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Inductive Learning in Deductive Databases

Saso Dzeroski and Nada Lavraé¢

Abstract—Most current applications of inductive learning in
databases take place in the context of a single extensional re-
lation. This paper puts inductive learning in the context of a
set of relations defined either extensionally or intentionally in
the framework of deductive databases. It presents LINUS, an
inductive logic programming system that induces virtual rela-
tions from example positive and negative tuples and already
defined relations in a deductive database. Based on the idea of
transforming the problem of learning relations to attribute-
value form, it incorporates several attribute-value learning
systems. As the latter handle noisy data successfully, LINUS is
able to learn relations from real life noisy databases. The paper
illustrates the use of LINUS for learning virtual relations and
then presents a study of its performance on noisy data.

Keywords—Deductive databases, inductive logic program-
ming, machine learning.

I. INTRODUCTION

FRAWLEY et al. [10] recognize that machine learning
can be applied to knowledge discovery in databases.
They list the conflicting viewpoints between database
management and machine learning. Among the main
problems, they emphasize the fact that real world data-
bases are often incomplete and noisy, as well as much
larger than typical machine learning data sets.

Attribute-value learning systems, such as C4.5 [31],
ASSISTANT [3] and CN2 [4], already include techniques
for handling incomplete and noisy data. They are also
fairly efficient, but even more efficient approaches have
been recently developed [2] that can handle very large
training sets. Machine learning techniques of this kind can
be used to discover patterns in an isolated file of database
records, i.e., a single relation in a relational database,
where records (tuples) can be viewed as training in-
stances.

The patterns discovered by the above learning systems
are expressed in attribute-value languages which have the
expressive power of propositional logic. These languages
are limited and do not allow for representing complex
structured objects and relations among objects or their
components. The domain (background) knowledge that
can be used in the learning process is also of a very re-
stricted form and other relations from the database cannot
be used in the learning process.
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Recent developments in inductive learning focus on the
problem of constructing a logical (intentional) definition
of a relation [32] from example tuples known to belong
or not to belong to it, where other relations (background
knowledge) may be used in the induced definition. In this
way, new relations can be specified by a small number of
example tuples, which are then generalized to induce a
logical definition. Alternatively, existing relations can be
compressed into their corresponding logical definitions.

As the intentional definitions induced can be recursive
[32], we may say that they are expressed in the formalism
of deductive databases [35]. The logic programming
school in deductive databases [19] argues that deductive
databases can be effectively represented and implemented
using logic and logic programming. Within this frame-
work, the induction of logical definitions of relations can
be considered logic program synthesis and has been re-
cently named Inductive Logic Programming (ILP) [6],
[15], [24].

Early ILP systems, such as MIS [34] and CIGOL [25],
did not address the problem of handling noisy data. FOIL
[32], however, has a noise handling mechanism based on
an encoding length heuristic. Based on the idea of ex-
tending attribute-value learning approaches to the deduc-
tive database (logic programming) framework, it can in-
duce logical definitions of relations from possibly noisy
data.

Our ILP system LINUS [16], described in the paper, is
also based on the idea of extending attribute-value ap-
proaches. Unlike FOIL, which directly uses ideas from
propositional approaches, LINUS explicitly transforms an
ILP problem to propositional form and then uses attri-
bute-value learners to solve it. The solution of the prop-
ositional problem is then transformed back into the de-
ductive database formalism.

The transformation process can only be used for a re-
stricted class of ILP problems. The hypothesis language
(i.e., the class of logic programs that can be induced) is
the language of deductive hierarchical database (DHDB)
clauses [19], with the additional restriction that no new
variables may be introduced in the body of a clause.
Strictly speaking, this class of programs is a subset of the
nonrecursive views (virtual relations) that can be defined
in the relational algebra. Nevertheless, this language is
still more expressive than attribute-value languages, as
some relations can be concisely expressed in terms of
other relations, but not in an attribute-value language.
Furthermore, we have extended the transformation ap-
proach to a broader class of problems, namely to those
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expressible in the language of deductive database clauses
[13].

LINUS is a descendent of the learning module of
QuMAS (Qualitative Model Acquisition System [23]),
which was used to learn functions of components of a
qualitative model of the heart in the system KARDIO [1].
LINUS contributes to attribute-value leamners the addi-
tional expressiveness of the DHDB formalism, which en-
ables learning of relations in the presence of background
knowledge. To ILP, LINUS brings the techniques for
handling imperfect (noisy) data and therefore the potential
of practical applications. In practice, LINUS was used to
induce medical diagnostic rules [17], [18], and to gener-
ate rules that determine the resolution of finite element
meshes in computer aided design [7]. Furthermore, it was
used to learn relational descriptions in several domains
known from the machine learning literature [16].

In this paper, we explore the use of LINUS for learning
relations, both from non-noisy and noisy data. Section II
first introduces the basic deductive databases and logic
programming terminology and then defines the ILP learn-
ing task. In Section III, the LINUS environment is de-
scribed. Section IV presents the results of experiments in
learning relations with LINUS on two domains from the
machine learning literature. One of these domains, the
problem of learning illegal positions in a chess endgame,
is used in Section V to study the ability of LINUS to han-
dle noisy data. Both sections include a comparison with
FOIL.

II. INpucTIVE LoGic PROGRAMMING
A. Deductive Databases and Logic Programming

A n-ary relation p is a set of tuples, i.e., a subset of the
Cartesian product of n domains Dy XDy, x -+ x D,
where a domain (or a type) is a set of values. We assume
that a relation is finite unless stated otherwise. A set of
relations forms a relational database (RDB) [35].

A deductive database (DDB) consists of a set of data-
base clauses. A database clause is a typed program clause
of the form:

p(Xl’ e ’Xn)‘_L]a et ’Lm-
where the body of a clause is a conjunction of positive
literals g;(Y,, * - - , ¥,) and/or negative literals not q;(Y,,

, ¥,). The basic difference between program clauses
and database clauses is in the use of types. In typed
clauses, a type is associated with each variable appearing
in a clause. The type of a variable specifies the range of
values which the variable can take. For example, in the
relation lives_in(X, Y), we may want to specify that X is
of type person and Y is of type ciry.

A set of program clauses with the same predicate sym-
bol p in the head forms a predicate definition. A predicate
can be defined extensionally as a set of ground facts or
intentionally as a set of database clauses [35]. It is as-
sumed that each predicate is either defined extensionally
or intentionally. A relation in a database is essentially the
same as a predicate definition in a logic program. Table 1

TABLE I
RELATING DATABASE AND LOGIC PROGRAMMING TERMS

DB Terminology LP Terminology

relation name p

attribute of relation p
tuple <a,, - -, a,>
relation p—a set of tuples

predicate symbol p

argument of predicate p

ground fact p(a,, * - - , a,)

definition of predicate p—
a set of ground facts

relates database [35] and logic programming [19] terms
that will be used throughout the paper.

Database clauses use variables and function symbols in
predicate arguments. Recursive types and recursive pred-
icate definitions are allowed. Deductive hierarchical da-
tabases (DHDB) [19] are deductive databases restricted
to nonrecursive predicate definitions and to nonrecursive
types. The latter determine finite sets of values which are
constants or structured terms with constant arguments.

B. Empirical Inductive Logic Programming

Some recent inductive learning systems [16], [26], [32],
construct logical definitions of relations from examples
and background knowledge (other relations). They use re-
stricted forms of program clauses {19] to represent train-
ing examples, background knowledge, and induced con-
cept descriptions. In this case, learning can be considered
logic program synthesis and has been recently named In-
ductive Logic Programming (ILP) [6], [15], [24].

In ILP, one can distinguish between interactive and
empirical ILP systems, which learn definitions of single
and multiple predicates, respectively. Empirical ILP sys-
tems require all training examples at the start of the learn-
ing process, while interactive ILP systems process the ex-
amples one by one and possibly generate examples in the
learning process. Examples of empirical ILP systems are
GOLEM [26], FOIL [32] and LINUS [16]. Interactive
ILP systems representatives are MIS [34], CLINT [6] and
CIGOL [25]. Other ILP systems include MOBAL [21]
and FOCL [29].

Since empirical ILP systems deal with large sets of ex-
amples, they are more likely to be applied in practice. The
task of empirical single predicate learning in ILP can be
formulated as follows:

Given:

*® a set of training examples &, consisting of true &%
and false &~ ground facts of an unknown predicate

. zconcept description language £, specifying syntac-
tic restrictions on the definition of predicate Ps

® background knowledge ®, defining predicates i
(other than p) which may be used in the definition of

P
Find:

® a definition JC for p, expressed in £, such that 3C is
complete, i.e., Ve e §*: B A IJC # e, and consistent
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TABLE 11
A SiMpLE ILP PROBLEM: LEARNING THE daughter RELATIONSHIP

Training Examples

Background Knowledge

daughter(sue, eve). @D
daughter(ann, pat). @
daughter(tom, ann). ©
daughter(eve, ann). ©

mother(eve, sue).
mother(ann. tom).
father(pat, anny).
father(tom, sue).

parent(X, Y) < female(ann). male(pat).
mother(X. Y). female(sue). male(tom).
parent(X, Y) < Sfemale(eve).
father(X. Y).

with respect to & and B, i.e., Ve e §: B A I ¥
e.

One usually refers to the true facts & as positive (®)
examples, the false facts &~ as negative (©) examples
and the definition of p as definition of the rarger relation.
Positive examples are tuples known to belong to the target
relation, while negative examples are tuples known not to
belong to the target relation. When learning from noisy
examples, the completeness and consistency criteria need
to be relaxed in order to avoid overly specific hypotheses.

The language of concept descriptions £ is usually
called the hypothesis language. 1t is typically some subset
of the language of program clauses. The complexity of
learning grows with the expressiveness of the hypothesis
language £. Therefore, to reduce the complexity, addi-
tional restrictions can be applied to clauses expressed in
&£. In LINUS, the concept description language is the lan-
guage of DHDB clauses, with the additional restriction
that clauses may not introduce new variables.

To illustrate the above definition, consider the simple
problem of learning family relationships. The task is to
define the target relation daughter(X, Y), which states that
person X is daughter of person Y, in terms of the back-
ground knowledge relations female(X), male(X) and par-
ent(X, Y). The relations female and male are defined ex-
tensionally, while parent is defined intentionally in terms
of mother and father. These relations are given in Table
II, where all attributes are of type person. There are two
positive and two negative examples of the target relation.

III. LINUS: AN ENVIRONMENT FOR INDUCTIVE
LEARNING

The main idea in LINUS is to transform the task of
learning relational DHDB descriptions into an attribute-
value learning task. This is achieved by what is called a
DHDB interface, consisting of over 2000 lines of Prolog
code, which allows for incorporating attribute-value
learners into the logic programming environment [16]. At
present, LINUS incorporates three attribute-value learn-
ing programs: ASSISTANT [3], NEWGEM [22] and CN2
[4]. It is easy to incorporate other attribute-value learn-
ers, from which we can choose the ones best suited to the
problem at hand.

The interface transforms the training examples from the
DHDB form into the form of attribute-value tuples. The
most important feature of this interface is that, by taking
into account the types of the arguments of the target pred-

| l

positive ||generation | negative
facts

facts of negative
P — .
applic)fxon of utility predicates and functions,

r:tility predicate1 l
and functions

facts

training
examples
NEWGEM ASSISTANT CN2
/s N
decision if-then
[ VL1 rulesJ tree l rules J

t\mnscription int(%ule forn/
AN

if-then
rules

post—pnlc sing,
tra.nsformationlto DHDB form

DHDB clauses

Fig. 1. An overview of LINUS.

icate, applications of background knowledge predicates

are considered as attributes for attribute-value learning.

Existing attribute-value algorithms can then be used to
induce if-then rules, which are in turn transformed into

the form of DHDB clauses by the DHDB interface. An

overview of LINUS is given in Fig. 1.

A. Training Examples and Background Knowledge

The training examples in LINUS are given as a set of
ground facts about the target predicate. Positive examples
are always provided explicitly, while negative examples
may be either given explicitly or generated automatically
by the DHDB interface. The negative examples may be
generated under the closed world assumption or in a num-
ber of other ways [12], [16]. The background knowledge,
a set of deductive database clauses, consists of utility
functions and utility predicates.

Utility functions are annotated predicates: mode dec-
larations specify the inpur and output arguments, similar
to mode declarations in GOLEM [26] and FOIL2 [33].
When applied to ground input argumeénts from the training
examples, utility functions compute the unique ground
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values of their output arguments. Utility predicates have
only input arguments and can be regarded as Boolean util-
ity functions having values true or false only.

The predicate argument types specified in the back-
ground predicate definitions reduce the number of attri-
butes generated. Similar reduction can be achieved by ex-
ploiting the fact that some utility predicates are
symmetric. For example, a binary predicate g;(X, Y) is
symmetric in {X, Y} if X and Y are of the same type, and
q;i(X, Y) = g;(Y, X) for every value of X and Y. The
equality predicate (X = Y) is symmetric as X = Y if and
only if ¥ = X. This predicate is predefined in LINUS to
work on arguments of the same type, and can be specified
as background knowledge predicate for any learning
problem.

B. Hypothesis Language

In the current implementation of LINUS, the selected
hypothesis language £ is restricted to deductive hierar-
chical database (DHDB) clauses. In DHDB, variables are
typed and recursive predicate definitions are not allowed.
In LINUS, all variables that appear in the body of an in-
duced clause have to appear in the head as well, i.e., only
constrained clauses are induced.

More specifically, the body of an induced clause in
LINUS is a conjunction of literals, each having one of the
following four forms:

1) an instantiation of a variable, e.g., Income = high;,

2) an equality of a pair of variables, e.g., Income =
Expenses;

3) an atom with a utility predicate symbol and input
arguments chosen among the arguments of the tar-
get predicate, e.g., greater(Income, Expenses); and

4) an atom with a utility function symbol, having as
input arguments some of the target predicate argu-
ments and output arguments instantiated to con-
stants, e.g., net(Income, Expenses, NetIncome),
NetIncome = high.

In the above, Income and Expenses are variables from
the head of the clause, i.e., arguments of the target pred-
icate and high is a constant of the appropriate type. Lit-
erals of form (2) and (3) can be either positive or nega-
tive. Literals under items (1) and (4) may also have the
form Income > amount and/or Expenses < amount,
where amount is a real valued constant.

The attributes given to propositional learners are (1) the
arguments of the target predicate, (2)-(3) binary valued
attributes resulting from applications of utility predicates
and (4) output arguments of utility functions. Attributes
under (1) and (4) may be either discrete or real valued.
To guide induction, LINUS can use metalevel knowledge
specified by the user, which can exclude any of the above
four cases, thus reducing the search space. For example,
if only case (1) is retained, the hypothesis language is
restricted to an attribute-value language.

C. The LINUS Algorithm

At the outermost level, the LINUS learning algorithm
works as follows:

1) establish the training set of positive and negative
facts;

2) using background knowledge, transform facts from
the DHDB form into attribute-value tuples;

3) induce an attribute-value concept description by an
attribute-value learning program,

4) transform the induced attribute-value concept de-
scription into the form of DHDB clauses;

5) postprocessing of DHDB clauses.

Let us illustrate the work of LINUS on the simple exam-
ple given in Table II. The task is to define the target re-
lation daughter(Daughter, Parent) in terms of the back-
ground knowledge relations (utility predicates) female,
male and parent. All attributes are of type person with
values {ann, eve, pat, sue, tom}. The built-in symmetric
predicate equality (=), which works on arguments of the
same type, may also be used in the induced clauses. In
the following, we describe in detail the individual steps
of the algorithm working on the daughter example.

1. First, the sets of positive and negative facts are es-
tablished. In our domain, given are two positive examples
(labeled D) and two negative examples (labeled ©):

% daughter(Daughter, Parent). l
daughter(sue, eve). @
daughter(ann, pat). ®
daughter(tom, ann). ©
daughter(eve, ann). ©

2. The facts are then transformed into attribute-value
tuples. The algorithm first determines the possible appli-
cations of the background predicates on the arguments of
the target relation, taking into account argument types.
Each such application is considered as an attribute. Con-
sidering the above mentioned background knowledge
predicates, the set of attributes determining the form of
the tuples is the following:

<D = P, f(D), f(P), m(D), m(P),
pD, D), p(D, P), p(P, D), p(P, P)>

where D, P, f, m and p stand for Daughter, Parent, fe-
male, male and parent, respectively.

The tuples, i.e., the values of the attributes, are gen-
erated by calling the corresponding predicates with argu-
ment values from the ground facts of predicate daughter.
In this case, the attributes can take values true or false.
For the given examples, the following tuples are gener-
ated. For instance, for the first example daughter(sue,
eve), the value of attribute D = P is false (since sue +
eve), the value of attribute f(D) is true (sue is female),
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TABLE 111
ACCURACIES ACHIEVED IN THE KRK ENDGAME EXPERIMENT

System 100 Training Instances 1000 Training Instances
CIGOL 77.2% N/A
DUCE 33.7% 37.7%
FOIL on different sets 92.5% sd 3.6% 99.4% sd 0.1%
FOIL 90.8% sd 1.7% 99.7% sd 0.1%

LINUS using ASSISTANT
LINUS using NEWGEM

98.1% sd 1.1%
88.4% sd 4.0%

99.7% sd 0.1%
99.7% sd 0.1%

LINUS using CN2 92.9% sd 1.3% 99.3% sd 0.3%
etc.

<D =P f(D) f(P) mD) m(P) p(D,D) p(D,P) p(P.D) pP, P)>

<false  true true false false  false false true Jalse> @

< false true  false false true false false true false > @

<false  false true true Jalse false false true false> S

<false  true true false false false Jalse false false> e

These tuples are generalizations (relative to the given
background knowledge) of the individual facts about the
target relation.

3. Next, an attribute-value learning program is used to
induce a set of if-then rules. When ASSISTANT is used,
the induced decision trees are transcribed into if-then
rules. NEWGEM induces the following if-then rule from
the above tuples:

if female(Daughter) = true A parent(Parent, Daughter)
= true then Class = @

4. Finally, the induced if-then rules for Class — @ are
transformed into DHDB clauses. In our example, we get
the following clause:

daughter(Daughter, Parenr)
< female(Daughter), parent(Parent, Daughter).

5. The DHDB clauses may be further postprocessed
and made more compact by eliminating irrelevant literals.
In exact non-noisy domains, a literal in a clause is irrel-
evant if it can be removed from the clause body without
causing the clause to cover new negative training exam-
ples. Postprocessing in noisy domains is slightly different
and is described in Section V-A.

In summary, the learning problem is transformed from
a relational to an attribute-value form and solved by an
attribute-value learner. The induced hypothesis is then
transformed back into relational form, which may be fur-
ther postprocessed.

D. Learning Modes in LINUS

LINUS can basically be used in two different modes:
relation learning mode and class learning mode. Each
specifies a different language bias (hypothesis language).
The user can set the language bias to either mode, de-
pending on the learning task at hand.

In relation learning mode, there are two classes, @ and

©, and LINUS induces constrained DHDB clauses of the
form

X, -

where p is the name of the target predicate and literals L,
have any of the forms ( 1)-(4) from Section III-B. In the
experiments described in this paper, LINUS was used to
learn function free clauses; thus, only literals of form (2)
and (3) were actually used.

When the problem at hand has more than two classes,
LINUS can be used in the class learning mode. The
classes can be different from ® and © and are determined
by the values of a selected argument (or a set of argu-
ments) of the target relation. The induced clauses have
the form

.’Xn)HLl,...’Lm_

class(Class) < L,, -+ - , L,,.

where Class is a class name and L; can take any of the
four forms outlined in Section III-B.

IV. EXPERIMENTS WITH NoN-NoIsy DATA

This section discusses the performance of LINUS on
two relation learning tasks taken from the machine learn-
ing literature. More experiments with LINUS are de-
scribed in [16]. The domain descriptions are taken from
[32] and the LINUS results are compared to the results
obtained by FOIL [32]. An early version of FOIL (FOILO)
was used in the experiments.

LINUS was used in the relation learning mode. No lit-
erals of the form (1) from Section II-B, instantiating a
variable to a constant, were allowed in the induced pred-
icate definitions, in order to facilitate the comparison with
FOIL. The arguments of the background predicates used
in FOIL were not typed and the same predicates could be
used for different types of arguments. In LINUS, each
such predicate was replaced by several predicates, one for
each combination of predicate argument types (see Sec-
tion IV-B).
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In the experiments, ASSISTANT, NEWGEM and CN2
were used within LINUS. The results obtained with AS-
SISTANT, NEWGEM and CN2 on each of the domains
were typically slightly different; they were all comparable
to the results obtained by FOIL. In the chess endgame
domain we compared the classification accuracy of LINUS
(using ASSISTANT, NEWGEM and CN2) and FOIL, as
well as DUCE and CIGOL [27].

A. Learning Family Relationships

The family relationships learning task is described in
Quinlan [32]. Given are two stylized families of twelve
members each, as shown in Fig. 2.

We used LINUS to learn the relation mother(X, Y) from
examples of this relation and the background relations
Jather(X, Y), wife(X, Y), son(X, Y) and daughter(X, Y).
All predicate arguments are of type person. Negative ex-
amples were generated under the closed world assump-
tion, both for LINUS and FOIL. To illustrate the post-
processing feature of LINUS, we also present the
intermediate Prolog rules induced by LINUS using AS-
SISTANT:

mother(A, B) < daughter(B, A), not father(A, B).
mother(A, B) < not daughter(B, A), son(B, A),
not father(A, B).

The second clause contains the irrelevant literal not
daughter(B, A) which was removed by postprocessing.
The resulting definition is equal to the definitions induced
by LINUS using NEWGEM and LINUS using CN2,
which contained no irrelevant literals. The induced de-
scription of the relation mother(A, B) can be paraphrased
as follows: ‘‘A is the mother of B if B is a child of A4 and
A is not the father of B.”’

FOIL, on the other hand, induced the following defi-
nition

mother(A, B) < daughter(B, A), not father(A, C).
mother(A, B) < son(B, A), not father(A, C).

which can be summarized as: ‘‘4 is the mother of B if B
is a child of 4 and 4 is not the father of anybody (C).”’
The definition contains a new variable (C), which stands
for any person. While not necessary in this case, new
variables are necessary when learning definitions of rela-
tions such as grandmother(X, Y) in terms of the relations
mother(X, Y) and father(X, Y). Thus, the hypothesis lan-
guage of FOIL is more expressive than the one of LINUS,
which does not allow for the introduction of new vari-
ables.

B. Learning lllegal Positions in a Chess Endgame

In the chess endgame domain White King and Rook
versus Black King, described in [27] and [32], the target
relation illegal(WKf, WKr, WRf, WRr, BKf, BKr) states
whether the position where the White King is at (WKF,

Christopher=Penelope Andrew=Christine

Il 1
1 r 1

Victoria=James Jennifer=Charles

r
Margaret=Arthur

Colin

Roberto=Maria Pierro=Francesca

L Il
T

1
Lucia=Marco

Charlotte

T

Gina=Emilio Angela=Tomaso

Alfonso
Fig. 2. Two family trees, where = means *'married to.”’

Sophia

[ b c d ° f g h
Fig. 3. An example illegal white-to-move position.

WKr), the White Rook at (WRf, WRr) and the Black King
at (BKf, BKr) is an illegal White-to-move position. Fig.
3 depicts the example illegal position illegal(g, 6, c, 7,
c, 8).

In FOIL, the background knowledge for this task is
represented by two relations, adjacent(X, Y) and
less_than(X, Y), indicating that rank/file X is adjacent to
rank/file Y and rank/file X is less than rank/file Y, respec-
tively. The arguments of these background predicates are
not typed and the same predicates are used for both types
of arguments. In LINUS, each of these predicates is re-
placed by two predicates, one for each type of arguments.
Thus, LINUS uses the following relations: adja-
cent_file(X, Y) and less_ file(X, Y) with arguments of type
file (with values a to h), adjacent_rank(X, Y) and
less_rank(X, Y) with arguments of type rank (with values
1 to 8), and equality X = Y, used for both types of argu-
ments.

The experiments with LINUS and FOIL were per-
formed on the same training and testing sets as used in
[27]. There were five small sets of 100 examples each and
five large sets of 1000 examples each. Each of the sets
was used as a training set for FOIL and LINUS (using
ASSISTANT, NEWGEM and CN2). The induced sets of
clauses were then tested as described in [27]: the clauses
obtained from a small set were tested on the 5000 exam-



DZEROSKI AND LAVRAC: LEARNING IN DEDUCTIVE DATABASES

ples from the large sets and the clauses obtained from
each large set were tested on the remaining 4500 exam-
ples.

The classification procedures used in LINUS were the
classification procedures of the corresponding attribute-
value learners. For the rules obtained by ASSISTANT (by
transcribing the decision trees into rules) and NEWGEM,
the classification procedure was as follows: if an example
is covered by the Prolog clauses of the definition (rules
for class positive), it is classified as positive, otherwise
as negative. In CN2, where unordered rules [4] were in-
duced, the classification procedure was different. Defini-
tions are built both for the positive and the negative class.
All rules that cover an example (both positive and nega-
tive class rules), are taken into account when classifying
the example [4].

Table III gives the accuracies achieved in the chess
endgame experiment. The classification accuracy is given
by the percentage of correctly classified testing instances
and by the standard deviation (sd), averaged over five ex-
periments. The first two rows are taken from [27], the
third is from [32] and the last four rows present the results
of our experiments. Note that the results reported in [32]
were not obtained on the same training and testing sets.

In brief, on the small training sets LINUS using AS-
SISTANT (with postprocessing), outperformed FOIL.
According to the ¢-test for dependent samples, this result
is significant at the 99.5% level. LINUS using CN2 also
achieved slightly better accuracy than FOIL. Although
LINUS using NEWGEM performed slightly worse than
FOIL, this result is not significant (even at the 80% level).
The clauses obtained with LINUS are as short and under-
standable (transparent) as FOIL’s. On the large training
sets both systems performed equally well. Both LINUS
and FOIL performed much better than DUCE and CIGOL
[27].

For illustration, the clauses induced by LINUS using
ASSISTANT (with postprocessing) from one of the sets
of 100 examples are given below:

illegal(A, B, C,E,F) « C = E.

illegal(A, B, C, E,F) < D = F.

illegal(A, B, C, E, F) < adjacent_file(A, E), B = F.

illegal(A, B, C, E, F) < adjacent_file(A, E),
adjacent_rank(B, F).

illegal(A, B, C, E, F) <« A = E, adjacent_rank(B, F).

illegal(A, B, C,E,F) <~ A=E,B=F.

These clauses may be paraphrased as: ‘‘a position is
illegal if the Black King is on the same rank or file as (i.e.,
is attacked by) the Rook, or the White King and the Black
King are next to each other, or the White King and the
Black King are on the same square.”’ Although these
clauses are neither consistent nor complete, they correctly
classify 98.5% of the unseen cases.
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V. EXPERIMENTS WITH Noisy DATA

In real life domains, learning systems often have to deal
with imperfect data. When learning definitions of rela-
tions, the following kinds of data imperfection are usually
met:

® noise in the training examples (caused by erroneous
argument values and/or erroneous classification of
facts as true or false), as well as noise in the back-
ground knowledge;

¢ insufficiently covered example space, i.e., too sparse
training examples from which it is difficult to reli-
ably detect correlations;

* inexactness, i.e., inappropriate (some predicates may
not be relevant) or insufficient (important predicates
may be missing) background knowledge; and

* missing argument values in the training examples.

Learning systems usually have a single mechanism for
dealing with the first three kinds of imperfect data, i.e.,
with noisy, incomplete and inexact data. Such mecha-
nisms, often called noise handling mechanisms, are typ-
ically designed to prevent the induced hypothesis from
overfitting the data set, i.e., to avoid overly specific con-
cept descriptions. Missing values are usually handled by
a separate mechanism.

Until recently, relation learning systems did not ad-
dress the issue of data imperfection. However, both FOIL
and LINUS include sophisticated noise handling mecha-
nisms. In this section, we first describe the noise handling
mechanisms used in LINUS and FOIL. We then present
the experimental setup and the results of our investigation
of the effects of noise in inductive logic programming.
The domain under study was the domain of learning po-
sition illegality in the KRK chess endgame (see Section
IV-B) from training examples with artificially added
noise.

The ultimate performance test for ILP algorithms
should be their application to practical domains involving
imperfect data. However, it is difficult to measure the level
of noise (imperfection) in such domains. Furthermore,
while several standard data sets obtained from practical
settings are now available for attribute-value systems [4],
not many datasets of this kind are available for the rela-
tional (ILP) case. The problem of learning illegal posi-
tions in the KRK chess endgame, on the other hand, has
been used as a testbed for most empirical ILP systems.
Having chosen to introduce a controlled amount of noise
in the training examples artificially, it was possible to as-
sess the dependence of learning performance on the noise
level more accurately.

A. Noise Handling in LINUS and FOIL

As LINUS incorporates different attribute-value learn-
ers, the noise handling mechanisms used in it are the ones
of the underlying attribute-value learners. This allows for
a wide variety of noise handling mechanisms to be used
within LINUS. Furthermore, the latest advances in noise
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handling, such as the use of Bayesian probability esti-
mates in rule induction {4], [9], can be easily incorporated
into LINUS. In the following, we first outline the noise
handling mechanisms of ASSISTANT, NEWGEM
(AQI1S5, in fact) and CN2, then describe the encoding
length restriction used to handle noise in FOIL and finally
touch upon related work on noise handling in ILP.

The noise handling mechanisms in LINUS using AS-
SISTANT are tree pruning [3] and postprocessing of rules
derived from decision trees [31]. There are two types of
tree pruning:

¢ prepruning, performed during the construction of a
decision tree, which decides whether to stop or to
continue tree construction at a certain node; and

® postpruning, used after the decision tree is con-
structed, which estimates the classification errors in
the nodes and then decides whether to prune certain
subtrees or not.

The postprocessing of if-then rules derived from decision
trees is a form of reduced error pruning [31]. This mech-
anism checks whether a set of clauses (rules) can be made
more compact by eliminating irrelevant literals. A literal
in a clause is irrelevant if it can be removed from the body
of the clause without decreasing its expected classification
accuracy, which is estimated from the training set.

The effects of prepruning and postpruning on the clas-
sification accuracy of decision trees are very similar [3];
thus, only prepruning was used in our experiments. The
combination of prepruning and postprocessing was used
in the experiments on the same domain described in [14],
and was also applied to a medical domain [17].

The NEWGEM rule induction system [22] is a member
of the AQ family of learning programs. It was developed
further into AQ15 [20], which has a noise handling mech-
anism based on flexible matching and rule truncation.
However, NEWGEM itself has no noise handling mech-
anisms.

The original version of CN2 [5] induces an ordered list
of rules. It uses an entropy based search heuristic, which
favors specific, apparently very accurate rules. To prevent
overfitting, it uses a statistical significance test which dis-
tinguishes between true regularities and regularities that
are likely to have occurred by chance.

A recent improved variant of CN2 [4], can induce both
ordered and unordered rules. When unordered rules are
induced (which have proved to perform better), the clas-
sification procedure takes into account the decisions of all
rules that cover the example being classified. This variant
of CN2 is incorporated in LINUS. To avoid overly spe-
cific rules, CN2 uses the Laplace estimate [4] to assess
the accuracy of a rule from its coverage on the training
set. Using the Laplace estimate as a search heuristic, CN2
favors more general, and thus more reliable rules, which
may still cover some noisy examples.

In FOIL, the noise handling mechanism is the encoding
length restriction [32]. This heuristic restricts the total
length of an induced clause to the number of bits needed

to explicitly enumerate the positive training examples it
covers. If a clause covers p positive examples out of the
n examples in the training set, the length of the clause
should not exceed L(n, p) = log, (n) + log, ((;)). If there
are no bits available for adding another literal, but the
clause is still at least 85% accurate, it is retained in the
induced set of clauses; otherwise, it is discarded.

The encoding length restriction has two deficiencies. In
nonnoisy exact domains, it sometimes prevents FOIL
from building complete descriptions [16]. In noisy do-
mains, it allows very specific clauses, which is not desir-
able. Suppose we have a training set with one positive and
1023 negative examples. Knowing that the domain is
noisy, most systems that can handle noise would regard
the single positive example as erroneous and would not
even attempt to build a clause to cover it. Nevertheless,
FOIL will have 20 (20 = log, (1024) + log, (('%*))) bits
available to build a clause covering the single positive ex-
ample.

The ILP system GOLEM [26] also shows awareness of
the need to handle imperfect data. It allows a generated
clause to cover a predetermined number of negative ex-
amples. This is a rudimentary way of handling noise.
Suppose clauses are allowed to cover at most two negative
examples. If a clause covers 1000 positive and two neg-
ative examples, it probably reflects a genuine correlation
in the training examples. However, if it covers two pos-
itive and two negative examples, the correlation it repre-
sents is very likely due to chance. Thus, GOLEM should
take into account at least both the number of positive and
negative examples covered by the clause and allow, for
example, clauses to be built which are at least 85% ac-
curate. New successful mechanisms for handling noise in
GOLEM were lately proposed in [28].

B. Experimental Setup

To examine the effects of noise on the induced rela-
tional concept descriptions, various amounts of noise were
added to the examples from the chess endgame domain in
Section IV-B. The small sets of 100 examples were used
as training sets, while the large sets were merged into one
testing set of 5000 examples.

In the following, x % of noise in argument A means that
in x % of the examples, the values of argument A were
replaced by random values [30]. For example, 5% of noise
in argument A means that its value was changed to a ran-
dom value in 5 out of 100 examples, independently of
noise in other arguments. The class variable was treated
as an additional argument [5] when introducing noise. The
percentage of introduced noise varied from 5% to 80% as
follows: 5%, 10%, 15%, 20%, 30%, 50%, and 80% . No
noise was introduced into the background knowledge.

Three series of experiments were conducted, introduc-
ing noise in the training examples in three different ways.
Noise was first added in the values of the arguments of
the target relation, then in the values of the class variable,
and finally, in both the argument and the class variable
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values. Each experiment was performed using one of the
three ways of introducing noise and a chosen noise level.
Noise was first introduced in the training sets. A set of
clauses was then induced from each of the training sets
using LINUS and FOIL. Finally, the classification accu-
racy of the sets of clauses was tested on the testing set,
and the average of the five results was computed.

In the experiments, ASSISTANT, NEWGEM and CN2
were used as attribute-value learning algorithms in
LINUS. Within LINUS, ASSISTANT was run with its
default parameters, which set the noise handling mecha-
nism to tree prepruning only. The NEWGEM parameters
were set to minimize the number of literals in a clause and
to maximize the number of examples uniquely covered by
a clause. CN2 was used to induce unordered rules with
the Laplace estimate as a search heuristic and no signifi-
cance test used. FOILO, an early version of FOIL, was
used in the experiments.

C. Experimental Results

Fig. 4(a) gives the results of the experiments with noise
introduced only in the arguments, Fig. 4(b) with noise in
the class variable only, and Fig. 4(c) with noise intro-
duced in the arguments and the class variable at the same
time.

Noise affected adversely the classification accuracy of
both systems. The classification accuracy decreased as the
percentage of noise increased: the most when it was in-
troduced in both the arguments and the class variable, and
the least when introduced in the class variable only.
LINUS using ASSISTANT and CN2 achieved better clas-
sification accuracy than FOIL. As NEWGEM used no
mechanism for handling imperfect data, LINUS using
NEWGEM performed worse than FOIL.

Analysis of the clauses induced by LINUS using AS-
SISTANT and FOIL shows that with the increase of the
percentage of noise in the training examples, the follow-
ing can be observed:

® The average clause length increases in FOIL and de-
creases in LINUS using ASSISTANT.

* The average number of examples covered by a clause
slowly decreases in FOIL and increases in LINUS
using ASSISTANT.

® The number of positive examples not covered by the
induced predicate definitions rises for both systems,
faster for LINUS using ASSISTANT than for FOIL.

All these facts indicate that FOIL slightly overfits the
training examples, which results in a lower performance
on unseen cases. This is mainly due to the deficiency of
the encoding length restriction discussed in Section V-A.

Two further remarks about the results have to be made.
First, there is an increase in the classification accuracy
when the noise level increases from 15% to 20%. This is
due to the nonincremental manner of introducing noise in
the training examples. This phenomenon disappeared in
the experiments where noise was added incrementally [7].
Second, in the training data, 1/3 of examples are positive
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Fig. 4. Results of experiments with noise in the training examples only.

(illegal positions) and 2 /3 are negative (legal positions).
A learning system with a good noise handling mechanism
should produce rules at least as accurate as the classifi-
cation rule that classifies each example into the majority
class (in our case class legal).

As shown in Fig. 4, the classification accuracy of
LINUS using NEWGEM drops under the 66% majority
class accuracy already at the 30% noise level. This is ac-
ceptable when noise is introduced in the class variable
(Fig. 4(b)) and both in the arguments and the class vari-
able (Fig. 4(c)), since the noise changes the class distri-
bution, but not in the case when only arguments are cor-
rupted (Fig. 4(a)). This indicates that the training
examples are being overfitted. To explain this phenome-
non, we adapt an argument from [4]. At 100% noise in
the arguments, the arguments and the class are completely
independent. The maximally overfitted rules (one per ex-
ample) would then be correct with probability 1/3 if the
class is illegal and with probability 2 /3 if the class is
legal (the default probabilities of positive and negative
examples). The probability of a correct answer would then
be2/3 x2/3+1/3 x1/3=5/9, or 55%, which is
lower than the 66% default accuracy. The overfitting ob-
served in our experiments reflects behavior between these
two extremes.

The experiments with FOIL and LINUS using ASSIS-
TANT and NEWGEM were repeated with noisy testing
sets. Noise was introduced in the testing set in exactly the
same way as in the training sets (same amounts of noise
in the arguments, the class variable or both). The classi-
fication accuracy of both LINUS and FOIL dropped sig-
nificantly, but their relative performance remained un-
changed, i.e., LINUS using ASSISTANT achieved better,
and LINUS using NEWGEM, achieved worse classifica-
tion accuracy than FOIL.

VI. CoNcCLUSION

The paper presented LINUS, an inductive logic pro-
gramming system that can be used to induce intentional
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definitions of relations, i.e., virtual relations, in a deduc-
tive database setting. It is based on the idea that a relation
learning problem can be transformed into an attribute-
value learning problem. In the learning process, it uses
example tuples that are known to belong (or not to belong)
to the target relation and the definitions of other relations
from the given deductive database.

This transformation approach only works for a limited
class of relation learning problems. The virtual relations
that can be induced by LINUS are a subset of those ex-
pressible in relational algebra. More specifically, the hy-
pothesis language in LINUS is the language of deductive
hierarchical database clauses (nonrecursive by definition)
that do not introduce new variables. We have recently
shown that the transformation approach can be extended
to induce determinate deductive database clauses [13],
which introduce new variables with uniquely determined
values, and may be recursive.

LINUS can use nonground, possibly recursive, back-
ground knowledge and can thus be applied in a deductive
database setting. Other empirical ILP systems, such as
FOIL and GOLEM, can only use ground background
knowledge in the form of extensional definitions of rela-
tions. Consequently, they can only be used in a relational
database setting.

Using attribute~value learners in a logic programming
environment, LINUS has the ability to learn intentional
relations from noisy data. This ability is of paramount im-
portance for knowledge discovery in real life databases
containing imperfect data. For this reason, LINUS was
carefully evaluated and compared to FOIL on the problem
of learning relations from noisy examples. Using AS-
SISTANT and CN2, LINUS performed better than FOIL .

In the expert system community, significant effort has
been devoted to the development and use of toolkits from
which to select appropriate tools according to the nature
of the domain and type of knowledge under investigation
[11]. This philosophy was also adopted in the Machine
Learning Toolbox (MLT) Project [21], aimed at devel-
oping a workbench of machine learning tools, from which
one or more can be selected in order to find the best so-
lution to a specific problem. LINUS can be considered
such a workbench, as it incorporates several attribute—
value learners.

To conclude, LINUS is able to learn virtual relations
in a deductive database context, while most of the work
on knowledge discovery in databases takes place in the
context of a single extensional relation. It is a workbench
of attribute-value learners integrated in an ILP frame-
work. Having the ability to handle noisy data, it is a good
starting point for knowledge discovery in deductive da-
tabases.
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