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Abstract

First generation expert systems rely on the use of surface knowledge, such as associational

or heuristic. This knowledge is typically acquired from domain experts through exhaustive

knowledge engineering sessions. On the other hand, second generation knowledge acqui-

sition technology is characterized by two main features: the use of deep knowledge and

machine learning. In the paper we review three second generation methods that partially

automate the knowledge acquisition process: inductive learning of rules from examples,

model-based rule learning, and qualitative model acquisition. Results of their application

to some medical domains are presented. Finally, we outline di�erent stages of expert sys-

tem development. An extended expert system shell schema is presented which includes a

knowledge acquisition and a knowledge explanation module.

1 Introduction

Knowledge acquisition is a �eld of arti�cial intelligence concerned with the development

of methods, techniques and tools for building expert system knowledge bases. It has been

frequently stated that the problem of knowledge acquisition is `the critical bottleneck' in

expert systems development [16]. Recently, the trend in knowledge acquisition has turned

towards the use of automated knowledge acquisition tools based on machine learning and

qualitative modeling.

A large majority of the so-called �rst generation expert systems include knowledge bases

which can be characterized as shallow or surface. Surface knowledge directly states the
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relation between problem speci�cation and problem solution without referring to the un-

derlying principles. The critical problem in expert system development is how to acquire

the required body of knowledge from the experts in a form which is complete and consis-

tent. First generation knowledge acquisition methods typically acquire knowledge through

a process of direct articulation. There have been a number of interview techniques, knowl-

edge acquisition methods and tools developed which can be used to facilitate knowledge

base construction [39]. These methods typically use a conceptual model to interact with the

user thus hiding the complexity and unfamiliarity of rules, semantic nets and/or frames

upon which the knowledge base is actually constructed. The interaction with the user

is thus conducted at the knowledge level by asking for a problem description in terms of

the types and relationships distinct from the symbol level in which the knowledge is to be

encoded.

Surface-level knowledge is often called operational since it is used in solving problems

directly, without any reference to the underlying causal relations on which the solution is

based. Also in human problem solving, experts usually already know the answer to a simple

problem; they retrieve the solution from their `operational knowledge base'. However, when

faced with a di�cult or unusual problem, the answer can not be directly retrieved but has

to be derived by reasoning from `�rst principles' [47]. For that, a model of the domain is

needed which states the �rst principles or basic rules from which operational decisions can

be made. Such knowledge is usually referred to as deep knowledge.

The main characteristics of second generation expert systems are the following. First,

they include also deep knowledge bases which (as opposed to shallow knowledge) capture

the underlying principles and structure of the problem domain [47], and second, the knowl-

edge acquisition process is at least partially automated [30]. Second generation knowledge

acquisition methods, based on qualitative modeling and machine learning, view knowledge

acquisition as a process of modeling real-world systems, i.e., a process of developing com-

puter models of the problem domains. This approach is distinct from the creation of

conceptual models; developing computer models is thus not necessarily done by replicating

how people think, which is a subject matter of psychology [13]. Although close attention

should be paid to how experts talk and what representation they use, one should not model

structures in the expert's head but rather the behavior of a real-world system.

Figure 1 shows the 
ow of knowledge in di�erent knowledge acquisition paradigms.

The `old style knowledge engineer's route map' [30], representing direct encoding of rules

in the development of �rst generation expert systems, corresponds to the knowledge 
ow

through box A. First generation knowledge acquisition methods are outlined in Section 2.

Sections 3 - 5 describe in more detail the following second generation methods for

knowledge acquisition: machine learning (in particular inductive learning of rules from

examples), model-based rule learning and qualitative model acquisition.

Inductive learning from expert supplied decisions is recognized as one of the successful

methods for automated knowledge acquisition. A brief review of the inductive learning

approaches, results of their application to medical problems and a review of some other

machine learning approaches are given in Section 3. Inductive learning of rules from

examples is represented by box B in Figure 1.
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Figure 1: Knowledge 
ow in di�erent methods for knowledge acquisition.

The qualitative modeling approach to knowledge acquisition is outlined in Section 4.

Having constructed a qualitativemodel, one can use it to derive all possible model behaviors

which in turn can be used as training examples for a machine learning system in order to

induce a knowledge base of shallow-level rules. This knowledge acquisition paradigm,

referred to as model-based rule learning, consists of two steps: example generation by a

qualitative model simulation (box C in Figure 1), and learning rules from the automatically

generated examples (box B in Figure 1).

The model design process can be at least partially automated by means of machine

learning. An approach to semi-automatic qualitative model acquisition is presented in

Section 5. From given partial knowledge about the system and examples of its behavior,

a complete model of the system is hypothesized; the generated model is then re�ned by

invoking an interactive debugger. This knowledge acquisition paradigm is represented by

box D in Figure 1.

All the above second generation knowledge acquisition methods were used in the de-

velopment of KARDIO, an expert system for the ECG diagnosis of cardiac arrhythmias

[7]. The KARDIO methodology shows how the qualitative modeling approach and the ma-

chine learning technology can be used to construct knowledge bases whose complexity is far

beyond the capability of traditional dialogue-based techniques for knowledge acquisition.
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Tools based on the reviewedmethods could be incorporated into a knowledge acquisition

module of a second generation expert system shell, introduced in Section 6. Apart from

presenting an extended expert system shell schema (which includes a knowledge acquisition

and a knowledge explanation module), this section discusses the di�erent stages of an expert

system development in which knowledge base re�nement has a substantial role.

2 First generation knowledge acquisition methods

In the traditional view, knowledge acquisition involves three stages:

� elicitation of data from the expert,

� interpretation of the data to infer the underlying knowledge and reasoning process;

and, guided by this interpretation,

� creation of a conceptual model of the expert's domain knowledge and performance.

The �rst phase is usually called the domain de�nition or the domain orientation phase,

and knowledge acquisition in this phase is usually referred to as knowledge elicitation.

The second phase is also called problem identi�cation, and the third phase is sometimes

called problem analysis [39]. In this view, knowledge acquisition involves creating a concep-

tual model of expert knowledge and reasoning, from the analysis of data elicited by these

techniques.

Many psychological and machine-aided techniques were developed aiming to solve the

knowledge acquisition problem [48, 21]. Psychological techniques cover a range of interview

strategies, observational methods, some multidimensional techniques, and verbal protocol

analysis, described in more detail in a review paper by Neale [39]. These techniques, most

commonly used in the domain de�nition phase, are used to discover what knowledge the

expert uses and the methods he/she employs for problem solving within the particular

domain. The analysis and structuring of this knowledge should lead to a model of the

domain concepts, relations and inference strategies, corresponding to the expert's view of

how such problems are solved.

Lately, the trend in knowledge acquisition seems to have turned from psychological

techniques to the use of specialized tools for machine-aided knowledge acquisition, which

can be divided into knowledge engineering languages and system-building aids [39].

Knowledge engineering languages can be further classi�ed according to their complexity

into shells and hybrid toolkits. Shells are simple tools, often restricted in the facilities they

o�er. They o�er a faster and a cheaper route for expert system development, but constrain

the designer with the limited formalism they o�er. Most shells are restricted to one kind

of reasoning, usually the backward chaining of rules. Hybrid toolkits o�er a choice of

knowledge representation and inference methods. Although they potentially o�er more

than shells, they don't o�er any guidance as to which of the possibilities should be used

under what circumstances; this is particularly a problem to non-AI programmers.
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System building aids are divided into inductive tools and knowledge acquisition tools.

Since inductive learning methods are, in our view, second generation knowledge acquisition

methods, inductive tools are described in Section 3. There are a number of specialized

knowledge acquisition tools [3], such as AQUINAS [4], KADS [10], MORE [23], DEX [1]

and many others. Most of the systems use a conceptual model to interact with the user

in order to hide the complexity and unfamiliarity of the underlying `symbol-level' model

upon which the knowledge base is actually constructed.

Many knowledge acquisition systems have speci�c features which distinguish them from

the others. For example, a part of AQUINAS enables rapid prototyping by expressing the

expert's knowledge in the form of a rating (repertory) grid, and generates rules from this

accompanied by certainty factors based on the relative strength of the rating and of the

relative importance of the construct in each case. Another system DEX [1], is a specialized

tool for multi-attribute decision making, also allowing for rapid knowledge acquisition. In a

dialogue with the user, the system builds its knowledge base in the form of tree-structured

criteria and utility functions which de�ne the propagation of values of the criteria from

the bottom to the top of the tree. In part, knowledge acquisition in DEX is based on the

interactive acquisition of examples of expert decisions. As such, DEX is a step towards

second generation knowledge acquisition systems.

To conclude, knowledge acquisition is typically a demanding mental process, where the

knowledge engineer collaborates with domain experts. In this process the knowledge engi-

neer's objective is to convert human know-how into `say-how' through a process of direct

articulation. Such dialogue-based direct encoding of rules (semantic nets, frames, etc.) en-

counters the `bottleneck problem of applied arti�cial intelligence' [16] and is named the `old

style knowledge engineer's route map' by Michie [30]. In Figure 1, which shows the 
ow of

knowledge in di�erent knowledge acquisition paradigms, this `route map' corresponds to

the knowledge 
ow through box A.

3 Machine learning

Machine learning aims at automating the knowledge acquisition process to the greatest

possible extent. Therefore, as opposed to some other authors [39], we consider machine

learning methods to be second generation knowledge acquisition methods. Their cate-

gorization into �rst generation methods might be based on the fact that, traditionally,

machine learning methods could only be used to acquire shallow operational knowledge.

However, the emerging �eld of inductive logic programming [36] provides for methods and

tools for learning deep relational descriptions, including deep qualitative models [8].

This section gives a brief review of the inductive learning approaches (Section 3.1),

presents an inductive learning program ASSISTANT (Section 3.2), gives results of its

application to three medical problems (Section 3.3) and provides a brief review of some

other machine learning approaches to knowledge acquisition (Section 3.4).

5



3.1 Inductive learning of rules from examples

Inductive learning technology can be used to construct expert knowledge bases more ef-

fectively than traditional dialogue-based techniques for knowledge acquisition. As such, it

can be used to generate new human-type knowledge (concept descriptions, domain mod-

els, theories, rules of expert behavior) from stored data typically captured from real-world

measurements, for example in medical, engineering or scienti�c databases.

The method of learning rules from examples is recognized by Michie [30] as a `new style

knowledge engineer's route map' where rules are elicited from the experts to the machine

memory via the language of examples rather than via explicit articulation. E�ective al-

gorithms for inductive inference are required. There are a number of inductive learning

programs such as programs of the TDIDT family (Top-Down Induction of Decision Trees)

[43] or the AQ family [29] that accept tutorial examples and induce knowledge in the form

of decision trees or rules, respectively. In Figure 1, this process is represented by box B

where the source of knowledge is either an expert formulating a series of thoroughly chosen

examples or preferably an existing database of examples interpreted and `cleaned' with the

help of the expert.

Learning in real-life domains often encounters the problem of dealing with imperfect

data. Several TDIDT learning programs contain mechanisms for dealing with noisy, in-

complete and inexact domains, for example C4 [44], CART [9] and ASSISTANT [6, 12].

The main mechanism for handling imperfect data in TDIDT programs is tree pruning.

The other type of programs which learn from imperfect data are rule induction programs,

such as AQ15 [29] and CN2 [14]. In AQ15, a technique to cope with imperfect data is

rule truncation. In tree pruning and rule truncation, the unreliable parts of the induced

descriptions are eliminated in order to increase their predictive accuracy.

Inductive learning techniques have been applied to many types of medical tasks, in

particular to medical diagnosis and prognosis [6, 44]. Results in inductive learning are

beginning to alleviate the knowledge acquisition problem in the development of medical

expert systems. In Section 3.2 the inductive learning system ASSISTANT is described;

it was developed to handle erroneous and missing data which occur frequently in medi-

cal databases. Results of its application to three real-life medical problems are given in

Section 3.3.

One major dimension along which one can di�erentiate among machine learning systems

is the complexity of the concept description languages they employ. The programs of the

TDIDT family induce concept descriptions in the form of decision trees, expressed in an

attribute-value language. In the AQ family of programs, the induced descriptions have the

form of if-then rules expressed in a speci�c attribute-value formalism called VL1 (Variable-

valued Logic 1).

A new area in machine learning, called inductive logic programming [36], is concerned

with the development of programs which induce relational descriptions in some restricted

�rst-order formalism. A restricted form of logic programs is used in MIS [46], CIGOL [37],

GOLEM [38], FOIL [45] and LINUS [26].

So far, to our knowledge, LINUS was the only inductive logic programming system
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that addressed the problem of inducing medical diagnostic rules, in particular the problem

of learning rules for early diagnosis of rheumatic diseases [27]. It was possible to apply

LINUS to these problems for two main reasons. First, LINUS is able to tackle problems

which combine attribute and relation learning. And second, LINUS is an environment

that integrates di�erent attribute-value learning algorithms. Since the domain of early

diagnosis of rheumatic diseases involves missing and noisy data, it was possible to achieve

good results by using ASSISTANT as the algorithm incorporated into the LINUS inductive

logic programming environment.

3.2 Inductive learning with ASSISTANT

ASSISTANT is a descendant of ID3 [43]. The system generates a concept description in the

form of a decision tree that enables classi�cation of new objects. As such, it is a member

of the TDIDT family of inductive learning programs.

ID3 implements a simple mechanism for discovering a classi�cation rule from a training

set of objects belonging to two classes. Each object is described in terms of a �xed collection

of attributes, each of which has its own set of values. The system builds a classi�cation

rule in the form of a decision tree which correctly classi�es all the given objects. Each of

the interior nodes of the tree is labeled by an attribute, while branches that lead from the

node are labeled by its possible values. The tree construction is heuristically guided by

choosing the most informative attribute at each step, aimed at minimizing the expected

number of tests. ID3 implements the following basic algorithm:

if all training instances belong to the same class

then generate a leaf labeled with the class name

else 1. select the most informative attribute for the node

2. split the training set into subsets according to the values of

the selected attribute

3. recursively repeat the procedure for each subset

In ASSISTANT, the basic ID3 learning algorithm was extended in several ways which

include: handling problems with more than two decision classes, handling incompletely

speci�ed training examples, binarization of continuous attributes, binary construction of

decision trees, pruning of the unreliable parts of a tree and plausible classi�cation based

on the `naive' Bayesian principle.

One of the most important features is tree pruning, used as a mechanism for handling

noisy data. Tree pruning is aimed at producing smaller trees, which do not over�t possibly

erroneous data. There are two types of pruning:

� pre-pruning, performed during the construction of a decision tree, which decides

whether to stop or to continue the tree construction at a certain node, and

� post-pruning, used after the decision tree is constructed, which estimates the classi-

�cation errors in the nodes and then decides whether to prune certain subtrees or

not.
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Experiments in several domains have shown that these features produce decision trees

which are smaller and easier to understand, and at the same time more accurate when

classifying new objects.

3.3 Applications to medical domains

ASSISTANT has been applied to a number of medical domains, among others the progno-

sis of breast cancer recurrence, location of primary tumor, and lymphography [6, 12, 35].

Results of the experiments are given in Table 1. In the experiments, 70% of the available

examples were randomly selected for training, and the remaining 30% were used for test-

ing the accuracy of automatically constructed diagnostic trees/rules. Experiments were

repeated 4 times; given are the average results.

Prognosis of breast cancer recurrence. For about 30% of patients that undergo a breast

cancer operation, the illness reappears in �ve years. Prognosis of this recurrence is very

important for patients' post-operational treatment. The domain is characterized by 2

possible prognoses and 9 attributes (age, size and location of tumor, etc.). The data on

286 patients with known diagnostic status �ve years after the operation were available. The

data are not complete and the set of attributes is not always su�cient for distinguishing

between the two classes. Using this data, ASSISTANT induced prognostic rules which

are, on average, 72% accurate. For comparison, �ve specialists of the Ljubljana Medical

Center, Institute for Oncology, were tested using the same testing examples. They gave a

correct prognosis in 64% of cases.

degree of malig(286)

< 3 : tumor size(201)

< 15 : age(37)

< 40 : no recurrence(4)

recurrence(1)

� 40 : no recurrence(32)

� 15 : no recurrence(125)

recurrence(39)

� 3 : involved nodes(85)

< 3 : no recurrence(30)

recurrence(18)

� 3 : no recurrence(27)

recurrence(10)

Figure 2: Decision tree for the prognosis of breast cancer recurrence, induced by ASSIS-

TANT. Numbers associated with each node denote the number of training examples in the

node.

Figure 2 gives an induced decision tree for the prognosis of breast cancer recurrence,
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derived by ASSISTANT. The numbers of training examples in the leaves of the decision

tree are transformed into probabilities which are then used in the classi�cation of unseen

cases. The uppermost branch of the decision tree in Figure 2 can be interpreted as follows:

if the degree of malignancy is less than 3

and the tumor size is less than 15

and the patient's age is less than 40

then there are 4 out of 5 supporting examples that the cancer will not recur

and 1 supporting example that the cancer will recur.

Below is a description of two other medical domains, location of primary tumor and

lymphography.

Location of primary tumor. Physicians distinguish between 22 locations of primary

tumor. Patients' data are described by 17 attributes (age, sex, histologic type of carcinoma,

degree of di�erentiation, and possible locations of detected metastases). The data on 339

patients with known locations of primary tumor (veri�ed by operation or by X-ray) were

available for the experiment. Again, the data are not complete; for some patients the data

on the histologic type and degree of di�erentiation are missing. Furthermore, the given

set of attributes is not always su�cient to distinguish between the di�erent locations.

ASSISTANT gave a correct result in 46% of cases, on average. At the Ljubljana Medical

Center, Institute for Oncology, four internists and four specialists were asked to give their

diagnosis. Internists determined a correct location of primary tumor in 32% and oncologists

in 42% of cases, which indicates the di�culty of the diagnostic problem. Namely, there

are 22 possible locations and the correct locations of primary tumor is only one of the

evidences used in cancer treatment.

Lymphography. The domain is characterized by 18 attributes (sex, age, di�erent data

about nodes and laboratory tests) and 4 diagnoses. The data on 148 patients were available.

Diagnoses in this domain were not veri�ed and the actual testing of physicians was not

performed. The specialists' estimate was that internists diagnose correctly in about 60%

and specialists in about 85% of cases.

Medical domain ASSISTANT AQ15 Medical specialists

Lymphography 77% 82% 85% (estimate)

Breast cancer 72% 68% 64%

Primary tumor 46% 41% 42%

Table 1: Diagnostic accuracy achieved by the learning programs ASSISTANT and AQ15,

averaged over 4 experiments, and compared to medical specialists.

Table 1 gives the results of applying ASSISTANT to the three medical problems. For

comparison, the results of the performance of another inductive learning system AQ15 and

of the medical experts are presented [29]. In the four experiments, the same testing set of
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30% of examples was used both for testing the accuracy of the automatically constructed

diagnostic rules and the accuracy of medical experts. Results show that the predictive

accuracy of both systems is at the level of domain experts.

3.4 Some other machine learning approaches to knowledge ac-

quisition

For the sake of completeness, we brie
y outline three other machine learning approaches

which can be used in knowledge acquisition: the genetic, analytic, and connectionist learn-

ing paradigm [11].

Genetic algorithms [5] have been inspired by a direct analogy to mutations in biological

reproduction. A genetic algorithm selects high strength classi�ers as `parents', forming

`o�spring' by recombining components from the parent classi�ers. The o�spring displace

weak classi�ers in the system and enter into competition, being activated and tested when

their conditions are satis�ed. Thus a genetic algorithm mimics the genetic processes under-

lying evolution. Genetic algorithms discover rules for classi�er systems which are massively

parallel, message passing, rule-based systems, and which operate in environments with the

following characteristics: perpetually novel events accompanied by large amounts of noisy

or irrelevant data; continual, often real-time, requirements for action; implicitly or inex-

actly de�ned goals; and sparse payo� of reinforcement obtainable only through long action

sequences. Classi�er systems are designed to absorb new information continuously from

such environments, devising sets of competing hypotheses (expressed as rules) without

disturbing signi�cantly capabilities already acquired.

The analytic learning paradigm assumes existence of a rich domain theory, and one

(or a few) examples representing past problem solving experience. Examples are used

to guide the selection of the deductive chains when solving new problems, or to formulate

search control rules that enable more e�cient application of domain knowledge. In analytic

methods, an instance corresponds to a portion of a problem solving trace, and learning

uses this (single) instance and background knowledge (domain theory). Much research

is devoted to explanation-based generalization methods [31]. The result of using these

methods is nothing but operational surface rules, which could (at least in principle) be

deduced from the given domain theory. Since the analytic learning methods are deductive,

this type of learning performs at the symbol level and not at the knowledge level, i.e.,

deductive closure of the domain theory does not increase.

Connectionist learning systems [22], also called neural networks or parallel distributed

systems, have lately gained much attention. Connectionist models typically consist of many

simple, neuron-like processing units that interact using weighted connections. Each neuron

has a state (activity level) that is determined by the input received from other neurons

in the network. A neural network learns to discriminate between classes, given a set of

instances of each class, in a holistic manner. Learning consists of readjusting weights in a

�xed-topology network via di�erent learning algorithms.

A Bayesian neural network [24] is an e�cient tool for learning classi�cation knowledge.
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In this type of network each neuron implements the `naive' Bayesian classi�er, therefore one

iteration in the network corresponds to one classi�cation with `naive' Bayesian rule (where

`naive' stands for the independence assumption of events). Iterations correct noisy data

and approximate missing data. An expert system based on the Bayesian neural network

does not contain a knowledge base in the classical sense. Each neuron represents an

event. The knowledge is stored in the weights associated to connections between neurons.

Each such weight can be directly interpreted since it represents the probability that two

events occurred at the same time. The approach is similar to the one used in Inferno [42],

having the same structure of the network. In Bayesian neural networks, the generalization

produces �xed points which correspond to induced if-then rules; inductive learning systems

tend to generate few general rules, while in the network there are many specialized �xed

points.

4 Model-based rule learning

Qualitative modeling is concerned with the development of deep knowledge bases that

capture the underlying causal structure of the problem domain. Such knowledge can be

represented in the form of a model that states the �rst principles or the basic `rules of the

game' from which operational decisions can be derived. The prevailing type of knowledge

in such a model is qualitative [15, 18, 25, 7].

Qualitative modeling has several advantages over the conventional numerical modeling:

the qualitative view is often closer to human reasoning about the physical or physiologi-

cal processes being modeled; to execute the model one does not have to know the exact

numerical values of the parameters in the model; a qualitative simulation may be computa-

tionally less complex than numerical simulation. Qualitative simulation can often be used

for constructing explanations of the mechanisms of a system being modeled more naturally

than numerical modeling.

In principle, a qualitative model can be used for problem solving directly. It can be

used to answer prediction, diagnostic and control type of questions. The prediction task is

to �nd the observable results of applying some input to the system, given a functional state

of the system. The diagnostic task is: given the inputs to the system and the observed

manifestations, �nd the system's functional state (normal or faulty, which components are

failed). The control task is to determine the input control to the system, assuming its

state, in order to achieve a desired output.

Since a model is usually designed for simulation and prediction, using it to solve diag-

nostic and control tasks can be computationally expensive. Nevertheless, by qualitative

simulation, the model can be used to automatically generate examples of the possible

behaviors. From such a set of examples, operational decision rules can be generated by in-

ductive learning methods. This idea is the basis of the model-based rule learning knowledge

acquisition paradigm, which consists of two steps: example generation by simulations of a

qualitative model (box C in Figure 1) and learning rules from the automatically generated

examples (box B in Figure 1).
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Figure 3: Deep and surface levels of cardiological knowledge, and transformations between

representations.

The model-based rule learning paradigm was used in KARDIO to generate compressed

diagnostic and prediction rules as shown in Figure 3. A deep qualitative model of the

electrical activity of the heart was developed and used for the automatic synthesis (through

simulation) of the surface knowledge about ECG interpretation. The ECG interpretation

knowledge has the form of pairs (Combined arrhythmia;ECG description) relating each

of the 2,419 possible combined arrhythmias to the corresponding ECG patterns (there

are altogether 140,966 ECG patterns). The surface representation facilitates fast ECG

diagnosis, but it is rather complex in terms of memory space (over 5 Mb, stored as text �le).

This motivated the compression of the surface knowledge by means of an inductive learning

program of the AQ family into a compact and diagnostically e�cient representation. In

Figure 3, the representations are arranged as to emphasize the distinction between the deep

and surface levels of knowledge. The two steps of model-based rule learning are referred

to as qualitative simulation and learning, respectively.

The learning step is based on the following idea: use the compiled representation (pairs

arrhythmia-ECG) as a source of examples and apply an inductive learning algorithm to

obtain their compact descriptions. The inductive learning program used was NEWGEM

[32], a member of the AQ family.

Figure 3 shows the compression e�ects achieved in terms of storage space needed when

storing di�erent representations simply as text �les. The �gure 25 KB associated with the

corresponding representations includes both the induced descriptions plus the additional
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rules needed to attain logical equivalence with the exhaustive arrhythmia-ECG representa-

tion. Notice the compression factor of about 200. The similarity in size between the deep

model and the compressed representations is incidental.

What follows is a prediction rule for AV block 3, generated by NEWGEM, and two

corresponding descriptions from the medical literature.

if AV conduct = avb3

then Rhythm QRS = regular &

Relation P QRS = independent P QRS

Description of the arrhythmia AV block 3 by Goldman [20]: In this condition the

atria and ventricles beat entirely independently of one another. The ventricular rhythm is

usually quite regular but at much slower rate (20-60).

Description of AV block 3 by Phibbs [41]: 1. The atrial and ventricular rates are

di�erent: the atrial rate is faster; the ventricular rate is slow and regular. 2. There is no

consistent relation between P waves and QRS complexes.

Below is an example of a synthesized diagnostic rule:

if Relation P QRS = after P some QRS miss

then AV conduct = wen _ mob2

_

Atr focus = a
 _ af &

AV conduct = normal

This rule corresponds to a particular diagnostic feature in the ECG, characterized by

some P waves not followed (as normally) by the corresponding QRS complexes. The rule

states that this feature is indicative of the defects called Wenckebach or Mobitz 2, or, when

the AV conductance is normal, of the atrial 
utter or �brillation. The rule thus clearly

indicates what kinds of disorders a diagnostic system should be looking for in the case that

this abnormality is detected in the ECG.

The individual steps of the KARDIO methodology are described in more detail else-

where in this volume [34]. The methodology shows how the qualitative modeling approach

and the machine learning technology can be used in the development of practical expert

systems. The KARDIO knowledge acquisition paradigm has already been used in the

development of a satellite power supply fault diagnosis system by Pearce [40] and Feng

[17].

5 Qualitative model acquisition

The model design process can be at least partially automated bymeans of machine learning.

The Qualitative Model Acquisition System (QuMAS) [33] supports the construction of a

deep model and the representation of a model at di�erent levels of detail. In QuMAS,

partial knowledge about the model and examples of its behavior are provided by the user,
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and the complete model is automatically constructed and incrementally re�ned until the

desired behavior is achieved. This knowledge acquisition paradigm is represented by box

D in Figure 1.

In this approach, we restrict ourselves to functional qualitative models, where a model

is de�ned by its structure (a set of components and their connections) and functions of the

individual components. As outlined in Figure 4a, QuMAS consists of three subsystems:

a learner that hypothesizes functions of components from examples of their behavior, an

interpreter that can use the hypothesized model to derive its behavior, and a debugger that

locates faulty functions of components and proposes how to correct them.

It is assumed that only partial knowledge about the model is given - its structure.

Further, examples of the behavior of the model and its constituent components are provided

from which the learning part of the system hypothesizes functions of the components. The

interpreter of the model is then able to derive its behavior. The user can test the model

and compare it with the intended behavior. When a di�erence between the derived and

the intended behavior of the model occurs, a debugger is invoked. The debugger locates

faulty hypotheses de�ning functions of components, proposes examples of behavior that

guarantee the intended behavior of the model, and invokes the learner that incrementally

re�nes the hypotheses.

The cycle of deriving the behavior of the model, debugging the model, and incremental

learning is repeated until the intended behavior of the model is achieved, i.e., until the user

believes that the model is correct and complete with respect to the actual system being

modeled.

QuMAS embodies two types of learning. Initial data-driven learning generalizes exam-

ples of components' behavior into rules on the basis of similarities and di�erences and does

not require any user interaction. The second type of learning is model-driven where the

debugger actively constructs examples of components' behavior which satisfy the intended

model behavior, and then queries the user for con�rmation. QuMAS therefore o�ers a

trade-o� between the initial amount of knowledge provided by the user, and the time one

is willing to spend on debugging the model.

QuMAS is used interactively by the model designer, and takes advantage of the hierar-

chical model representation to speed up the automatic learning of the model (Figure 4b).

The hierarchy has also a role in generating a good and concise explanation on points se-

lected by the user. A substantial part of the KARDIO heart model was reconstructed

semi-automatically using QuMAS [33, 7].

6 Re�nement cycles in knowledge acquisition

Development of an expert system is essentially an iterative process which typically needs

several re�nement cycles. In each cycle, the expert and the knowledge engineer re�ne the

knowledge base by comparing the human performance with the machine performance and

the original human knowledge with the generated machine representation. The re�nement

cycles need to be repeated until the intended performance of the system is achieved.
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Figure 4: An overview of the qualitative model acquisition system (a), and the top-down

model construction method (b).
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Expert system shells have to integrate a variety of tools that allow for acquisition,

explanation and utilization of complex domain knowledge. The classical expert system

schema shown in Figure 5a cannot cover all the required functions of the system. In

this schema, an expert system consists of a domain dependent knowledge base and of a

domain independent expert system shell which incorporates an inference engine and a user

interface. In Figure 5b, a new schema of an expert system shell is proposed [2]. The

structure of an expert system shell is extended to incorporate: the acquisition module

that provides tools for acquiring and editing the knowledge base, the explanation module

providing di�erent representations of the knowledge base, and the reasoning module which

uses the knowledge base to �nd solutions to a problem; it also has to provide explanations

of individual solutions, and enable the knowledge base validation.
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Figure 5: A classical (a) and an extended schema (b) of an expert system shell.

This new schema covers all the functional requirements of expert systems, namely
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apply, explain, acquire, display, edit, and validate the knowledge base [19]. In our view, an

expert system shell is not aimed just to support problem solving, but should also actively

support knowledge acquisition and re�nement of the elicited knowledge. Therefore, two

new modules are introduced: a knowledge acquisition and a knowledge explanation module.

The knowledge acquisition module is to support one or more methods for knowledge

acquisition. For example, it can incorporate a machine learning system and/or a system

which supports direct or semi-automatic construction of qualitativemodels. The knowledge

explanation module is aimed at generating di�erent explanations - from displaying the

knowledge base in a compact and comprehensible form, to representing the knowledge

from di�erent viewpoints and at di�erent level of detail [2]. By a `di�erent viewpoint' we

mean the representation of the same knowledge in a di�erent language (e.g., graphical or

tabular representation), the reorganization of knowledge (e.g., grouping rules, or expressing

one set of rules with another), or the representation of additional information derived from

the original knowledge base (e.g., di�erent statistics, Bayesian probabilities, informativity

of attributes, etc.). By a `di�erent level of detail' we mean knowledge representation by

using attributes at di�erent levels of a taxonomic hierarchy, or by eliminating too speci�c

knowledge, e.g., presenting only the most important rules. Some of these features are also

provided in the machine learning system ASSISTANT, described in Section 3.2.

According to our expert system shell schema, we distinguish between the acquisition,

reasoning and explanation re�nement cycle (represented by dashed lines in Figure 5b).

These re�nement cycles have to be supported by appropriate development tools, incorpo-

rated into the corresponding modules of an expert system shell.

Depending on the type of the system's knowledge base, the acquisition re�nement cycle

in Figure 5b consists of a feedback loop back to the source of knowledge. In Figure 1,

which illustrates the knowledge 
ow in di�erent methods for knowledge acquisition, the

acquisition re�nement cycle could be introduced by feedback loops from any of the three

types of the acquired knowledge (rule base, example base, qualitative model) back to the

source of knowledge. In the case that a knowledge base is induced from a set of tutorial

examples, this corresponds to Michie's `�rst re�nement cycle' of his `new style knowledge

engineer's route map' [30]. His `second re�nement cycle' corresponds to what we call here

the reasoning re�nement cycle in which the system's performance is compared with the

human expert's performance.

The knowledge explanation module is aimed at providing di�erent representations of

the knowledge base to be shown to the user. This motivates the expert and the knowledge

engineer to further check and elaborate the knowledge base as new ideas are triggered

that may lead to the identi�cation of inadequate or missing knowledge. In the process

of knowledge acquisition we call this the explanation re�nement cycle. In this cycle, the

generated machine representation of knowledge is compared with the original expert's

knowledge. Di�erences between the two can result from either an error in the machine

representation or a slip in the original human codi�cation of knowledge. In the former

case, the error is a consequence of incorrectly encoded rules, errors in learning examples,

or an error in the deep causal model, depending on the type of the system's knowledge

base. In the latter case, the re�nement cycles will expose blemishes in the existing, original
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expert formulations, and may thus help to improve those.

In the man-machine dialogue through several re�nement cycles both man and machine

learn. We can consider the process of knowledge elicitation as a man-machine learning

process consisting of the stepwise acquisition and re�nement of knowledge. The level of

human and machine knowledge grows. From this point of view, the role of an expert system

is not only in solving problems and explaining the solutions, but also in building (new)

human-type knowledge through re�nement cycles. By acquiring this re�ned knowledge,

machine knowledge is improved and allows for better performance. This man-machine

learning process extends the role of expert systems to expert support systems [28]. In

contrast to �rst generation expert systems whose main goal is to simulate human experts'

performance in problem solving, expert support systems stimulate human mental processes

in the process of knowledge acquisition, therefore supporting human learning as well.

7 Conclusion

The development of an expert system is typically an iterative process. It consists of re�ne-

ment cycles that are repeated until the intended performance of the system is achieved. We

emphasize the importance of the knowledge acquisition and knowledge explanation cycle

that allow us to see the development of an expert system as a process in which both man

and machine learn and in which (new) human-type knowledge is being generated.

The paper gives an overview of some second generation knowledge acquisition methods.

Three methods are described together with the results of their application to medical

problems: learning rules from examples, model-based rule learning and semi-automatic

model acquisition. All these methods are aimed at automating the knowledge acquisition

process.

An important advantage of using the reviewed methods, based on machine learning

and qualitative modeling, is that the knowledge bases can be guaranteed to be complete

and consistent with regard to the given set of training examples (in exact and non-noisy

domains) and with regard to the selected level of detail of a qualitative model, respectively.

In non-exact and noisy domains, however, the appropriate noise-handling mechanisms

of advanced inductive learning tools can be used to deal with non-exact and erroneous

data. The acquired knowledge bases can be tested for their accuracy when classifying

unseen cases. Having tested the classi�cation accuracy of the knowledge base and having

estimated the statistical signi�cance of the results, the user can statistically justify and

explain the answers obtained by using an expert system containing the automatically

generated knowledge base.

The reviewed methods for knowledge acquisition and re�nement, all of which are used

in KARDIO to model a substantial real-life problem, emphasize the role of machine learn-

ing and qualitative modeling techniques in the development of second generation expert

systems.
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