
A Polynomial-Time Algorithm for

Model-Based Diagnosis

�

Igor Mozeti�c

Austrian Research Institute for Arti�cial Intelligence

Schottengasse 3, A-1010 Vienna

Austria

igor@ai.univie.ac.at

Abstract

We present IDA | an Incremental Diagnostic Algorithm which computes mini-

mal diagnoses from diagnoses, and not from con
icts. As a consequence, by using a

`weak' fault model, the worst-case complexity of the algorithm to compute the k+1-st

minimal diagnosis is O(n

2k

), where n is the number of components. On the practical

side, an experimental evaluation indicates that the algorithm can e�ciently diagnose

devices consisting of a few thousand components. IDA separates model interpreta-

tion from the search for minimal diagnoses in the sense that the model interpreter is

replaceable. This �ts well into the Constraint Logic Programming modeling paradigm

where, for example, combinatorial circuits are modeled by CLP(B), analog circuits

by CLP(<), and physiological models in medicine by constraints over �nite domains.

1 Introduction

Model-based diagnosis is the activity of locating malfunctioning components of a system

solely on the basis of its structure and behavior. There are two prevailing approaches,

consistency-based and abductive [16], which di�er in the representation of knowledge about

the normality and faults, and in how diagnoses are de�ned and computed. Recently,

a number of negative results have been reported about the complexity of model-based

diagnosis. In particular, in the consistency-based approach, �nding the next minimal

diagnosis with a `weak' fault model is an NP-complete problem [8]. With a `strong' fault

model even computing the �rst (non-minimal) diagnosis is NP-complete. Similar results

were shown in the context of abductive diagnosis [2].

�

This is an extended version of the paper that appears in the Proc. European Conf. on Arti�cial

Intelligence, ECAI-92, Vienna, August 3{7, 1992, and a reduced and updated version of the report OEFAI-

TR-91-3 by Igor Mozeti�c and Christian Holzbaur, Controlling the complexity in model-based diagnosis.

1

The goal of this paper is to present IDA | an Incremental Diagnostic Algorithm

which has polynomial worst-case time complexity on one hand, and, on the other hand,

can e�ciently diagnose large-scale devices. We identify two potential sources of exponential

complexity: the search through the space of potential diagnoses, represented by a lattice,

and the type of the fault model used. We de�ne the TP function (theorem prover), orig-

inally proposed by Reiter [18], which clearly separates the model interpretation from the

lattice search. The TP function does not require ATMS-style dependency recording and

can be easily realized by a logic programming system like Prolog. This also avoids incom-

plete constraint propagation which occurs in most ATMS-based systems [6]. Furthermore,

without any change to the diagnostic algorithm, TP can be realized by di�erent instances

of the Constraint Logic Programming (CLP) scheme [10], depending on the domain of

application.

In section 2 we give a new characterization of models, diagnoses and con
icts, and

show how to represent di�erent types of models by logic programs. This is illustrated

by the frequently used binary adder example; in section 4 the example is expanded and

experimental results are compared to de Kleer's HTMS-based system [4]. The basic algo-

rithm which computes all minimal diagnoses is described in section 3. In contrast to most

consistency-based approaches where minimal diagnoses are computed from con
icts (e.g.

[18, 6]), our algorithm computes minimal diagnoses directly from diagnoses. Con
icts are

computed as a side e�ect, and are used to prune the search space. In section 4 we show

that the algorithm computes the k + 1-st minimal diagnosis in time O(n

2k

), where n is

the number of the model components. In conclusion we brie
y outline the application of

di�erent instances of the CLP scheme to technical and medical domains.

2 Modeling and diagnosing with logic programs

Model-based reasoning about a system requires an explicit representation (a model) of the

system's components and their connections. Most diagnostic systems represent models in

terms of constraints coupled with an ATMS [6, 7], or as a set of propositions in �rst-order

logic [18]. In contrast, we represent models by logic programs [11] and by constraint logic

programs [10]. Similar representation was proposed in [19], but the origin goes back to

the KARDIO model [1]. De�nitions of basic concepts typically follow [18] | we give an

alternative, relational characterization, suitable for model representation by (constraint)

logic programs.

De�nition. A model of a system is a triple hSD, COMPS, OBSi where:

1. SD, the system description, is a (constraint) logic program with a distinguished

binary predicate m(COMPS, OBS) which represents a relation between the state of

the system and the observations.

2. COMPS, states of the system components, is an n-tuple hS

1

; : : : ; S

n

i where n is the

number of components, and variables S

i

denote states (normal and abnormal) of

components.

2

3. OBS, observations, is an m-tuple hIn

1

,: : :,In

i

, Out

i+1

,: : :,Out

m

i where In and Out

denote inputs and outputs of the model, respectively.

In a logic program, n-tuples are represented by terms of arity n. In SD, de�nitions,

and algorithms, we refer to a distinguished constant ok to denote that the state S

i

of the

component i is normal. This corresponds to the statement :ab(S

i

) used in the consistency-

based approach.

In3=1

In2=0
In1=1

Out1=0X1

A2

X2

Out2=0
O1

A1
B

A

C

Figure 1: A binary adder, and an observation h1,0,1, 0,0i; Out2 is faulty.

Example (Figure 1). The distinguished binary predicate m is adder, COMPS is a �ve-

tuple hX1,X2,A1,A2,O1i, and OBS is a �ve-tuple hIn1,In2,In3, Out1,Out2i. SD consists

of the following clause which speci�es the structure of the adder, and of additional clauses

which de�ne behavior of the components:

adder(hX1,X2,A1,A2,O1i, hIn1,In2,In3,Out1,Out2i)

xorg(X1, In1, In2, A),

xorg(X2, In3, A, Out1),

andg(A1, In1, In2, B),

andg(A2, In3, A, C),

org(O1, B, C, Out2).

Connections between components are represented by shared variables. Speci�cation of the

behavior depends on the type of the fault model available: weak, exoneration, or strong.

For illustration we de�ne just the behavior of an or gate (org).

A weak fault model de�nes just normal behavior of components (state ok), abnormal

behavior (state ab) is unconstrained:

org(ok, X, Y, Z) or(X, Y, Z).

org(ab, , ,).

A strong fault model speci�es all the possible ways in which a component can fail. In

general, a component may have several failure states. An abnormal or gate, for example,

might have the output stuck-at-1 (s1) or stuck-at-0 (s0):

org(s1, 0, 0, 1).

org(s0, 0, 1, 0).

org(s0, 1, 0, 0).

org(s0, 1, 1, 0).

The exoneration principle [17] is a special case of the strong fault model. It speci�es

as abnormal any behavior di�erent from normal:

3

org(ab, X, Y, Z) :or(X, Y, Z).

Next we de�ne the concepts of a diagnosis and a con
ict for hSD, COMPS, OBSi, as-

suming that an observation, a ground instance of OBS, is given. In the following de�nitions

8F denotes universal closure of the formula F .

De�nition. An ok-instance of a term is an instance where some variables are replaced

by the constant ok. A ground instance is an instance where all variables are replaced by

constants.

De�nition. A diagnosis D is an instance of COMPS such that SD j= 8m(D,OBS).

De�nition. A con
ict C is an ok-instance of COMPS such that SD j= 8:m(C,OBS).

Example. Suppose SD consists of the weak fault model of the adder, and the ob-

servation OBS = h1,0,1, 0,0i is given. Then hok,ok,ok,ok,abi and hab,ab,A1,A2,O1i are

diagnoses, while hok,X2,A1,ok,oki is a con
ict.

This characterization of a diagnosis subsumes most of the previous ones. In the

consistency-based approach [18], a diagnosis

1

is a set of abnormal (6=ok) components such

that SD and OBS are consistent with all the other components being ok. In Sherlock [7]

the de�nition is extended to include a behavioral mode (state) for each component. In

both cases a diagnosis is essentially a ground instance of COMPS. However, a diagnosis

needs not commit a state to each component when the state is `don't care' [16]. This led

to the de�nition of a partial diagnosis [5] which corresponds to a non-ground instance of

COMPS but, on the other hand, does not include states of components. Our de�nition of

a con
ict is standard, i.e., a set of components which cannot be simultaneously ok, and

can be easily extended to a minimal con
ict.

Apart from being simple, our de�nitions are also operational since diagnoses and con-

icts can e�ectively be computed by a logic programming system. The search for a logical

consequence of SD is realized by the search for an answer substitution � such that SD [

f:m(A�,OBS)g is unsatis�able, where A is constrained to be an ok-instance of COMPS. If

such a substitution exists we can concludeD = A� is a diagnosis. If not, and regarding SD

under the closed world assumption [11], we can conclude that C = A is a con
ict. Like in

consistency-based diagnosis, A can be interpreted as an assumption that some components

are not abnormal, i.e., they are ok.

Example. Suppose SD is the strong fault model of the adder, and OBS = h1,0,1,0,0i.

The following query returns four answer substitutions, i.e., diagnoses:

 A= hX1,X2,ok,A2,O1i, adder(A, h1,0,1, 0,0i).

A = hok,ok,ok,ok,s0i;

A = hok,ok,ok,s0,oki;

A = hs0,s0,ok,ok,oki;

A = hs0,s0,ok,s1,s0i

The �rst three diagnoses are minimal while the fourth is subsumed by the �rst and the

third one, but not by the second one. The following de�nition makes this precise.

1

Reiter's de�nition of a diagnosis actually includes the minimality criterion and corresponds to our

de�nition of a minimal diagnosis (see subsequent de�nitions).

4

De�nition. A diagnosis D

0

= hS

0

1

; : : : ; S

0

n

i subsumes a diagnosis D = hS

1

; : : : ; S

n

i (we

write D

0

� D) i� 8i = 1; : : : ; n (S

0

i

= ok) _ (S

0

i

= S

i

).

De�nition. A minimal diagnosis is a diagnosis which is subsumed by no other diag-

nosis.

Note that a minimal diagnosis is always ground since any non-ground diagnosis is

subsumed by its ok-instance. Further, for a minimal number of abnormal components,

there might be several minimal diagnoses since a component might be assigned di�erent

abnormal (6=ok) states.

In the next section we present IDA an algorithm which actually computes minimal

diagnoses. Its distinguishing feature in comparison to most consistency-based algorithms

is that it computes minimal diagnoses directly from diagnoses, and not from con
icts.

Further, the search for the minimal diagnoses is clearly separated from calls to the model.

The separations is realized by a function TP [18] that implements a call to the underlying

theorem prover.

3 Computing minimal diagnoses

{}

{5}{4}{3}{2}{1}

{1,2,3,4,5}

{2,3,4,5}{1,3,4,5}{1,2,3,4} {1,2,3,5} {1,2,4,5}

{3,4,5}{2,4,5}{2,3,5}{2,3,4}{1,4,5}{1,3,5}{1,3,4}{1,2,5}{1,2,4}{1,2,3}

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

Figure 2: Search lattice for the adder model, given the observation h1,0,1, 0,0i. � denote

minimal con
icts, and
 minimal diagnoses. For the weak fault model all supersets of

minimal diagnoses are also diagnoses. For the strong fault model only nodes in dashed

ovals denote non-minimal diagnoses.

It is convenient to represent the search space of diagnoses and con
icts as a subset-superset

lattice (Figure 2). The top element of the lattice corresponds to a tuple where all com-

ponents are 6=ok, and the bottom element to the tuple where all components are ok. A

diagnosis is represented by a set of components which are 6=ok, and a con
ict, i.e., a set of

5

components which cannot simultaneously be ok, by the complement of the set. Note that

in this representation a smaller con
ict corresponds to a larger set.

Example. The diagnosis hab,ab,ok,ok,oki is represented by the set f1,2g, and the

con
ict hok,X2,A1,ok,oki by the set f2,3g.

First we de�ne the TP function that takes as arguments SD, OBS, and a label L, an

element of the lattice. TP veri�es whether L is a diagnosis or a con
ict by calling the

model. If the call to the model succeeds, TP returns a diagnosis which is extracted from

the answer substitution. If the call fails then L is a con
ict. In the following :X denotes

the complement of a set X, i.e., :X = f1; : : : ; ng �X.

Function TP(SD, OBS, L)

A := hS

1

; : : : ; S

n

i j S

i

= ok; i 2 :L (an ok-instance)

if 9� such that SD [f:m(A�;OBS)g is unsatis�able

then return D := :fi j S

i

= ok; S

i

2 A�g (D � L)

else return false (L is a con
ict).

Note that a successful call to TP might return a diagnosis D deep below the label L and

that D � L always holds. This is due to the non-ground calls to the model, i.e., S

j

(j 6= i)

in A are distinct variables. On the other hand, a label can only be veri�ed whether it is

a con
ict or not. Our TP function is therefore exactly the opposite of the one de�ned by

Reiter [18], i.e., the roles of diagnoses and con
icts are reversed.

Reiter's algorithm [18] searches the lattice bottom-up (from con
icts to diagnoses), in

a breadth-�rst fashion (diagnoses of smaller cardinality are found �rst). Our algorithm

implements a top-down, depth-�rst search through the lattice. In diagnosing real systems,

the search lattice is large and minimal diagnoses are usually near the bottom of the lattice.

Depth-�rst search, coupled with our TP function, allows for deep `dives' into the lattice

and in an average case at least a few diagnoses are found e�ciently. Further, by relaxing

the problem and by a simple modi�cation to the basic algorithm, we can ensure that the

worst case complexity remains polynomial. Before we de�ne the All diags procedure which

computes all minimal diagnoses and con
icts, we need one additional de�nition.

De�nition. Suppose Xs is a collection of sets. A hitting set H for Xs is a set, such

that H \X 6= fg for each X 2 Xs. A hitting set is minimal i� no proper subset of it is a

hitting set.

Function H(Xs) returns a minimal hitting set for a collection of sets Xs.

Procedure All diags(Ds, Cs)

inputs: SD, OBS,

Ds := fg, Cs := fg,

outputs: Ds, a set of all minimal diagnoses,

Cs, a set of all minimal con
icts,

while 9L (L := :H(Ds)) ^ (L 6� C; C 2 Cs)

do if TP(SD, OBS, L) returns D

6

then Min diag(D, Cs),

Ds := Ds [fDg

else Cs := Cs [fLg � fC j C � L; C 2 Csg

(delete non-minimal con
icts C from Cs).

The procedure starts with the label L = f1; : : : ; ng. In each iteration of the while loop,

either a minimal con
ict or a minimal diagnosis is found (through a call to the Min diag

procedure). A label generated as a complement of a hitting set of previous diagnoses ensures

that a new diagnosis will be distinct from the previous ones. The second condition in the

while statement (L 6� C; C 2 Cs) prevents redundant TP calls since any label which is a

subset of a con
ict is also a con
ict. The procedure terminates when all minimal diagnoses

and con
icts are found. This is due to the fact that minimal diagnoses are exactly minimal

hitting sets of con
icts [18] and therefore the while loop condition cannot be satis�ed any

more.

The Min diag procedure is invoked when a diagnosis D, not necessarily minimal, is

found. The procedure searches the sub-lattice under D until it �nds a minimal diagnosis.

Procedure Min diag(D, Cs)

inputs: SD, OBS,

D, a diagnosis,

Cs, a set of con
icts,

outputs: D, a minimal diagnosis,

Cs, an updated set of con
icts,

while 9L (L := D � fig; i 2 D) ^ (L 6� C; C 2 Cs)

do if TP(SD, OBS, L) returns D

0

then D := D

0

else Cs := Cs [fLg � fC j C � L; C 2 Csg

(delete non-minimal con
icts C from Cs).

At each step the Min diag procedure removes an arbitrary element i from the diagnosis.

This corresponds to the assumption that the component i is ok. If the TP call succeeds

the returned diagnosis is a new candidate for a minimal one. If the TP call fails L is a

con
ict and i is not removed from D ever again since any subset of a con
ict is also a

con
ict. The procedure terminates either when D = fg, i.e., all components are ok, or

when all generated subsets of a diagnosis turn out to be con
icts. The Min diag procedure

is similar to the algorithm for computing the �rst diagnosis by Friedrich et al. [8]. The

di�erence is that we allow for non-ground calls to the model (which enable `dives' deep

down the lattice), and that a minimal diagnosis can be computed from any diagnosis, not

just from the top element of the lattice.

Example. Suppose SD is the weak fault model of the adder, and OBS = h1,0,1, 0,0i.

The algorithm returns minimal diagnoses Ds = ff4g,f5g,f1,2gg, and minimal con
icts Cs

= ff1,3g,f2,3gg. The following is an annotated and abbreviated trace of the algorithm.

7

call All diags(Ds=fg, Cs=fg)

L = :H(fg) = f1,2,3,4,5g

suppose TP(SD, OBS, f1,2,3,4,5g) returns a diagnosis D = f5g

(in the worst case the very same label f1,2,3,4,5g could be returned)

call Min diag(f5g, fg)

L = f5g � fi=5g = fg

TP(SD, OBS, fg) returns false, fg is a con
ict

Cs = ffgg

exit Min diag(f5g, ffgg)

Ds = ff5gg

L = :H(ff5gg) = f1,2,3,4g

suppose TP(SD, OBS, f1,2,3,4g) returns a diagnosis D = f4g

call Min diag(f4g, ffgg)

L = f4g � fi=4g = fg, however fg � C=fg and there is no alternative L

exit Min diag(f4g, ffgg)

Ds = ff4g,f5gg

L = :H(ff4g,f5gg) = f1,2,3g

suppose TP(SD, OBS, f1,2,3g) returns a diagnosis D = f1,2,3g

call Min diag(f1,2,3g, ffgg)

L = f1,2,3g � fi=1g = f2,3g

TP(SD, OBS, f2,3g) returns false, f2,3g is a con
ict

Cs = ff2,3gg, note that fg is deleted from Cs since fg � L=f2,3g

L = f1,2,3g � fi=2g = f1,3g

TP(SD, OBS, f1,3g) returns false, f1,3g is a con
ict

Cs = ff1,3g, f2,3gg

L = f1,2,3g � fi=3g = f1,2g

TP(SD, OBS, f1,2g) returns a diagnosis D = f1,2g

L = f1,2g � fi=1g = f2g, however f2g � C=f2,3g and thus another L is generated

L = f1,2g � fi=2g = f1g, however f1g � C=f1,3g and there is no alternative L

exit Min diag(f1,2g, ff1,3g,f2,3gg)

Ds = ff4g,f5g,f1,2gg

L = :H(ff4g,f5g,f1,2gg) = f1,3g, however f1,3g is a con
ict and another L is generated

L = :H(ff4g,f5g,f1,2gg) = f2,3g, however f2,3g is also a con
ict and there is no other L

exit All diags(Ds=ff4g,f5g,f1,2gg, Cs=ff1,3g,f2,3gg

4 Complexity and e�ciency

If the number of the system components is n there might be O(2

n

) minimal diagnoses. In

general, attempting to compute all minimal diagnosis is asking for more information than

one could ever hope to use. [8] shows that even the next diagnosis problem is intractable:

given a set of already found minimal diagnoses Ds, deciding whether a next minimal

diagnosis D 62 Ds exists is NP-complete. The statement holds for a weak fault model, and

8

with a strong fault model things get worse since then even deciding whether an arbitrary

diagnosis exists is NP-complete. This has been shown in [8] for consistency-based diagnosis,

and in [2] for abductive diagnosis. From the above results we can identify two sources of

potential intractability: the search through the lattice, and the type of the fault model

used. A nice feature of our algorithm is that it separates the lattice search from the TP

calls and therefore enables to address each issue individually.

Let us �rst assume that, ignoring the type of the model, a call to TP requires constant

time. Then the single source of exponential complexity in our algorithm is the computation

of a minimal hitting set in the while loop of the All diags procedure. Given a collection Ds

of subsets of f1; : : : ; ng (already found minimal diagnoses) computing a minimal hitting

set H(Ds) (a complement of the label L) is NP-complete [9, p. 222]. However, if jDs j = k

then there is at most n

k

hitting sets, and computing a minimal hitting set is in O(n

k

).

Each label L in the All diags procedure is either a (non-minimal) diagnosis or a minimal

con
ict. For k diagnoses there is at most n

k

minimal con
icts, and computing a label

L which is not a con
ict requires at most n

k

� n

k

comparisons, i.e., is in O(n

2k

). If

L is a con
ict, the number of diagnoses k does not increase, and computing the next

label (or deciding that there is none) remains polynomial. If L is a diagnosis then the

Min diag procedure �nds a minimal diagnosis in no more then n steps, and produces no

more then n con
icts. Therefore, for a �xed set of k diagnoses Ds, the algorithm decides

whether the next diagnosis exists (and �nds one) in polynomial time O(n

2k

). Note that

this does not contradict the result reported in [8] since no bound on the number of already

found diagnoses was set. However, due to their pessimistic result, a diagnostic algorithm

was proposed which computes just the �rst diagnosis in polynomial time. Our All diags

procedure can be trivially modi�ed into the K diags procedure which computes the �rst k

diagnoses in polynomial time.

Next we address the complexity of the TP function with respect to the type of the

fault model used. Any non-ground model call, as speci�ed by the TP function, can take

an exponential time. However, in the case of aweak fault model we can take the advantage

of the continuity of the search space. Since each non-minimal diagnosis has at least one

direct successor (subset) which is also a diagnosis, we can make all the model calls ground.

This is easily achieved by introducing another distinguished constant, say ab (which stands

for a state 6=ok), and instantiating all free variables to ab. Nothing else in the algorithm

changes, and the complexity analysis remains valid since a ground model call corresponds

to a polynomial consistency check [8].

A combination of di�erent abnormal behaviors is a potential source of combinatorial

explosion in the case of a strong fault model. Therefore we can use it just to verify the

minimal diagnoses computed by the weak fault model. Minimal diagnoses are typically

of low cardinality, and their veri�cation is usually tractable. If no previously computed

minimal diagnosis is admitted by the strong fault model, we can use the weak fault model to

compute the next, k+1-st minimal diagnosis. An incremental application of the algorithm

therefore guarantees a smooth degradation of performance.

Simultaneous use of a weak and strong fault model is an instance of abstraction. An

abstraction, when applied to a model M = hSD,COMPS,OBSi yields an abstract model

9

0.1

1

10

100

0 1000 2000 3000 4000 5000

T
im

e
[C

P
U

 s
ec

]

No. of components

15 diagnoses
10 diagnoses
5 diagnoses
1 diagnosis

1

10

100

1000

10000

0 10 20 30 40 50 60

K diagnoses

all, 1-K diagnoses
next, Kth diagnosis

Figure 3: Diagnostic time for the �rst k diagnoses as a function of the number of com-

ponents n (left) and as a function of k (n = 5000, right) for the m-bit ripple carry adder

(n = 5�m). Logarithmic time scale indicates a sub-exponential increase of time with the

number of gates.

M

0

where diagnoses are preserved, i.e.,Ds � Ds

0

[12]. Con
icts are preserved when moving

from the abstract M

0

to the detailed model M , i.e., Cs

0

� Cs. The above scheme can be

extended to include three types of models of decreasing complexity: a strong fault model

(M), a weak (M

0

), and a structural model (M

00

).

In an experimental evaluation, we constructed a model consisting of thousands of com-

ponents, and measured the CPU time required to �nd the �rst k diagnoses (Figure 3). The

model is an m-bit ripple carry adder [4] consisting of m strong models of the binary adder

(see Figure 1). The output Out2

i�1

of the adder i� 1 is connected to the input In3

i

of the

adder i (i = 2; : : : ;m). All inputs and outputs were set to 0, except for the Out1

m

of the

last adder m which was set to 1 (this is the only faulty output). Note that the inputs are

propagated through almost every gate of this circuit, and that an m-bit adder consists of

5 �m gates. Results in Figure 3 indicate that even such large devices can be diagnosed

e�ciently. De Kleer reported [4] that the unfocused GDE [6] can diagnose a 4-bit adder in

60 CPU seconds, while the unfocused Sherlock [7] can do a 6-bit adder in 60 CPU seconds.

His new algorithm with focusing can �nd 5 probable diagnoses for a 500-bit adder (2500

gates) in 6 CPU seconds on Symbolics XL1200 [4]. Without focusing, our algorithm IDA

computes the �rst 5 diagnoses (which happen to be the probable ones) in 4 CPU seconds.

IDA is implemented in SICStus Prolog [3] and the experiments were run on a SUN IPX

workstation

2

.

2

IDA is available via anonymous ftp.

10

5 Conclusion

We de�ned a diagnostic algorithm which clearly separates the search through the space

of potential diagnoses from the models and their computational domains. The decom-

position enables an independent analysis and control of the computational complexity.

IDA presents an e�cient and solid skeleton for more sophisticated algorithms. The non-

deterministic choice of L in All diags and Min diag, for example, calls for the incorporation

of probabilities of faults to guide the search (like de Kleer's focusing [4]). The incremen-

tality makes it suitable to interleave the diagnostic process with repair [8], or add di�erent

probing strategies [6, 7]. The replaceability of the model interpreter allows for the applica-

bility to a broad spectrum of domains | each of them can be modeled either by a widely

available Prolog or by an instance of the Constraint Logic Programming (CLP) scheme.

In CLP, syntactic uni�cation is replaced by a more general constraint satisfaction over

speci�c domains. CLP(B), for example, is a solver over Boolean expressions which can

be used to compactly model and diagnose combinatorial circuits [13]. Another model

interpreter, CLP(<), can solve systems of simultaneous linear (in)equations over <eals.

This is beyond the capabilities of local constraint propagation methods used by ATMS-

based systems. CLP(<) was applied to diagnose analog circuits operating under the AC

conditions [14]. It enables modeling of soft faults | drifts from the nominal parameter

values, and computation with parameter tolerances. In a medical application, the heart

model in KARDIO [1] was speci�ed by a pure logic program, and recently reformulated in

terms of constraints over �nite domains [15]. IDA works with any of the above models.

Acknowledgements

This work was supported by the Austrian Federal Ministry of Science and Research.

Thanks to Christian Holzbaur for his collaboration, to Bernhard Pfahringer, Carl Uhrik,

and Gerhard Widmer for valuable comments, and to Robert Trappl for making this work

possible.

References

[1] Bratko, I., Mozeti�c, I., Lavra�c, N. KARDIO: A Study in Deep and Qualitative Knowl-

edge for Expert Systems. MIT Press, Cambridge, 1989.

[2] Bylander, T., Allemang, D., Tanner, M.C., Josephson, J.R. Some results concerning

the computational complexity of abduction. Proc. KR-89, 44{54, Toronto, 1989.

[3] Carlsson, M., Widen, J. SICStus Prolog User's Manual. Swedish Institute of Computer

Science, Kista, Sweden, 1991.

[4] de Kleer, J. Focusing on probable diagnoses. Proc. AAAI-91, 842{848, Anaheim, 1991.

11

[5] de Kleer, J., Mackworth, A.K., Reiter, R. Characterizing diagnoses. Proc. AAAI-90,

324{330, Boston, 1990.

[6] de Kleer, J., Williams, B.C. Diagnosing multiple faults. Arti�cial Intelligence 32 (1):

97{130, 1987.

[7] de Kleer, J., Williams, B.C. Diagnosis with behavioral modes. Proc. IJCAI-89, 1324{

1330, Detroit, 1989.

[8] Friedrich, G., Gottlob, G., Nejdl, W. Physical impossibility instead of fault models.

Proc. AAAI-90, 331{336, Boston, 1990.

[9] Garey, M.R., Johnson, D.S. (1979). Computers and Intractability. Freeman and Co.,

New York.

[10] Ja�ar, J., Lassez, J.-L. Constraint logic programming. Proc. 14th ACM Symp. on

Principles of Programming Languages, 111{119, Munich, 1987.

[11] Lloyd, J.W. Foundations of Logic Programming (Second edition). Springer-Verlag,

1987.

[12] Mozeti�c, I. Hierarchical model-based diagnosis. Intl. Journal of Man-Machine Studies

35 (3): 329{362, 1991. Also in W. Hamscher, L. Console, J. de Kleer, Eds., Readings

in Model-based Diagnosis, Morgan Kaufmann, San Mateo, CA, 1992.

[13] Mozeti�c, I., Holzbaur, C. Model-based diagnosis with constraint logic programs. Proc.

7th Austrian Conf. on AI, 168{180, Wien, Springer-Verlag (IFB 287), 1991.

[14] Mozeti�c, I., Holzbaur, C., Novak, F., Santo-Zarnik, M. Model-based analogue circuit

diagnosis with CLP(<). Proc. 4th Intl. GI Congress, 343{353, Munich, Springer-Verlag

(IFB 291), 1991.

[15] Mozeti�c, I., Pfahringer, B. Improving diagnostic e�ciency in KARDIO: abstractions,

constraint propagation, and model compilation. In E. Keravnou, Ed., Deep Models for

Medical Knowledge Engineering, Elsevier, Amsterdam, 1992.

[16] Poole, D. Normality and faults in logic-based diagnosis. Proc. IJCAI-89, 1304{1310,

Detroit, 1989.

[17] Raiman, O. Diagnosis as a trial: the alibi principle. Report, IBM Scienti�c Center,

Paris, 1989.

[18] Reiter, R. A theory of diagnosis from �rst principles. Arti�cial Intelligence 32 (1):

57{95, 1987.

[19] Saraswat, V.A., de Kleer, J., Raiman, O. Contributions to a theory of diagnosis. Proc.

First Intl. Workshop on Principles of Diagnosis, 33{38, Stanford University, Palo

Alto, 1990.

12

Appendices

A IDA code

IDA implements an Incremental Diagnostic Algorithm for model-based diagnosis. Models

are represented by (constraint) logic programs. This directory contains the following �les:

� README | this �le

� init | loading directives

� kdiags.pl | top level algorithm

� hset.pl | computation of hitting sets

� lattice.pl | lattice operations

� ords.pl | operations on sets represented by ordered lists

� bits.pl | operations on sets represented by bit strings

� examples/ | various models

This work was supported by the Austrian Federal Ministry of Science and Research. Read

the RESEARCH SOFTWARE DISCLAIMER and the USER AGREEMENT. When pub-

lishing any results using this code, this will be properly acknowledged and the following

publication will be referenced:

Mozeti�c, I. A polynomial-time algorithm for model-based diagnosis. Proc. ECAI-92, Vi-

enna, Austria, August 3{7, 1992, John Wiley & Sons.

Please let us know of any problems you encountered and results you achieved. Address

correspondence to:

Igor Mozeti�c

Austrian Research Institute for Arti�cial Intelligence (ARIAI)

Schottengasse 3

A-1010 Vienna, Austria

Phone: (+43 1) 533-6112

Email: igor@ai.univie.ac.at

13

A.1 RESEARCH SOFTWARE DISCLAIMER

As unestablished, research software, this program is provided free of charge on an \as is"

basis without warranty of any kind, either expressed or implied, including but not limited

to implied warranties of merchantability and �tness for a particular purpose. ARIAI does

not warrant that the functions contained in this program will meet the user's requirements

or that the operation of this program will be uninterrupted or error-free. Acceptance and

use of this program constitutes the user's understanding that he will have no recourse to

ARIAI for any actual or consequential damages, including, but not limited to, lost pro�ts

or savings, arising out of the use or inability to use this program. Even if the user informs

ARIAI of the possibility of such damages, ARIAI expects the user of this program to accept

the risk of any harm arising out of the use of this program, or the user shall not attempt

to use this program for any purpose.

A.2 USER AGREEMENT

By acceptance and use of this experimental program the user agrees to the following:

1. This program is provided for the user's personal, non-commercial, experimental use

and the user is granted permission to copy this program to the extent reasonably

required for such use.

2. All title, ownership and rights to this program and any copies remain with ARIAI,

irrespective of the ownership of the media on which the program resides.

3. The user is permitted to create derivative works to this program. However, all copies

of the program and its derivative works must contain the ARIAI copyright notice,

the RESEARCH SOFTWARE DISCLAIMER and this USER AGREEMENT.

4. By furnishing this program to the user, ARIAI does NOT grant either directly or by

implication, estoppel, or otherwise any license under any patents, patent applications,

trademarks, copyrights or other rights belonging to ARIAI or to any third party,

except as expressly provided herein.

5. The user understands and agrees that this program and any derivative works are to be

used solely for experimental uses and are not to be sold, distributed to a commercial

organization, or be commercially exploited in any manner.

6. ARIAI requests that the user supply to ARIAI a copy of any changes, enhance-

ments, or derivative works which the user may create. The user grants ARIAI and

its subsidiaries an irrevocable, nonexclusive, worldwide and royalty-free license to

use, execute, reproduce, display, perform, prepare derivative works based upon, and

distribute, (INTERNALLY AND EXTERNALLY) copies of any and all such mate-

rials and derivative works thereof, and to sublicense others to do any, some, or all of

the foregoing, (including supporting documentation).

14

%% IDA (c) Copyright 1992

%% Austrian Research Institute for Artificial Intelligence

%%

%% File: init

%% Author: Igor Mozetic (igor@ai.univie.ac.at)

%% Date: April 15, 1992

%

% Top level loading directives.

% An interface to the model <SD, Comps, Obs> must be defined in terms of

% the following predicates (see examples):

%

% model(Comps, Obs) - a binary predicate which relates Comps to Obs,

% observation(Obs) - an instance of Obs (optional),

% state_functor(Funct) - a functor of Comps,

% state_size(N) - the arity of Comps,

% state_normal(I, Ok) - a constant which denotes normal state in Comps

% at argument position I (must be singleton),

% state_abnormal(I, Ab) - a constant which denotes abnormal state in Comps

% (there can be several abnormal states at I).

:- op(600, xfy, ':').

%load_file(File) :- consult(File). % C-Prolog

load_file(File) :- compile(File). % Quintus, SICStus Prolog

:- load_file('kdiags.pl').

:- load_file('hset.pl').

:- load_file('lattice.pl').

:- load_file('ords.pl'). % sets represented by ordered lists

%:- load_file('bits.pl'). % sets represented by bit strings

15

%% IDA (c) Copyright 1992

%% Austrian Research Institute for Artificial Intelligence

%%

%% File: kdiags.pl

%% Author: Igor Mozetic (igor@ai.univie.ac.at)

%% Date: April 15, 1992

%

% Implements IDA - an Incremental Diagnostic Algorithm.

ida(Diags, Confs) :-

observation(Obs),

k_diags(1000, Obs, Diags, Confs).

ida(Obs, Diags, Confs) :-

k_diags(1000, Obs, Diags, Confs).

k_diags(K, Obs, Diags, Confs) :-

k_diags(0, K, [], [], Diags, Confs, Obs).

next_diag(Obs, Diags0, Confs0, Diags, Confs) :-

k_diags(0, 1, Diags0, Confs0, Diags, Confs, Obs).

% k_diags(+N, +K, +Diags0, +Confs0, -Diags, -Confs, +Obs)

% Given an initial set of minimal Diags0 and (non-minimal) Confs0,

% computes next K-N minimal diagnoses. Returns updated Diags and Confs.

k_diags(N, K, Diags0, Confs0, Diags, Confs, Obs) :-

N < K,

gen_label(Diags0, Confs0, Label), !,

verify_label(Label, Diags0, Confs0, Diags1, Confs1, Obs),

(Diags0 == Diags1 -> N1 = N ; N1 is N+1),

k_diags(N1, K, Diags1, Confs1, Diags, Confs, Obs).

k_diags(_, _, Diags, Confs, Diags, Confs, _).

% verify_label(+Label, +Diags0, +Confs0, -Diags, -Confs, +Obs)

% Verifies whether Label is a diagnosis or a conflict. If it is

% a (non-minimal) Diag0 then min_diag/6 returns a minimal Diag and

% previous Diags0 are updated into new Diags. Otherwise Label is

% a Conf, and Confs0 are updated into Confs.

16

verify_label(Label, Diags0, Confs0, Diags, Confs, Obs) :-

call_model(Label, Diag0, Obs), !,

gen_succs(Diag0, Succs),

min_diag(Succs, Diag0, Confs0, Diag, Confs, Obs),

ord_insert(Diags0, Diag, Diags).

% latt_insert(Diags0, Diag, Diags).

verify_label(Conf, Diags, Confs0, Diags, Confs, _) :-

latt_replace(Confs0, Conf, Confs).

% min_diag(+Labels, +Diag0, +Confs0, -Diag, -Confs, +Obs)

% For a (non-minimal) Diag0 and a list of its direct succesors Labels

% returns a minimal Diag. Also updates Confs0 into Confs.

min_diag([], Diag, Confs, Diag, Confs, _) :- !. % no more Labels

min_diag([Conf|Labels], Diag0, Confs0, Diag, Confs, Obs) :- % Label is in Confs0,

latt_member(Conf, Confs0), !, % don't call TP

min_diag(Labels, Diag0, Confs0, Diag, Confs, Obs).

min_diag([Label|_], _, Confs0, Diag, Confs, Obs) :- % Label yields Diag0,

call_model(Label, Diag0, Obs), % a new candidate for

gen_succs(Diag0, Succs), !, % a minimal Diag

min_diag(Succs, Diag0, Confs0, Diag, Confs, Obs).

min_diag([Conf|Labels], Diag0, Confs0, Diag, Confs, Obs) :- % Label is Conf

latt_replace(Confs0, Conf, Confs1), !,

min_diag(Labels, Diag0, Confs1, Diag, Confs, Obs).

% call_model(+Label, -Diag, +Obs)

% Implements the TP function.

% Label, Obs -> model(Diag, Obs)

call_model(Label, Diag, Obs) :-

% ords_ground_state(Label, Ground), % to ensure P complexity

% model(Ground, Obs), % for a weak fault model

ords_state(Label, State),

model(State, Obs),

!,

state_ords(State, Diag).

% gen_succs(+Set, -[Sub|Subsets])

% Subsets are immediate successors of Set.

% 3:[1,3,5] -> [2:[3,5], 2:[1,5], 2:[1,3]]

17

gen_succs(Set, Subsets) :-

ords_gen_subs(Set, Set, Subsets).

% gen_label(+Diags, +Confs, -Label)

% Label is a complement of a hitting set of minimal Diags,

% such that it is not a SUBset of any Confs.

% [2:[1,2], 2:[1,5]] x 4:[1,2,3,4] -> 3:[1,3,4], 4:[2,3,4,5] -> 4:[2,3,4,5]

% Nondeterministic, NP complexity !

gen_label(Diags, Confs, Label) :-

hitting_set(Diags, Hset),

ords_complement(Hset, Label),

\+ latt_member(Label, Confs).

18

%% IDA (c) Copyright 1992

%% Austrian Research Institute for Artificial Intelligence

%%

%% File: hset.pl

%% Author: Igor Mozetic (igor@ai.univie.ac.at)

%% Date: April 15, 1992

%

% Computes a minimal hitting set from a collection of minimal sets,

% i.e., assumes no subset/superset subsumption in the collection.

% Successive hitting sets, without duplicates (?!), are generated

% through backtracking.

% [2:[1,3],2:[1,4],2:[3,4],2:[4,5]] -> 3:[1,3,5], 2:[1,4], 2:[3,4]

hitting_set(Sets, Hset) :-

hset(Sets, [], Just),

ords_drop_just(Just, Hset).

% hset(+Sets, +Hset0, -Hset)

% Each Set from Sets must have at least one element in Hset.

% Either Set already covers some element of Hset0, or such

% an element H of Set must be selected that its addition

% to Hset0 would NOT result in a non-minimal Hset.

hset([], Hset, Hset).

hset([Set|Sets], Hset0, Hset) :-

hset_intersect(Hset0, Set, Hset1), !,

hset(Sets, Hset1, Hset).

hset([Set|Sets], Hset0, Hset) :-

ords_gen_elem(Set, H),

\+ hset_non_minimal(H, Hset0),

ord_insert(Hset0, just(H,[Set]), Hset1),

hset(Sets, Hset1, Hset).

% hset_intersect(+Hset0, +Set, -Hset)

% Checks weather Set covers any element H (with Just) of Hset0.

% If yes, it adds Set to justifications Just, yielding Hset.

hset_intersect([just(H,Just)|Hset], Set, [just(H,[Set|Just])|Hset]) :-

ords_memcheck(H, Set), !.

hset_intersect([Elem|Hset0], Set, [Elem|Hset]) :-

hset_intersect(Hset0, Set, Hset).

19

% hset_non_minimal(+H, +Hset)

% Checks if adding H to Hset would make Hset non-minimal (path

% subsumption). Hset is non-minimal if any of its elements remains

% without justification. An element of Hset has no justification

% if each Just either covers H or some other element of Hset.

hset_non_minimal(H, Hset) :-

select(just(_,Just), Hset, Hset1),

hset_eliminate(Just, H, Just1),

Just \== Just1,

hset_covered(Just1, Hset1).

% hset_eliminate(+Just, +H, -Just1).

% Eliminates those Just which cover H, a potential element of Hset.

hset_eliminate([], _, []).

hset_eliminate([Set|Just0], H, Just) :-

ords_memcheck(H, Set), !,

hset_eliminate(Just0, H, Just).

hset_eliminate([Set|Just0], H, [Set|Just]) :-

hset_eliminate(Just0, H, Just).

% hset_covered(+Just, +Hset)

% Verifies weather each Just covers an element of Hset.

hset_covered([], _).

hset_covered([Set|Just], Hset) :-

member(just(H,_), Hset),

ords_memcheck(H, Set), !,

hset_covered(Just, Hset).

%% Operations on standard ordered sets (without cardinality).

% ord_insert(+Set, +Elem, -Set1)

% Inserts Elem into ordered Set, yielding Set1.

ord_insert([], Elem, [Elem]).

ord_insert([Head|Tail], Elem, Set) :-

20

compare(Order, Head, Elem),

ord_insert(Order, Head, Tail, Elem, Set).

ord_insert(<, Head, Tail, Elem, [Head|Set]) :-

ord_insert(Tail, Elem, Set).

ord_insert(=, Head, Tail, _, [Head|Tail]).

ord_insert(>, Head, Tail, Elem, [Elem,Head|Tail]).

% ord_delete(+Set, +Elem, -Set1)

% Deletes Elem from ordered Set, FAILS if not found !

ord_delete([Head|Tail], Elem, Set) :-

compare(Order, Head, Elem),

ord_delete(Order, Head, Tail, Elem, Set).

ord_delete(=, _, Set, _, Set).

ord_delete(<, Head, Tail, Elem, [Head|Set]) :-

ord_delete(Tail, Elem, Set).

member(X, [X|_]).

member(X, [_|Xs]) :- member(X, Xs).

memberchk(X, [X|_]) :- !.

memberchk(X, [_|Xs]) :- memberchk(X, Xs).

select(X, [X|Xs], Xs).

select(X, [Y|Xs], [Y|Ys]) :- select(X, Xs, Ys).

21

%% IDA (c) Copyright 1992

%% Austrian Research Institute for Artificial Intelligence

%%

%% File: lattice.pl

%% Author: Igor Mozetic (igor@ai.univie.ac.at)

%% Date: April 15, 1992

%%

% Operations on lattices over standard ordered sets (with cardinality).

% A lattice is ordered in descending order (larger sets first),

% and containts no duplicates in the subset-superset sense.

% [3:[2,4,5],3:[1,5,6],2:[2,6],2:[1,2],1:[3]] - inverse standard order !

% latt_member(+Set, +Lattice).

% Checks if Set or its strict SUPERset is in ordered Lattice.

latt_member(Set, [Set1|Lattice]) :-

ords_compare(Set1, Set, Order),

latt_member(Order, Set, Lattice).

latt_member(==, _, _).

latt_member(>=, _, _).

latt_member(>>, Set, Lattice) :- latt_member(Set, Lattice).

% latt_insert(+Lattice0, +Set, -Lattice)

% Inserts Set into ordered Lattice0 if there is no SUPERset of Set.

% DOESN'T delete subsets of Set from Lattice0 !

% [[1,2,5],[3,5],[2,3],[4]] x [2,4] -> [[1,2,5],[3,5],[2,4],[2,3],[4]]

latt_insert([], Set, [Set]).

latt_insert([Head|Tail], Set, Lattice) :-

ords_compare(Head, Set, Order),

latt_insert(Order, Head, Tail, Set, Lattice).

latt_insert(==, Head, Tail, _, [Head|Tail]).

latt_insert(>=, Head, Tail, _, [Head|Tail]).

latt_insert(=<, Head, Tail, Set, [Set,Head|Tail]).

latt_insert(<<, Head, Tail, Set, [Set,Head|Tail]).

latt_insert(>>, Head, Tail, Set, [Head|Lattice]) :-

latt_insert(Tail, Set, Lattice).

22

% latt_replace(+Lattice0, +Set, -Lattice)

% Inserts Set into ordered Lattice0 if there is no SUPERset of Set.

% DELETES all subsets of Set from Lattice0 !

% [[1,2,5],[3,5],[2,3],[4]] x [2,4] -> [[1,2,5],[3,5],[2,4],[2,3]]

latt_replace([], Set, [Set]).

latt_replace([Head|Tail], Set, Lattice) :-

ords_compare(Head, Set, Order),

latt_replace(Order, Head, Tail, Set, Lattice).

latt_replace(==, Head, Tail, _, [Head|Tail]).

latt_replace(>=, Head, Tail, _, [Head|Tail]).

latt_replace(=<, _, Tail, Set, [Set |Lattice]) :-

latt_delete(Tail, Set, Lattice).

latt_replace(<<, Head, Tail, Set, [Set,Head|Lattice]) :-

latt_delete(Tail, Set, Lattice).

latt_replace(>>, Head, Tail, Set, [Head|Lattice]) :-

latt_replace(Tail, Set, Lattice).

% latt_delete(+Lattice0, +Set, -Lattice)

% From ANY Lattice0 deletes ALL subsets of Set, always succeeds.

% [[1,2,3],[2,3],[1,2],[3],[1],[]] x [1,2] -> [[1,2,3],[2,3],[3]]

latt_delete([], _, []).

latt_delete([Head|Tail], Set, Lattice) :-

ords_subset(Head, Set), !,

latt_delete(Tail, Set, Lattice).

latt_delete([Head|Tail], Set, [Head|Lattice]) :-

latt_delete(Tail, Set, Lattice).

23

%% IDA (c) Copyright 1992

%% Austrian Research Institute for Artificial Intelligence

%%

%% File: ords.pl

%% Author: Igor Mozetic (igor@ai.univie.ac.at)

%% Date: April 15, 1992

%

% Operations on sets represented by ordered lists with cardinality.

% {3,1,4} -> 3:[1,3,4]

% ords_memcheck(+Elem, +Set)

% Checks the membership of X in Set, no backtracking.

ords_memcheck(Elem, _:Set) :- memberchk(Elem, Set).

% ords_gen_elem(+Set, -Elem)

% Generates individual Elem-ents of Set through backtracking.

ords_gen_elem(_:Set, Elem) :- member(Elem, Set).

% ords_gen_subs(+Xs, +Set, -Subsets)

% Generates all subsets of Set (size N-1) by removing individual

% elements of Xs from Set. FAILS if any Xs is not in Set !

% _:[1,3] x 3:[1,3,5] x 2 -> [2:[3,5],2:[1,5]]

ords_gen_subs(_:Xs, N:Set, Subsets) :-

N1 is N-1,

ords_gen_subs(Xs, Set, N1, Subsets).

ords_gen_subs([], _, _, []).

ords_gen_subs([X|Xs], Set, N, [N:Sub|Subsets]) :-

ord_delete(Set, X, Sub), !,

ords_gen_subs(Xs, Set, N, Subsets).

% ords_drop_just(+Just, -Hset)

% Returns a list of elements in Hset, discarding the justifications.

% [just(1, [2:[1,2],2:[1,4]]), just(3, [2:[3,4]])] -> 2:[1,3]

ords_drop_just(Just, N:Hset) :-

24

ords_drop_just(Just, Hset, 0, N).

ords_drop_just([], [], N, N).

ords_drop_just([just(H,_)|Just], [H|Hset], N0, N) :-

N1 is N0+1,

ords_drop_just(Just, Hset, N1, N).

% ords_subset(+Set1, +Set2)

% Checks if Set1 is a (non-proper) subset of Set2.

:- mode ords_subset(+, +),

ords_subset(+, +, +, +, +).

ords_subset(N1:Set1, N2:Set2) :-

compare(Size, N1, N2),

ords_subset(Size, N1, Set1, N2, Set2).

ords_subset(=, _, Set1, _, Set2) :- Set1 == Set2.

ords_subset(<, N1, Set1, N2, Set2) :-

ords_comp_size(<, N1, Set1, N2, Set2, =<).

% ords_compare(+Set1, +Set2, -Order)

% Set1 == Set2 if equal 2:[3,4] == 2:[3,4]

% Set1 >= Set2 if Set1 is a proper SUPERset 2:[3,4] >= 1:[4]

% Set1 >> Set2 if Set1 is larger, or 2:[3,5] >> 1:[4]

% if equal size, Set1 @> Set2 2:[3,5] >> 2:[3,4]

:- mode ords_compare(+, +, ?),

ords_comp_size(+, +, +, +, +, ?),

ords_comp_sets(+, ?),

ords_comp_elem_gt(+, +, +, +, +, +, +, ?),

ords_comp_elem_lt(+, +, +, +, +, +, +, ?).

ords_compare(N1:Set1, N2:Set2, Ords) :-

compare(Size, N1, N2),

ords_comp_size(Size, N1, Set1, N2, Set2, Ords).

ords_comp_size(=, _, Set1, _, Set2, Ords) :-

compare(Order, Set1, Set2),

ords_comp_sets(Order, Ords).

ords_comp_size(>, _, _, _, [], >=) :- !.

25

ords_comp_size(>, N1, [X1|Set1], N2, [X2|Set2], Ords) :- % >=, >>

compare(Order, X1, X2),

ords_comp_elem_gt(Order, N1, X1, Set1, N2, X2, Set2, Ords).

ords_comp_size(<, _, [], _, _, =<) :- !.

ords_comp_size(<, N1, [X1|Set1], N2, [X2|Set2], Ords) :- % =<, <<

compare(Order, X1, X2),

ords_comp_elem_lt(Order, N1, X1, Set1, N2, X2, Set2, Ords).

ords_comp_sets(=, ==).

ords_comp_sets(>, >>).

ords_comp_sets(<, <<).

ords_comp_elem_gt(>, _, _, _, _, _, _, >>).

ords_comp_elem_gt(=, N1, _, Set1, N2, _, Set2, Ords) :- % >=, >>

ords_comp_size(>, N1, Set1, N2, Set2, Ords).

ords_comp_elem_gt(<, N1, _, Set1, N2, X2, Set2, >=) :- % >=

N is N1-1,

ords_subset(N2:[X2|Set2], N:Set1), !. % Ords = '>='.

ords_comp_elem_gt(<, _, _, _, _, _, _, >>).

ords_comp_elem_lt(<, _, _, _, _, _, _, <<).

ords_comp_elem_lt(=, N1, _, Set1, N2, _, Set2, Ords) :- % =<, <<

ords_comp_size(<, N1, Set1, N2, Set2, Ords).

ords_comp_elem_lt(>, N1, X1, Set1, N2, _, Set2, =<) :- % =<

N is N2-1,

ords_subset(N1:[X1|Set1], N:Set2), !. % Ords = '=<'.

ords_comp_elem_lt(>, _, _, _, _, _, _, <<).

% ords_complement(+Set, -Comp)

% (1, Max=5) 3:[1,3,4] -> 2:[2,5]

ords_complement(Ns:Set, Nc:Comp) :-

state_size(Max),

Nc is Max-Ns,

ords_complement(1, Max, Set, Comp).

ords_complement(N, Max, [], []) :- N > Max, !.

ords_complement(N, Max, [N|Set], Comp) :- !,

N1 is N+1,

ords_complement(N1, Max, Set, Comp).

ords_complement(N, Max, Set, [N|Comp]) :-

N1 is N+1,

26

ords_complement(N1, Max, Set, Comp).

% state_ords(+State, -Set)

% (ok, X<>ok) state(X1,ok,X3,X4,ok) -> 3:[1,3,4]

state_ords(State, Ns:Set) :-

state_size(Max),

state_ok_ords(0, Max, State, Set),

length(Set, Ns).

state_ok_ords(Max, Max, _, []) :- !.

state_ok_ords(N, Max, State, Set) :-

N1 is N+1,

state_normal(N1, Ok), % free vars -> Ok

arg(N1, State, Ok), true, !, % SICStus

state_ok_ords(N1, Max, State, Set).

state_ok_ords(N, Max, State, [N1|Set]) :-

N1 is N+1,

state_ok_ords(N1, Max, State, Set).

% ords_state(+Set, -State)

% (1, Max=5, ok) 3:[1,3,4] -> state(X1,ok,X3,X4,ok)

ords_state(_:Set, State) :-

state_size(Max),

state_functor(F),

functor(State, F, Max),

ords_complement(1, Max, Set, Comp),

ords_state_ok(Comp, State).

ords_state_ok([], _).

ords_state_ok([N|Set], State) :-

state_normal(N, Ok), % Ok - deterministic ??

arg(N, State, Ok), true, !, % SICStus

ords_state_ok(Set, State).

% ords_ground_state(+Set, -State)

% (1, Max=5, ok, ab) 3:[1,3,4] -> state(ab,ok,ab,ab,ok)

% Ab - non-deterministic, ground !

27

ords_ground_state(_:Set, State) :-

state_size(Max),

state_functor(F),

functor(State, F, Max),

ords_complement(1, Max, Set, Comp),

ords_state_ok(Comp, State),

ords_state_ab(Set, State).

% ords_antistate(+Set, -State)

% (1, Max=5, ok, ab) 3:[1,3,4] -> state(ok,ab,ok,ok,ab)

% Ab - non-deterministic, ground !

ords_antistate(_:Set, State) :-

state_size(Max),

state_functor(F),

functor(State, F, Max),

ords_complement(1, Max, Set, Comp),

ords_state_ok(Set, State),

ords_state_ab(Comp, State).

ords_state_ab([], _).

ords_state_ab([N|Set], State) :-

state_abnormal(N, Ab), % Ab - non-deterministic

arg(N, State, Ab),

ords_state_ab(Set, State).

28

%% IDA (c) Copyright 1992

%% Austrian Research Institute for Artificial Intelligence

%%

%% File: bits.pl

%% Author: Igor Mozetic (igor@ai.univie.ac.at)

%% Date: April 15, 1992

%

% Operations on sets represented by bit strings with cardinality.

% In Quintus: max 28 elements, msb(X) is not built-in !.

% In SICStus: "unlimited" range of integers.

% {3,1,4} -> 3:[1,3,4] -> 3:01101

portray(N:Bits) :-

integer(Bits), write(N), write(':'), format('~2r',Bits).

% ords_memcheck(+X, +Set)

% Checks the membership of X in Set, no backtracking.

ords_memcheck(X, _:Set) :- X =:= X /\ Set.

% ords_gen_elem(+Set, -Elem)

% Generates individual Elem-ents of Set through backtracking.

ords_gen_elem(_:Set, Elem) :- bits_member(Set, Elem).

bits_member(Set, Elem) :- Set > 0,

Set1 is Set /\ \(1 << msb(Set)),

bits_member(Set1, Elem).

bits_member(Set, Elem) :- Set > 0,

Elem is 1 << msb(Set).

% ords_gen_subs(+Xs, +Set, -Subsets)

% Generates all subsets of Set (size N-1) by removing individual

% elements of Xs from Set. FAILS if any Xs is not in Set !

% _:00101 x 3:10101 -> [2:10100, 2:10001]

ords_gen_subs(_:Xs, N:Set, Subsets) :-

N1 is N-1,

ords_gen_subs(Xs, Set, N1, Subsets).

29

ords_gen_subs(0, _, _, []) :- !.

ords_gen_subs(Bits, Set, N, [N:Sub|Subsets]) :-

Mask is \(1 << msb(Bits)),

Bits1 is Bits /\ Mask,

Sub is Set /\ Mask, Sub < Set,

ords_gen_subs(Bits1, Set, N, Subsets).

% ords_drop_just(+Just, -Hset)

% Returns a list of elements in Hset, discarding the justifications.

% [just(00001, [2:00011,2:01001]), just(00100, [2:01100])] -> 2:00101

ords_drop_just(Just, N:Hset) :-

ords_drop_just(Just, 0, Hset, 0, N).

ords_drop_just([], Hset, Hset, N, N).

ords_drop_just([just(H,_)|Just], Hset0, Hset, N0, N) :-

N1 is N0+1,

Hset1 is Hset0 \/ H,

ords_drop_just(Just, Hset1, Hset, N1, N).

% ords_subset(+Set1, +Set2)

% Checks if Set1 is a (non-proper) subset of Set2.

:- mode ords_subset(+, +).

ords_subset(_:Set1, _:Set2) :- Set1 =:= Set1 /\ Set2.

% ords_compare(+Set1, +Set2, -Order)

% Set1 == Set2 if equal 2:01100 == 2:01100

% Set1 >= Set2 if Set1 is a proper SUPERset 2:01100 >= 1:01000

% Set1 >> Set2 if Set1 is larger, or 2:10100 >> 1:01000

% if equal size, Set1 @> Set2 2:10100 >> 2:01100

:- mode ords_compare(+, +, ?), ords_comp_sets(+, +, +, ?).

ords_compare(N1:Set1, N2:Set2, Ords) :-

compare(Size, N1, N2),

ords_comp_sets(Size, Set1, Set2, Ords).

ords_comp_sets(=, Set1, Set2, Ords) :-

30

compare(Order, Set1, Set2),

ords_comp_sets(Order, Ords).

ords_comp_sets(>, Set1, Set2, >=) :- Set2 =:= Set1 /\ Set2, !.

ords_comp_sets(>, _, _, >>).

ords_comp_sets(<, Set1, Set2, =<) :- Set1 =:= Set1 /\ Set2, !.

ords_comp_sets(<, _, _, <<).

ords_comp_sets(=, ==).

ords_comp_sets(>, >>).

ords_comp_sets(<, <<).

% ords_complement(+Set, -Comp)

% (1, Max=5) 3:01101 -> 2:10010

ords_complement(Ns:Set, Nc:Comp) :-

state_size(Max),

Nc is Max-Ns,

Comp is \(Set) /\ (1 << Max - 1).

% state_ords(+State, -Set)

% (ok, X<>ok) state(X1,ok,X3,X4,ok) -> 3:01101

state_ords(State, Ns:Set) :-

functor(State, _, Max),

state_ok_ords(0, Max, State, 0, 0, Set, Ns).

state_ok_ords(Max, Max, _, Set, Ns, Set, Ns) :- !.

state_ok_ords(N, Max, State, Set0, Ns0, Set, Ns) :-

N1 is N+1,

state_normal(N1, Ok), % free vars -> Ok

arg(N1, State, Ok), true, !, % SICStus

state_ok_ords(N1, Max, State, Set0, Ns0, Set, Ns).

state_ok_ords(N, Max, State, Set0, Ns0, Set, Ns) :-

N1 is N+1,

Ns1 is Ns0+1,

Set1 is Set0 \/ 1 << N,

state_ok_ords(N1, Max, State, Set1, Ns1, Set, Ns).

% ords_state(+Set, -State)

% (1, Max=5, ok) 3:01101 -> state(X1,ok,X3,X4,ok)

31

ords_state(_:Set, State) :-

state_size(Max),

state_functor(F),

functor(State, F, Max),

Comp is \(Set) /\ (1 << Max - 1),

ords_state_ok(Comp, State).

ords_state_ok(0, _) :- !.

ords_state_ok(Bits, State) :-

N is msb(Bits)+1,

Bits1 is Bits /\ \(1 << (N-1)),

state_normal(N, Ok), % Ok - deterministic ??

arg(N, State, Ok), true, !, % SICStus

ords_state_ok(Bits1, State).

% ords_ground_state(+Set, -State)

% (1, Max=5, ok, ab) 3:01101 -> state(ab,ok,ab,ab,ok)

% Ab - non-deterministic, ground!

ords_antistate(_:Set, State) :-

state_size(Max),

state_functor(F),

functor(State, F, Max),

Comp is \(Set) /\ (1 << Max - 1),

ords_state_ok(Comp, State),

ords_state_ab(Set, State).

% ords_antistate(+Set, -State)

% (1, Max=5, ok, ab) 3:01101 -> state(ok,ab,ok,ok,ab)

% Ab - non-deterministic, ground!

ords_antistate(_:Set, State) :-

state_size(Max),

state_functor(F),

functor(State, F, Max),

Comp is \(Set) /\ (1 << Max - 1),

ords_state_ok(Set, State),

ords_state_ab(Comp, State).

ords_state_ab(0, _) :- !.

32

ords_state_ab(Bits, State) :-

N is msb(Bits)+1,

Bits1 is Bits /\ \(1 << (N-1)),

state_abnormal(N, Ab), % Ab - non-deterministic

arg(N, State, Ab),

ords_state_ok(Bits1, State).

% ords_bits(+Set, -Bits)

% 3:[1,4,5] -> 3:11001

ords_bits(N:Set, N:Bits) :- ords_bits(Set, 0, Bits).

ords_bits([], Bits, Bits).

ords_bits([X|Set], Bits0, Bits) :-

Bits1 is Bits0 \/ (1 << (X-1)),

ords_bits(Set, Bits1, Bits).

% bits_ords(+Bits, -Set)

% 3:11001 -> 3:[1,4,5]

bits_ords(N:Bits, N:Set) :- bits_ords(Bits, [], Set).

bits_ords(0, Set, Set) :- !.

bits_ords(Bits, Set0, Set) :-

X is msb(Bits)+1,

Bits1 is Bits /\ \(1 << (X-1)),

bits_ords(Bits1, [X|Set0], Set).

33

B Examples

IDA allows for a replaceable model interpreter. Therefore, �les with di�erent extension

require di�erent interpreters:

� *.pl | plain Prolog

� *.clpr | DMCAI CLP(R) or CLP(Q) (see ftp/sicstus)

� *.clpb | SICStus Boolean constraint solver

%%

%% File: linsign.pl

%

% Underspecified system of linear equations, find non-redundant

% (with maximum zeros) solutions:

% Gallanti, Roncato, Stefanini, Tornielli: A diagnostic algorithm

% based on models at different level of abstraction, IJCAI-89, 1350-1355.

% Intermediate level, three sign values {-,0,+}

% (see also linreal.clpr, linbool.pl).

/*

| ?- ida(D,C).

D = [1:[2], vars(0,+,0,0,0)

1:[5], vars(0,0,0,0,+)

2:[1,3], vars(+,0,+,0,0), vars(-,0,-,0,0)

2:[1,4], vars(+,0,0,+,0)

2:[3,4]] vars(0,0,-,+,0)

C = [1:[4],1:[3],1:[1]]

*/

state_size(5).

state_functor(vars).

state_normal(_, 0).

state_abnormal(_, +).

state_abnormal(_, -).

observation([+,+,0]).

model(vars(P1,P2,P3,P4,P5), Obs) :- sign([P1,P2,P3,P4,P5], Obs).

sign(Vars) :- observation(Obs), sign(Vars, Obs).

sign(P, S) :-

C = [[+, +, -, -, +],

34

[+, +, -, 0, +],

[+, 0, -, -, 0]],

P = [P1, P2, P3, P4, P5],

S = [S1, S2, S3],

sign_mat_vect(C, P, S).

sign_mat_vect([], _, []).

sign_mat_vect([Xi|X], Yj, [Zij|Zj]) :-

sign_vect_vect(Xi, Yj, Zij),

sign_mat_vect(X, Yj, Zj).

sign_vect_vect([], [], 0).

sign_vect_vect([Xij|Xi], [Yij|Yj], S) :-

sign_prod(Xij, Yij, P),

sign_sum(P, S0, S),

sign_vect_vect(Xi, Yj, S0).

sign_prod(0, X, 0).

sign_prod(+, X, X).

sign_prod(-, 0, 0).

sign_prod(-, +, -).

sign_prod(-, -, +).

sign_sum(0, X, X). % ok=0

sign_sum(+, 0, +). % ab=+

sign_sum(+, +, +).

sign_sum(+, -, X).

sign_sum(-, 0, -). % ab=-

sign_sum(-, -, -).

sign_sum(-, +, X).

35

%%

%% File: linreal.clpr

%

% Underspecified system of linear equations, find non-redundant

% (with maximum zeros) solutions:

% Gallanti, Roncato, Stefanini, Tornielli: A diagnostic algorithm

% based on models at different level of abstraction, IJCAI-89, 1350-1355.

% Detailed level, real-valued vars, requires CLP(R)

% (see also linbool.pl, linsign.pl).

/*

[Clp(R)] ?- ida(D,C).

D = [1:[2], vars(0, 2, 0, 0, 0)

2:[1,3], vars(5, 0, 1, 0, 0)

3:[1,4,5], vars(10, 0, 0, 2,-2)

3:[3,4,5]] vars(0, 0, 2,-2, 2)

C = [2:[4,5],2:[3,5],2:[3,4],2:[1,5],2:[1,4]]

[Clp(R)] ?- linear(Vars).

Vars = [A, B, 2.0-B-0.2*A, -2.0+B+0.4*A, 2.0-B-0.4*A]

[Clp(Q)] ?- linear(Vars).

Vars = [A, B, 2-B-1/5*A, -2+B+2/5*A, 2-B-2/5*A]

*/

state_size(5).

state_functor(vars).

state_normal(_, 0).

state_abnormal(_, Y) :- Y > 0.

state_abnormal(_, Y) :- Y < 0.

observation([6,4,0]).

model(vars(P1,P2,P3,P4,P5), Obs) :- linear([P1,P2,P3,P4,P5], Obs).

linear(Vars) :- observation(Obs), linear(Vars, Obs).

linear(P, S) :-

C = [[2, 3, -4, -2, 5],

[2, 2, -6, 0, 8],

[1, 0, -5, -5, 0]],

P = [P1, P2, P3, P4, P5],

S = [S1, S2, S3],

mat_vect(C, P, S).

36

mat_vect([], _, []) :- !.

mat_vect([Xi|X], Yj, [Zij|Zj]) :-

vect_vect(Xi, Yj, Zij), !,

mat_vect(X, Yj, Zj).

vect_vect([], [], 0) :- !.

vect_vect([Xij|Xi], [Yij|Yj], Zij+Xij*Yij) :-

vect_vect(Xi, Yj, Zij).

37

%%

%% File: linbool.clpb

%

% Underspecified system of linear equations, find non-redundant

% (with maximum zeros) solutions:

% Gallanti, Roncato, Stefanini, Tornielli: A diagnostic algorithm

% based on models at different level of abstraction, IJCAI-89, 1350-1355.

% Abstract level, boolean vars, using CLP(B) (see linbool.pl).

/*

| ?- ida(D,C). % takes some time

D = [1:[2], vars(0,1,0,0,0)

1:[5], vars(0,0,0,0,1)

2:[1,3], vars(1,0,1,0,0)

2:[1,4], vars(1,0,0,1,0)

2:[3,4]] vars(0,0,1,1,0)

C = [1:[4],1:[3],1:[1]]

| ?- bool([P1,P2,P3,P4,P5]).

bool:sat(P1 =:= _A*P3*P4 # P3 # P4),

bool:sat(P2 =\= _B*P3*P4*P5 # _B*P3*P4 # _B*P3*P5 # _B*P4*P5 #

P3*P4*P5 # _B*P3 # _B*P4 # _B*P5 # P3*P4 # P3*P5 #

P4*P5 # P3 # P4 # P5)

*/

state_size(5).

state_functor(vars).

state_normal(_, 0).

state_abnormal(_, 1).

observation([1,1,0]).

model(vars(P1,P2,P3,P4,P5), Obs) :- bool([P1,P2,P3,P4,P5], Obs).

bool(P) :- bool(P, [1,1,0]).

bool([P1,P2,P3,P4,P5], [S1,S2,S3]) :- % Partially evaluated version

bool_sum(P1, X1, S1),

bool_sum(P2, X2, X1),

bool_sum(P3, X3, X2),

bool_sum(P4, P5, X3),

bool_sum(P1, X4, S2),

bool_sum(P2, X5, X4),

bool_sum(P3, P5, X5),

38

bool_sum(P1, X6, S3),

bool_sum(P3, P4, X6).

/*

bool_sum(0, S, S). % ok=0

bool_sum(1, 0, 1). % ab=1

bool_sum(1, 1, _).

*/

bool_sum(X, Y, S) :- bool:sat(S =:= X # Y # X*Y*W).

39

