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Abstract

The paper is concerned with the time complexity of model-based diagnosis. Our

experiments indicate that the time to compute minimal diagnoses is dominated by

the calls to the model of the device being diagnosed. In the paper we describe an

attempt to reduce the number of model calls by incorporating two critical set algo-

rithms

[

Loveland, 1987

]

into IDA

[

Mozeti�c, 1992

]

. A critical set algorithm computes a

minimal diagnosis with O(logn) model calls as opposed to O(n) model calls made by

a straightforward algorithm. We performed experiments on two non-trivial domains:

(a) a 1000-bit adder which has simple structure and behaviour, but large number of

components (5000) and minimal diagnoses, and (b) the KARDIO model of the heart

with complicated structure and behaviour, but relatively small search space and few

minimal diagnoses. The reported results are negative: the straightforward algorithm

outperforms more sophisticated critical set algorithms. We analyse the results and

show that both critical set algorithms are suboptimal in the number of failed model

calls which dominate the total number of model calls and consequently the overall

diagnostic time.

�
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1 Introduction

Model-based diagnosis is the activity of locating malfunctioning components of a system

on the basis of the system's model and observations of its behaviour. In the paper we con-

sider just the task of computing minimal sets of broken components (i.e., diagnoses) which

account for the observations di�erent then expected. We ignore the tasks of specifying ap-

propriate test vectors, proposing additional, discriminating measurements, or interleaving

the diagnostic process with repair.

When searching for minimal diagnoses it is convenient to represent the search space

of potential diagnoses as a subset-superset lattice. The top element of the lattice corre-

sponds to all components being broken, and the bottom element to all components being

ok. The diagnostic process consists of the lattice search, interleaved with calls to the model

of the system (consistency checks). We can identify two sources of exponential worst-case

complexity in the number of components: the set operations performed during the lattice

search, and individual model calls which depend on the type of the fault model used. A

`weak' fault model (where only normal behaviour is considered) can be speci�ed by Horn

clauses with bounded term depth and arity. Such a model can be checked for consistency

with observations in polynomial time.

[

Friedrich et al., 1990

]

give an algorithm to compute

a single minimal diagnosis with a `weak' fault model in polynomial time. However, they

show that, due to the set operations performed during the lattice search, �nding the next

minimal diagnosis is an NP-complete problem.

[

Mozeti�c, 1992

]

gives an improved incre-

mental algorithm IDA which computes k minimal diagnoses in polynomial time. With a

`strong' fault model (when abnormal behaviour is also speci�ed) even computing the �rst

(non-minimal) diagnosis is NP-complete

[

Bylander et al., 1989

]

.

In practice, the exponential growth of the lattice search is kept under control by focusing

on probable diagnoses

[

de Kleer, 1991

]

, or by keeping k low as in IDA. The cost of an

individual model call can be reduced by model abstractions

[

Mozeti�c, 1991

]

, by e�cient

constraint propagation or by model compilation

[

Mozeti�c and Pfahringer, 1992

]

.

A factor which is never critical in the worst-case time analysis is the number of model

calls. In practice, however, model calls dominate the overall diagnostic time. Assuming

that individual model calls are tractable, we can reduce the overall diagnostic time by

reducing the total number of model calls. In the paper we describe such an attempt by

incorporating two critical set algorithms, proposed by

[

Loveland, 1987

]

into IDA. The fact

that a critical set algorithm can be used to compute a minimal diagnosis was �rst observed

by

[

Childress and Valtorta, 1993

]

. However, they used an unmodi�ed critical set algorithm

which works just with a weak fault model. We modi�ed both algorithms so that they can

be used with any model, and did an extensive evaluation on two non-trivial domains.

In section 2 we brie
y describe the IDA algorithm, its relation to consistency-based

diagnosis, and an extended function which implements calls to the underlying model. In

section 3 we describe two critical set algorithms which compute a minimal diagnosis with

O(log n) model calls as opposed to O(n) model calls made by a straightforward algorithm.

Section 4 gives experimental results on two very di�erent testing domains: (a) a 1000-bit

adder which has simple structure and behaviour, but large number of components (5000)

2



and minimal diagnoses, and (b) the KARDIO model of the heart

[

Bratko et al., 1989

]

with

complicated structure and behaviour, but relatively small search space and few minimal

diagnoses. The reported results are negative: the straightforward algorithm outperforms

more sophisticated critical set algorithms. In section 5 we analyse the results and show

that both critical set algorithms are suboptimal in the number of failed model calls which

dominate the total number of model calls and consequently the overall diagnostic time.

2 Computing minimal diagnoses

In consistency-based approach to model-based diagnosis

[

Reiter, 1987

]

, a triple (SD,Comps,

Obs) is given. SD is the system description, Comps is the set of the system components,

and Obs are observations. SD de�nes connections between the system components and

their normal behaviour by using a distinguished unary predicateAb (meaning `abnormal').

A diagnosis D for (SD, Comps, Obs) is a subset D � Comps such that

SD [ Obs [ f Ab(c) j c 2 D g [ f :Ab(c) j c 2 Comps �D g

is consistent. A diagnosis is minimal i� no proper subset of it is also a diagnosis.

The above consistency test e�ectively de�nes a binary function f from a powerset

of Comps to f0,1g. If the above expression is consistent (i.e., D is a diagnosis) then

f(D) = 1, otherwise f(D) = 0. For a binary function which satis�es certain conditions,

Loveland

[

1987

]

de�ned several algorithms which can be used to compute a minimal diag-

nosis

[

Childress and Valtorta, 1993

]

.

According to

[

Loveland, 1987

]

, a binary function f de�ned on the power set of U is

monotone if

f(S) = 1) f(S

1

) = 1; 8S

1

: S

1

� S:

A critical set of a binary monotone function f is a set S such that

f(S) = 1 ^ f(S

2

) = 0; 8S

2

: S

2

� S:

When U = Comps and the consistency test is used for f then a critical set corresponds

exactly to a minimal diagnosis. However, f is monotone only when each superset of a

diagnosis is also a diagnosis. This requirement is in general ful�lled only by SD which

describes just normal behaviour of components, i.e., by a weak fault model

[

de Kleer et al.,

1992

]

. With exoneration or strong fault models which characterize also abnormal behavior

the function f might not be monotone.

IDA

[

Mozeti�c, 1992

]

implements a deductive approach to model-based diagnosis. It

works with weak, exoneration, or strong fault models. SD is a logic program containing

a distinguished binary predicate m(Comps,Obs) which represents a model and relates

states of components to observations. A diagnosis D for (SD, Comps, Obs) is de�ned as

an instance of Comps such that SD j= m(D,Obs). A logic programming system is used

to call the model and to �nd an assignment of states to D such that this assignment is

`consistent' with SD and Obs. The main di�erence to the consistency-based approach is
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that the model call is not just a binary test, but a function from a powerset of Comps to a

diagnosis D or to 0. Given a partial assignment of states to components (a subset S of the

universe U), the function TP returns a diagnosis D if there exists a complete assignment,

or 0 if S is inconsistent with SD and Obs, and the model call fails:

TP(S) = D if 9D : (D � S) ^ SD j= m(D,Obs)

TP(S) = 0 otherwise.

Function TP thus e�ectively implements the theorem prover function, originally proposed

by Reiter

[

1987

]

. The only di�erence is that the role of con
icts is replaced by diagnoses.

IDA thus computes minimal diagnoses directly from diagnoses, and not via con
icts as in

most consistency-based approaches.

IDA consists of two main procedures which clearly separate the search through the

lattice from the model calls. The top-level, All diags procedure starts with an initial set of

k minimal diagnoses and computes the next, k+1-s diagnosis. A candidate S for the next

diagnosis is computed as a complement of a hitting set of previous diagnoses. If TP(S) = 0

then another candidate is computed, and if TP(S) = D then the Min diag procedure is

invoked. The Min diag procedure searches the sub-lattice under a diagnosis D and returns

a minimal diagnosis. For a �xed k it was shown that IDA computes the next k + 1-st

minimal diagnosis in polynomial time, i.e., in O(n

2k

) set operations and in O(n) model

calls

[

Mozeti�c, 1992

]

. Since for a reasonable k model calls dominate the overall diagnostic

time we tried to improve the Min diag procedure which uses a straightforward algorithm

by more sophisticated critical set algorithms as proposed by Loveland

[

1987

]

.

3 Critical set algorithms

Loveland

[

1987

]

proposed �ve algorithms to compute a critical set, called Algorithm I, II,

II', III, IV. As already noted in

[

Childress and Valtorta, 1993

]

, Algorithm II is incorrect.

From the remaining four, we implemented and tested Algorithms II' and IV which were

the most promising according to Loveland. The algorithms had to be modi�ed due to the

use of a more powerful function TP instead of a binary monotone function f .

We use the following notation: U denotes the universe (a non-minimal diagnosis with

which the Min diag procedure is invoked) with cardinality n, C retains known members

of the critical set being isolated (a minimal diagnosis with cardinality r), A includes at

least one element of the critical set, and D is a (non-minimal) diagnosis. Whenever A is

non-empty then A must contain members of the critical set being isolated. It is assumed

that at least one critical set exists.

First we give a naive algorithm using function f . The algorithm tests f(U � fcg) for

each element of the universe U , performing U := U �fcg whenever the function evaluation

is 1. The resulting U is a critical set, and the algorithm takes n function calls. This

algorithm was used by

[

Friedrich et al., 1990

]

.

Algorithm 0 is a straightforward modi�cation when TP is used instead of f , and has a

structure similar to Loveland's Algorithms II' and IV. It was used in IDA in the original
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Min diag procedure.

Algorithm 0

(1) C := fg; A := U

(2) Remove an element c from A; A

1

:= A� fcg

(3) If TP(C [A

1

) = D 6= 0 then A := D � C (A � A

1

)

else A := fcg

(4) If jAj > 1 then return to step (2)

else C := A [ C; A := A

1

if A = fg then C is a critical set

else return to step (2).

Algorithm 0 takes at most n and at least r model calls. Note that U might already be a

minimal diagnosis, and that r model calls are then needed to prove that it is a minimal

diagnosis indeed. This is optimal.

The main idea of the two Loveland's critical set algorithms is to use a binary search

instead of the linear. Algorithm II' repeatedly �nds one element of the critical set at a time,

by continual binary splitting of the space under consideration. The variable R contains

the remaining unknown members of the critical set being isolated.

Algorithm II'

(1) C := fg; A := U; R := fg

(2) Split A into roughly equal disjoint sets A

1

and A

2

such that jA

1

j � jA

2

j

(3) If TP(C [R [A

1

) = D 6= 0 then A := D � C �R (A � A

1

)

else R := A

1

[R; A := A

2

(4) If jAj > 1 then return to step (2)

else C := A [ C; A := R; R := fg

if A = fg then C is a critical set

else if TP(C) 6= 0 then C is a critical set

else return to step (2).

Algorithm II' has an upper bound of r(1 + log n) model calls, which follows directly from

the depth-�rst nature of the algorithm.

Algorithm IV is similar to Algorithm II', but checks both halves of the split, and intro-

duces a stack to retain sets known to certain points (R is de�ned as the union of sets on

the stack).

Algorithm IV

(1) C := fg; A := U; empty stack R := true

(2) Split A into roughly equal disjoint sets A

1

and A

2

(3) If TP(C [R [A

1

) = D 6= 0 then A := D � C �R (A � A

1

)

else if TP(C [ R [A

2

) = D 6= 0 then A := D � C �R (A � A

2

)

else push R(A

1

); A := A

2

(4) If jAj > 1 then return to step (2)

5



else C := A [ C

if empty stack R then C is a critical set

else pop R(A) and return to step (4).

The number of function calls used by Algorithm IV is bounded by 2r log n, since for each

element of the critical set at most 2 log n model calls are needed.

4 Two case studies

The goal of the experimental evaluation was twofold:

(a) to con�rm that the time spend by model calls represents the majority of the overall

diagnostic time, and

(b) to �nd an algorithm which minimizes the number of model calls and consequently

results in an e�cient diagnostic procedure.

We used two testing domains for the evaluation (Table 1): (a) a 1000-bit ripple carry adder

[

de Kleer, 1991

]

, and (b) the KARDIO model of the heart

[

Bratko et al., 1989

]

.

1000-bit adder KARDIO model

No. of components 5000 17 (7 with state)

States per component 3 5.14 in average

Diag. search space size 5000

3

52,920

Testing observations 1 3,096

Computed min. diags. �rst 60 all (1.33 in average)

Cardinality of min. diags. 1{20 3.83 in average

Table 1: Characteristics of both experimental domains.

The 1000-bit adder model consists of 1000 strong models of a binary adder. The binary

adder consists of �ve Boolean gates which can be in states ok, stuck-at-0, or stuck-at-

1. The output Out2

i�1

of the adder i � 1 is connected to the input In3

i

of the adder

i (i = 2; : : : ; 1000). All inputs and outputs were set to 0, except for the Out1

1000

of the

last adder which was set to 1 (this is the only faulty output). Note that the inputs are

propagated through almost every gate of this circuit. The model has a regular structure,

but consists of 5000 components! For the given input-output observation, the �rst 60

minimal diagnoses were computed. Their cardinality ranges from one (single faults) to 20.

The KARDIO model of the heart relates disorders in the electrical activity of the heart

to ECG descriptions. The model consists of seven components which can be in di�erent

states and correspond to individual disorders. The remaining 10 components model un-

derlying physiology of the heart and are assumed to be normal. There are 3096 di�erent

ECG descriptions which indicate a possible (single or multiple) disorder in the heart. For

each ECG we computed all minimal diagnoses. The model used in the experiments is
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represented at four levels of abstraction

[

Mozeti�c and Pfahringer, 1992

]

in order to reduce

the cost of individual model calls.

Both models, IDA and all the critical set algorithms are implemented in SICStus Prolog

[

Carlsson and Widen, 1991

]

and the experiments were run on a SUN IPX workstation.

4.1 A 1000-bit adder

1
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Figure 1: Total diagnostic time vs. time spent for model calls for the 1000-bit adder.

Proportion of the time spent by the model calls increases from initial 50% to �nal 94%.

Figure 1 gives total time needed to compute the �rst k minimal diagnoses, and time spent

by model calls for Algorithm 0. Proportion of the time spent by the model calls increases

from 50% for small k to 94% for large k where time really matters. This con�rms the

thesis that the model calls dominate the overall time. Despite the huge search lattice, the

set operations have negligible e�ect on the overall time.

Figure 2 gives the number of model calls made by di�erent algorithms. Somehow

surprisingly Algorithm 0 outperforms Algorithms II' and IV. While all three have the same

number of successful calls, Algorithm 0 makes lower number of failed calls then Algorithm

IV, which in turn is better then Algorithm II'. For all the 60 diagnoses, the number of failed

calls is 552, 936, and 2077, respectively. For larger k the number of failed calls greatly

exceeds the number of successful calls and therefore dominates the overall diagnostic time.

4.2 The KARDIO heart model

Table 2 gives the number of model calls for di�erent algorithms, and the total diagnostic

time. Proportion of the time spent by the model calls is between 86{88% which con�rms
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Figure 2: The number of successful and failed model calls for the 1000-bit adder. The

number of successful calls is the same for all the three algorithms while the number of

failed calls varies and dominates the diagnostic time.

Algorithm 0 Algorithm II' Algorithm IV

Successful model calls 4313 4314 4314

Failed model calls 23985 41648 29299

Total model calls 28298 45962 33613

Total diag. time [CPU sec] 554 909 669

Proportion of time spent by model calls 88 % 87 % 86 %

Table 2: Number of model calls and overall diagnostic times to compute all minimal

diagnoses for the KARDIO model for all 3096 distinct observations.

the claim that the model calls dominate the overall time. All three algorithms make

approximately the same number of successful model calls. Since there are altogether 4130

minimal diagnoses (for all 3096 observations), only 4% of successful model calls yield non-

minimal diagnoses. In terms of failed model calls, results are similar to the 1000-bit adder

example. Algorithm 0 makes lower number of failed calls then Algorithm IV, which in turn

is better then Algorithm II'. This is also re
ected in the overall times.

5 Analysis of the algorithms

Both experiments indicate that Algorithm 0 outperforms Algorithms II' and IV. Our ex-

planation is the following. In most of the successful model calls, TP returns a minimal
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diagnosis. Note, however, that TP does not solve the minimal diagnosis problem because it

remains to prove that the diagnosis is minimal indeed. For this proof, Algorithm 0 makes

an optimal number of failed model calls, while Algorithms II' and IV are suboptimal.

The reason for better performance of Algorithm 0 is not the large cardinality of minimal

diagnoses, but the use of a powerful TP function.

Take an example in Figure 3. Assume a sublattice with a root f1,2,3,4,5g. Assume

that the root is also a minimal diagnosis. Let's ignore the number of successful model calls

needed to �nd this minimal diagnosis (this is where Algorithms II' and IV are better then

Algorithm 0 since they make O(log n) calls instead of O(n)). Consider just the number of

failed calls needed to prove that the node f1,2,3,4,5g is a minimal diagnosis indeed. In this

case Algorithm 0 makes only 5 calls (one cannot do better), Algorithm II' makes 13 calls

(node f2,3,4,5g is visited twice!), and Algorithm IV makes 8 failed calls. This is consistent

with the experimental results and explains why Algorithm 0 outperforms Algorithms II'

and IV.

6 Conclusion

Experiments indicate that the number and cost of model calls is a dominating factor in

the time needed to compute minimal diagnoses. We modi�ed two critical set algorithms,

proposed by

[

Loveland, 1987

]

, and incorporated them into the incremental diagnostic al-

gorithm IDA

[

Mozeti�c, 1992

]

. In terms of the number of model calls, the worst-case com-

plexity to compute k minimal diagnoses is reduced from O(kn) to O(k log n). However,

in testing experiments, the simple Algorithm 0 with O(n) complexity outperforms more

sophisticated Algorithms II' and IV with O(log n) complexity. The reason is the use of a

powerful TP function which enables `dives' deep into the lattice. In most cases TP returns

a near-minimal diagnosis. It only remains to show that the diagnosis is minimal by showing

that no subset of it is also a diagnosis. For this proof, Algorithm 0 is optimal in terms of

failed model calls.

As a consequence of this empirical study, one can draw two conclusions. First, the worst-

case complexity results have to be properly interpreted. Worst-case is not the average case,

and the actual average case might be much closer to the best case. Due to the use of the

more powerful TP instead of the f function, the overall proportion between successful and

failed model calls changed. Essentially, there was a shift of burden from the Min diag

procedure to the TP function. The worst-case complexity analysis remains valid, but it

does not properly grasp the relevant factors any more, and therefore losses its tightness

and signi�cance.

Second, the experimental results point to the direction in which further research should

be focused. In order to improve the e�ciency of diagnosis one should better try to reduce

the cost of individual model calls. According to the results of this paper and despite of the

low number of testing domains, we feel that this is more promising then trying to reduce

the number of model calls. Our past experiments with the KARDIO model

[

Mozeti�c, 1991,

Mozeti�c and Pfahringer, 1992

]

support the claim. It was shown that model abstraction,
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e�cient constraint propagation, and model compilation, each individually yielded at least

a 10-fold improvement in diagnostic e�ciency over a simple, one-level model of structure

and behaviour.

Another example of the improved model e�ciency is the use of structure-based abduc-

tion

[

El Fattah and Dechter, 1994

]

. First, a model has to be transformed into an acyclic

constraint network. This might require a relatively expensive pre-processing of the ini-

tial constraints using tree clustering. However, as a consequence, an equivalent of the

Min diag procedure is replaced by a single model call which returns not only a minimal,

but a minimal cardinality diagnosis in polynomial time.
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{}

{5}{4}{3}{2}{1}

{1,2,3,4,5}

{2,3,4,5}{1,3,4,5}{1,2,3,4} {1,2,3,5} {1,2,4,5}

{3,4,5}{2,4,5}{2,3,5}{2,3,4}{1,4,5}{1,3,5}{1,3,4}{1,2,5}{1,2,4}{1,2,3}

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

{}

{5}{4}{3}{2}{1}

{1,2,3,4,5}

{2,3,4,5}{1,3,4,5}{1,2,3,4} {1,2,3,5} {1,2,4,5}

{3,4,5}{2,4,5}{2,3,5}{2,3,4}{1,4,5}{1,3,5}{1,3,4}{1,2,5}{1,2,4}{1,2,3}

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

{}

{5}{4}{3}{2}{1}

{1,2,3,4,5}

{2,3,4,5}{1,3,4,5}{1,2,3,4} {1,2,3,5} {1,2,4,5}

{3,4,5}{2,4,5}{2,3,5}{2,3,4}{1,4,5}{1,3,5}{1,3,4}{1,2,5}{1,2,4}{1,2,3}

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

Figure 3: Lattice nodes visited by Algorithms 0, II', IV from top to bottom, respectively,

to prove that f1,2,3,4,5g is a minimal diagnosis. Visited nodes correspond to failed model

calls, arrows indicate a partial order in which the nodes are visited.
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