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Abstract

Diagnosis is an important application area of Arti�cial Intelligence. First

generation expert diagnostic systems had exhibited di�culties which motivated

the development of model-based reasoning techniques. Model-based diagnosis

is the activity of locating malfunctioning components of a system solely on the

basis of its structure and behavior. The paper gives a brief overview of the main

concepts, problems, and research results in this area.

1 Introduction

Diagnosis is one of the earliest areas in which application of Arti�cial Intelligence tech-

niques was attempted. The diagnosis of a system which behaves abnormally consists of

locating those subsystems whose abnormal behavior accounts for the observed behav-

ior. For example, a system being diagnosed might be a mechanical device exhibiting

malfunction, or a human patient. There are two fundamentally di�erent approaches

to diagnostic reasoning.

In the �rst, heuristic approach, one attempts to codify diagnostic rules of thumb

and past experience of human experts in a given domain. Representatives of this ap-

proach are diagnostic expert systems of the �rst generation, such as MYCIN

[

Shortli�e,

1976

]

. Here, diagnostic reasoning of human experts is being modeled, and diagnostic

accuracy depends on the successful encoding of human experience. The structure of

the real-world system being diagnosed is not explicitly represented, nor is its behavior

being modeled. As a result, these diagnostic systems are mainly specialized and re-

stricted to applications su�ciently covered by experience. This leads to high costs for

developing, maintaining, and extending such systems and makes many potential areas

of applications too expensive.

The second approach is often called diagnosis from the �rst principles, or model-

based diagnosis, where one starts with a description (a model) of a real-world sys-

tem. The earliest model-based diagnosis systems were developed by

[

de Kleer, 1976,

�

Appears in Advanced Topics in Arti�cial Intelligence (V. Marik, O. Stepankova, R. Trappl, Eds.),

pp. 419-430, Springer-Verlag (LNAI 617), 1992.
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Genesereth, 1984, Davis, 1984

]

. A model explicitly represents the structure of the sys-

tem, i.e., its constituent components and their connections. The diagnostic problem

arises when an observation of the system's actual behavior con
icts with the system's

expected behavior. The diagnostic task is to identify those system components which,

when assumed to function abnormally, will account for the di�erence between the ob-

served and expected system behavior. To solve the problem, model-based diagnosis

relies solely on the system description and observations of its behavior. In particular,

it does not use any heuristic information about the system failures.

This paper gives a brief overview of the main concepts and research results in the

area of model-based diagnosis. Most relevant publications appear in the proceedings

of the IJCAI, AAAI, and ECAI conferences, and in the AI Journal. Since the area

received increasing attention in recent years, there is also a regular, specialized Inter-

national Workshop on Principles of Diagnosis

[

1990, 1991

]

. Section 2 outlines di�erent

approaches to model-based diagnosis. In section 3 we illustrate how to model structure

and behavior of a simple device. In section 4, computation of diagnoses and complex-

ity issues are described. Section 5 addresses the complexity problems by abstracting

a model and by model compilation.

2 Approaches to model-based diagnosis

There are two prevailing approaches to model-based diagnosis, consistency-based and

abductive

[

Poole, 1989

]

which di�er in the representation of knowledge about the

normality and faults, and in how diagnoses are de�ned and computed.

Reiter

[

1987

]

, exemplifying the consistency-based approach, de�nes a model as a

pair hSD, Compsi. SD is the system description, andComps, the system components,

is a �nite set of constants. A system description is a set of �rst-order sentences

de�ning how the system components are connected and how they normally behave.

A distinguished unary predicate Ab whose intended meaning is `abnormal' is used in

a system description. An observation Obs is a �nite set of �rst-order sentences. A

diagnosis � for (SD, Comps, Obs) is a minimal subset � 2 Comps such that

SD [ Obs [ f Ab(c) j c 2 � g [ f :Ab(c) j c 2 Comps �� g

is consistent. A direct generate-and-test mechanism which systematically generates

subsets of Comps, with minimal cardinality �rst, is too ine�cient for systems with

large numbers of components. Instead, Reiter

[

1987

]

proposes a diagnostic method

based on the concept of a con
ict set, originally due to de Kleer

[

1976

]

. De Kleer and

Williams

[

1987

]

have independently implemented General Diagnostic Engine (GDE)

which e�ectively realizes the above ideas.

In the abductive approach

[

Poole, 1989

]

, SD contains just di�erent modes of behav-

ior and does not distinguish between the normal and abnormal behavior. An abductive

diagnosis is then a minimal set of assumptions which, together with SD entail Obs:

SD [ f Mode(c) j c 2 � g j= Obs

An early abductive diagnostic algorithm, based on set covering, is given by

[

Reggia et

al., 1987

]

. Cox and Pietrzykowski

[

1987

]

extend the notion of diagnoses to causes, and

de�ne a cause as fundamental i� it is minimal, acceptable, nontrivial, and basic. They
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show that for extended diagnostic problems their causes contain more useful informa-

tion than Reiter's diagnoses. Ge�ner and Pearl

[

1987

]

present an improved constraint-

propagation algorithm for diagnosis, based on a probabilistic approach. Console and

Torasso

[

1990

]

have shown how to incorporate normal behavior into the abductive

framework. A comparison of �ve approaches to abductive diagnosis is in

[

Finin and

Morris, 1989

]

. Poole

[

1989

]

relates the modeling and diagnostic assumptions of the

consistency-based and abductive approach.
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Figure 1: Architecture of a model-based diagnostic system.

Architecture of a typical model-based diagnostic system is illustrated in Figure 1.

The idea is that a diagnostic algorithm is largely domain independent, and that it

should be relatively easy to construct a model of a device. A model is de�ned by its

structure, and behavior of the constituent components. The structure of a technical

artifact is, at least in principle, available from a CAD system, while the behavior of

components is drawn from a generic (domain dependent, but speci�c device indepen-

dent) library. Such a model can then be used for prediction, control, monitoring, or

diagnosis. As a result of diagnosis, alternative sets of faulty components are identi�ed,

or additional, discriminating measurements are proposed.
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3 Modeling structure and behavior

A model interpreter is domain independent, but depends on the representation formal-

ism chosen for modeling. Reasoning is typically based on theorem proving if a model

is represented by �rst-order logic

[

Reiter, 1987

]

, or on constraint propagation coupled

with an ATMS

[

de Kleer and Williams, 1987

]

. Alternatively, one can represent and

interpret models by logic programs

[

Lloyd, 1987

]

, or by constraint logic programs

[

Jaf-

far et al., 1986, Cohen, 1990

]

. The origin of this representation paradigm goes back

to the KARDIO model

[

Bratko et al., 1989

]

; similar representation was proposed by

Saraswat et al.

[

1990

]

Constraint Logic Programs are logic programs extended by interpreted functions.

A proper implementation of the CLP scheme allows for an easy integration of spe-

cialized problem solvers into the logic programming framework. For example, in our

implementation

[

Holzbaur, 1990

]

specialized solvers communicate with the standard

SICStus Prolog

[

Carlsson and Widen, 1991

]

via extended semantic uni�cation and are

implemented in Prolog themselves. So far, three solvers have been implemented: con-

straint propagation over �nite domains by forward checking

[

Van Hentenryck, 1989

]

,

CLP(B) | a solver over boolean expressions, and CLP(<) | a solver for systems of

linear equations and inequalities over <eals.

In the following we de�ne the important diagnostic concepts in the logic program-

ming framework, and illustrate them by a simple example.

De�nition. A model of a system is a triple hSD, Comps, Obsi where

1. SD, the system description, is a logic program with a distinguished top-level

binary predicate m(Comps, Obs).

2. Comps, states of the system components, is an n-tuple hS

1

; : : : ; S

n

i where n

is the number of components, and variables S

i

denote states (e.g., normal or

abnormal) of components.

3. Obs, observations, is an m-tuple hIn

1

; : : : ; In

i

; Out

i+1

; : : : ; Out

m

i where In and

Out denote inputs and outputs of the model, respectively.

Example (binary adder,

[

Genesereth, 1984

]

, Figure 2).

The top-level binary predicate m is adder, Comps is a �ve-tuple hX1,X2,A1,A2,O1i,

Obs is a �ve-tuple hA,B,C, D,Ei. SD consists of the following clause which speci�es

the structure of the adder, and of additional clauses which de�ne behavior of the

components:

adder( hX1,X2,A1,A2,O1i, hA,B,C, D,Ei)  

xorg( X1, A, B, X ),

xorg( X2, C, X, D ),

andg( A1, A, B, Y ),

andg( A2, C, X, Z ),

org( O1, Y, Z, E ).

Connections between components are represented by shared variables. Speci�cation

of the behavior depends on the type of the fault model available: structural, weak,

exoneration, or strong. For illustration we de�ne just the behavior of an or gate (org).
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Figure 2: A binary adder consisting of two exclusive-or gates (X1, X2), two and

gates (A1, A2) and an or gate (O1). The output E = 0 is faulty.

A structural model speci�es the most general condition about the propagation of

faults

[

Bakker et al., 1989

]

. Only if all inputs to a component are correct (c) and the

component is normal (ok) then the output is correct. In other words, given the obser-

vation that all inputs are correct (c) and the output is faulty (f) then the component

is abnormal (ab). Otherwise, nothing can be concluded about the component state.

org( ok, c, c, c ).

org( ok, c, f, ).

org( ok, f, , ).

org( ab, , , ).

A weak fault model de�nes just normal behavior of components (state ok), abnor-

mal behavior (state ab) is unconstrained:

org( ok, X, Y, Z )  or( X, Y, Z ).

org( ab, , , ).

A strong fault model

[

Struss and Dressler, 1989

]

speci�es all the possible ways in

which a component can fail. In general, a component may have several failure states.

An abnormal or gate, for example, might have the output stuck-at-1 (s1) or stuck-at-0

(s0):

org( ok, X, Y, Z )  or( X, Y, Z ).

org( s1, 0, 0, 1 ).

org( s0, 0, 1, 0 ).

org( s0, 1, 0, 0 ).

org( s0, 1, 1, 0 ).

The exoneration principle

[

Raiman, 1989

]

is a special case of a strong fault model.

It speci�es as abnormal any behavior di�erent than normal:

org( ab, X, Y, Z )  : or( X, Y, Z ).

In the case of combinatorial circuits, one can formulate di�erent models in terms

of boolean expressions in CLP(B)

[

Mozeti�c and Holzbaur, 1991b

]

, instead of using
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extensional descriptions in pure Prolog. We can encode correct inputs and outputs

and the normal state as 0 (zero) instead of ok, and the abnormal states and faulty

inputs and outputs as 1. For brevity we only show the or gate reformulations:

� structural model: org( (:X ^ :Y ^ Z) _ W, X, Y, Z).

� weak model: org( ((X _ Y) � Z) _ W, X, Y, Z).

� exoneration model: org( (X _ Y) � Z, X, Y, Z).

There are domains where pure logic programs or ATMS-like systems have insu�-

cient expressive power to reason about the system under consideration. In particular,

modeling real-valued system parameters with tolerances requires some degree of nu-

merical processing, and feedback loops in general cannot be resolved by local constraint

propagation methods. Examples of such systems are analogue circuits, such as ampli-

�ers or �lters

[

Wakeling and McKeon, 1989

]

. Dague et al.

[

1990

]

use an ATMS-like

system, augmented with the ability to compute with intervals, but unable to solve

simultaneous equations, for the diagnosis of analogue circuits. The �rst application

of CLP(<) to the analysis of analogue circuits was reported by

[

Heintze et al., 1987

]

.

In

[

Mozeti�c et al., 1991

]

we show how to apply CLP(<) to diagnose analog circuits

operating under the AC conditions. CLP(<) enables modeling of soft faults | drifts

from the nominal parameter values, and computation with parameter tolerances.

4 Computing diagnoses

In order to de�ne the concepts of a diagnosis and a con
ict, we assume that an ob-

servation, a ground instance of Obs, is given. In the following de�nitions 8F denotes

universal closure, i.e., all free variables in the formula F are universally quanti�ed.

De�nition. An ok-instance of a term is an instance where some variables are

replaced by the constant ok. A ground instance is an instance where all the variables

are replaced by constants.

De�nition. A diagnosis D for hSD, Comps, Obsi is an instance of Comps such

that SD j= 8m(D, Obs).

De�nition. A con
ict C for hSD, Comps, Obsi is an ok-instance of Comps such

that SD j= 8:m(C,Obs).

This characterization of a diagnosis subsumes most of the previous ones. In the

consistency-based approach

[

Reiter, 1987

]

a diagnosis is a set of abnormal (6=ok) com-

ponents such that SD and Obs are consistent with all other components being ok.

De Kleer and Williams

[

1989

]

extended the de�nition to include a behavioral mode

(state) for each component. In both cases a diagnosis is essentially a ground instance

of Comps. Poole

[

1989

]

observed that a diagnosis need not commit a state to each

component when the state is `don't care'. This led to the de�nition of a partial di-

agnosis

[

de Kleer et al., 1990

]

which corresponds to a non-ground instance of Comps

but, on the other hand, does not include states of components. The de�nition of a

con
ict is standard, i.e., a set of components which cannot be simultaneously ok, and

can be easily extended to a minimal con
ict. A minimal diagnosis is a diagnosis which

is subsumed by no other diagnosis.
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{5}{4}{3}{2}{1}

{1,2,3,4,5}

{2,3,4,5}{1,3,4,5}{1,2,3,4} {1,2,3,5} {1,2,4,5}

{3,4,5}{2,4,5}{2,3,5}{2,3,4}{1,4,5}{1,3,5}{1,3,4}{1,2,5}{1,2,4}{1,2,3}

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

Figure 3: Search lattice for the adder model, given the observation h1,0,1, 0,0i. �

denote minimal con
icts, and 
 minimal diagnoses. For the weak fault model all

supersets of a minimal diagnosis are also diagnoses. For the strong fault model only

nodes in dashed ovals denote non-minimal diagnoses.

In order to compute minimal diagnoses it is convenient to represent the search space

of diagnoses and con
icts as a subset-superset lattice

[

de Kleer and Williams, 1987

]

.

The top element of the lattice corresponds to a tuple where all components are 6=ok,

and the bottom element to the tuple where all components are ok. Reiter's algorithm

[

1987

]

, for example, searches the lattice bottom-up (from con
icts to diagnoses), in

a breadth-�rst fashion (diagnoses of smaller cardinality are found �rst) and relies

on the underlying ATMS-like theorem prover. In contrast, our algorithm

[

Mozeti�c,

1992

]

better �ts into the logic programming environment, and implements a top-down,

depth-�rst search through the lattice. In diagnosing real systems, the search lattice

is large and minimal diagnoses are usually near the bottom of the lattice. Depth-�rst

search, coupled with non-ground model calls, allows for deep `dives' into the lattice and

in the average case at least a few diagnoses are found quickly. Further, by computing

minimal diagnoses incrementally, we can ensure that the worst case complexity of the

algorithm remains polynomial.

The task of �nding all minimal diagnoses is NP-complete, i.e., attempting to com-

pute all minimal diagnosis is asking for more information than one could ever hope to

use. Friedrich et al.

[

1990a

]

show that even the next diagnosis problem is intractable.

This holds for a weak fault model, and with a strong fault model things get worse

since then even deciding whether an arbitrary diagnosis exists is NP-complete. This

has been shown in the context of abductive diagnosis

[

Bylander et al., 1989

]

, and in

the context of consistency-based diagnosis

[

Friedrich et al., 1990a

]

. On the other hand,

computing minimal con
icts from the structural model can be done in polynomial time

[

Bakker et al., 1989

]

.

One solution to the complexity problem is to compute just some minimal diagnoses.

De Kleer

[

1991

]

presents a focusing mechanism which enables e�cient computation of
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a few most probable diagnoses. A polynomial algorithm for computing the �rst k

diagnoses is in

[

Mozeti�c, 1992

]

. Another solution is to compute just one minimal

diagnosis, and to interleave diagnosis and treatment

[

Friedrich et al., 1990b

]

. Finally,

complexity can be reduced by introducing abstractions

[

Gallanti et al., 1989, Mozeti�c,

1990, Mozeti�c, 1991

]

.

5 Abstractions and model compilation

One approach to improve the diagnostic e�ciency of the deep model is to represent it

at several levels of abstraction, and to �rst solve the diagnostic problem at an abstract

level. The abstract diagnoses are then used to restrict the search for more detailed

diagnoses. Abstractions turned out to be useful in reducing the search space in theorem

proving

[

Plaisted, 1981, Giunchiglia and Walsh, 1989

]

, planning

[

Sacerdoti, 1974

]

, and

in model-based diagnosis

[

Gallanti et al., 1989, Mozeti�c, 1990, Mozeti�c, 1991

]

.

The following are three abstraction operators which can be used in a multi-level

model representation.

� Collapse of values | indistinguishable values of a variable can be abstracted into

a single value.

� Deletion of variables | irrelevant variables can be deleted at the abstract level.

� Simpli�cation of the mapping m | detailed level mapping m can be simpli�ed

to m

0

by ignoring and/or simplifying some model components.

Given a detailed (possibly numerical) model, abstraction operators can be used to au-

tomatically derive an abstract, qualitative model of the system

[

Mozeti�c and Holzbaur,

1991c

]

. The abstract level model is then used to guide the diagnostic process at the

detailed level.

Another, indirect approach to use a deep model for e�cient diagnosis is to `compile'

it into surface diagnostic rules. This was �rst applied in the context of the KARDIO

model for ECG diagnosis of cardiac arrhythmias

[

Mozeti�c, 1986, Bratko et al., 1989

]

.

The `compilation' proceeds in two steps. First, by exhaustive simulation, the model

is transformed into a relational table. Entries in the table are then used as examples

by an inductive learning program

[

Michalski, 1983

]

, and the table is compressed into

a set of simple if-then rules.

In many practical applications it might not even be feasible to generate all pairs

disorder-observation, but only a small subset. Some inductive learning techniques must

then be applied to the subset in order to extend the coverage to the whole diagnostic

space (or at least most of it). The same approach of constructing a qualitative model,

exhaustive simulation, and induction of compressed diagnostic rules was taken by

[

Pearce, 1988

]

to automatically construct a fault diagnosis system of a satellite power

supply. Similarly,

[

Buchanan et al., 1988

]

show the advantage of using a classical

simulation model to generate a (non-exhaustive) set of learning and testing examples,

which are then used to induce rules for location of errors in particle beam lines used

in high energy physics.
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6 Conclusion

The paper gives a brief overview of the area of model-based diagnosis. Current re-

search trends aim at focusing diagnosis for a speci�c purpose, e.g., to reconstruct the

functionality for which the system was originally designed

[

Friedrich et al., 1990b

]

.

Another interesting issue is the combination of multiple models, like physical and

functional organization, and the common ways the components fail

[

Hamscher, 1991

]

.

A really hard problem of diagnosis of transient failures and dynamical systems was

addressed only recently

[

Friedrich and Lackinger, 1991

]

. The emerging model-based

reasoning technology rises hopes that an increasing number of the techniques will �nd

their application in practice.
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