
Model-Based Diagnosis with

Constraint Logic Programs

�

Igor Mozeti�c

Austrian Research Institute for Arti�cial Intelligence

Schottengasse 3, A-1010 Vienna, Austria

Christian Holzbaur

Austrian Research Institute for Arti�cial Intelligence, and

Department of Medical Cybernetics and Arti�cial Intelligence

University of Vienna

Freyung 6, A-1010 Vienna, Austria

Abstract

Model-based diagnosis is the activity of locating malfunctioning components of a

system solely on the basis of its structure and behavior. In the paper we describe the

role of Constraint Logic Programming (CLP) in representing models and the search

space of minimal diagnoses. In particular, we concentrate on two instances of the

CLP scheme: CLP(B) and CLP(<). CLP(B) extends the standard computational

domain of logic programs by boolean expressions, while CLP(<) comprises a solver

for systems of linear equations and inequalities over real-valued variables.

1 Introduction

There are two fundamentaly di�erent approaches to diagnostic reasoning. In the �rst,

heuristic approach, one encodes diagnostic rules of thumb and experience of human experts

in a given domain. In the second, model-based approach, one starts with a model of a real-

world system which explicitly represents the structure and components of the system (e.g.,

Genesereth 1984, Davis 1984, de Kleer & Williams 1987, Reiter 1987). When the system's

�

Appears in Proc. 7th Austrian Conf. on Arti�cial Intelligence,

�

OGAI-91 (H. Kaindl, Ed.), pp. 168-

180, Vienna, Austria, September 25-27, 1991, Springer-Verlag (IFB 287).

1

actual behavior is di�erent from the expected behavior, the diagnostic problem arises. The

model is then used to identify faulty components and their internal states which account

for the observed behavior. One usually requires a parsimonious diagnosis, i.e., a minimal

set of faulty components.

In our view there are two major obstacles which prevented a wider application of

model-based techniques to real-world problems. First, the complexity of algorithms which

�nd all minimal diagnoses is exponential in the number of components. This problem

was addressed only recently, either by focusing just to a small number of most probable

diagnoses (de Kleer & Williams 1990, Mozetic & Holzbaur 1991b), by interleaving diagnosis

and treatment (Friedrich et al. 1990), or by introducing abstractions (Gallanti et al. 1989,

Mozetic 1990). Second, models are usually restricted to qualitative descriptions. GDE

(de Kleer & Williams 1987), for example, is unable to solve simultaneous equations, which

makes it unpractical for a large class of applications.

In the paper we describe the role of Constraint Logic Programming (CLP, Ja�ar et al.

1986, Cohen 1990) in representing a larger class of models. CLP are logic programs ex-

tended by interpreted functions. A proper implementation of the CLP scheme allows for an

easy integration of specialized problem solvers into the logic programming framework. For

example, in Metaprolog (an extension of C-Prolog, Holzbaur 1990) specialized solvers com-

municate with the standard Prolog interpreter via extended semantic uni�cation and are

implemented in Prolog themselves. So far, we have implemented three solvers: constraint

propagation over �nite domains by forward checking, CLP(B) | a solver over boolean

expressions, and CLP(<) | a solver for systems of linear equations and inequalities over

reals

1

.

In section 2 we show how to model structure and behavior by logic programs. We

clarify the relationship between the behavior of a component and its internal state (normal

or malfunctioning). In section 3 we de�ne the concepts of a diagnosis and con
ict and

show how to compute them by a logic programming system. For compact modeling of

discrete systems, e.g., digital circuits, and for representing the search space of minimal

diagnoses CLP(B) can be used (section 4). In contrast, to model continuos systems, e.g.,

analogue circuits, a more expressive formalism is needed. In section 5 we outline the use

and operation of CLP(<).

2 Modeling structure and behavior

Model-based reasoning about a system requires an explicit representation (a model) of

the system's components and their connections. Reasoning is typically based on theorem

proving if a model is represented by �rst-order logic (Genesereth 1984, Reiter 1987), or on

1

Metaprolog and the three specialized solvers are available on request from the second author.

2

h h

�

�

�

�

H

H

H

H

�

�

�

�

H

H

H

H

1 0

X

I1

Y

I2

Z

Figure 1: Two inverters, with states I1 and I2, and an observation h1,0i.

constraint propagation coupled with an ATMS (de Kleer & Williams 1987). We represent

models by logic programs (Lloyd 1987), or by constraint logic programs (Ja�ar et al. 1986).

De�nition. A model of a system is a triple hSD, COMPS, OBSi where

1. SD, the system description, is a logic program with a distinguished top-level binary

predicate m(COMPS, OBS).

2. COMPS, states of the system components, is an n-tuple hS

1

; : : : ; S

n

i where n is the

number of components, and variables S

i

denote states (e.g., normal or abnormal) of

components.

3. OBS, observations, is an m-tuple hIn

1

; : : : ; In

i

; Out

i+1

; : : : ; Out

m

i where In and Out

denote inputs and outputs of the model, respectively.

In a logic program, n-tuples are represented by terms of arity n. Variables start with

capitals and are implicitly universally quanti�ed in front of a clause, and constants start

with lower-case letters. In SD and de�nitions we refer to a distinguished constant ok to

denote that the state S

i

of the component i is normal. This corresponds to the statement

:ab(S

i

) used in the consistency-based approach.

Example (two inverters, de Kleer et al. 1990, Figure 1). COMPS is a pair hI1,I2i and

OBS is a pair hX,Zi. SD consists of the following clause which speci�es the structure of

the device, and of additional clauses which de�ne behavior of an inverter:

m(hI1,I2i, hX,Zi)

inv(I1, X, Y),

inv(I2, Y, Z).

Connections between components are represented by shared variables. Speci�cation of the

behavior depends on the available knowledge about possible faults. We distinguish between

three types of fault models: weak, exoneration, or strong.

A weak fault model de�nes just normal behavior of components (state ok), abnormal

behavior (state ab) is unconstrained:

inv(ok, 0, 1).

inv(ok, 1, 0).

inv(ab, ,).

3

'

&

%

$

'

&

$

%

'

&

$

%

'

&

$

%

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

�

�

�

�

�

�

�

A

A

(c)(b)(a)

ab

ab

ok

unknown

:F

ok

:F

ok

F

ok

F

ab

unknown

ab

ok

impossible

F

ok

Figure 2: General relation (a) between the behavior (F

ok

, F

ab

) and the state (ok, ab, un-

known) of a component. Two special cases are a weak fault model (b), and an exoneration

model (c).

F

ok

F

ab

S Meaning

0 0 fail impossible

0 1 1 ab

1 0 0 ok

1 1 W unknown

Table 1: A decision table encoding the state S of a component as a function of normal

(F

ok

) and abnormal (F

ab

) behavior. F = 1 denotes that the behavior is achieved, while

F = 0 denotes that the behavior is not achieved.

An exoneration model (Raiman 1989) is a special case of a strong fault model and

speci�es as abnormal any behavior di�erent than normal:

inv(ok, 0, 1).

inv(ok, 1, 0).

inv(ab, X, X).

A strong fault model (Struss & Dressler 1989) speci�es all the possible ways in which

a component can fail. In general, a component may have several failure states (e.g., stuck-

at-0 or stuck-at-1), but in our example we allow just for one:

inv(ok, 0, 1).

inv(ok, 1, 0).

inv(ab, , 0). % stuck-at-0

4

General relation between the behavior and the state of a component is depicted in

Figure 2. Instead of using essentially extensional descriptions of the weak, exoneration,

and strong fault models we can formulate them in terms of boolean algebra expressions.

In the following F

ok

denotes a normal, and F

ab

an abnormal behavior of a component. If

we encode the normal state as 0 (zero) instead of ok, and the faulty state as 1 instead of

ab then the following expression computes the state from the behavior (Table 1):

S � (:F

ok

_ F

ab

^W) F

ok

_ F

ab

:

In a special case of a weak fault model (where F

ab

is unconstrained) the state S is

computed as S � (:F

ok

_ W). If a normal behavior is not achieved we conclude that the

component is faulty. Otherwise we cannot conclude anything (an unbound variable W).

In a special case of an exoneration model (where F

ab

� :F

ok

) the state is simply

S � :F

ok

. If a normal behavior is not achieved we conclude that the component is faulty.

Otherwise we conclude it functions correctly.

For the inverter example, the normal behavior is de�ned as F

ok

: :X � Y. The following

three clauses specify the weak, exoneration, and strong fault model, respectively, and � is

the xor operator:

inv((:X � Y) _ W, X, Y).

inv(:X � Y, X, Y).

inv((:X � Y) _ (:Y ^ W), X, Y) ((:X � Y) _ :Y) = 1.

3 Computing diagnoses and con
icts

In order to de�ne the concepts of a diagnosis and a con
ict, we assume that an observation,

a ground instance of OBS, is given. In the following de�nitions 8F denotes universal

closure, i.e., all free variables in the formula F are universally quanti�ed.

De�nition. An ok-instance of a term is an instance where some variables are replaced

by the constant ok. A ground instance is an instance where all the variables are replaced

by constants.

De�nition. A diagnosis D for hSD, COMPS, OBSi is an instance of COMPS such

that SD j= 8m(D, OBS).

De�nition. A con
ict C for hSD, COMPS, OBSi is an ok-instance of COMPS such

that SD j= 8:m(C, OBS).

This characterization of a diagnosis subsumes most of the previous ones. In the

consistency-based approach (Reiter 1987) a diagnosis

2

is a set of abnormal (6=ok) com-

ponents such that SD and OBS are consistent with all other components being ok. De

2

Reiter's de�nition of a diagnosis actually includes the minimality criterion and corresponds to our

de�nition of a minimal diagnosis.

5

Kleer & Williams (1989) extended the de�nition to include a behavioral mode (state) for

each component. In both cases a diagnosis is essentially a ground instance of COMPS.

Poole (1989) observed that a diagnosis need not commit a state to each component when

the state is `don't care'. This led to the de�nition of a partial diagnosis (de Kleer et al.

1990) which corresponds to a non-ground instance of COMPS but, on the other hand,

does not include states of components. The de�nition of a con
ict is standard, i.e., a set of

components which cannot be simultaneously ok, and can be easily extended to a minimal

con
ict.

Apart from being simple, our de�nitions are also operational since diagnoses and con-

icts can easily be computed by a logic programming system. The search for a logi-

cal consequence of SD is realized by the search for an answer substitution � such that

SD [f:m(A�, OBS)g is unsatis�able. We just have to make sure that A is an ok-

instance of COMPS. If such a substitution exists we can conclude D = A� is a diagnosis.

If not, and regarding SD as implicitly completed (Lloyd 1987), we can conclude that C = A

is a con
ict. Like in consistency-based diagnosis, A can be interpreted as an assumption

that some components are not abnormal, i.e., are ok.

Example. Take the two inverters example, the boolean speci�cation of the fault mod-

els, and the observation OBS = h1,0i. In the case of the strong fault model we get the

following diagnosis:

 m(hI1,I2i, h1,0i).

I1 = W

I2 = 1

This means that I2 is certainly faulty, while I1 might or might not be ok. With the

exoneration model we get:

 m(hI1,I2i, h1,0i).

I1 = Y

I2 = 1 � Y

This is equivalent to I1 = :I2, i.e., either I1 or I2 is faulty, but not both. The weak fault

model yields:

 m(hI1,I2i, h1,0i).

I1 = Y � Y^W1 � W1

I2 = 1 � Y � Y^W2

which is equivalent to I1 _ I2 = 1. The observation can be explained by each individual

inverter being faulty, or by both inverters being faulty. In such cases one seeks a parsi-

monious diagnosis, i.e., a minimal number of faulty components which are still consistent

with observations.

In order to compute minimal diagnoses it is convenient to represent the search space of

diagnoses and con
icts as a subset-superset lattice (de Kleer & Williams 1987). The top

6

element of the lattice corresponds to a tuple where all components are 6=ok, and the bottom

element to the tuple where all components are ok. Reiter's algorithm (1987), for example,

searches the lattice bottom-up (from con
icts to diagnoses), in a breadth-�rst fashion

(diagnoses of smaller cardinality are found �rst) and relies on the underlying ATMS-like

theorem prover. In contrast, our algorithm (Mozetic & Holzbaur 1991b) better �ts into the

logic programming environment, and implements a top-down, depth-�rst search through

the lattice. In diagnosing real systems, the search lattice is large and minimal diagnoses

are usually near the bottom of the lattice. Depth-�rst search, coupled with non-ground

model calls, allows for deep `dives' into the lattice and in the average case at least a few

diagnoses are found quickly. Further, by computing minimal diagnoses incrementaly, we

can ensure that the worst case complexity of the algorithm remains polynomial.

4 Boolean domains | using CLP(B)

In this section we show how a richer computational domain than the Herbrand universe

interacts with a model and the diagnostic algorithm. We stay in the context of logic

programming but extend syntactic uni�cation by solving equations over interpreted terms

(Ja�ar et al. 1986) | boolean expressions in this particular case. The resulting constraint

logic programming language CLP(B) was realized in the general Metaprolog framework

(Holzbaur 1990), where the implementation reduces to the Prolog formulation of a special-

ized uni�cation algorithm. There exist several boolean uni�cation algorithms (Crone-Rawe

1989). We chose the one published by (B�uttner & Simonis 1987); the origin of the method

goes back to (Boole 1947). The algorithm computes the most general boolean ring uni-

�er � of two terms t

1

and t

2

. It operates on a deterministic disjunctive minimal normal

form (Martin & Nipkov 1986) for terms in the boolean ring hV ,�,^,0,1i, i.e., all boolean

functions are expressed in terms of � and ^.

Example.

:X ! 1 � X

X _ Y ! X � Y � X^Y

The use of CLP(B) is limited to discrete devices which compute some boolean function.

However, it allows for a compact representation of the search lattice, since a minimal

diagnosis can be computed deterministically, without any backtracking.

Example (binary adder, Genesereth 1984, Figure 3). The top-level binary predicate

m is adder, COMPS is a �ve-tuple hX1,X2,A1,A2,O1i, OBS is a �ve-tuple hA,B,C, D,Ei,

and SD consists of the following logic program:

adder(hX1,X2,A1,A2,O1i, hA,B,C, D,Ei)

xorg(X1, A, B, X),

xorg(X2, C, X, D),

andg(A1, A, B, Y),

7

!

!

s

s

s

s

�

�

�

�

H

H

H

H

�

�

�

�

H

H

H

H

�

�

�

�

H

H

H

H

0

0

1

0

1

Z

Y

X

C

B

A

E

D

O1

A2

A1

X2

X1

Figure 3: A binary adder consisting of two exclusive-or gates (X1, X2), two and gates

(A1, A2) and an or gate (O1). The output E = 0 is faulty.

andg(A2, C, X, Z),

org(O1, Y, Z, E).

xorg((X � Y � Z) _ W, X, Y, Z).

andg(((X ^ Y) � Z) _ W, X, Y, Z).

org(((X _ Y) � Z) _ W, X, Y, Z).

Given the observation h1,0,1, 0,0i and the above weak fault model of the adder, CLP(B)

returns the following answer substitutions which constitute a solved system of boolean

equations in the normal form:

 adder(hX1,X2,A1,A2,O1i, h1,0,1, 0,0i).

X1 = 1 � X � X^W1

X2 = 1 � X � X^W2

A1 = Y � Y^W3 � W3

A2 = X � X^W4 � Z � Z^W4 � W4

O1 = Y � Y^Z � Y^Z^W5 � Y^W5 � Z � Z^W5 � W5

Note that this answer substitution captures all diagnoses, i.e., the whole lattice above the

boundary between the diagnoses and con
icts. A minimal diagnosis is computed by setting

a maximum number of state variables to ok (0).

Example. Assume that we already succeeded settingX1;X2; A1 to 0, which is logically

equivalent to the model call:

 adder(h0,0,0,A2,O1i, h1,0,1, 0,0i).

A2 = 1 � Z � Z^W4

O1 = Z � Z^W5 � W5

Next, A2 is set to 0, forcing Z to 1 and O1 to 1, thus yielding the �rst minimal singleton di-

agnosis h0,0,0,0,1i, i.e., the or gate O1 is faulty. An alternative diagnosis is computed from

8

a disjoint label hX1,X2,A1,A2,0i, which yields the second minimal diagnosis h0,0,0,1,0i.

In both cases we know that the diagnoses are minimal | there is no need to even consider

the label h0,0,0,0,0i.

After the discovery of the two single faults the label hX1,X2,A1,0,0i leads to the model

call with the following answer substitutions:

 adder(hX1,X2,A1,0,0i, h1,0,1, 0,0i).

X1 = 1

X2 = 1

A1 = W3

This corresponds to the minimal diagnosis h1,1,0,0,0i | no need to check h1,0,0,0,0i or

h0,1,0,0,0i. In addition, under the assumption that both A2 and O1 are ok we known that

neither X1 nor X2 can possibly be ok. This yields the two con
icts hX1,0,A1,0,0i and

h0,X2,A1,0,0i. Therefore, from three calls to the model we got the three minimal diagnoses

and even the two con
icts, which in total covers the search lattice.

5 Real-valued domains | using CLP(<)

There are domains where pure logic programs or ATMS-like systems have insu�cient ex-

pressive power to reason about the system under consideration. In particular, modeling

real-valued system parameters with tolerances requires some degree of numerical process-

ing, and feedback loops in general cannot be resolved by local constraint propagation

methods. Examples of such systems are analogue circuits, such as ampli�ers or �lters

(Dague et al. 1990).

Here we illustrate the modeling of a simple ampli�er (taken from Wakeling & McKeon

1989) by CLP(<). The description of a transistor we use is from Heinze et al. (1987). We

assume that any transistor or resistor in the circuit can be faulty.

Example (an ampli�er, Wakeling & McKeon 1989, Figure 4). The top-level binary

predicate m is ampli�er, COMPS is an eleven-tuple hQ1,Q2,Q3,R1,: : : ,R8i, OBS is a four-

tuple hVcc,Vee,Vin,Vouti, and SD consists of the following logic program:

ampli�er(hQ1,Q2,Q3,R1,R2,R3,R4,R5,R6,R7,R8i, hVcc,Vee,Vin,Vouti)

transistor(npn, Q1, V1, V3, V2, Ib1, Ic1, Ie1),

transistor(npn, Q2, V6, V4, V2, Ib2, Ic2, Ie2),

transistor(pnp, Q3, V4, Vout, V5, Ib3, Ic3, Ie3),

resistor(R1, 10000, Vin, V1, I1),

resistor(R2, 10000, Vout, V1, I2),

resistor(R3, 6800, Vcc, V3, Ic1),

resistor(R4, 6800, Vcc, V4, I4),

resistor(R5, 560, Vcc, V5, Ie3),

9

V6

V5

Vee

Vcc

V4

V2 Vout

V3

V1

Vin

R8

R5R3

Q3

Q1
R1 R6

R2

Q2

R7

R4

Figure 4: An ampli�er consisting of transistors (Q1, Q2, Q3) and resistors (R1, : : : , R8).

resistor(R6, 560, 0, V6, Ib2),

resistor(R7, 15000, V2, Vee, I7),

resistor(R8, 3300, Vout, Vee, I8),

Ib1=I1+I2, I7=Ie1+Ie2, Ic2=I4+Ib3, Ic3=I2+I8.

resistor(ok, R, V1, V2, I) V1�V2=I*R.

resistor(ab, , , ,).

transistor(npn, cuto�, Vb, Vc, Ve, Ib, Ic, Ie)

Vb<Ve+0.7, Ib=0, Ic=0, Ie=0.

transistor(npn, active, Vb, Vc, Ve, Ib, Ic, Ie)

Vb=Ve+0.7, Vc�Vb, Ib�0, Ic=100*Ib, Ie=Ic+Ib.

transistor(npn, saturated, Vb, Vc, Ve, Ib, Ic, Ie)

Vb=Ve+0.7, Vc=Ve+0.3, Ib�0, Ic�0, Ie=Ic+Ib.

transistor(, ab, , , , , ,).

In CLP(<) linear equations are kept in solved form. Variables appearing in the equa-

tions are split into two disjoint sets: dependent variables and independent variables. De-

pendent variables are expressed through terms containing independent variables. When a

new equation is to be combined with a system of equations in solved form, all its dependent

variables are replaced by their de�nitions which results in an expression over independent

variables. An independent variable is selected then, and the expression is solved for it.

After the resulting de�nition has been back-substituted into the equation system, the iso-

lated variable can be added as a new dependent variable, and the equation system is in

solved form again. Inequalities are expressed in terms of independent variables.

10

One traditional method for deciding linear inequalities is the simplex method. The

simplex method works by turning inequalities into equations through the introduction

of so-called `slack variables'. This leads to a `contamination' of the equation system with

arti�cial variables from the user's point of view. In our experience, the amount of code that

is needed to compute a human readable form of the (in)equation system is unproportionally

high in comparison to the code that does the actual job. Therefore, we rather selected the

Shostak's `Loop Residue' method (Shostak 1981). Besides being better suited for small

inequalities, this method operates with a `direct' representation of inequalities. For each

set of inequalities a graph is constructed whose vertices correspond to the variables and

edges to the inequalities. Kraemer (1989) proves the equivalence between a satis�able set

of inequalities and the corresponding closed graph without any infeasible loop.

Our Metaprolog implementation of CLP(<) is preferred over other existing implemen-

tations of CLP(<) (Heintze et al. 1987, Ja�ar 1990) since it allows for the simultaneous

use of solvers for di�erent domains in a consistent framework. In this respect Metaprolog

is very well suited for the computational demands that arise in the context of hierarchi-

cal abstractions (Mozetic 1990, Mozetic & Holzbaur 1991a). The numerical level of the

model can be formulated with CLP(<) for example, and successive qualitative abstractions

thereof typically utilize constraint propagation over �nite domains where forward checking

or CLP(B) can be used.

6 Conclusion

The paper outlines the potential applicability of Constraint Logic Programs to model-based

diagnosis. For the CLP(B) case we show how the diagnostic algorithm can actively bene�t

from an increased expressiveness in the language. Another solver, CLP(<), is able to solve

systems of simultaneous linear equations over <eals. This is beyond the capabilities of

the local constraint propagation methods used by de Kleer & Williams (1987). In our

framework the simultaneous application of several speci�c solvers is truly operational due

to their realization in the uniform Constraint Logic Programming scheme.

Acknowledgements

This work was supported by the Austrian Federal Ministry of Science and Research.

Thanks to Robert Trappl for creating an enjoyable working environment.

11

References

Boole, G. (1947). The Mathematical Analysis of Logic. Macmillan.

B�uttner, W., Simonis, H. (1987). Embedding Boolean expressions into logic programming.

Journal of Symbolic Computation 4, pp. 191-205.

Cohen, J. (1990). Constraint logic programming languages. Communications of the ACM

33 (7), pp. 52-68.

Crone-Rawe, B. (1989) Uni�cation algorithms for boolean rings. SEKI Working Paper

SWP-89-01, University of Kaiserslautern, Germany.

Dague, P., Deves, P., Luciani, P., Taillibert, P. (1990). Analog systems diagnosis. Proc.

9th ECAI, pp. 173-178, Stockholm.

Davis, R. (1984). Diagnostic reasoning based on structure and behaviour. Arti�cial Intel-

ligence 24, pp. 347-410.

de Kleer, J., Mackworth, A.K., Reiter, R. (1990). Characterizing diagnoses. Proc. 8th

AAAI, pp. 324-330, Boston, MIT Press.

de Kleer, J., Williams, B.C. (1987). Diagnosing multiple faults. Arti�cial Intelligence 32,

pp. 97-130.

de Kleer, J., Williams, B.C. (1989). Diagnosis with behavioral modes. Proc. 11th IJCAI,

pp. 1324-1330, Detroit, Morgan Kaufmann.

de Kleer, J., Williams, B.C. (1990). Focusing the diagnosis engine. Unpublished draft,

presented at the First Intl. Workshop on Principles of Diagnosis, Stanford University.

Friedrich, G., Gottlob, G., Nejdl, W. (1990). Hypothesis classi�cation, abductive diagnosis

and therapy. Proc. First Intl. Workshop on Principles of Diagnosis, pp. 124-128, Stanford

University.

Gallanti, M., Roncato, M., Stefanini, A., Tornielli, G. (1989). A diagnostic algorithm

based on models at di�erent level of abstraction. Proc. 11th IJCAI, pp. 1350-1355,

Detroit, Morgan Kaufmann.

Genesereth, M.R. (1984). The use of design descriptions in automated diagnosis. Arti�cial

Intelligence 24, pp. 411-436.

Heintze, N., Ja�ar, J., Michaylov, S., Stuckey, P., Yap, R. (1987). The CLP(<) program-

mer's manual. Dept. of Computer Science, Monash University, Australia.

Heintze, N., Michaylov, S., Stuckey, P. (1987). CLP(<) and some electrical engineering

problems. Proc. 4th Intl. Conference on Logic Programming, pp. 675-703, Melbourne,

Australia, The MIT Press.

Holzbaur, C. (1990). Speci�cation of constraint based inference mechanisms through ex-

tended uni�cation. Ph.D. Thesis, Vienna University of Technology, Austria.

12

Ja�ar, J. (1990). CLP(<) version 1.0 reference manual. IBM Research Division, T.J.

Watson Research Center, Yorktown Heights, NY.

Ja�ar, J., Lassez, J.-L., Mahler, J. (1986). A logic programming language scheme. In D.

de Groot, G. Linstrom (eds.), Logic Programming: Functions, Relations, and Equations,

Prentice-Hall, Englewood Cli�s, NJ.

Kraemer, F.-J. (1989). A decision procedure for Presburger arithmetic with functions and

equality. SEKI working paper SWP-89-4, FB Informatik, University of Kaiserslautern,

Germany.

Lloyd, J.W. (1987). Foundations of Logic Programming (Second edition). Springer-Verlag,

Berlin.

Martin, U., Nipkov, T. (1986). Uni�cation in boolean rings. Proc. 8th Intl. Conference

on Automated Deduction, pp. 506-513.

Mozetic, I. (1990). Reduction of diagnostic complexity through model abstractions. Report

TR-90-10, Austrian Research Institute for Arti�cial Intelligence, Vienna. Proc. First Intl.

Workshop on Principles of Diagnosis, pp. 102-111, Stanford University, Palo Alto.

Mozetic, I., Holzbaur, C. (1991a). Integrating qualitative and numerical models within

Constraint Logic Programming. Report TR-91-2, Austrian Research Institute for Arti�cial

Intelligence, Vienna, Austria. Proc. 1st European Workshop on Qualitative Reasoning

about Physical Systems, Genova, Italy.

Mozetic, I., Holzbaur, C. (1991b). Controlling the complexity in model-based diagnosis.

Report TR-91-3, Austrian Research Institute for Arti�cial Intelligence, Vienna, Austria.

Poole, D. (1989). Normality and faults in logic-based diagnosis. Proc. 11th IJCAI, pp.

1304-1310, Detroit, Morgan Kaufmann.

Raiman, O. (1989). Diagnosis as a trial: the alibi principle. IBM Scienti�c Center, Paris.

Reiter, R. (1987). A theory of diagnosis from �rst principles. Arti�cial Intelligence 32, pp.

57-95.

Shostak, R. (1981). Deciding linear inequalities by computing loop residues. Journal of

the ACM 28 (4), pp. 769-779.

Struss, P., Dressler, O., (1989). \Physical negation" | integrating fault models into the

general diagnostic engine. Proc. 11th IJCAI, pp. 1318-1323, Detroit, Morgan Kaufmann.

Wakeling, A., McKeon A. (1989). On automatic fault �nding in analogue circuits. Elec-

tronic Engineering, pp. 95-101, Nov. 1989.

13

