ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/220245344
Multiple Predicate Learning in Two Inductive Logic Programming Settings

Article - March 1996

DOI: 10.1093/jigpal/4.2.227 - Source: DBLP

CITATIONS READS
32 41
2 authors:
Luc De Raedt Nada Lavrac
KU Leuven JoZef Stefan Institute
615 PUBLICATIONS 14,241 CITATIONS 409 PUBLICATIONS 10,230 CITATIONS
SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

ot Data Science applications View project

Project Pattern Set Mining View project

All content following this page was uploaded by Nada Lavrac on 27 November 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/220245344_Multiple_Predicate_Learning_in_Two_Inductive_Logic_Programming_Settings?enrichId=rgreq-585b9f569ce2aeec86ca5c18f1303d15-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NTM0NDtBUzoxNjgwNzI5Nzk2ODk0NzVAMTQxNzA4MzEyOTk5NA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220245344_Multiple_Predicate_Learning_in_Two_Inductive_Logic_Programming_Settings?enrichId=rgreq-585b9f569ce2aeec86ca5c18f1303d15-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NTM0NDtBUzoxNjgwNzI5Nzk2ODk0NzVAMTQxNzA4MzEyOTk5NA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Data-Science-applications?enrichId=rgreq-585b9f569ce2aeec86ca5c18f1303d15-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NTM0NDtBUzoxNjgwNzI5Nzk2ODk0NzVAMTQxNzA4MzEyOTk5NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Pattern-Set-Mining?enrichId=rgreq-585b9f569ce2aeec86ca5c18f1303d15-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NTM0NDtBUzoxNjgwNzI5Nzk2ODk0NzVAMTQxNzA4MzEyOTk5NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-585b9f569ce2aeec86ca5c18f1303d15-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NTM0NDtBUzoxNjgwNzI5Nzk2ODk0NzVAMTQxNzA4MzEyOTk5NA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luc-De-Raedt?enrichId=rgreq-585b9f569ce2aeec86ca5c18f1303d15-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NTM0NDtBUzoxNjgwNzI5Nzk2ODk0NzVAMTQxNzA4MzEyOTk5NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luc-De-Raedt?enrichId=rgreq-585b9f569ce2aeec86ca5c18f1303d15-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NTM0NDtBUzoxNjgwNzI5Nzk2ODk0NzVAMTQxNzA4MzEyOTk5NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/KU_Leuven?enrichId=rgreq-585b9f569ce2aeec86ca5c18f1303d15-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NTM0NDtBUzoxNjgwNzI5Nzk2ODk0NzVAMTQxNzA4MzEyOTk5NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luc-De-Raedt?enrichId=rgreq-585b9f569ce2aeec86ca5c18f1303d15-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NTM0NDtBUzoxNjgwNzI5Nzk2ODk0NzVAMTQxNzA4MzEyOTk5NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nada-Lavrac?enrichId=rgreq-585b9f569ce2aeec86ca5c18f1303d15-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NTM0NDtBUzoxNjgwNzI5Nzk2ODk0NzVAMTQxNzA4MzEyOTk5NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nada-Lavrac?enrichId=rgreq-585b9f569ce2aeec86ca5c18f1303d15-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NTM0NDtBUzoxNjgwNzI5Nzk2ODk0NzVAMTQxNzA4MzEyOTk5NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Joef_Stefan_Institute?enrichId=rgreq-585b9f569ce2aeec86ca5c18f1303d15-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NTM0NDtBUzoxNjgwNzI5Nzk2ODk0NzVAMTQxNzA4MzEyOTk5NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nada-Lavrac?enrichId=rgreq-585b9f569ce2aeec86ca5c18f1303d15-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NTM0NDtBUzoxNjgwNzI5Nzk2ODk0NzVAMTQxNzA4MzEyOTk5NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nada-Lavrac?enrichId=rgreq-585b9f569ce2aeec86ca5c18f1303d15-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NTM0NDtBUzoxNjgwNzI5Nzk2ODk0NzVAMTQxNzA4MzEyOTk5NA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Multiple predicate learning in two Inductive
Logic Programming settings

Luc De Raedt! and Nada Lavrac?

(1) Department of Computer Science,
Katholieke Universiteit Leuven,
Celestijnenlaan 200A, B-3001 Heverlee, Belgium

(2) Jozef Stefan Institute, Jamova 39,
61111 Ljubljana, Slovenia

November 8, 1995

Abstract

Inductive logic programming (ILP) is a research area which has its
roots in inductive machine learning and computational logic. The pa-
per gives an introduction to this area based on a distinction between two
different semantics used in inductive logic programming, and illustrates
their application in knowledge discovery and programming. Whereas most
research in inductive logic programming has focussed on learning single
predicates from given datasets using the normal ILP semantics (e.g. the
well known ILP systems GOLEM and FOIL), the paper investigates also
the non-monotonic ILP semantics and the learning problems involving
multiple predicates. The non-monotonic ILP setting avoids the order
dependency problem of the normal setting when learning multiple predi-
cates, extends the representation of the induced hypotheses to full clausal
logic, and can be applied to different types of application.

1 Introduction

Inductive logic programming (ILP) [29, 8, 33, 23] can be considered as the inter-
section of inductive machine learning and computational logic. From inductive
machine learning, ILP inherits its goal: to develop tools and techniques to induce
hypotheses from observations (examples) or to synthesize new knowledge from
experience. By using computational logic as the representational mechanism
for hypotheses and observations, ILP can overcome the two main limitations of
classical inductive learning techniques (such as the TDIDT-family [39]):

e the use of a limited knowledge representation formalism (essentially propo-
sitional logic), and

e the difficulties to use substantial domain knowledge in the learning process.

The first limitation is important because many problems of various domains of
expertise can only be expressed in a first-order logic and not in a propositional
logic; this implies that there are inductive learning tasks for which no propo-
sitional learner (and none of the classical empirical learners) can be effective
(see e.g. [31] and consider program synthesis). The difficulty to employ domain
knowledge is also crucial because one of the well-established findings of arti-
ficial intelligence (and machine learning) is that the use of domain knowledge
is essential to achieve intelligent behaviour. First results in applying ILP (cf.
e.g. [35, 21, 16]) show that the use of logic as a representation mechanism for
inductive systems is not only justified from a theoretical point of view, but also
from a practical one.

From computational logic, ILP inherits not only its representational for-
malism, but also its theoretical orientation as well as some well-established
techniques. Indeed, in contrast to most other practical approaches to inductive
learning, ILP is also interested in properties of inference rules, in convergence
(e.g. soundness and completeness) of algorithms and in the computational
complexity of procedures. Furthermore, because of the common representa-
tion framework, ILP is relevant to computational logic, deductive databases,
knowledge base updating, algorithmic debugging, abduction, constraint logic
programming, program synthesis and program analysis, and vice versa.

In this paper, we investigate the different faces of ILP. We first discuss two
different semantics for ILP: a normal semantics for ILP introduced by Plotkin
[38] and followed by Muggleton [28] and incorporated in many well-known sys-
tems [29, 34, 40, 8, 9, 24], and a non-monotonic semantics derived from Helft’s
work [19] and used in [33, 12]. It is shown that the normal semantics leads to
some problems when learning multiple predicates, and that these problems can
be avoided using the non-monotonic semantics. The latter also allows for the
induction of full first-order clausal theories. The two semantics are relevant to
all ILP techniques. However, the paper is focussed on the so-called refinement
(general to specific) techniques used in empirical ILP systems. Other faces of
ILP, referring to different dimensions as perceived by users, are also discussed.
We sketch some applications of ILP to knowledge discovery in databases [37]
and programming and discuss their relation to the two semantics.

The paper is organized as follows. In Section 2 we specify the problem
of ILP and study the two different ILP semantics. Section 3 surveys some
ILP techniques and discusses different dimensions of ILP systems. Section 4
investigates refinement approaches to ILP, mostly in the normal ILP setting. In
Section 5, we study the problem of multiple predicate learning in the normal ILP
setting, whereas Section 6 outlines an approach to multiple predicate learning

in the non-monotonic ILP setting. Finally, in Section 7, we conclude and touch
upon related work.

2 Problem specification

Roughly speaking, ILP starts from an initial background theory B and some
evidence F (examples). The aim is then to induce a hypothesis H that together
with B ezplains some properties of F. In most cases the hypothesis H has to
satisfy certain restrictions, which we shall refer to as the bias. Bias includes prior
expectations and assumptions, and can therefore be considered as the logically
unjustified part of the background knowledge. Bias is needed to reduce the
number of candidate hypotheses. It consists of the language bias L, determining
the hypothesis space, and the search bias which restricts the search of the space
of the possible hypotheses. On the other hand, an inappriopriate bias can
prevent the learner from finding the intended hypotheses.

In this section, we recall some logic programming concepts and use them to
formally define the notions of hypothesis, theory, and evidence. Furthermore,
we discuss two alternative semantics for ILP [33]: the normal ILP semantics
[28], and the non-monotonic semantics [19, 12]. The labels ‘normal’ and ‘non-
monotonic’ are mainly due to historical reasons. ‘Normal’ reflects the fact that
this setting is the usual setting employed in ILP; the label ‘non-monotonic’ was
introduced by Nicolas Helft because his setting employs a kind of closed world
assumption, hence the relation to non-monotonic reasoning.

2.1 Some logic programming concepts

Definition 1 A clause is a formula of the form Aq,..., A, «— By, ..., B, where
the A; and B; are positive literals (atomic formulae).

The above clause can be read as A; or ... or A4,, if B; and ... and B,.
All variables in clauses are universally quantified, although this is not explicitly
written. Throughout the paper, we assume that all clauses are range restricted,
which means that all variables occurring in the head of a clause also occur in its
body. Extending the usual convention for definite clauses (where m = 1), we call
the disjunction of atoms A; the head of clause ¢ and denote it by head(c). The
conjunction of atoms Bj, called the body of clause ¢, is denoted by body(c). A
fact A — (or simply A) is a definite clause with an empty body (m =1, n = 0).
A set of clauses T is called a theory, a set of definite clauses is referred to as a
definite theory.

A definite theory T has a unique least Herbrand model M(T) (cf. [25])
which can, for the purposes of this paper, be defined as follows:

Definition 2 The least Herbrand model M(T) of a definite theory T is e set of
ground facts

M(T)={A| A € Herbrand base of T and T |= A}.

where the Herbrand base of T is the set of all ground atoms which can be formed
using the predicate, functor and constant symbols occuring in T.

Thus, roughly speaking, the least Herbrand model is the set of all facts that
are logically entailed by the theory. From a practical point of view, logical
entailment of fact A by theory T can be verified using a PROLOG interpreter
with knowledge base T and query ? — A.

A clause ¢ = Ay,..., A — Bi, ..., By is true in a model M(T) if and only
if for all substitutions 6 grounding c it holds that {Bi,..., B} C M(T) —
{A41,..., An}dNM(T) # 0. This means that a clause is true in a model whenever
the truth of the body (in the model) implies the truth of the head (in the model).
From a more practical point of view, the truth of a clause ¢ in a model M(T)
can be verified by asserting M(T) (or T) in a PROLOG knowledge base and
running the query ?—body(c), not head(c). If the query fails, the clause c is true
in the model; if the query succeeds, it is false. These definitions are illustrated
in Example 1.

Example 1 Consider the following definite theory T':
T = { flies(X) « bird(X); bird(tweety) «— }
The least Herbrand model of T is M (T) = {flies(tweety); bird(tweety)}.

A full clause in this domain could be, for instance, «— abnormal(X),bird(X),flies(X),
stating that abnormal birds do not fly. This clause is true in the model, as there
are no facts for abnormal in M(T') (the query fails). If however we would add
abnormal(tweety) to the model, the clause would become false in this larger
model (as the corresponding query would succeed).

2.2 Definition of two inductive logic programming settings

An ezample is a ground fact together with its truthvalue in the intended in-
terpretation: positive examples are true ground atoms (i.e. of the form e —
meaning e «— true) and negative examples are false ground atoms (i.e. of the
form «— e meaning false «— e). The sets of positive and negative examples are
denoted as ET and E~, respectively, and E = ET U E~. In ILP, the back-
ground theory B and hypotheses H are represented by sets of clauses. For
simplicity, we mainly focus on definite clauses for representing hypotheses and
theories. Nevertheless, parts of our discussion extend to the more general (nor-
mal) program clauses [25], which are sometimes used in ILP systems [24, 40],
as well as to (general) clauses, as used in [12]. Language bias imposes certain
syntactic restrictions on the form of clauses allowed in hypotheses; for example,
one might consider only constrained clauses [24]; these are clauses for which all

variables occurring in the body also occur in the head. For our purposes, we
consider the language bias L as a set of clauses allowed in hypotheses. Other
restrictions frequently employed include abstract languages [8], determinations
[41], schemata [20], inductive logic programming languages [2, 1], antecedent
description grammars [7] and ij-determination [34].

Inductive logic programming can now be defined as follows:

Given:

e a set of examples

e a background theory B

e a language bias L that defines the clauses allowed in hypotheses

e a notion of ezplanation (a semantics)
Find : a hypothesis H C L which explains the examples F with respect to the
theory B.

Let us now define the normal and non-monotonic settings of ILP, which de-
termine different notions of explanation (semantics). Current research in ILP
mainly employs the normal setting [28]:

Definition 3 The normal setting of ILP resiricts H and B to sets of definite
clauses, and employs the normal semantics: BUH = E* and BUHUE™ [~ 0.

The above requirements are usually called ‘global’ completeness and consis-
tency. They implicitly assume the the notion of intensional coverage defined as
follows.

Definition 4 Given background theory B, hypothesis H and ezample set F, an
ezample e € E is (intensionally) covered by H iff BU H |=e. Hypothesis H is
(globally) complete iff BUH |= E*, i.e. ifV(e +) € Et : BUH = e. Hypothesis
H is (globally) consistent iff BUHUE™ [£ 0, i.e. ifV(—e) € E- : BUH |£e.

Given the restriction to definite theories T for which there exists a unique least
Herbrand model M(T) and to ground atoms as examples, this is equivalent to
requiring that all clauses in F are true in M (B U H), see [33].

Example 2 A4s an illustration, let B = {bird(tweety); bird(oliver)}, E- = 0,
and ET = {flies(tweety)}. A valid hypothesis in the normal setting is

c1 = flies(X) « bird(X)

Clause ¢1 may contribute to a solution because it is consistent, i.e. for any
substitution 6 for which head(c1)0 is false, body(c1)0 is also false. Notice that
c¢1 realizes an inductive leap because B U {c1} entails flies(oliver).

Definition 5 The non-monotonic setting of ILP, restricts B to a set of definite
clauses, H to a set of (general) clauses, E to positive ezamples, and requires that
all clauses ¢ in H are true in the least Herbrand model M (T) where T = BUE?.

To illustrate the non-monotonic ILP setting, reconsider the above example.

Example 3 In the non-monotonic setting, clause c; = flies(X) «— bird(X) is not
a solution because there is a substitution 8§ = {X/oliver} for which body(c1)8 is
true (i.e. C M(T)) and head(c1)0 is false in M(T) (i.e. ¢ M(T)). It is also
complete. However, the clause ¢; = bird(X) « flies(X) is a solution because for
all X for which flies(X) is true, bird(X) is also true. This shows that the non-
monotonic setting does not hypothesize properties not holding on the example
set. Therefore the non-monotonic semantics realizes induction by deduction.
Indeed, the induction principle of the non-monotonic setting states that the
hypothesis H, which is deduced from the set of observed examples F and the
theory B (using a kind of closed-world assumption), holds for all possible sets of
examples (with a Herbrand base disjoint to the original set of examples). This
realizes generalization beyond the observed examples (Herbrand base), which
also results in an inductive leap. As a consequence of the induction by deduction
operation, properties derived in the non-monotonic setting are more certain than
those derived in the normal one?.

2.3 Comparison of the two ILP settings

The differences between the normal and the non-monotonic setting are related
to the closed-world assumption. In most applications of normal ILP [21, 35],
only the set of positive examples is specified and the set of negative examples is
derived from this by applying the closed-world assumption (cwa). In our illus-
tration, this results in E~ = {« flies(oliver)}. Given this modified E~, clause ¢;
cannot contribute to a solution in the normal setting because for § = {X/oliver},
head(c1)0 is false while body(c;)8 is true. If, on the other hand, we ignore the
difference between the background theory and the examples by considering the
problem where B = 0, Et = {flies(tweety), bird(tweety), bird(oliver)}, and E~
= {« flies(oliver)} (cwa), clause ¢, is also a solution in the normal setting. In-
tuitively, this shows that solutions to problems in the normal setting, where the
closed-world assumption is applied, are also valid in the non-monotonic setting
(see [33] for a proof). Remember from the database literature that applying
the closed-world assumption is only justified when the universe defined by the
examples together with the theory is completely described (cf. also Example 4).

!Sometimes, see [33, 19], one also requires completeness and minimality. Completeness
would mean that a maximally general hypothesis H is found; minimality means that the
hypothesis does not contain redundant clauses.

2These characteristics of the non-monotonic setting are clearer from the PAC-formulation
of the non-monotonic setting [13], where each example corresponds to a different minimal
model.

For example, in a medical application, all patients in the database should be
completely specified, which means that all their symptoms and diseases should
be fully described. Notice that this is different from requiring that the complete
universe is described (i.e. all possible patients).

Solutions in the normal setting with the closed-world assumption are also
solutions in the non-monotonic setting. The opposite does not always hold and
this reveals the other main difference between the two settings. In the normal
setting, the induced hypothesis can always be used to replace the examples be-
cause theory and hypothesis entail the observed examples (and possibly other
examples as well). On the other hand, in the non-monotonic setting the hy-
pothesis consists of a set of properties holding for the example set. There are
no requirements nor guarantees concerning prediction. For instance, in the non-
monotonic setting, clause c; is a solution for B = {bird(tweety), bird(oliver)} and
E+ = {flies(tweety)}. Nevertheless, it cannot be used to predict the example in
Et.

The normal and non-monotonic semantics of ILP are further illustrated by
Example 4 in a programming context and Example 5 in the context of knowledge
discovery.

Example 4 (Programming)

Let the training ezamples consist of E+ = {sort([1],[1]);sort([2, 1, 3],[1,2,3])}
end E- = {—sort([2,1],[1]); «sort([3,1,2],[2,1,3])}. Let B contain correct
definitions for the predicates permutation/2, which is true if the second argument
is a permuted list of the first argument, and sorted/1, which is true if its lisi-
argument is sorted in ascending order. Given the normal setting, a possible
solution to the inductive logic programming task could consist of the following
clause c3:

ez = sort(X,Y) « permutation(X,Y),sorted(Y)

In the non-monotonic setting, using ET only, a solution could contain the fol-
lowing clauses:

sorted(Y) — sort(X,Y)
permutation(X,Y) « sort(X,Y)
sorted(X) « sort(X,X)

Whereas the normal setting results in a program for sorting lists, the non-
monotonic setting results in a partial specification for the involved predicates.
Notice that clause c3 does not hold in the non-monotonic setting because the
definitions of permutation and sorted also hold for terms not occurring in F
(which means that the closed-world assumption is not justified, cf. above). On
the other hand, if we generalize the notion of a positive example to a definite
clause and replace the evidence F by a correct definition of the sort predicate

main line | Jdh 4é QO 36 QO 90 Q& 7O QO 9O
side lines | K& 56 16 10
T

Figure 1: An Eleusis layout.

(using for instance the definition of quick-sort), clause ¢s holds. This illustrates
that the non-monotonic setting is applicable to reverse engineering.

Example 5 (Knowledge discovery)

Suppose we are playing the card game Eleusis, in which there are two players,
and the first player decides upon a secret rule that defines legal sequences of
cards. The first player shows the opponent e legal sequence of cards, which
the second player has to complete, in accordance with the rule. For each guess
(i.e., addition of ¢ card to the sequence) by the second player, the first player
says whether or not it results in o legal sequence. Consider the following partial
sequences shown in Figure 1, where the intended rule is “Play alternate face and
numbered cards” (cf. [40, 15]). If a card is a legal successor it is placed to the
right of the last card in the sequence, otherwise it is placed under the last card.
The horizontal main line represents the sequence as developed so far, while the
vertical side lines show incorrect plays. The layout in Figure 1 is adapted from
Quinlan (1990).

In ILP, one could have a predicate can_follow(Cardl,Card2), which is true
when Card2 is a legal successor of Card1®. The background knowledge about
cards would define whether an individual card is face, numbered, red, black, etc.

In the normal ILP setting, we have positive and negative examples for the
can_follow predicate. E.g. the first elements in the sequence would translate to
can_follow(jack-clubs,4-clubs), can_follow(4-clubs,queen-hearts),... as positive ez-
amples, and — can_follow(jack-clubs,king-clubs), « can_follow(4-clubs,5-spades),
«— can_follow(4-clubs,7-spades),... are negative ezamples. From the ezamples and
background knowledge, the following secret rule (a definition of the can_follow
predicate) can be induced:

can_follow(X,Y) « face(X), numbered(Y)
can_follow(X,Y) « face(Y), numbered(X)

In the non-monotonic setting, one could induce (using only the positive ex-
amples, i.e. the main sequence) the following set of clauses:

«— can_follow(X,Y), face(X), face(Y)

3In a more complicated setting, one would need to consider a sequence, not only the last
card in the sequence.

«— can_follow(X,Y), numbered(X), numbered(Y)
«— can_follow(X,X)

face(Y) — can_follow(X,Y), numbered(X)
numbered(Y) « can_follow(X,Y), face(X)

One can see that in the normal setting classification rules are generated, whereas
in the non-monotonic setting properties of legal card sequences are derived.

3 ILP techniques

Whereas Sections 2.2 and 2.3 gave a sketch of the two faces of inductive logic
programming in logical terms, this section sketches the different faces of ILP in
terms of techniques they employ, and consequently, in terms of their performance
as observed by the user.

3.1 Dimensions of ILP

Practical ILP systems can be classified in five main dimensions, from a user
perspective:

o Empirical versus incremental. This dimension describes the way the ex-
amples E are obtained. In empirical ILP, the evidence is given at the
start and not changed afterwards, in incremental ILP, the user supplies
the examples one by one, in a piecewise fashion.

e Interactive versus non-interactive. In interactive ILP, the learner is al-
lowed to pose questions to the user about the intended interpretation.
Usually these questions query for the intended interpretation of examples
or clauses.

e Predicate invention allowed or not. Predicate invention denotes the pro-
cess whereby entirely new predicates (neither present in F nor B) are
induced. Predicate invention results in extending the vocabulary of the
learner and may therefore facilitate the learning task. Although the idea
of inventing new predicates is very appealing and some promising first ap-
proaches [30, 32, 46, 10, 44, 45] have been developed, the task of inventing
new predicates is not well understood yet.

e Single versus multiple predicate learning. In single predicate learning, the
evidence contains examples for only one predicate and the aim is to induce
a definition for this predicate; in multiple predicate learning, the aim is to
learn a set of possibly interacting predicate definitions or properties that
hold among various predicates.

System Emp/Inc Int/No Inv/No Sin/Mul Noise/No

MIS Inc Int No Mul No
CLINT Inc Int Inv Mul No
MOBAL Inc No Inv Mul No
CIGOL Inc Int Inv Mul No

FOIL Emp No No Sin Noise

GOLEM Emp No No Sin Noise

LINUS Emp No No Sin Noise
MPL Emp No No Mul No
CLAUDIEN Emp No No Mul No

Table 1: Dimensions of ILP.

e Noise-handling enabled or not. Some ILP systems can only deal with ex-
act, noiseless data whereas others contain elaborate mechanisms for deal-
ing with real-life imperfect data, including random errors (called noise),
see [23].

In Table 1 we sketch some well-known ILP systems along these five dimen-
sions. The ILP systems sketched are: systems that induce predicate defini-
tions in the normal ILP setting MIS [42], CLINT [8], MOBAL [20], CIGOL
[32], FOIL [40], GOLEM ([34], LINUS [24, 23], MPL [14] and, on the other
hand, CLAUDIEN [12] which induces properties in the non-monotonic ILP
setting. In the table, the following abbreviations are used: Emp/Inc (empir-
ical/incremental), Int/No (interactive/non-interactive), Inv/No (predicate in-
vention/no predicate invention), Sin/Mul (single predicate learning/multiple
predicate learning), Noise/No (noise handling/no noise handling).

From Table 1 it follows that most of the systems are either incremental multi-
ple predicate learners (systems MIS, CLINT, MOBAL and CIGOL) or empirical
single predicate learners* (systems FOIL, GOLEM, LINUS). This means that
essentially none of these ILP systems is applicable to knowledge discovery in
databases which typically requires an empirical setting (all data are given in
the database) and involves multiple predicates (as the different predicates in
the database should be related to each other). Two novel extensions of FOIL,
i.e. systems MPL and CLAUDIEN that can be regarded as empirical multiple
predicate learners or knowledge discovery systems, are discussed in Sections 5
and 6.

4FOIL and GOLEM should not be regarded as multiple predicate learners, cf. [14] and
Section 5.

10

3.2 Structuring the hypothesis space

As is the case for most problems of artificial intelligence, ILP can be regarded
as a search problem. Indeed, the space of possible solutions is determined by
the syntactic (language) bias L. Furthermore, there is a decision criterion (e.g.
BUH | Et and BUHUE™ |£ Oin the normal ILP setting) to check whether
a candidate hypothesis H is a solution to a particular problem. Searching
the whole space is clearly inefficient, therefore structuring the search space is
necessary. Nearly all symbolic inductive learning techniques structure the search
by means of the dual notions of generalization and specialization [27, 11]. For
ILP, there are syntactical [38] and semantical (logical) definitions [36, 4] of these
notions:

Definition 6 (Semantic generalization) A hypothesis Hq is semantically more
general than a hypothesis Hy with respect to theory B if and only if BUH, = H,.

Definition 7 (Syntactic generalization or 8-subsumption) A clause c¢1 (e set
of literals) is syntactically more general than o clause c if and only if there
ezists a substitution 6 such that c10 C c3. A hypothesis Hq is syntactically more
general than o hypothesis Ha if and only if for each clause ¢y in Hy there exists
a clause ¢y in H1 such that ¢y is syntactically more general than c;.

Plotkin has proved that the relation is more general than of the syntactic
notion of generalization induces a lattice (up to variable renamings and equiv-
alence classes) on the set of all clauses. Notice that when a clause ¢; (resp.
hypothesis) is syntactically more general than a clause c; it is also semantically
more general. Clause false (denoted by O) is maximally general for both notions
of generalization.

3.3 Searching the hypothesis space
Both is more general than relations are useful for induction because:

e when generalizing a hypothesis H; to Hj, all formulae f entailed by the
hypothesis H; and background theory B will also be entailed by hypothesis
H; and theory B, i.e. (BUH;: = f) — (BUH; E f).

e when specializing a hypothesis H; to Hj, all formulae f logically not
entailed by hypothesis H; and background theory B will not be entailed
by hypothesis H; and theory B either, i.e. (BUH; [~ f) — (BUH; |~ f).

The two properties can be used to prune large parts of the search space. The
second property is used in conjunction with positive examples. If a clause (to-
gether with B) does not entail a positive example, all specializations of that
clause can be pruned, as they cannot imply the example. The first property is
used with negative examples.

Most inductive learners use one of the search strategies below (cf. [11]):

11

e General to specific learners start from the most general clauses and re-
peatedly specialize them until they are no longer inconsistent with nega-
tive examples; during the search they ensure that the clauses considered
entail at least one positive example. When building a hypothesis, learners
employ a refinement operator that computes a set of specializations of a
clause.

e Specific to generallearners start from the most specific clause that implies
a given example; they then generalize the clause until it cannot further be
generalized without entailing negative examples. Very often, generaliza-
tion operators start from a clause and a positive example not entailed by
the clause; they then compute the starting clause (the most specific clause
implying the example) for the example and compute the least general
generalization of the two clauses (cf. [38]).

Both techniques repeat their procedure on a reduced example set if the found
clause by itself does not entail all positive examples. They use thus an iterative
process to compute disjunctive hypotheses consisting of more than one clause
(often called the “covering” approach [26]).

Hypotheses generated by the first approach are usually more general than
those generated by the second approach. Therefore the first approach is less
cautious and makes larger inductive leaps than the second. General to specific
search is very well suited for empirical learning in the presence of noise because
it can easily be guided by heuristics. Specific to general search strategies seem
better suited for situations where fewer examples are available and for interactive
and incremental processing. In the rest of this paper, we only discuss general
to specific learning; for specific to general learning we refer to [29, 8, 33].

4 Refinement techniques

Central in general to specific approaches to ILP is the notion of a refinement
operator (first introduced by [42]):

Definition 8 A refinement operator p for a language bias L is a mapping
from L to 2L such that Vc € L : p(c) is a set of specializations of ¢ under
6-subsumption’.

We call the clauses ¢’ € p(c) the refinements of c. In general, refinement opera-
tors depend on the language bias they are defined for. As an example, consider
the refinement operator for clausal logic of the definition below.

5Sometimes p(c) is defined as the set of proper mazimally general specializations of c under
#-subsumption, cf. [42, 12]

12

Definition 9 Clause ¢’ € p(c), i.e. clause c is a refinement of clause c, iff
head(c), A — body(c) | A is an atom (1)
¢ =< head(c) — body(c),A | A is an atom (2)
cb | 0 is a substitution(3)
Refinements of type (1) are called head refinements of ¢ and refinements of type
(2) are called body refinements.

Refinements obtained using the above operator may not always yield proper
specialisations but may be equivalent to the original clause.®

The rest of the paper is concerned with refinement techniques as applied
in the normal and non-monotonic ILP setting. This section deals with refine-
ment techniques for single predicate learning, whereas Sections 5 and 6 propose
refinement techniques which can be applied when learning multiple predicates.

4.1 Refinement techniques in the normal ILP setting

Using refinement operators, it is easy to define a simple general to specific
search algorithm for finding hypotheses. This is done in Algorithm 1, which is
basically a simplification of the FOIL algorithm [40]. Notice that FOIL can be
used to learn definitions of more than one target predicate. It learns function-
free clauses using a refinement operator for DATALOG, i.e. the formalism of
definite clauses with as only function symbols constants.

In a repeat loop, FOIL generates different clauses until all positive exam-
ples in E'p+ for the selected target predicate p are (extensionally) covered by
the hypothesis. Once a clause is added to the hypothesis, all positive exam-
ples (extensionally) covered by that clause are deleted from the set of positive
examples (for the definition of extensional coverage, see Section 4.2). To find
one clause, FOIL repeatedly applies a body refinement operator (a variant of
that in Definition 9 combining refinements of the form (2) and (3)) until the
clause is consistent with all negative examples for the predicate. Though the
search for the predicate definition of p starts with the maximally general clause
p(X1,...,Xn) it is sufficient to consider only body refinements of this clause
provided that one employs explicit unification. For instance, if two literals in
the head should be unified, the condition X; = X; would appear in the body.
FOIL is heuristically guided as it does not consider all refinements of a too gen-
eral clause, but only the best one (the criterion is based on information theory,
see [40]). This amounts to a hill-climbing search strategy. A variant of this
algorithm employing beam-search is described in [17].

FOIL is together with GOLEM [34], which works specific to general instead
of general to specific, one of the best known empirical ILP systems. Both sys-
tems are very efficient and have been applied to a number of real-life applications
of single predicate learning [17, 3, 35, 21]. Notice that splFOIL(B, H,, E,) in

8In theory one should work with reduced clauses only, cf. [38].

13

procedure FOIL(B,H,E)

hypothesis H := 0

for all predicates p occurring in E do
call splFOIL(B,H,,E,)
H:=HUH,

endfor

procedure splFOIL(B,H,,E,)
E'}',*' := the set of all positive examples for p

E, := the set of all negative examples for p
hypothesis H, := 0
repeat

clause ¢ := p(X1,...X,) «—; where all X; are different variables
while c extensionally covers examples from E, do
build the set S of all body refinements of ¢
¢ := the best element of S
endwhile
add c to H,
delete all examples from E']p+ extensionally covered by ¢
until E;' is empty

Algorithm 1: A simplified FOIL algorithm.

14

Algorithm 1 (spl stands for single predicate learning) learns a predicate def-
inition for a single target predicate p and that the procedure FOIL(B, H, E)
is the simplistic procedure employed by FOIL for learning multiple predicates
(see the proposed improvements of this algorithm in Section 5). However, since
they employ the normal ILP setting, they suffer from some problems. These
problems are of two types:

e the extensionality problem, which is specific to GOLEM and FOIL, is due
to the incorrect definition of coverage, which is in turn due to working
with an extensional background model (see [14, 2, 5]),

e the order dependency problem when learning multiple predicates and/or
recursive predicate definitions.

The first problem is specific to FOIL and GOLEM, whereas the second problem
holds for the normal ILP setting in general; it is discussed in the context of
multiple predicate learning in Section 5.

4.2 The extensionality problem

The problems with extensional models are well-known and have already been
published in the ILP literature [2, 5, 14]. In summary, to test whether a hypoth-
esis H covers an example e, extensional methods use the following extensional
coverage test.

Definition 10 A hypothesis H eziensionally covers an example e iff there exists
¢ clause ¢ € H and o substitution 6 such that cf is ground, head(c)d = e
and body(c) C M(B), where M(B) is the least Herbrand model of background
knowledge B”.

Given this extensional coverage test, for example, the tautology consisting of
p(X) « p(X)3 is always complete and consistent because the positive examples
are always added to the model. For more details, and less trivial examples, we
refer to [2, 5, 14].

Problems with extensionality are avoided by taking the normal intensional
coverage test BU{c} |= e for e € E, instead of the extensional coverage test 36:
head(c)8 = e and body(c)d C M(B) used in FOIL and GOLEM. Notice that the
extensional background knowledge in FOIL and GOLEM actually means that B
itself is a set of ground facts, i.e., B = M(B). Moreover, even if no extensional
background model were employed, FOIL and GOLEM would still yield incorrect
results, since (in FOIL) the coverage test B U {c} = e would be ‘local’ to a

"In case that the model M(B) is infinite, then a finite h-easy model is assumed, which
contains all ground facts that can be derived from B using a depth-bounded proof procedure
of a selected depth h, see [34].

8This clause is usually excluded from the hypothesis space by systems such as FOIL and
GOLEM.

15

clause ¢ and B, instead of testing the coverage ‘globally’ using BUH U{c} E ¢
(‘global’ with respect to B and the entire hypothesis H U {c} built so far).
One could try to improve upon FOIL, by changing the extensional tests for
coverage into intensional coverage tests. Nevertheless, the resulting algorithm
would still suffer from the problem of overgeneralization. This problem is dealt
with extensively in Section 5.2.

5 Learning multiple predicates in the normal
ILP setting

In the multiple predicate learning task, E contains examples for m target pred-
icates p1, ..., pm. Therefore, E, Et and E~ are divided into m subsets E,,, E;;_
and E,, according to these predicates. The predicates whose definitions are
given initially in the background theory B are denoted as g1, ...,q: (pi # g;).
By now, a hypothesis H, was defined as a set of definite clauses for a pred-
icate p. In the multiple predicate learning task, the notion of an m-hypothesis

is introduced.

Definition 11 An m-hypothesis H is a set of definite clauses for m different
predicates pi1, ..., Pm. An m-hypothesis H is the union of m hypotheses Hy, for

i=1,...,m, H=U2 Hp..

The definition of intensional coverage, completeness and consistency can now
be trivially adapted from Definition 4. An m-hypothesis H intensionally covers
an example e given background theory B iff BU H |= e. An m-hypothesis H is
(globally) complete iff BUH |= Et, and (globally) consistent iff BUHUE ™~ [~ O.

Assuming the hypothesis language of definite clauses, multiple predicate
learning in the normal ILP semantics is defined as follows:

Given:
e a set of training examples E for m different predicates p, ..., pm, and
e a background theory B, containing predicate definitions for g1, ..., g

Find: an m-hypothesis H which is globally complete and consistent with re-
spect to F and B.

The multiple predicate learning task is denoted by a triple mpl(B, H, E). It
is illustrated in Example 6. A single predicate learning task is a special case of
the above problem specification where m = 1. For a predicate p;, this task is
denoted by spl(B, H,;, Ep,).

To elaborate our ideas in more detail, we need to make a further distinc-
tion between ‘local’ and ‘global’ properties. Global properties of hypotheses

16

and clauses are defined in the context of the entire example set F and the
m-hypothesis H whereas local properties are defined using E,, and H,;:

Definition 12 Hypothesis Hp, is locally complete iff BUH,, = E;,"I_. Hypothesis
H,, is locally consistent iff BU Hp, U B [£ 0.

Example 6 (Multiple predicate learning)
We illustrate the problem of multiple predicate learning on a relatively simple
task where the background theory B is exztensional end contains a complete set
of facts for the background predicates parent, female and male.

The background theory B contains:

male(prudent) — female(laura) «—
male(willem) «— female(esther) «—
male(etienne) — female(rose) «—
male(leon) «— female(alice) «—
male(rene) «— female(yvonne) «
male(bart) — female(katleen) —
male(luc) «— female(lieve) —
male(pieter) « female(soetkin) «—
male(stijn) — female(an) «

female(lucy) «

parent(bart,stijn) — parent(katleen,stijn) —
parent(bart,pieter) « parent(katleen,pieter) —
parent(luc,soetkin) « parent(lieve,soetkin) «—
parent(willem,lieve) « parent(esther,lieve) «—
parent(willem, katleen) «parent(esther katleen) «—
parent(rene,willem) «— parent(yvonne,willem) «—
parent(rene,lucy) «— parent(yvonne,lucy) «—
parent(leon,rose) «— parent(alice,rose) «—
parent(etienne,luc) « parent(rose,luc) «—
parent(etienne,an) «— parent(rose,an) «—
parent(prudent,esther) «parent(laura,esther) «—

Given the above background theory B, the multiple predicate learning task is
to learn father, mother and ancestor from the complete set of ezamples for these
predicates, under the usual interpretation of father, mother and ancestor. Here
completeness means that all positive and negative ezamples of the predicates are
available to the system (negative ezamples are generated under the cwae). A
complete and consistent 3-hypothesis H is:

ancestor(X,Y) « parent(X,Y)

ancestor(X,Y) « parent(X,Z) A ancestor(Z,Y)
father(X,Y) «— parent(X,Y) A male(X)
mother(X,Y) « parent(X,Y) A female(X)

17

procedure FOIL(B,H,E)

hypothesis H := 0

for all predicates p; occurring in E do
call splFOIL(BU H,H,,,E,,)
H:=HUH,

endfor

Algorithm 2: A rudimentary modification of the top-level FOIL algorithm.

Notice that learning multiple predicates from examples is an important prob-
lem. One significant application is in knowledge discovery, where one faces dif-
ferent phenomena and needs to relate them to each other. Another interesting
application is logic program synthesis.

5.1 The order dependency problem

The most straightforward way to solve a multiple predicate learning task mpl(B, H, E)
using a single predicate learner works as follows. Multiple predicate learning
starts with an empty hypothesis, i.e. H = 0. In each step of multiple predicate
learning, the current hypothesis Hcyr = Hp, U...U Hy,, k < m, needs to be
refined. The next predicate pri1 (pr4+1 # pj for all j: 1 < j < k) is selected and

a new hypothesis H,,,, is constructed by solving the single predicate learning

task spl(B U Heyr, Hp,,,, Ep,,,), where By, is the training set for predicate
Pr+1. The background knowledge to be considered in single predicate learning

is not only B, but B together with the hypothesis H.,, learned so far. This
idea can be implemented in FOIL in Algorithm 2:

Notice that in the actual implementation of FOIL, outlined in Section 4.1.,
the splFOIL is called with splFOIL(B, Hy,;, E,;) instead of splFOIL(BUH ,Hp,,E,,).
We now show that this algorithm encounters a number of problems. The main
problem in multiple predicate learning is to determine the predicate to be
learned next. This is a serious problem because processing the predicates in
a non-optimal order may significantly affect the learning results: no solution
may be found or the induced hypothesis may be very complex.

The reason for the impact of the order of learning the predicates on the
learning results is the use of a background theory. This theory determines the
difficulty of the learning task. Given all relevant predicates in the background
theory, the single predicate learning task is easy. On the other hand, if the
available predicates are less relevant or irrelevant, the learning task becomes
hard or unsolvable. For instance, learning the predicate grandfather in terms of
male, female and grandparent is easy; using male, female and parent is harder,
and using only male and female the problem is unsolvable.

18

The situation is even more complicated than indicated above. All ILP (and
other inductive) learners employ an explicit or implicit bias, which effectively
restricts the space of considered hypotheses. Given a language bias L of definite
or normal program clauses, even for a fixed number of predicates of arity 2 or
larger, the number of different clauses is infinite. Since no system can search for-
ever, additional bias is needed to make the search space finite and to consider the
most interesting clauses first. As examples of such biases, consider GOLEM’s ij-
determination (explicit declarative bias) and FOIL’s encoding length restriction
(implicit procedural bias). Bias makes the search space manageable, but can
prevent the learner from finding the desired predicate definitions. When trying
to learn multiple predicates using a single predicate learner, bias and ordering
effects are both to be taken into account. For certain orderings of learning the
predicates, the learning task as a whole may be solvable, whereas for others, it
may not. Clearly, in the worst case, which arises when there exists only one
order of learning the predicates that leads to a solution, all possible orderings
of learning the predicates need to be considered (formulated more precisely, an
ordering is a sequence of the learning tasks spl(B U Hcy,, Hp;, Ep;) for the cur-
rent hypothesis H.,» and there is precisely one task for each predicate p;). This
is clearly computationally very expensive. Even when the worst case does not
arise, using a non-optimal order may have negative effects on the results, in the
sense that the induced hypotheses may be unnecessarily complex and thereby
also less reliable and accurate.

5.2 Overgeneralization

When an overly general clause c is learned for a predicate p; and p; has to be
used in a clause for a predicate p;, overgeneralization may prevent the learner
from finding globally consistent clauses for p;. The reason is that the decision to
add clause c to the theory is made at a “local” level, based on the examples for
p; only (see Definition 12). When using this predicate later, there are also global
effects. One effect may be that p; falls off the learnability cliff [46] (all clauses
for p; may be overly general, or may not satisfy the bias restrictions). As an
example, consider GOLEM on the task of Example 6, with the order of learning
father, mother and ancestor. Assume that — due to too few negative examples
for father — the learned definition for father is overly general (e.g. father(X,Y)
«— parent(X,Y)). In this case the definition of ancestor is not determinate again.
The example implies that overgeneralization of one predicate can prevent the
learner from finding the definitions of other predicates. It is hard to see how
global effects can be taken into account by single predicate learners, which make
local decisions.

19

5.3 Mutually recursive predicates

Mutually recursive predicates® complicate the learning process because the
learning of one (mutually recursive) predicate should be interleaved with the
learning of the other ones. To learn multiple mutually recursive predicates, one
should — in the worst case — not only consider all orderings of the single pred-
icate learning tasks, but all their sequences (i.e. single predicate learning tasks
may have to be considered more than once).

Because of the problems outlined above, the FOIL algorithm (both Algo-
rithms 1 and 2) does not work properly. A modified algorithm is given in Algo-
rithm 3. Two modifications are incorporated. First, it tests intensional coverage
of hypotheses at the global level instead of extensional coverage. And second, it
implements a rudimentary approach of dealing with the order dependency prob-
lem by providing for a backtracking mechanism. Two forms of backtracking are
needed. First, because local changes may have global effects, it is necessary
to backtrack on H whenever it becomes “globally” inconsistent. Second, for
reasons outlined above, backtracking on the order of learning the predicates is
provided as well. Notice however that backtracking may be computationally
very expensive.

5.4 The MPL algorithm

To avoid the combinatorial explosion due to backtracking in Algorithm 3, we
have developed heuristics which are incorporated in the MPL algorithm [14],
sketched in Algorithm 4. Note that Algorithm 4 contains a simplified version of
MPL in order to keep the exposition simple. For full details on MPL, we refer
to [14].

The main differences between the mplFOIL approach and the MPL algo-
rithm [14] are the following:

e MPL performs a hill-climbing strategy on hypotheses: in each step of this
cycle it induces a clause; if adding the induced clause to the current hy-
pothesis results in inconsistencies, MPL removes some clauses from the
current hypothesis; otherwise it continues with the updated current hy-
pothesis to learn clauses for non-covered positive examples, if any.

e To learn one clause, MPL employs a beam-search similar to mFOIL [17].
The only modification is that rather than storing (definite) clauses and
computing their best refinements, MPL keeps track of bodies of clauses,
and selects at each step the best body refinements. The quality of a body
is defined here as the quality of the best clause in its head refinements.
Computing the body first and selecting its head later allows to dynamically
determine the next predicate to be learned. In this way, the order in

° Although mutually recursive predicates are not frequently needed, mutual recursion can-
not always be avoided (without introducing additional new predicates).

20

procedure mplFOIL(B,H ,E)
hypothesis H := 0
for all predicates p occurring in E do
E'}'," := the set of all positive examples for p
E, := the set of all negative examples for p
repeat
clause ¢ := p(Xy,...X,) «—; where all X; are different variables
while BUH U{c}UE, F0do
build the set S of all body refinements of ¢
¢ := the best element of S
endwhile
add ¢ to H
if BUHUE O
then backtrack on H or on the order of selecting the predicates
endif
delete all examples e € E; such that BU HU {c} =e
until E'; is empty
endfor

Algorithm 3: An improved FOIL algorithm for dealing with recursion and
multiple predicates.

21

procedure MPL(B,H,E)
hypothesis H := 0
repeat
body(c) := true
¢’ := best head refinement of ¢
while BUHU{c'}UE~ =0do
build the set of all body refinements of ¢
¢’ := best head refinement of ¢
endwhile
add ¢’ to H
delete all examples from E* entailed by BU H
if BUHUE™ O
then remove minimal set of clauses S from H such that BUHUE™ [£ O
add back to Et all (positive) examples previously covered by S and not by H
endif

until Et is empty or no improvement possible on H

Algorithm 4: A simplified MPL algorithm.

which predicates are learned is determined heuristically. A similar idea
was implemented in the CN2 algorithm [6].

e When estimating the quality of a clause, MPL does not only take into
account the examples of the predicate in the head of the clause, but also
the other ones, which reduces the number of overgeneralizations. To be
more precise, MPL employs a weighted average of the local and the global
Laplace estimates [6, 23].

e When overgeneralisations arise, some clauses are deleted, and the learning
process is restarted. Care is taken not to get into infinite loops by first
deleting clauses and then adding the same ones again.

Preliminary experiments have shown that MPL correctly induces hypotheses
for some multiple predicate learning problems beyond the scope of the current
empirical ILP approaches, cf. [14]. The experiments have also shown that the
MPL approach is computationally quite expensive. The reasons for this are
twofold. First, MPL works intensionally resulting in a need for backtracking
(which is still expensive though it is implemented in a more clever way than
in Algorithm 4). Second, to learn one clause, it needs to construct all head
refinements of a body. This means that instead of evaluating one clause, it
evaluates m clauses where m is the number of target predicates. As a conclusion,
we believe that our results for multiple predicate learning in the normal setting

22

for inductive logic programming are mostly negative as a correct (even heuristic)
treatment of the problem blows up the search space.

6 Learning multiple predicates in the non-monotonic
ILP setting

Many of the above sketched problems disappear when adopting the non-monotonic
ILP setting. Indeed, the main problems in the normal setting are concerned
with order dependency and dependencies among different clauses. Using the
non-monotonic semantics these problems disappear because if H; is true in a
model and Hj is true in the same model, then their conjunction H; U Hj is also
true. Therefore clauses can be investigated completely independently of each
other (they could even be searched in parallel): it does not matter whether H;
is found first or Hy. Furthermore, interactions between different clauses are no
longer important: if both clauses are individual solutions, their conjunction is
also a solution. This property holds because the hypothesis is produced de-
ductively in the non-monotonic setting. An important consequence is that the
search of hypotheses reduces from 2% to L. This is in contrast to the normal ILP
setting, which allows to make inductive leaps, whereby the hypothesis together
with the theory may entail facts not in the evidence. As different clauses in
the normal setting entail different facts, the order of inducing and the way of
combining different clauses in the normal setting affects the set of entailed facts.

A key observation underlying the non-monotonic ILP system CLAUDIEN
[12] is that clauses ¢ that are false on the minimal model of B U E are overly
general, i.e. that there exist substitutions 8 for which body(c)é is true and
head(c)6 is false in the model. In Section 5 we saw how overly general clauses
could be specialized by applying refinement operators. The same applies here.
In particular, body refinements decrease the number of substitutions for which
body(c) holds whereas head refinements increase the number of substitutions for
which head(c) holds.

Based on this, the CLAUDIEN algorithm (see Algorithm 5) was designed to
induce clausal theories from databases. CLAUDIEN starts with a set of clauses
@, initially only containing the most general clause false and repeatedly refines
overly general clauses in Q until they satisfy the database. CLAUDIEN prunes
away clauses already entailed by the found hypothesis at point (1) because nei-
ther they nor their refinements can result in new information'®. Furthermore, at
point (2) it tests whether refinements are relevant. Roughly speaking, relevance
means that at least one substitution is handled differently by the refinement ¢’
than by its parent clause ¢. Under certain conditions on the language bias and
refinement operator discussed in [12], irrelevant clauses can safely be pruned
away. Intuitively, an irrelevant refinement ¢’ of ¢ is a refinement for which ¢ and

10This is verified using Stickel’s fast theorem prover [43].

23

Q := {false}; H := 0;
while Q # 0 do
delete ¢ from @
if c is true in the least model of BU F

then if H [£c (1)
then add cto H
endif

else for all relevant ¢’ € p(c) (2) do

add ¢’ to Q

endfor

endif

endwhile

Algorithm 5: A simplified CLAUDIEN.

¢’ are logically equivalent on the least model of B U E. Notice also that CLAU-
DIEN does not employ a heuristic search strategy, but a complete search of the
relevant parts of the search space. Complete search!! allows to find all proper-
ties expressible in the given language bias, thereby the most general hypothesis
explaining the database is found.

7 Experimental results

This section reports on a number of results produced using actual ILP systems
such as FOIL 2.1'2) MPL and CLAUDIEN. Though the experiments are very
simple and use small toy problems, they clearly show that the theory of multiple
predicate learning presented in this paper is in line with the practice of inductive
logic programming. As such, the problems indicated above may arise in practice
and the solutions outlined do - indeed - solve some of the problems.

7.1 Experiments with FOIL

In this section we show that using extensional coverage in FOIL can lead to
problems because an example may be covered intensionally, but not extension-
ally and vice versa. Experiments were performed using FOIL2.1.

!1In the implementation, we employ depth-first iterative deepening [22].

12 As these experimented were carried out some time ago, an early version of FOIL was
used. We did not verify that more recent version of FOIL would produce the same results,
as the experiments are merely meant to show that the theory of multiple predicate learning
presented above is in line with its practice.

24

Experiment A: Extensional consistency, intensional inconsistency

Reconsider the background theory specified in Example 6. Assume the ex-
ample set is specified as follows: F contains all positive examples for father, and
as negative examples for father all facts of the form father(a,b) for which par-
ent(a,b) is false; for the predicate male_ancestor E contains all possible positive
and negative examples. In this case, the following m-hypothesis is extensionally
globally complete and consistent, but not intensionally consistent:

father(X,Y) «— parent(X,Y)
male_ancestor(X,Y) « father(X,Y)
male_ancestor(X,Y) « male_ancestor(X,Z), parent(Z,Y)

Indeed, male_ancestor(lieve,soetkin) is covered intensionally but not exten-
sionally. The result of this is that the m-hypothesis is intensionally globally
inconsistent.

Experiment B: Extensional completeness, intensional incompleteness

Reconsider the theory of Example 6 and suppose the aim is to induce the con-
cepts male_ancestor and female_ancestor from father and mother and a complete
example set. The definition below, induced by FOIL2.1, is complete and con-
sistent from an extensional point of view (in the given database, both parents
are always specified). From an intensional point of view, however, the definition
is useless as it cannot be used to derive conclusions from a theory containing
father and mother only.

male_ancestor(X,Y) « father(X,W), mother(M,W), female_ancestor(M,Y)
female_ancestor(X,Y) « mother(X,W), father(F,W), male_ancestor(F,Y)

Experiment C: Intensional completeness, extensional incompleteness

Reconsider the background theory specified in Example 6. Assume the fol-
lowing example set:

E+ = { father(luc,soetkin), father(bart,stijn), male_ancestor(rene,lieve),
male_ancestor(bart,stijn), male_ancestor(luc,soetkin) }

E~ = { « father(lieve,soetkin), « male_ancestor(esther,lieve),
«— male_ancestor(katleen,stijn) }

In this case, the following m-hypothesis is intensionally globally complete and
consistent, but not extensionally complete:

25

father(X,Y) «— male(X), parent(X,Y)
male_ancestor(X,Y) « father(X,Y)
male_ancestor(X,Y) « male_ancestor(X,Z), parent(Z,Y)

Now, male_ancestor(rene,lieve) is covered intensionally but not extensionally.

7.2 Experiments with MPL

Using a prototype implementation of the MPL algorithm in PROLOG, two
experiments were performed on the domain of learning family relations from
Example 6. The details of this experimental setting can be found in [12].

Experiment 1

The first experiment was aimed at learning the definitions of ancestor, father
and mother from the complete set of positive and negative examples and from
the knowledge base containing male, female and parent as specified in Example 6.
The system learned the following clauses in the specified order:

(1) ancestor(X,Y) « parent(X,Y)

(2) father(X,Y) « parent(X,Y), male(X)

(3) mother(X,Y) « parent(X,Y), female(X)

(4) ancestor(X,Y) « parent(X,Z), ancestor(Z,Y)

To check the ability of the MPL algorithm to recover from overgeneralization,
we also ran MPL starting from clauses 5, 6 and 7.

(5) ancestor(X,Y) « parent(X,Y)

(6) father(X,Y) « ancestor(X,Y), male(X)

(7) mother(X,Y) « ancestor(X,Y), female(X)
(8) ancestor(X,Y) « parent(X,Z), parent(Z,Y)

MPL then discovered that clause 8 was the most interesting one to add next,
yielding the current hypothesis H composed of clauses 5, 6, 7 and 8: At that
moment, the system discovered that the hypothesis is no longer globally consis-
tent and it decided to remove (and mark) clauses 6 and 7 from H. After this,
clauses 2, 3 and 4 were induced, making clause 8 redundant. Therefore clause
8 was removed, yielding the desired target theory.

Experiment 2

The second experiment was aimed at learning male_ancestor and female_ancestor
from father and mother. All the facts and examples about father, mother,
male_ancestor and female_ancestor were derived from the background theory in
Example 6. Experiment 2 is the same as Experiment B using FOIL. MPL
learned (notice that clause 14 is correct) the following clauses:

26

emale_ancestor(X,Y) «— mother(X,Y)

male_ancestor(X,Y) « father(X,Y)

female_ancestor(X,Y) «— mother(X,Z), female_ancestor(Z,Y)
male_ancestor(X,Y) « father(X,Z), female_ancestor(Z,Y)
male_ancestor(X,Y) « father(X,Z), male_ancestor(Z,Y)
female_ancestor(X,Y) « female_ancestor(X,Z), male_ancestor(Z,Y)

N e e

Experiment 3

In the third experiment the aim was to learn father and grandfather from an
incomplete example set derived from the theory in Example 6. The example
set contained all positive examples for father and grandfather. The negative ex-
amples were complete for grandfather and incomplete for father: Ef_athe ={
«— father(X,Y) | not parent(X,Y)}. MPL derived the following globally complete

and consistent theory:

father(X,Y) «— parent(X,Y)
grandfather(X,Y) « male(X), parent(X,Z), parent(Z,Y)

Both GOLEM and FOIL are mislead on this example. They derive:

father(X,Y) «— parent(X,Y)
grandfather(X,Y) « father(X,Z), parent(Z,Y)

This is globally complete but inconsistent. MPL does not synthesize the correct
target theory either. Nevertheless, on this task, it does better than GOLEM
and FOIL as it computes a solution to the mpl problem, which is not the case

for GOLEM and FOIL.

7.3 Experiments with CLAUDIEN

Using a prototype implementation of CLAUDIEN in Prolog, two experiments
were performed. In comparison with the FOIL and MPL results, which present
the induced predicate definitions for multiple predicates, CLAUDIEN induces
properties that hold in the given knowledge base.

Notice that the bias of CLAUDIEN was set such that only definite clauses
were allowed with at most 2 literals in the body, with target predicates in the
head and all logically redundant clauses were automatically ommited from the
final hypothesis. The given bias was selected in order to be able to compare the
results of the non-monotonic ILP setting using CLAUDIEN as much as possible
with the results of the strong ILP setting as employed in MPL. Using a different
bias a different set of clauses would have been induced, e.g. clauses with an
empty head such as «— father(X,Y),mother(X,Y) in Experiment 1. Furthermore,
as algorithms in the non-monotonic setting search the complete space of clauses,

27

a finite language bias is needed. Without a finite language bias, the algorithms
would not terminate.

Experiment 1

Again, the first experiment was aimed at learning the definitions of ancestor,
father and mother from the complete set of positive examples, and from the
knowledge base containing male, female and parent as specified in Example 6.
Notice that no negatives were given to CLAUDIEN, as CLAUDIEN assumes ev-
erything that is not positive to be negative. CLAUDIEN generated the following
definite clauses:

1) father(X, Y) «— parent(X, Y), father(X , Z)

2) father(X, Y) « parent(X, Y), male(X)

3) mother(X, Y) « parent(X, Y), mother(X, Z)

4) mother(X, Y) « parent(X, Y), female(X)

5) ancestor(X, Y) « parent(X, Y)

6) ancestor(X, Y) « father(X, Y)

7) ancestor(X, Y) « mother(X, Y)

8) ancestor(X, Y) « ancestor(X, Z), ancestor(Z, Y)

P

The reader may notice that the induced hypothesis is completely correct al-
though it contains a number of clauses which are redundant. In particular,
clauses (1,3,6,7) would normally not be generated in the normal setting. Clauses
(6,7) would not be generate by CLAUDIEN if it knew that father implies parent
and mother implies parent, and clauses (1,3) would not be generated if father
implies male and mother implies female were known. In the absence of this
knowledge, the clauses (1,3,6,7) do contain useful information. They do not
only hold on the data, but they are useful for making predictions. Indeed, as-
sume it is known that father(jef,paul) and that parent(jef,mary), but it is not
known that male(jef). Using clause (1) one can deduce father(jef,mary), which
is not possible without this clause. Therefore these clauses are also potentially
useful.

Experiment 2

The second experiment was aimed at learning male_ancestor and female_ancestor
from father and mother. All the facts and examples about father, mother,
male_ancestor and female_ancestor were derived from the background theory in
Example 6. CLAUDIEN generated the following clauses (using the same bias
as in Experiment 1):

(1) male-ancestor(X, Y) « male-ancestor(X, Z), female-ancestor(Z, Y)
(2) male-ancestor(X, Y) « male-ancestor(X, Z), male-ancestor(Z, Y)
(3) female-ancestor(X, Y) « female-ancestor(X, Z), female-ancestor(Z, Y)

28

(4) female-ancestor(X, Y) « male-ancestor(Z, Y), female-ancestor(X, Z)
(5) male-ancestor(X, Y) « father(X, Y)
(6) female-ancestor(X, Y) « mother(X, Y)

In this case a completely (and non redundant) correct hypothesis was discovered.

7.4 Comments and conclusions

The experiments reported in this section, by large confirm the theoretical anal-
ysis of the previous section. In particular, the experiments with FOIL reveal
the problems with ordering and extensional coverage; the MPL experiments
confirm that a heuristic approach may overcome some of these limitations; and
the CLAUDIEN experiments illustrate an alternative but nonetheless effective
approach to learn multiple predicates.

The third experiment done with MPL was not repeated using CLAUDIEN,
because the assumptions underlying CLAUDIEN were not satisfied. The exam-
ple set MPL started from in this experiment was clearly incomplete, thereby
invalidating the CLAUDIEN framework. This shows one of the drawbacks of
the non-monotonic setting. When the closed world assumption on the examples
is invalid, the non-monotonic setting would yield counter intuitive and incorrect
results because it does not generalize on the examples, cf. Section 2. This makes
it also impossible to apply the non-monotonic setting to program synthesis from
(incomplete) example sets.

8 Conclusions

In the first part of this paper we defined and investigated the different faces
of ILP, focussing on the two different ILP semantics: the normal and non-
monotonic semantics. The two semantics were illustrated on a knowledge dis-
covery problem and on a program synthesis problem.

The second part of the paper focussed on the use of the two semantics in the
context of multiple predicate learning. Examining the problem specification of
the normal ILP setting reveals that the clauses in a hypothesis are not indepen-
dent of each other. Indeed, consider clauses ¢; and c3. Assume that B U {c;}
(¢ = 1..2) imply some positive and no negative examples. So, both ¢; could
contribute to a solution in the normal setting. Therefore one might consider a
hypothesis H containing {c1,c3}. Although neither ¢; nor ¢y entails negative
examples, it may be that their conjunction BU{c1,ca} does. This reveals that in
the normal ILP setting different clauses of a hypothesis may interact. Because
of these interactions, learning multiple predicates in the normal ILP setting is
necessarily order dependent as the coverage of one clause depends on the other
clauses in the hypothesis. Therefore the order of learning different clauses af-
fects the results of the learning task and even the existence of solutions. As

29

an extreme case, a multiple predicate learning task may only be solvable when
clauses (or predicates) are learned in a specific order (because of bias effects
and interactions between clauses). In less extreme situations, certain orders
may result in more complex (and imprecise) definitions whereas better orders
may yield good results.

Present ILP learners in the normal setting provide little help in determining
the next clause or predicate to be learned. Indeed, the incremental systems (e.g.
MOBAL [20]) rely on the user as they treat the examples in the given order, the
interactive ones (CIGOL [32], CLINT [8], and MIS [42]) also generate queries to
further simplify the problem, whereas the empirical ones (such as GOLEM [34]
and FOIL [40]) leave the problem to the user. For instance, the FOIL algorithm
outlined in Algorithm 1 checks only that individual clauses are consistent, not
that the hypothesis as a whole is consistent with the negative examples. An
attempt to alleviate the above problems is incorporated in the MPL system
[14] which solves many of the problems encountered in multiple predicate learn-
ing. Still, one major problem remains: when generating new clauses, although
neither ¢; nor ¢z (constituting H) entails negative examples, it may be that
their conjunction B U {c1, c2} does. Thus backtracking is required, i.e. already
generated clauses must be re-evaluated and potentially deleted since as a part
of the currently generated hypothesis they may become inconsistent. Due to
the computational complexity of backtracking we may consider the normal ILP
setting as inappropriate for multiple predicate learning.

We believe the non-monotonic ILP semantics puts several issues in ILP in a
new perspective. First, the non-monotonic setting allows to induce full clausal
theories. Second, it makes the learning of different clauses order independent,
which is especially useful when learning multiple predicates. Third, learning in
the non-monotonic setting derives properties of examples instead of rules gener-
ating examples. Although such properties cannot always be used for predicting
the truthvalues of facts, we have seen that the use of full clausal theories can
result in predictions not possible using the less expressive normal ILP setting.
However, when we are interested in predictions, then the normal setting is more
appropriate as induced hypotheses in the normal setting can always be used
for prediction. Also, when the example set is incomplete (the closed world as-
sumption does not hold), the non-monotonic setting cannot be applied. This
explains why the non-monotonic framework does not apply to program synthe-
sis from examples. Although learning multiple predicates in the normal setting
is less efficient, the approach to multiple predicate learning in the normal set-
ting, implemented in the MPL algorithm, can sometimes alleviate the problems
encountered by the standard ILP systems.

Finally, let us mention that there is still a third possible setting for inductive
logic programming proposed by Flach [18]. In this setting, one is looking for
hypotheses H that are consistent with the examples, i.e. given B and E, find
H such that BU H UE [£ O. This condition is related to the consistency
requirement in the normal setting except that F can include positive as well as

30

negatives here. Therefore it follows that also in Flach’s setting, clauses are not
to be searched independenty from each other. Furthermore, Flach’s setting is
even more permissive than the normal one in the sense that if H is a solution
in the normal setting, it will also be a solution in Flach’s setting.

Acknowledgements

This work is part of the ESPRIT Basic Research project no. 6020 on Inductive
Logic Programming. Luc De Raedt is supported by the Belgian National Fund
for Scientific Research; Nada Lavrac is funded by the Slovenian Ministry of
Science and Technology. The authors are grateful to Saso Dzeroski for the
experiments with FOIL, and to Danny De Schreye, Bern Martens, Stephen
Muggleton and Gunther Sablon for discussions, suggestions and encouragements
concerning this work. Special thanks to Maurice Bruynooghe, Peter Flach and
the referees for suggesting many improvements to earlier versions of this paper.

References

[1] H. Adé, L. De Raedt, and M. Bruynooghe. Declarative Bias for Specific-
To-General ILP Systems. Machine Learning, to appear, 1995.

[2] F. Bergadano and D. Gunetti. An interactive system to learn functional
logic programs. In Proceedings of the 13th International Joint Conference
on Artificial Intelligence, pages 1044-1049. Morgan Kaufmann, 1993.

[3] I. Bratko. Applications of machine learning : towards knowledge synthesis.
In Proceedings of Future Generation Computing Systems, 1992.

[4] Wray Buntine. Generalized subsumption and its application to induction
and redundancy. Artificial Intelligence, 36:375-399, 1988.

[5] R.M. Cameron-Jones and J.R. Quinlan. Avoiding pitfalls when learning
recursive theories. In Proceedings of the 13th International Joint Conference
on Artificial Intelligence, pages 1050-1055. Morgan Kaufmann, 1993.

[6] P. Clark and T. Niblett. The CN2 algorithm. Machine Learning, 3(4):261—
284, 1989.

[7] W.W. Cohen. Grammatically biased learning: learning logic programs
using an explicit antecedent description language. Artificial Intelligence,
68:303-366, 1994.

[8] L. De Raedt. Interactive Theory Revision: an Inductive Logic Programming
Approach. Academic Press, 1992.

[9] L. De Raedt and M. Bruynooghe. Belief updating from integrity constraints
and queries. Artificial Intelligence, 53:291-307, 1992.

31

[10] L. De Raedt and M. Bruynooghe. Interactive concept-learning and con-
structive induction by analogy. Machine Learning, 8(2):107-150, 1992.

[11] L. De Raedt and M. Bruynooghe. A unifying framework for concept-
learning algorithms. The Knowledge Engineering Review, 7(3):251-269,
1992.

[12] L. De Raedt and M. Bruynooghe. A theory of clausal discovery. In Proceed-
ings of the 13th International Joint Conference on Artificial Intelligence,
pages 1058-1063. Morgan Kaufmann, 1993.

[13] L. De Raedt and S. Dzeroski. First order jk-clausal theories are pac-
learnable. Artificial Intelligence, 70:375-392, 1994.

[14] L. De Raedt, N. Lavrag, and S. Dzeroski. Multiple predicate learning. In
Proceedings of the 13th International Joint Conference on Artificial Intel-
ligence, pages 1037-1042. Morgan Kaufmann, 1993.

[15] T.G. Dietterich and R.S. Michalski. Learning to predict sequences. In R.S
Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Machine Learning:
an artificial intelligence approach, volume 2. Morgan Kaufmann, 1986.

[16] B. Dolsak and S. Muggleton. The application of Inductive Logic Program-
ming to finite element mesh design. In S. Muggleton, editor, Inductive logic
programming, pages 453—-472. Academic Press, 1992.

[17] S. Dzeroski and I. Bratko. Handling noise in inductive logic programming.
In S. Muggleton, editor, Proceedings of the 2nd International Workshop on
Inductive Logic Programming, 1992.

[18] P. Flach. A framework for inductive logic programming. In S. Muggleton,
editor, Inductive logic programming. Academic Press, 1992.

[19] N. Helft. Induction as nonmonotonic inference. In Proceedings of the 1st
International Conference on Principles of Knowledge Representation and
Reasoning, pages 149-156. Morgan Kaufmann, 1989.

[20] J-U. Kietz and S. Wrobel. Controlling the complexity of learning in logic
through syntactic and task-oriented models. In S. Muggleton, editor, In-
ductive logic programming, pages 335—-359. Academic Press, 1992.

[21] R.D. King, S. Muggleton, R.A. Lewis, and M.J.E. Sternberg. Drug design
by machine learning: the use of inductive logic programming to model
the structure-activity relationships of trimethoprim analogues binding to
dihydrofolate reductase. Proceedings of the National Academy of Sciences,
89(23), 1992.

32

22]

[23]

[24]

[33]

[34]

R. Korf. Depth-first iterative deepening : an optimal admissable search.
Artificial Intelligence, 27:97-109, 1985.

N. Lavra¢ and S. Dzeroski. Inductive Logic Programming: Techniques and
Applications. Ellis Horwood, 1994.

N. Lavraé, S. Dzeroski, and M. Grobelnik. Learning non-recursive defini-
tions of relations with LINUS. In Yves Kodratoff, editor, Proceedings of the
5th European Working Session on Learning, volume 482 of Lecture Notes
in Artificial Intelligence. Springer-Verlag, 1991.

J.W. Lloyd. Foundations of logic programming. Springer-Verlag, 2nd edi-
tion, 1987.

R.S. Michalski. A theory and methodology of inductive learning. In R.S
Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Machine Learning:
an artificial intelligence approach, volume 1. Morgan Kaufmann, 1983.

T.M. Mitchell. Generalization as search. Artificial Intelligence, 18:203-226,
1982.

S. Muggleton. Inductive logic programming. New Generation Computing,
8(4):295-317, 1991.

S. Muggleton, editor. Inductive Logic Programming. Academic Press, 1992.

S. Muggleton. Predicate invention and utility. Journal for Ezperimental
and Theoretical Artificial Intelligence, 1994. To appear.

S. Muggleton, M. Bain, J. Hayes-Michie, and D. Michie. An experimental
comparison of human and machine learning formalisms. In Proceedings
of the 6th International Workshop on Machine Learning, pages 113-118.
Morgan Kaufmann, 1989.

S. Muggleton and W. Buntine. Machine invention of first order predicates
by inverting resolution. In Proceedings of the 5th International Workshop
on Machine Learning, pages 339-351. Morgan Kaufmann, 1988.

S. Muggleton and L. De Raedt. Inductive logic programming : Theory and
methods. Journal of Logic Programming, 19,20:629-679, 1994.

S. Muggleton and C. Feng. Efficient induction of logic programs. In Proceed-
ings of the 1st conference on algorithmic learning theory, pages 368-381.
Ohmsma, Tokyo, Japan, 1990.

S. Muggleton, R.D. King, and M.J.E. Sternberg. Protein secondary struc-
ture prediction using logic. Protein Engineering, 7:647-657, 1992.

33

[36] T. Niblett. A study of generalisation in logic programs. In D. Sleeman,
editor, Proceedings of the 3rd European Working Session on Learning, pages
131-138. Pitman, 1988.

[37] G. Piatetsky-Shapiro and W. Frawley, editors. Knowledge discovery in
databases. The MIT Press, 1991.

[38] G. Plotkin. A note on inductive generalization. In Machine Intelligence,
volume 5, pages 153-163. Edinburgh University Press, 1970.

[39] J.R. Quinlan. Induction of decision trees. Machine Learning, 1:81-1086,
1986.

[40] J.R. Quinlan. Learning logical definitions from relations. Machine Learning,
5:239-266, 1990.

[41] S.J. Russell. The use of knowledge in analogy and induciion. Pitman, 1989.
[42] E.Y. Shapiro. Algorithmic Program Debugging. The MIT Press, 1983.

[43] M.E. Stickel. A prolog technology theorem prover: implementation by an
extended prolog compiler. Journal of Automated Reasoning, 4(4):353-380,
1988.

[44] R. Wirth. Learning by failure to prove. In D. Sleeman, editor, Proceedings
of the 3rd European Working Session on Learning. Pitman, 1988.

[45] R. Wirth. Completing logic programs by inverse resolution. In K. Morik,
editor, Proceedings of the 4th European Working Session on Learning. Pit-
man, 1989.

[46] S. Wrobel. Automatic representation adjustment in an observational dis-
covery system. In Sleeman D., editor, Proceedings of the 3rd European
Working Session on Learning. Pitman, 1988.

34

https://www.researchgate.net/publication/220245344

