See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/220355743

ResearchGate

The utility of background knowledge in learning medical diagnostic rules.

Article in Applied Artificial Intelligence - July 1993

DOI: 10.1080/08839519308949989 - Source: DBLP

CITATIONS
39

4 authors, including:

Nada Lavrac
JoZef Stefan Institute

409 PUBLICATIONS 10,230 CITATIONS

READS
45

SaSo DZeroski
JoZef Stefan Institute

549 PUBLICATIONS 14,635 CITATIONS

SEE PROFILE SEE PROFILE
Some of the authors of this publication are also working on these related projects:
Project Al for Space Operations View project
Project EMBEDDIA - Cross-Lingual Embeddings for Less-Represented Languages in European News Media View project

All content following this page was uploaded by Nada Lavrac on 20 November 2014.

The user has requested enhancement of the downloaded file.


https://www.researchgate.net/publication/220355743_The_utility_of_background_knowledge_in_learning_medical_diagnostic_rules?enrichId=rgreq-fc050025de188f6ebf98707ec296162a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM1NTc0MztBUzoxNjU2MzExOTg1MDcwMTBAMTQxNjUwMDk2MzM0NA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220355743_The_utility_of_background_knowledge_in_learning_medical_diagnostic_rules?enrichId=rgreq-fc050025de188f6ebf98707ec296162a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM1NTc0MztBUzoxNjU2MzExOTg1MDcwMTBAMTQxNjUwMDk2MzM0NA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/AI-for-Space-Operations?enrichId=rgreq-fc050025de188f6ebf98707ec296162a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM1NTc0MztBUzoxNjU2MzExOTg1MDcwMTBAMTQxNjUwMDk2MzM0NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/EMBEDDIA-Cross-Lingual-Embeddings-for-Less-Represented-Languages-in-European-News-Media?enrichId=rgreq-fc050025de188f6ebf98707ec296162a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM1NTc0MztBUzoxNjU2MzExOTg1MDcwMTBAMTQxNjUwMDk2MzM0NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-fc050025de188f6ebf98707ec296162a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM1NTc0MztBUzoxNjU2MzExOTg1MDcwMTBAMTQxNjUwMDk2MzM0NA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nada-Lavrac?enrichId=rgreq-fc050025de188f6ebf98707ec296162a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM1NTc0MztBUzoxNjU2MzExOTg1MDcwMTBAMTQxNjUwMDk2MzM0NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nada-Lavrac?enrichId=rgreq-fc050025de188f6ebf98707ec296162a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM1NTc0MztBUzoxNjU2MzExOTg1MDcwMTBAMTQxNjUwMDk2MzM0NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Joef_Stefan_Institute?enrichId=rgreq-fc050025de188f6ebf98707ec296162a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM1NTc0MztBUzoxNjU2MzExOTg1MDcwMTBAMTQxNjUwMDk2MzM0NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nada-Lavrac?enrichId=rgreq-fc050025de188f6ebf98707ec296162a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM1NTc0MztBUzoxNjU2MzExOTg1MDcwMTBAMTQxNjUwMDk2MzM0NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Saso-Dzeroski?enrichId=rgreq-fc050025de188f6ebf98707ec296162a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM1NTc0MztBUzoxNjU2MzExOTg1MDcwMTBAMTQxNjUwMDk2MzM0NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Saso-Dzeroski?enrichId=rgreq-fc050025de188f6ebf98707ec296162a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM1NTc0MztBUzoxNjU2MzExOTg1MDcwMTBAMTQxNjUwMDk2MzM0NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Joef_Stefan_Institute?enrichId=rgreq-fc050025de188f6ebf98707ec296162a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM1NTc0MztBUzoxNjU2MzExOTg1MDcwMTBAMTQxNjUwMDk2MzM0NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Saso-Dzeroski?enrichId=rgreq-fc050025de188f6ebf98707ec296162a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM1NTc0MztBUzoxNjU2MzExOTg1MDcwMTBAMTQxNjUwMDk2MzM0NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nada-Lavrac?enrichId=rgreq-fc050025de188f6ebf98707ec296162a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM1NTc0MztBUzoxNjU2MzExOTg1MDcwMTBAMTQxNjUwMDk2MzM0NA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

[ THE UTILITY OF BACKGROUND
KNOWLEDGE IN LEARNING
MEDICAL DIAGNOSTIC RULES

NADA LAVRAC, SASO DZEROSKI, VLADIMIR
PIRNAT, and VILJEM KRIZMAN

Jozef Stefan Institute, Jamova 39, 61111 Ljubljana,
Slovenia

Inductive learning algorithms have frequently been applied to the problem of learning medical
diagnostic rules. Most learning algorithms use an attribiite-value language to describe train-
ing examples and induced rules. Consequently, the background knowledge that can be used in
the learning process is of a very restricted form. To overcome these limitations, the inductive
learning system LINUS incorporates attribute-value learners into a more powerful logic
programming framework in which background knowledge can be used effectively. This paper
describes the application of LINUS to the problem of learning rules for early diagnosis of
rheumatic diseases. In addition to the attribute-value descriptions of patient data, LINUS was
given background knowledge provided by a medical specialist. Medical evaluation of the rules
induced by LINUS using the CN2 attribute-value learner and measurements of their perfor-
mance in terms of classification accuracy and information content show that the use of back-
ground knowledge substantizgly improves the quality of induced rules.

INTRODUCTION

Inductive learning algorithms have frequently been applied to the problem of
learning medical diagnostic rules. Most learning algorithms use an attribute-value
language to describe training examples and induced concept descriptions. Con-
sequently, the background knowledge that can be used in the learning process is of
a very restricted form. This implies that many learning tasks cannot be solved by
attribute-value learning algorithms such as the members of the AQ (Michalski et al.,
1986) and TDIDT (Top Down Induction of Decision Trees; Quinlan, 1986) families
of inductive learners.

To overcome these limitations, the inductive learning system LINUS (Lavra¢ et
al., 1991a; Lavra¢ and DZeroski, 1992, 1993) incorporates various attribute-value
learners into a more powerful logic programming framework in which background
knowledge can be used effectively. On the one hand, LINUS can be used as an
attribute-value learner enhanced with the effective use of background knowledge.
On the other hand, it can also be used to induce relational descriptions. As such,
LINUS belongs to the family of inductive logic programming (ILP) systems
(Muggleton, 1992), which induce concept descriptions in the form of logic
programs.

This paper describes the application of LINUS to the problem of learning rules
for early diagnosis of rheumatic diseases. Correct diagnosis in an early stage of a
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rheumatic disease is a hard problem. Having passed all the investigations, many
patients cannot be diagnosed reliably after their first visit to a specialist. The reason
for this is that symptoms, clinical manifestations, and laboratory and radiological
findings for various rheumatic diseases are similar and not specific. Diagnosis can
also be incorrect because of the subjective interpretation of anamnestic, clinical,
laboratory, and radiological data (Pirnat et al., 1989). This diagnostic domain was
used in earlier experiments (Pirnat et al., 1989; Karali¢ and Pirnat, 1990) with the
inductive learning system ASSISTANT (Cestnik et al., 1987), a member of the
TDIDT family.

In the application described in this paper, LINUS used the CN2 (Clark and
Boswell, 1991) attribute-value learner to learn diagnostic rules from the anamnestic
data of patients with rheumatic diseases. In this real-life medical problem, the use
of CN2 was appropriate because it can deal with incomplete (missing) and erroneous
(noisy) data. In addition to the attribute-value descriptions of patient data, LINUS
was given background knowledge provided by a medical specialist in the form of
typical co-occurences of symptoms.

This study shows how the noise-handling mechanisms of CN2 and the ability
of LINUS to use background knowledge affect the performance (i.e., classifica-
tion accuracy and information content) and the complexity of the induced
diagnostic rules. In addition, a medical evaluation of the rules shows that the use
of background knowledge in LINUS improves the quality of rules. The perfor-
mance of CN2 is also compared to the performance of trees induced with LINUS
using ASSISTANT (Lavra¢ et al., 1991b). Like the algorithms of the TDIDT
family, the CN2 algorithm has the ability to cope with noisy data but it induces
descriptions in the form of if-then rules. It turned out that CN2 is better suited
for the use of the particular medical background knowledge in the induction of
diagnostic rules.

In the next section, the LINUS inductive learning system is described. Following
sections present the diagnostic problem, give the background knowledge to be used
in the induced diagnostic rules, and give the results of the experiments and the
medical evaluation of induced rules. The paper concludes with a discussion and
directions for further work.

THE INDUCTIVE LEARNING SYSTEM LINUS

Inductive learning technology can be used to construct expert knowledge bases
more effectively than traditional dialogue-based techniques for knowledge acquisi-
tion. Recent developments in inductive learning are concerned with systems that
induce concept descriptions in restricted first-order logic (Muggleton, 1991; Quin-
lan, 1990). The system LINUS induces concept descriptions in the deductive
hierarchical database (DHDB) formalism, a form of logic programs restricted to
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typed nonrecursive program clauses (Lloyd, 1987). As such, LINUS is one of the
inductive logic programming systems (Muggleton, 1992).

- The Knowledge Representation Formalism

In the application described in this paper, LINUS was used as an attribute-value
learner enhanced with the use of background knowledge to learn descriptions of
individual diagnostic classes. We will describe the knowledge representation for-
malism of LINUS for this case only.

Training examples, obtained from a database of patients’ records, are repre-
sented as ground facts. For example, the training example

patient( male, thorax, inﬂamhzatory_spine_disease).

represents a record of a male patient who has pain in the thorax and whose diagnosis
belongs to the class of inflammatory spine diseases. When learning the description
of the class inflammatory spine disease, this fact is labeled @ and is treated as a
positive example. Facts for other diagnostic classes are the negative examples for
learning the description of this class.

A hypothesis, that is, an induced description of a diagnosis, consists of a set of
DHDB rules of the form

Class = Diagnosis if L,,...,Lp,.

where Diagnosis is a diagnostic class and L; are conditions. Borrowing the logic
programming terminology (Lloyd, 1987; Ullman, 1988), the conjunction of condi-
tions L, is called the body of arule. Similar to attribute-value if-then rules, conditions
in DHDB rules can have the form X = g, where X is an attribute name and a is a
constant of the appropriate type. In the case of real-valued attributes, conditions can
have the form X < a and/or X > a, where a is a real-valued constant. These are both
illustrated in the following if-then rule.

Class = extraarticular_rheumatism if
Duration_of rheumatic_diseases < 1.5,
Number _of painful_joints < 0.5,
Other_pain = other,
Other_manifestations = no.

Unlike attribute-value if-then rules, conditions that result from the applications
of background knowledge can appear in the body of DHDB rules. In our experi-
ments, background knowledge of a functional nature was used—for example,
functions of the form Z = f{X,Y) where variables X and Y are attributes describing



276 N.Lavra¢ etal.

the training examples and Z is a “new” variable whose value is computed from the

" values of X and Y in the training examples. For notational convenience, we will write
f(X,Y,Z). In this case, in addition to the conditions Z=a, Z > a, and Z < g, the condition
f(X,Y,Z) must be added to the body of the rule. This is illustrated by the following
rule: ;

Class = inflammatory_spine_diseases if
Sex = male,
Duration_of rheumatic_diseases > 9,
Other_manifestations = no,
grouping4(Joint_pain, Spinal_pain, Value),
Value = 'no_pain & spondylitic’.

The value of the third argument of function grouping4, that is value 'no_pain
& spondylitic’, denotes a characteristic combinations of values of attributes
Joint_pain and Spinal_pain; it represents a meaningful co-occurrence of the symp-
toms no_pain in joints and spondylitic pain in the spine.

Learning in LINUS

The main idea in LINUS is to incorporate different attribute-value learning
algorithms into the logic programming environment. LINUS incorporates three
attribute-value learners: ASSISTANT, a member of the TDIDT family, and two
members of the AQ family, NEWGEM (Mozeti¢ 1985) and CN2. The incorporation
into the DHDB environment is provided by a special interface consisting of over
2000 lines of PROLOG code. This DHDB interface transforms the positive ex-
amples (given ground facts) and negative examples (possibly generated by the
DHDB interface) from the DHDB form into attribute-value tuples. The most
important feature of this interface is that, by taking into account the types of
arguments of the examples, applications of background knowledge predicates and
functions are considered as possible new attributes for learning by an attribute-value
learner. Existing attribute-value learners can then be used to induce decision trees
or rules, which are in turn transformed into the DHDB rule form by the DHDB
interface.

Compared to attribute-value learning, the LINUS approach has a number of
advantages. It allows relational descriptions, use of compound terms, compact
description of concepts, use of background knowledge in concept descriptions, and
inclusion of existing successful learning programs into the logic programming
environment. In LINUS, attribute-value learners are used that embody years of
research work, that are known to perform well, and that were tested and evaluated
on a number of real-life domains. To their advantageous features (e.g., mechanisms
for handling noisy data in ASSISTANT and CN2) the ability to learn logical
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definitions of relations in a more expressive representational formalism is added.
Thus, LINUS is also a member of the family of inductive logic programming
systems.

The CN2 Algorithm

The domain of early diagnosis of rheumatic diseases is characterized by noisy
and missing data. It was therefore appropriate to use CN2 as an attribute-value
learner incorporated into LINUS.

The rule induction system CN2 combines the ability to cope with noisy data of
the algorithms of the TDIDT family with the if-then rule form and the flexible search
strategy of the AQ family. It has retained the covering approach and the beam search
mechanism from AQ but has removed its dependence on specific examples during
the search. Furthermore, in order to deal with noisy data, it has extended the search
space to rules that do not perform perfectly on the training data. Initially, CN2 used
an entropy-based function as a search heuristic to induce ordered rules (Clark and
Niblett, 1989). It has recently been extended with the ability to induce unordered
rules and to use Bayesian accuracy estimates as search heuristics (Clark and
Boswell, 1991; DZeroski et al., 1992).

When learning if-then rules, objects of a given class are labeled © and treated
as positive examples &', and all other objects are treated as negative examples £ of
the selected class. Given the current training set of examples (initially set to the
entire training set) and the current hypothesis (initially set to the empty set of rules),
the outer loop of the CN2 algorithm for inducing unordered rules (Clark and
Boswell, 1991) implements the “covering” algorithm. It constructs a hypothesis in
three main steps:

« Construct a rule.

« Add the rule to the current hypothesis.

« Remove from the current training set the positive examples covered by the
rule.

This loom is repeated until all the positive examples are covered. <

Let H denote the current hypothesis and €, denote the current set of training
examples. Algorithm 1 is an outline of the CN2 covering algorithm, which is
essentially the same as the AQ covering algorithm. The best body is chosen
according to the search heuristic, which measures the expected classification
accuracy of the rule, estimated by the Laplace probability estimate (Clark and
Boswell, 1991).

Let k be the total number of classes in the problem. Let " be the number of
covered positive examples of the class ClassValue in the current training set & and
n. be the total number of covered positive and negative examples. The Laplace
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Algorithm 1 (CN2—the covering algorithm)

Given: Training examples'€" and & for the selected ClassValue.
Initialize the hypothesis H: =&. .
Initialize the training set &: = " U £
repeat
Call the BeamSearEchgorithm(&, ClassValue) to find the BestBody of a rule.
if BestBody + not_found
then % = H U {Class = ClassValue if BestBody},
i.e., add the best rule to H.
Remove from & the positive examples covered by BestBody.
until BestBody = not_found.

Output: Hypothesis H.

classification accuracy estimate A(Rule) estimates the probability that an example
covered by a Rule is positive:

n+1

A(Rule) = p(® | Rule) = "y

Algorithm 2 (CN2—the beam search algorithm)

Given: Training examples & for the selected ClassValue.
Initialize Beam: = {true}.
Initialize NewBeam: = .
Initialize BestBody: = not_found.
while Beam # & do
for each Body in Beam do
for each possible specialization Spec of Body do
if Spec is better than BestBody and
Spec is statistically significant
then BestBody: = Spec.
Add Spec to NewBeam.
if Size of NewBeam > BeamSize
then remove worst body from NewBeam.
endfor ‘ -
endfor
Beam: = NewBeam.
endwhile

Output: BestBody.
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In its previous version, instead of the Laplace estimate, the CN2 algorithm was using
an entropy-based search heuristic (Clark and Niblett, 1989).

The beam search for the best body of a rule in Algorithm 2 proceeds in a
top-down fashion. The search starts with the most general body (true), which covers
all the training examples. At each step, a set of candidates (Beam) for the best body,
as well as the best body found so far, are kept. To specialize a body, a condition of
the form X = a is added to it as a conjunct. All the possible specializations of the
candidates from Beam are considered. The best body found so far is accordingly
updated and the BeamSize most promising candidates among the newly generated
specializations are chosen.

The best body found so far is, in addition, tested for its statistical significance. This
is to ensure that it represents a genuine regularity in the training examples and not a
regularity due to chance. In this way, the undesirable bias of the entropy and apparent
accuracy metrics used to estimate the quality of a clause is, at least partly, avoided. For
a detailed treatment of the heuristics in CN2 and their role in handling noisy data, we
refer the reader to Clark and Boswell (1991) and DZeroski et al. (1992).

The LINUS Learning Algorithm

The outermost level of the LINUS learning algorithm consists of the following
steps:

« Establish the training sets of positive and negative facts.

« Using background knowledge, transform facts in the DHDB form into attribute-
value tuples.

« Induce a concept description by an attribute-value learner.

« Transform the induced if-then rules into the form of DHDB rules.

In the first step, the sets of positive and negative facts are established. The
generation of negative facts takes into account the types of arguments and the
closed-world assumption. There are three different options for negative examples
generation. However, since in our application separate rules are learned for the
individual diagnostic classes, negative facts are given explicitly. Negative facts are
examples of all the patients not belonging to the given diagnostic class.

In the second step of the algorithm, the positive and negative facts are trans-
formed into an attribute-value form. The algorithm first checks which are the
possible applications of the background knowledge predicates and functions (called
utility predicates and functions) and then generates attribute-value tuples by assign-
ing values to the enlarged set of attributes. Value true or false is assigned to each
application of a utility predicate on the argument values of the relation to be learned.
Similar computation is performed for functions, except that values of the output
argument of a function are computed, instead of only assigning values frue and false.
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Let us illustrate the application of a utility function with an example. Suppose
a patient is described by the relation patient having as arguments values of the
attributes sex and location of pain and the patient’s diagnosis. Suppose that a set of
training examples includes the following fact:

patient( male, thorax, inflammatory_spine_disease).

As will be shown later, a male patient having pain in the thorax has one of the
characteristic co-occurrences of symptoms. Such a characteristic grouping of symp-
toms can be defined as specialist background knowledge in the form of a utility
function, which can be considered in inducing descriptions of the individual diag-
nostic classes. This background knowledge can be defined as follows:

% grouping3( sexlinput, locationlinput, grouping3 valueloutput)
grouping3( male, thorax, male_thorax ) :- !.

grouping3( male, heels, male_heels ) :- !.

‘grouping3( _, , irrelevant ).

This utility function states two typical combinations of values of two attributes, sex
and location of pain. All the other combinations of values are irrelevant. Note that,
for practical reasons, the definition is encoded in the PROLOG syntax, using the cut
(!) operator. »

In this step of the algorithm, tuples of attribute values are generated. An
additional attribute appears in the tuples, which stands for the value of the utility
function. The form of tuples (the set of attributes) is the following:

(sex, location, grouping3 value, diagnosis)

For the given positive example patient(male, thorax, inflammatory spine_disease),
the following tuple is generated:

(male, thorax, male_thorax, inflammatory_spine disease)

In this way, the set of attributes to be considered for learning is enlarged,
including one additional attribute for the characteristic combination of symptoms,
and the appropriate value is assigned to the new attribute. A similar computation is
performed for all positive and negative examples.

The third step of the algorithm is the induction of a concept description that
depends on the choice of the learning algorithm. Training examples in the form of
tuples are transformed into the appropriate input form for learning by the ASSIS-
TANT, NEWGEM, or CN2 algorithm; learning by the selected attribute-value
learner is invoked; and the obtained concept description (in the form of a decision
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tree or if-then rules) is transcribed into the form of if-then rules. In our application
the CN2 algorithm was used.

In the fourth step, the induced if-then rules are transformed into the form of
DHDB rules. Before this transformation is performed, a special postprocessor
checks whether the if-then rules can be made more compact. This is used in LINUS
with ASSISTANT only on the if-then rules derived from decision trees. In noisy
domains, postprocessing eliminates irrelevant conditions from the body of arule. A
condition is irrelevant if it can be removed from the rule without decreasing its
classification accuracy on the training set.

DIAGNOSTIC PROBLEM AND EXPERIMENTAL DATA

Data about 462 patients were collected at the University Medical Center in
Ljubljana. There are over 200 different rheumatic diseases, which can be grouped
into 3, 6, 8, or 12 diagnostic classes. As suggested by a specialist, eight diagnostic
classes were considered. Table 1 shows the names of the diagnostic classes and the
numbers of patients belonging to each class.

The experiments were performed on anamnestic data, without taking into
account data about patients’ clinical manifestations and laboratory and radiological
findings. The 16 anamnestic attributes are as follows: sex, age, family anamnesis,
duration of present symptoms, duration of theumatic diseases, joint pain (arthrotic,
arthritic), number of painful joints, number of swollen joints, spinal pain (spon-
dylotic, spondylitic), other pain (headache, pain in muscles, thorax, abdomen, heels),
duration of morning stiffness, skin manifestations, mucosal manifestations, eye
manifestations, other manifestations, and therapy. )

Of 462 patients’ records only 8 were incomplete; 12 attribute values were
missing (for attributes sex and age). This was not problematic because LINUS using
CN2 can handle missing data.

TABLE 1. The Eight Diagnostic Classes and the Corresponding Numbers of
Patients

Class Name Number of patients
Al Degenerative spine diseases 158
A2 Degenerative joint diseases 128
B1 Inflammatory spine diseases 16
B234 Other inflammatory diseases 29
C Extraarticular rheumatism 21
D Crystal-induced synovitis 24
E Nonspecific rheumatic manifestations 32
F Nonrheumatic diseases 54
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MEDICAL BACKGROUND KNOWLEDGE

The available patient data were augmented with additional diagnostic knowl-
edge. A specialist for theumatic diseases has provided his knowledge about the
typical co-occurrences of symptoms. Six typical groupings of symptoms were
suggested by the specialist. '

1. The first grouping relates the joint pain and the duration of morning stiffness.
The characteristic combinations are given in the following table; all other combma—
tions are insignificant or irrelevant:

Joint pain Mormning stiffness
No pain < 1 hour
Arthrotic < 1hour
Arthritic > 1 hour

2. The second grouping relates the spinal pain and the duration of morning
stiffness. The following are the characteristic combinations: ,

Spinal pain Monming stiffness
No pain < 1 hour
Spondylotic < 1 hour
Spondylitic > 1 hour

3. The third grouping relates sex and other pain. Indicative is the pain in the
thorax or in the heels for male patients; all other combinations are nonspecific:

Sex Other pain
Male Thorax
Male Heels

4. The fourth grouping relates joint pain and spinal pain. The following are the
characteristic co-occurrences:

Joint pain Spinal pain

No pain Spondylotic
Arthrotic No pain

No pain Spondylitic
Arthritic Spondylitic
Arthritic No pain

No pain No pain
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5. The fifth grouping relates joint pain, spinal pain, and the number of painful
joints: ‘

Joint pain Spinal pain Painful joints
No pain Spondylotic 0

Arthrotic No pain 1 < joints <30
No pain Spondylitic 0

Arthritic Spondylitic 1<joints< §
Arthritic No pain 1 < joints < 30
No pain No pain 0

6. The sixth grouping relates the number of swollen joints and the number of
painful joints: B

Swollen joints Painful joints
0 0

0 1 < joints <30
1 < joints < 10 0 < joints <30

This background knowledge is encoded in the form of utility functions,
introducing specific function values for each characteristic combination of
symptoms. All the other combinations (except the ones explicitly specified in the
preceding tables) have the same function value irrelevant. The characteristic
combinations of attribute values are given names that are mnemonic and under-
standable. Their names are “artificial” (not used by specialists), but they repre-
sent meaningful co-occurrences of symptoms that have their role in expert
diagnosis. An example utility function implementing the third grouping of
symptoms was given earlier.

The choice of functions instead of utility predicates is based on the same
argument. It is important for a specialist to know the exact value of the function (i.e.,
the exact combination of symptoms) and not only to know that some combination
of values of individual attributes has occurred (which would be the case if this
knowledge were encoded in the form of utility predicates having only values frue
and false).

EXPERIMENTS AND RESULTS

In order to evaluate the effects of background knowledge and noise-handling
mechanisms on the classification accuracy and the complexity of the induced rules,
two groups of experiments were performed: one group on the whole set of patient
data and the other on 10 different partitions of the data set into training and testing
examples. In each group, the experiments were further designed along another two
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dimensions. In one half of the experiments the background knowledge described in
the preceding section was used in the learning process. Each of the groupings
contributed an additional attribute, giving a total of six new attributes. The set of
attributes used for learning with CN2 thus consisted of 16 initial and 6 new attributes.
In the other half of the experiments no background knowledge was used, and the set
of attributes consisted of the 16 initial attributes only. Along the other dimension,
the significance test noise-handling mechanism in CN2 (with a significance level of
99%) was used in one half of the experiments and not in the other half.

Learning from the Entire Training Set

In the first group of experiments, the data about all 462 patients were used.
Four experiments were performed in which the use or nonuse of background
knowledge and the use or nonuse of the significance test were varied. The
classification accuracy and the relative information score (both calculated on the
training set), as well as the complexity of the induced rule sets, were measured.
Table 2 gives the results of these experiments.

The classification accuracy was measured as the percentage of examples cor-
rectly classified by the rule set. The complexity was measured by the number of
rules in the set, as well as the total number of conditions appearing in all rules in the
set. Finally, the information content, that is, relative information score (Kononenko
and Bratko, 1991), was measured, which takes into account the difficulty of the
classification problem. To this end, a suitably modified implementation of CN2
(DZeroski et al., 1992) was used.

To scale the evaluation of a classifier to the difficulty of the problem, the relative
information score takes into account the prior probability of diagnoses (diseases). That
is, a correct classification into a more probable diagnosis provides less information than
a correct classification into a rare diagnosis, which is represented by only a few training
examples (Kononenko and Bratko, 1991). For example, in domains where one of the
diagnostic classes is highly likely, it is easy to achieve high classification accuracy. The
completely uninformed classifier that assigns the most common diagnosis to all patients
would in that case have undeservedly high classification accuracy.

The results in Table 2 show that the use of background knowledge increased the
accuracy of the induced rules on the training set. More important, it also increased

TABLE 2. Classification Accuracy, Relative Information Score (Both Measured on the
Training Set Itself), and Complexity of Rules Derived from all 462 Examples

Background Significance =~ Accuracy Relative inf.  Number of Number of
knowledge test (%) score (%) rules conditions
No No 62.8 49 96 302
No Yes 51.7 22 30 102
Yes No 729 59 96 301

Yes Yes 524 30 38 120
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the information content of the rules. The total number of conditions appearing in all
rules increased with the use of background knowledge when the significance test
was used and remained unchanged when the significance test was not used.

The use of the significance test greatly decreased the size of the rule sets, both
with and without using background knowledge. However, it also caused a decrease
in the classification accuracy on the training set. This is natural, since the main
function of this noise-handling mechanism is to prevent rules from overfitting the
training set. Although this decreases the classification accuracy on the training set,
it usually increases the classification accuracy on unseen cases (see Table 6).

All groupings appear in the induced rules. In the rules induced with no significance
test, the most common groupings are grouping5 with 13 and grouping4 with 12
occurrences; grouping2 occurs five times, groupingl and grouping6 four times each,
and grouping3 twice. When the significance test is used, the number of occurrences
decreases, as the number of rules (conditions) decreases drastically. In this case,
groupingl occurs twice, grouping?2 three times, grouping3 and grouping6 once each,
grouping5 seven times, and grouping4 nine times. The most common groupings (4 and
5) combine spinal pain, the most informative attribute, with other relevant features.

To summarize, all utility functions from the background knowledge appeared
in the induced rules. The use of background knowledge improved both the classifica-
tion accuracy and the relative information score of the induced rules at the cost of a
slight increase of rule complexity. In the following section, a medical evaluation of
the effects of background knowledge on the induced rules is presented.

Medical Evaluation of Diagnostic Rules

The induced diagnostic rules were shown to a specialist for rheumatic diseases,
who found most of the rules meaningful and understandable. The specialist eval-
uated the entire set of induced rules according to the following procedure. For each
of the conditions in a rule, one point was given to the rule if the condition was in
favor of the diagnosis made by the rule, minus one point if the condition was against
the diagnosis and zero points if the condition was irrelevant to the diagnosis. The
mark of a rule was established as the sum of the points for all conditions in the rule.

The actual marks ranged from minus one to three. Intuitively, mark 3 was given to
rules that are very characteristic for a disease and could even be published in a medical
book. Mark 2 was given to good, correct rules. Mark 1 was given to rules that are not
wrong but are not too characteristic for the diagnosis. Mark 0 was given to rules that
are possible according to the specialist’s knowledge; however, they reflect a coinciden-
tial combination of features rather than a characteristic one. Mark —1 was given to
misleading rules, which actually indicate that the diagnosis is not likely.

Two sets of rules were evaluated, the ones induced with and without the use of
background knowledge, both induced using the significance test. Table 3 shows
some rules that were evaluated as best by the specialist and their marks. They were
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TABLE 3. Rules for Early Diagnosis of Rheumatic Diseases Induced
with the Use of Background Knowledge

Class = degenerative_spine_disesease if
Duration_of present_symptoms > 6.5_months,
Duration_of rheumatic_diseases < 5.5_years,
Number_of painful_joints > 16,
grouping2(Spinal_pain, Duration_of morning_stiffness, Value),
Value = 'spondylotic & dms =<.1_hour’.

Class = degenerative_spine_diseases if
Age < 66.5,

Other_pain = no,

Skin_manifestations = no,

grouping5(Joint_pain, Spinal_pain, Number_of painful_joints, Value),
Value = 'no_pain & spondylotic & pj = 0’.

Class = degenerative_joint_diseases if
Age > 46.5,

Duration_of present_symptoms < 30_months,
Number_of painful joints < 19,

Duration_of morning_stiffness < 0.75_hours,
grouping3( Sex, Other_pain, Valuel ),

Valuel = irrelevant,

grouping4(Joint_pain, Spinal_pain, Value2),
Value2 ='arthrotic & no_pain’.

Class = inflammatory_spine_diseases if
Sex = male,

Duration_of rheumatic_diseases > 9_years,
Other_manifestations = no,
grouping4(Joint_pain, Spinal_pain, Value),
Value = 'no_pain & spondylitic’.

Class = other_inflammatory_diseases if

Age <785,

Number_of painful_joints > 18,

Number_of swollen_joints > 2.5,

groupingl(Joint_pain, Duration_of morning_stiffness, Value),
Value = ’arthritic & dms > 1_hour’.

Class = extraarticular_rheumatism if
Duration_of rheumatic_diseases < 1.5_year,
Number_of painful_joints < 0.5,

Othre_pain = other,
Other_manifestations = no.
Class = crystal_induced_synovitis if

Sex = male,

Age > 24,

Number_of painful_joints < 14.5,
Other_pain = no,

Duration_of morning_stiffness < 0.25_hours,
Eye_manifestations = no,
grouping4(Joint_pain, Spinal_pain, Value),
Value = ’arthritic & no_pain’.

Mark:2

Mark: 2

Mark: 3

Mark: 3

Mark: 0

Mark: 2
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TABLE 3. Continued

Class = crystal_induced_synovitis if Mark: 1
Sex = male,
Age > 465,
Number_of painful_joints > 3.5,
Skin_manifestations = psoriasis.
Class = nonspecific_rheumatic_diseases if Mark: 0
Age >295,Age <335,
Number_of painful_joints > 10.5,
Spinal_pain = no_pain.
Class = nonrheumatic_diseases if Mark: 3
Age <535,
Duration_of present_symptoms > 2_months,
Number_of swollen_joints < 0.5,
Other_pain = no,
Eye_manifestations = no,
grouping5(Joint_pain, Spinal_pain, Number_of painful_joints, Value),
Value = ’'no_pain & no_pain & pj = 0.

induced by LINUS using CN2 with the use of background knowledge and the
significance test. All rules for the diagnosis E (nonspecific rheumatic manifesta-
tions) were given mark 0. This is due to the fact that the only characteristic of this
class is that all patients with rheumatic diseases who cannot be diagnosed otherwise
are assigned this diagnosis.

Tables 4 and 5 summarize the medical expert evaluation of the induced rules.
Out of 30 rules induced without background knowledge, no rules were given mark
3, two rules were given mark 2, fifteen mark 1, ten mark 0, and three mark -1
(misleading rules). The average rule mark is 0.53 and the three misleading rules
cover 34 examples. On the other hand, out of 38 rules induced with background
knowledge, three rules were given mark 3, nine mark 2, fourteen mark 1, eleven
mark 0, and only one rule was misleading. The average rule mark in this case is 1.05
and the misleading rule covers only five examples. All these figures indicate that

TABLE 4. Medical Expert Evaluation of Rules Without Background Knowledge

Number of rules with mark
Total no. of
Class 3 2 1 0 -1 rules Average mark
Al 4 1 2 7 0.29
A2 3 1 6 033
B1 1 2 3 1.33
B2 3 1 4 0.75
C 1 2 3 0.33
D 1 2 3 133
E 3 3 0.00
F 1 1 0.00
Overall 0o 2 15 10 3 30 0.53
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TABLE 5. Medical Expen Evaluation of Rules with Background Knowledge

Number of rules with mark
Total no. of
Class 3 2 1 0 - rules Average mark
Al 3 2 7 1.14
A2 1 1 3 1 1 7 1.00
B1 1 2 3 1.33
B2 1 2 4 7 1.57
C 3 3 0.00
D 1 2 3 133
E 4 0.00
F 1 1 1 4 1.50
Overall 3 14 11 1 38 1.05

the background knowledge substantially improves the induced rules from the
medical expert point of view.

Performance on Unseen Examples

Since the ultimate test of the quality of induced rules is their performance on
unseen examples, the second group of experiments was performed on 10 different
partitions of the data set into training and testing examples. Thus, corresponding to
each of the experiments on the entire training set, four series of 10 experiments each
were performed, where 70% of the entire data set was used for learning and 30%
for testing. A different partition into training and testing examples was used in each
of the experiments and the same partitions were used for all four series.

The experiments were aimed at investigating the effects of background knowl-
edge and noise-handling mechanisms on the performance of induced rules on unseen
cases. The performance of the rules was measured in terms of the classification
accuracy and the relative information score. A summary of the results of the
experiments is given in Table 6. The classification accuracy and the relative
information score for all experiments are given in Table 7 and Table 8, respectively.

As expected, the average classification accuracy is much lower than the clas-
sification accuracy on the training data in Table 2. The relative information score

TABLE 6. Average Classification Accuracy, Relative Information Score (Measured on
Testing Data), and Complexity of Rules Induced by LINUS Using CN2

Background Significance ~ Accuracy Relative inf.  Number of Number of
knowledge test (%) score (%) rules conditions
No No 429 23 72 222
No Yes 453 19 30 76
Yes No 439 24 74 226

Yes Yes 48.6 26 24 88
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TABLE 7. Classification Accuracy of Rules, Derived by LINUS Using CN2 with and
without Background Knowledge (BK), on the Testing Set for Each of the Ten Partitions

of the 462 Examples
No significance test Significance level 99%

Partition Without BK (%)  With BK (%) Without BK (%)  With BK (%)

1 38.1 453 475 489

2 44.6 44.6 453 51.8

3 453 424 51.1 48.9

4 439 40.3 4.6 482

5 40.3 432 46.0 46.8

6 482 48.2 49.6 48.2

7 424 44.6 4.6 48.9

8 38.8 432 41.0 482

9 453 41.0 439 48.2
10 41.7 46.0 396 48.2
Average 429 439 45.3 48.6

also drops substantially. Finally, the rule set size is also reduced, as the rules have
to explain a smaller number of examples (70% of the entire data set).

The use of background knowledge improved the classification accuracy and the
relative information scores achieved. According to the statistical #-test for dependent
samples, the difference in accuracy is not statistically significant when the CN2
significance test is not used. However, it is very significant (at the #-test 99% level)
when the significance test is used in CN2. The relative information score difference
is statistically significant in both cases (at the #test 95% and 99.99% levels,
respectively, with and without the significance test in CN2).

The significance test noise-handling mechanism in CN2 greatly reduces the
complexity of the induced rules. It also improves the classification accuracy sig-

TABLE 8. Relative Information Scores of Rules, Derived by LINUS Using CN2 with
and without Background Knowledge (BK), on the Testing Set for Each of the Ten
Partitions of the 462 Examples

No significance test Significance level 99%

Partition Without BK (%) = With BK (%) Without BK (%)  With BK (%)

1 21 23 17 26

2 23 24 20 28

3 19 22 17 24

4 24 21 17 22

5 22 25 21 26

6 26 24 15 24

7 27 30 21 27

8 19 24 21 26

9 23 23 16 25
10 23 27 23 31

Average 23 24 19 26
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nificantly. When background knowledge is used, it significantly improves both the
classification accuracy (z-test significance level 99.99%) and the relative informa-
tion score (¢-test significance level 95%).

All groupings appear in the rule sets induced with use of background knowledge.
In the rules induced with no CN2 significance test, the most common groupings are
grouping4 with 96 and grouping5 with 80 occurrences in the 10 rule sets; grouping6
occurs 38 times, grouping2? occurs 31 times, groupingl occurs 23 times, and
grouping3 occurs 12 times. When the CN2 significance test is used, the number of
occurrences decreases, as the number of rules (conditions) decreases drastically. In
this case, groupingl occurs 10 times, grouping?2 occurs 7 times, grouping3 occurs
5 times, grouping4 occurs 73 times, grouping5 occurs 71 times, and grouping6
occurs 24 times.

Experiments were also conducted with LINUS using ASSISTANT on the same
partitions of the data set as used by LINUS using CN2. ASSISTANT induces
decision trees, where noise is handled by either tree prepruning or postpruning
(Cestnik et al., 1987). A summary of the results of these experiments is given in
Table 9.

The background knowledge did not significantly influence the performance of
the trees induced by LINUS using ASSISTANT. This is probably due to the fact that
the background knowledge is in a form more suitable for rule induction; that is, the
groupings typically distinguish between one diagnosis and all the others. In decision
trees, on the other hand, features that distinguish best among all possible diagnoses
are favored.

The noise-handling mechanisms of prepruning and postpruning in ASSISTANT
increased the accuracy of the induced trees. The increases are statistically significant
(at the 98% level according to the t-test for dependent samples) in the case of
prepruning and postpruning, when no background knowledge is used, and in the
case of postpruning when background knowledge is used. It is interesting to note
that prepruning increased both the classification accuracy and the relative informa-
tion score, while postpruning increased the accuracy at the expense of decreasing
the relative information score.

TABLE 9. Average Classification Accuracy and Relative Information Score
(Measured on Testing Data) of Trees Generated by LINUS Using

ASSISTANT

Background Relative information
knowledge Pruning Accuracy (%) score (%)

No No 41.80 28.68

No Pre 44.42 31.03

No Post 48.92 25.31

Yes No 42.34 28.90

Yes Pre 43.17 30.32

Yes Post 48.99 2594




The Utility of Background Knowledge 291

Finally, let us mention that the accuracies and relative information scores
“achieved by LINUS using CN2 with background knowledge and with LINUS using
ASSISTANT (both with and without background knowledge) are almost the same.
However, the rules induced by CN2 proved to be easier to understand by the medical
expert than the decision trees induced by ASSISTANT. In that context, the back-
ground knowledge substantially improved the quality of the rules induced by CN2
as evaluated by the medical expert (see Tables 4 and 5).

DISCUSSION

LINUS, an inductive learning system, was used to learn diagnostic rules from
anamnestic data of patients with rheumatic diseases. In addition to the available
patient data, described by values of a fixed set of attributes, LINUS was given
domain-specific (background) knowledge, which specified some of the charac-
teristic co-occurrences of symptoms.

Medical evaluation of rules induced by LINUS using CN2 shows that the use
of background knowledge substantially improves the quality of the induced rules
from a medical point of view. However, even when background knowledge is used,
the average rule is not wrong, but not too characteristic (average mark 1.05). The
analysis by a specialist for rheumatic diseases indicated several reasons:

* Anamnestic data are by nature very noisy because they are, in fact, patients’ own
descriptions of the disease, only interpreted by a specialist for rheumatic diseases.
Interpretation of these data is subjective and therefore extremely unreliable. In
many cases the data even contradicts the expert’s background knowledge.

* The grouping of about 200 different diagnoses into only eight diagnostic classes
is problematic. For degenerative diseases (classes Al and A2) many examples
are available. Nearly 74% of all the data set consists of patients’ records for these
two diagnostic classes, together with the class of nonrheumatic diseases (see
Table 1). Furthermore, some diagnostic classes are relatively nonhomogenous,
having few common characteristics. Consequently, the specific background
knowledge, which is usually used in differential diagnosis, cannot be used
effectively when dealing with such large groups of diagnoses.

* Some of the patients had more than one diagnosis, but only one diagnosis was
included in the example set.

* Data were collected by different medical doctors without achieving their collec-
tive consensus. This could be why the data sometimes contradict the expert’s
background knowledge.

This analysis shows the problems present in the data set. Nevertheless, useful
information can still be extracted from such data. The relative information score of
classifications of training examples (without using the significance test) was 49%
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(accuracy 62.8%) when no background knowledge was used and 59% (accuracy
72.9%) when background knowledge was used (Table 2). The relative information
_ score of a classifier that always returns the prior probability distribution of diagnostic
classes is zero (accuracy 34%). The #nformation score of the induced rules thus
indicates that useful information is contained in the data set.

The main goal of the study was to analyze how the use of background knowledge
and the noise-handling mechanism of LINUS using CN2 affect the performance and
the complexity of induced diagnostic rules. The use of n01se-hand11ng mechanisms
improved the classification accuracy of induced rules. We have also shown that the
use of additional background knowledge can improve the classification accuracy
and the relative information score of induced rules. We expect that still better results
could be achieved by restricting the problem to differential diagnosis in a smaller
subset of diagnoses where specific (background) knowledge could have a more
substantial role. Furthermore, the selection of typical patients only is also expected
to contribute to better results.
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