The performance of the k-NN algorithm on unseen cases is shown in the right half of Table 5. The
best values of k ranged from 15 to 41, with an average of 23. This again indicates that the data are
quite noisy.

k-NN performs better than CN2, even without feature weights. According to the two-tailed statistical
t-test for dependent samples, the differences in performance between k-NN without feature weights
and CN2 is significant at the 90% level when the m-estimate is used and at the 95% level when the
Laplace estimate is used. For k-NN with feature weights, the significance levels are 99% and 98%,
respectively. The two percentage points difference in performance between k-NN with and without
feature weights is significant at the 88% level. -
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Table 6
Feature weights for the 16 anamnestic attributes in
the domain of early diagnosis of rheumatic diseases

Weight Attribute

2.959 Number of swollen joints
2.825 Duration of rheumatic diseases
2777 Duration of morning stiffness
2.681 Duration of present symptoms
2.569 Number of painful joints
2.038 Age

0.772 Spinal pain type

0.381 Joint pain type

0.291 Sex

0.249 Other pain type

0.239 Other manifestations

0.236 Skin manifestations

0.177 Eye manifestations

0.123 Therapy

0.090 Mucosal manifestations

0.080 Family anamnesis

5. The utility of background knowledge

The available patient data may be augmented with additional diagnostic knowledge which can be
considered as additional information by the learner. In machine learning terminology, additional expert
knowledge is usually referred to as background knowledge.

5.1. Background knowledge about rheumatic diseases

A specialist for rheumatic diseases has provided his knowledge about the typical co-occurrences
of symptoms. Six typical groupings of symptoms were suggested by the specialist as background
knowledge to be considered by the learner [20].

The first grouping relates the attribute ‘Joint pain’ and the attribute ‘Duration of morning stiffness’.
The characteristic combinations are given in Table 7, all other combinations are insignificant or
irrelevant.

The second grouping relates the spinal pain and the duration of moming stiffness. The following
are the characteristic combinations: no spinal pain and morning stiffness up to 1 hour, spondylotic
pain and morning stiffness up to 1 hour, spondylitic pain and morning stiffness longer than 1 hour.

The third grouping relates the attributes sex and other pain. Indicative is the pain in the thorax or
in the heels for male patients, all other combinations are non-specific: the corresponding values of
Grouping 3 are thus ‘male and thorax’ and ‘male and heels’.

The fourth grouping relates joint pain and spinal pain. All co-occurrences are characteristic: ‘no
pain and spondylotic’, ‘arthrotic and no pain’, ‘no pain and spondylitic’, ‘arthritic and spondylitic’,
‘arthritic and no pain’, ‘no pain and no pain’.

The fifth grouping relates joint pain, spinal pain and the number of painful joints, with characteristic
values: ‘no pain and spondylotic and 0°, ‘arthrotic and no pain and 1 < joints < 30’, ‘no pain and
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Table 7
Characteristic combinations of values for the attributes ‘Joint pain’
and ‘Duration of morning stiffness’, as defined by the function

‘Grouping 1’
Joint pain Morning stiffness  Grouping 1 value
No pain < 1 hour No pain and dms <1 hour
Arthrotic < 1 hour Arthrotic and dms <1 hour
Arthritic > 1 hour Arthritic and dms > 1 hour

spondylitic and 0°, ‘arthritic and spondylitic and 1 < joints < 5’, ‘arthritic and no pain and 1 < joints <
30°, ‘no pain and no pain and 0.

The last, sixth, grouping relates the number of swollen joints and the number of painful joints. The
characteristic values for Grouping 6 are: ‘0O and 0’, ‘0 and 1 < npj < 30’, and ‘1 < nsj < 10 and O
< npj < 30"

The background knowledge is encoded in the form of functions, introducing specific function values
for each characteristic combination of symptoms. All the other combinations (which are not explicitly
specified above) have the same function value irrelevant. The characteristic combinations of attribute
values are given names which are mnemonic and understandable. Their names are ‘artificial’ (not
used by specialists), but they represent meaningful co-occurrences of symptoms which have their role
in expert diagnosis.

5.2. Learning with LINUS

The main idea in LINUS [18, 19] is to incorporate different attribute-value learning algorithms
into an environment for inductive logic programming [9, 18, 28], which enables the effective use
of specialist background knowledge in learning as well as the induction of relational descriptions.
Several attribute-value learners have been used within LINUS: a decision-tree induction algorithm
ASSISTANT [4], the rule-induction algorithm NEWGEM [26], the CN2 algorithm, and the k-NN
implementation of Wettschereck [37].

In addition to training examples, LINUS is given background knowledge represented in the form of
logical definitions of relations or functions, such as the functional definitions of the symptom groupings
above. Using the background knowledge, LINUS generates attributes that are not present in the
initially given attribute set and extends the training examples with these attributes. The transformed
problem can be addressed by an attribute-value learner. If the latter generates if-then rules, these can
be transformed back in the form of logic programs.

LINUS thus extends attribute-value learners with the ability to use background knowledge and learn
relational descriptions. On the other hand, many inductive logic programming (ILP) systems lack the
ability to handle noisy data and real numbers, while many attribute-value learners have sophisticated
mechanisms developed for that purpose. LINUS thus brings the possibility to use a variety of well-
developed learning mechanisms within ILP.

We applied LINUS to the domain of early diagnosis of rheumatic diseases as described in Section 4
and the background knowledge described above. This yields six additional attributes, one for each
of the six groupings of symptoms. The original examples are extended with the values of the new
attributes. The new learning problem thus has 22 attributes and 462 examples.
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5.3. Results of rule induction from the entire data set

The experiments we conducted on the extended learning problem were analogous to those performed
on the basic problem. We first used CN2 with the Laplace- and m-estimate to induce rules from the
whole example set. With the Laplace-estimate, CN2 induced a set of 38 rules (120 conditions), with an
accuracy of 52.4% and a relative information score of 30% [20]. With the m-estimate, m = 32 proved
to be the best value, yielding a set of 29 rules (121 conditions) with an accuracy of 64.5% and a relative
information score of 46%. As compared to the results without background knowledge, a substantial
increase in relative information score (8 percentage points) occurs when using the Laplace-estimate
and slight improvement (1 percentage point) otherwise.

A selection of rules induced with CN2 using the m-estimate are given in Table 8. One rule per
class was selected, and each of the selected rules covers at least five examples in addition to using
one of the six symptom groupings provided by the specialist.

The weights used by k-NN for the six new attributes are given in Table 9. For the original attributes,
the weights given in Table 6 were used. The relative importance of the groupings as determined by
the weights corresponds to the number of their appearances in the induced rules: in the set of rules
induced by CN2 with the Laplace-estimate, Grouping 4 appears nine times, Grouping 5 seven times,
Grouping 2 three times, Grouping 1 twice, and Groupings 6 and 3 once each.

5.4. Performance evaluation on unseen cases

We also evaluated the performance of CN2 with the Laplace- and the m-estimate, as well as the
performance of the k-NN algorithm, on the ten different partitions of the data set into 70% training
and 30% testing examples.

The relative information scores of the rules induced by CN2 are given in Table 10: CN2 with the
m-estimate performs slightly better, but the difference in performance is significant at the 80% level.
Background knowledge improves the performance, especially for CN2 with the Laplace-estimate, but
also for CN2 with the m-estimate. The differences are significant at the 99.9% and 80% levels,
according to the two-tailed statistical t-test for dependent samples.

The classification accuracies of CN2 and of k-NN are given in Table 11. Background knowledge
improves the performance in all cases. For CN2 with the m-estimate, CN2 with the Laplace-estimate,
k-NN without feature weights and k-NN with feature weights, respectively, the differences are signif-
icant at the 90%, 98%, 88%, and 83% levels.

In terms of accuracy, CN2 with the Laplace-estimate performs better than CN2 with the m-estimate.
However, it performs worse in terms of relative information score. k-NN with feature weights again
performs better than CN2. The difference is significant at the 99.5% level for CN2 with the m-estimate
and at the 98% for CN2 with the Laplace-estimate.

The best value of m for the ten partitions was 16 in four cases, 32 in three cases, and 64 in three
cases. In nine of the ten cases, the best value of m was lower when background knowledge was given,
i.e., the dataset appears to contain less noise when background knowledge is given. A similar effect
can be noticed for the parameter k: it ranged from 7 to 21 with an average of 13 and was lower in
the presence of background knowledge for eight of the ten partitions. This indicates that background
knowledge alleviates the effects of data imperfections in this domain.
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Table 8
A selection of rules for early diagnosis of rheumatic diseases that make use of specialist background knowledge. The rules
were induced with CN2 using the m-estimate

IF Age < 67
AND Number_of_painful_joints < 2
AND Other_pain = no
AND Skin_manifestations = no
AND grouping4(Joint_pain, Spinal_pain,no pain&spondylotic)
THEN Diagnosis = Degenerative_spine_diseases [35 1 0 0 0 0 0 0]

IF Sex = female
AND Age > 46
AND Number_of_painful_ joints < 19
AND grouping4(Joint_pain, Spinal_pain, arthrotic&no pain)
THEN Diagnosis = Degenerative_joint_diseases [3 49 0 0 1 0 2 3]

IF Duration_of_present_symptoms > 8
AND Number_of_painful_joints < 3
AND grouping5(Joint_pain, Spinal_pain,Number_of_painful_joints,
arthrotic&no pain&l =< joints =< 30)
THEN Diagnosis = Other_inflammatory_diseases [0 0 0 5 0 2 0 1]

IF Sex = male
AND 28 < Age < 74
AND Number_of_painful_joints < 17
AND Number_of_swollen_joints < 8
AND Eye_manifestations = no
AND grouping3(Sex,Other_pain, irrelevant)
AND grouping4(Joint_pain, Spinal_pain,arthritic&no pain)
THEN Diagnosis = Crystal_induced_synovitis [0 1 0 1 0 12 0 0]

IF Age < 44
AND Duration_of_rheumatic_diseases < 10
AND Number_cof_painful_joints < 26
AND Other_pain = no
AND Skin_manifestations = no
AND Other_manifestations = no
AND grouping5(Joint_pain, Spinal_pain,Number_of_painful_joints,
arthrotic&no pain&l =< joints =< 30)
THEN Diagnosis = Nonspecific_rheumatic_manifestations [2 2 0 1 1 0 8 3]

IF 33 < Age < 62
AND Duration_of_present_symptoms > 2
AND Number_of_swollen_joints < 1
AND grouping5(Joint_pain, Spinal_pain, Number_of_painful_joints,
no pain&no pain&0)
THEN Diagnosis = Nonrheumatic_diseases (1 1 0 0 4 1 1 14]

6. Discussion

We have presented two machine learning approaches, rule induction and instance-based learning.
The first constructs explicit symbolic (if-then) rules, which are generalizations of the training examples.
Induced rules can then be used to classify new cases. The second stores the training examples and
classifies new cases by comparing them to the stored cases.

In particular, we described the CN2 rule induction algorithm, which can use the Laplace- or the
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Table 9
Feature weights for the six addi-
tional attributes derived from the
domain knowledge of a specialist
for rheumatic diseases

Weight Attribute

1.086 Grouping 4
0.899 Grouping 5
0.698 Grouping 2
0.392 Grouping 1
0.345 Grouping 6
0.091 ~ Grouping 3

Table 10

Relative information scores of rules induced by CN2 with
the use of background knowledge, measured on the testing
set for each of the ten partitions

Partition CN2 ‘ cN2
m-estimate (%) Laplace-estimate (%)

1 25 26

2 34 28

3 26 24

4 22 22

5 27 26

6 24 24

7 34 27

8 29 26

9 27 25
10 26 31
Average 27 26

Table 11

Classification accuracy in the presence of background knowledge for the CN2 and k-NN algo-
rithms, measured on the testing set for each of the ten partitions

Partition CN2 CN2 k-NN k-NN
m-estimate (%) Laplace-estimate (%) no weights (%) with weights (%)

1 453 "~ 489 489 52.5
2 47.5 51.8 49.6 53.2
3 49.6 489 52.5 51.8
4 46.8 48.2 46.8 475
5 46.0 46.8 489 49.6
6 43.2 48.2 475 50.4
7 49.6 48.9 52.5 55.4
8 489 48.2 48.2 46.8
9 48.9 48.2 51.1 54.0

10 46.0 48.2 453 48.2

Average 47.2 48.6 49.1 50.9
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m-estimate to reliably estimate the classification accuracy of the rules considered in the induction
process. The appropriate value of the parameter m is determined on the training set. We also
described the k-NN algorithm, which can use feature weights to alleviate the negative influence of
noisy or irrelevant features. The appropriate value of the parameter k is determined on the training
set.

Both algorithms are capable of dealing with real data that involves real numbers and imperfections
such as noise and missing values. They are thus suitable for applications in medical diagnosis and
prognosis. We applied both approaches to the domain of early diagnosis of rheumatic diseases and
compared their performance.

Let us first make some specific remarks about the methods used based on their performance on
unseen cases in the domain studied. In CN2, the m-estimate yields better performance than the
Laplace-estimate in terms of relative information score at approximately the same accuracy. Feature
weights based on the mutual information between the features and the class improve the performance
of k-NN. They also show the relative importance of attributes for classification. Finally, in this
domain, k-NN performs better than CN2 in terms of classification accuracy.

Other studies [17] have also shown that k-NN in many cases performs better than symbolic learning
approaches. However, a k-NN algorithm cannot explain its classifications as clearly as a rule induction
system. It can provide as an explanation the k nearest neighbors used in the classification and their
distances to the classified example, but this is more difficult to understand than a relatively short if-
then rule, which explicitly refers to the attributes used. The rules can be also used without computer
help and can become a part of the domain knowledge in the particular medical area, if accepted by
specialists. To show that if—then rules are easy to understand, we have listed selected rules induced by
CN2 with the m-estimate. A specialist has also judged the rules induced by CN2 with the Laplace-
estimate as understandable and meaningful [20].

We have also briefly described the LINUS methodology for using specialist background knowledge
in the learning process. We have applied this methodology to the examples and background knowledge
in the domain of early diagnosis of rheumatic diseases, comparing the performance of CN2 and k-NN
with and without background knowledge. The background knowledge improves performance in terms
of relative information scores and classification accuracy, both for CN2 and for k-NN, k-NN still
performing better than CN2.

In the presence of background knowledge, the best values for the parameters m and k substantially
decreased. In the experiments with the ten partitions, the average best m was 35 with and 54
without background knowledge. Likewise, the average best k was 13 with and 23 without background
knowledge. As higher values of m and k are appropriate for more noisy data, this indicates that the
presence of background knowledge reduces the noise originally present in the data.

The classification accuracies achieved by both methods are around 50%. While this number is
relatively low as compared to accuracies achieved in other domains, one should bear in mind that the
patient records used contain only anamnestic data which is very unreliable and noisy by nature as
well as the other problems with the data, described in Section 4.1. As the most common diagnosis of
degenerative spine diseases accounts for only 34% of the patients, both methods succeed at extracting
information from the patient records that is relevant for the diagnostic problem at hand. For the CN2
rules, this is confirmed by the positive relative information scores.

Our study indicates that rule induction and instance-based learning can be useful tools for medical
diagnosis and prognosis. A combination of both approaches that gives both accurate predictions and
satisfactory explanations may be the most appropriate approach, aimed at complementing the expertise
of physicians with knowledge induced from stored patient records.
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