
Controlling the Complexity in

Model-Based Diagnosis

�

Igor Mozeti�c

Austrian Research Institute for Arti�cial Intelligence

Schottengasse 3, A-1010 Vienna, Austria

igor@ai.univie.ac.at

Christian Holzbaur

Austrian Research Institute for Arti�cial Intelligence, and

Department of Medical Cybernetics and Arti�cial Intelligence

University of Vienna

Freyung 6, A-1010 Vienna, Austria

christian@ai.univie.ac.at

Abstract

We present IDA | an Incremental Diagnostic Algorithm which computes min-

imal diagnoses from diagnoses, and not from con
icts. As a consequence of this,

and by using di�erent models, one can control the computational complexity. In

particular, we show that by using a model of the normal behavior, the worst-case

complexity of the algorithm to compute the k + 1-st minimal diagnosis is O(n

2k

),

where n is the number of components. On the practical side, an experimental evalu-

ation indicates that the algorithm can e�ciently diagnose devices consisting of a few

thousand components. We propose to use a hierarchy of models: �rst a structural

model to compute all minimal diagnoses, then a normal behavior model to �nd the

additional diagnoses if needed, and only then a fault model for their veri�cation.

IDA separates model interpretation from the search for minimal diagnoses in the

sense that the model interpreter is replaceable. In particular, we show that in some

domains it is advantageous to use the Constraint Logic Programming system CLP(B)

instead of a logic programming system like Prolog.

�

To appear in Annals of Mathematics and Arti�cial Intelligence, 1993. This is an extended version of

the paper by Igor Mozeti�c \A polynomial-time algorithm for model-based diagnosis" which appears in the

Proc. European Conf. on Arti�cial Intelligence, ECAI-92 (B. Neumann, Ed.), pp. 729-733, John Wiley

& Sons, 1992.

1

1 Introduction

Model-based diagnosis is the activity of locating malfunctioning components of a system

solely on the basis of its structure and behavior. There are two prevailing approaches,

consistency-based and abductive

[

Poole, 1989

]

, which di�er in the representation of knowl-

edge about the normality and faults, and in how diagnoses are de�ned and computed.

Recently, a number of negative results have been reported about the complexity of model-

based diagnosis. In particular, in the consistency-based approach, �nding the next minimal

diagnosis with a `weak' fault model (i.e., a model of a normal behavior) is an NP-complete

problem

[

Friedrich et al., 1990

]

. With a `strong' fault model (i.e., a model of di�erent

faults) even computing the �rst (non-minimal) diagnosis is NP-complete. Similar results

were shown in the context of abductive diagnosis

[

Bylander et al., 1989

]

.

The goal of this paper is to present IDA | an Incremental Diagnostic Algorithm

which has polynomial worst-case time complexity on one hand, and, on the other hand,

can e�ciently diagnose large-scale devices. We identify two potential sources of exponen-

tial complexity: the search through the space of potential diagnoses, represented by a

lattice, and the type of the fault model used. We de�ne the TP function (theorem prover),

originally proposed by Reiter

[

Reiter, 1987

]

, which clearly separates the model interpreta-

tion from the lattice search. The TP function does not require ATMS-style dependency

recording and can be easily realized by a logic programming system like Prolog. This also

avoids incomplete constraint propagation which occurs in most ATMS-based systems

[

de

Kleer and Williams, 1987

]

. Furthermore, without any change to the diagnostic algorithm,

TP can be realized by di�erent instances of the Constraint Logic Programming (CLP)

scheme

[

Ja�ar and Lassez, 1987

]

, depending on the domain of application.

In section 2 we give a new characterization of models, diagnoses and con
icts, and

show how to represent di�erent types of models by logic programs. This is illustrated

by the frequently used binary adder example; in section 4 the example is expanded and

experimental results are compared to de Kleer's HTMS-based system

[

de Kleer, 1991

]

.

The basic algorithm which computes all minimal diagnoses is described in section 3.

In contrast to most consistency-based approaches where minimal diagnoses are computed

from con
icts (e.g.

[

Reiter, 1987, de Kleer and Williams, 1987

]

), our algorithm computes

minimal diagnoses directly from diagnoses (direct computation of diagnoses was also de-

scribed in

[

Friedrich and Nejdl, 1990

]

). Con
icts are computed as a side e�ect, and are

used to prune the search space. The algorithm is incremental in the sense that it can

compute the k + 1-st minimal diagnosis from the previous k diagnoses.

In section 4 we show that the IDA algorithm computes the k +1-st minimal diagnosis

in timeO(n

2k

), where n is the number of the model components, provided the TP function

requires constant time. In an experimental evaluation on a large device consisting of 5000

components, the algorithm computed the �rst 15 diagnoses in one minute of CPU time.

Next we address the complexity of the TP function with respect to three classes of models:

structural, weak, and strong fault models.

2

A structural model speci�es just how components are interconnected. If there are f

faulty outputs from the model then all minimal diagnoses are found in polynomial time

O(n

f

). A weak fault model speci�es connections and normal behavior of the model com-

ponents. The algorithm �nds the k + 1-st diagnosis in O(n

2k

) time. In addition, if the

diagnoses computed by the structural model are veri�ed �rst, then all minimal diagnoses of

cardinality � f are found in polynomial time. A strong fault model speci�es all the possible

ways in which a component can fail. Since even computing the �rst (non-minimal) diag-

nosis is NP-complete, we use the strong fault model just to verify the minimal diagnoses

computed by the weak fault model. Minimal diagnoses are typically of low cardinality,

and their veri�cation is usually tractable. If no previously computed minimal diagnosis

is admitted by the strong fault model, we can use the weak fault model to compute the

next, k + 1-st minimal diagnosis. An incremental application of the algorithm therefore

guarantees a smooth degradation of performance.

Another advantage of an explicit TP function is that one can replace the underlying

theorem prover without changing the diagnostic algorithm. In section 5 we show the

impacts of realizing the TP function by the Constraint Logic Programming system CLP(B)

where the standard computational domain (Herbrand universe) is extended by boolean

expressions.

2 Modeling and diagnosing with logic programs

Model-based reasoning about a system requires an explicit representation (a model) of the

system's components and their connections. Most diagnostic systems represent models in

terms of constraints coupled with an ATMS

[

de Kleer and Williams, 1987, de Kleer and

Williams, 1989

]

, or as a set of propositions in �rst-order logic

[

Reiter, 1987

]

. In contrast,

we represent models by logic programs

[

Lloyd, 1987

]

and by constraint logic programs

[

Jaf-

far and Lassez, 1987, Cohen, 1990

]

. Similar representation was proposed in

[

Saraswat et

al., 1990

]

, but the origin goes back to the KARDIO model

[

Bratko et al., 1989

]

. De�ni-

tions of basic concepts typically follow

[

Reiter, 1987

]

| we give an alternative, relational

characterization, suitable for model representation by (constraint) logic programs.

De�nition. A model of a system is a triple hSD, COMPS, OBSi where:

1. SD, the system description, is a (constraint) logic program with a distinguished

binary predicate m(COMPS, OBS) which represents a relation between the state of

the system and the observations.

2. COMPS, states of the system components, is an n-tuple hS

1

; : : : ; S

n

i where n is the

number of components, and variables S

i

denote states (normal and abnormal) of

components.

3. OBS, observations, is an m-tuple hIn

1

,: : :,In

i

, Out

i+1

,: : :,Out

m

i where In and Out

denote inputs and outputs of the model, respectively.

3

In a logic program, n-tuples are represented by terms of arity n. Variables start with

capitals and are implicitly universally quanti�ed in front of a clause, and constants start

with lower-case letters. In SD, de�nitions, and algorithms, we refer to a distinguished

constant ok to denote that the state S

i

of the component i is normal. This corresponds to

the statement :ab(S

i

) used in the consistency-based approach.

A2
C

O1
A1

B

X1
X2

A
In2=0 (c)

In3=1 (c)

In1=1 (c)
Out1=0 (c)

Out2=0 (f)

Figure 1: A binary adder, and an observation h1,0,1, 0,0i; c denotes a correct and f a

faulty output.

Example (binary adder

[

Genesereth, 1984

]

, Figure 1). The distinguished binary pred-

icate m is adder, COMPS is a �ve-tuple hX1,X2,A1,A2,O1i, and OBS is a �ve-tuple

hIn1,In2,In3, Out1,Out2i. SD consists of the following clause which speci�es the struc-

ture of the adder, and of additional clauses which de�ne behavior of the components:

adder(hX1,X2,A1,A2,O1i, hIn1,In2,In3,Out1,Out2i)

xorg(X1, In1, In2, A),

xorg(X2, In3, A, Out1),

andg(A1, In1, In2, B),

andg(A2, In3, A, C),

org(O1, B, C, Out2).

Connections between components are represented by shared variables. Speci�cation of the

behavior depends on the type of the fault model available: structural, weak, exoneration,

or strong. For illustration of di�erent alternatives we de�ne the behavior of an or gate

(org).

A structural model speci�es the most general condition about the propagation of

faults

[

Bakker et al., 1989

]

. Only if all inputs to a component are correct (c) and the

component is normal (ok) then the output is correct. In other words, given the observation

that all inputs are correct (c) and the output is faulty (f) then the component is abnormal

(ab). Otherwise, nothing can be concluded about the component state. A more compact

encoding then the one presented here, namely by CLP(B), is described in section 5.

org(ok, c, c, c).

org(ok, c, f,).

org(ok, f, ,).

org(ab, , ,).

4

A weak fault model de�nes just normal behavior of components (state ok), abnormal

behavior (state ab) is unconstrained:

org(ok, X, Y, Z) or(X, Y, Z).

org(ab, , ,).

A strong fault model speci�es all the possible ways in which a component can fail

[

Struss and Dressler, 1989

]

. In general, a component can have several failure states. An

abnormal or gate, for example, might have the output stuck-at-1 (s1) or stuck-at-0 (s0):

org(s1, 0, 0, 1).

org(s0, 0, 1, 0).

org(s0, 1, 0, 0).

org(s0, 1, 1, 0).

The exoneration principle

[

Raiman, 1989

]

is a special case of the strong fault model.

It speci�es as abnormal any behavior di�erent from normal:

org(ab, X, Y, Z) :or(X, Y, Z).

Next we de�ne the concepts of a diagnosis and a con
ict for hSD, COMPS, OBSi, as-

suming that an observation, a ground instance of OBS, is given. In the following de�nitions

8F denotes universal closure of the formula F , i.e., all free variables in the formula F are

universally quanti�ed.

De�nition. An ok-instance of a term is an instance where some variables are replaced

by the constant ok. A ground instance is an instance where all the variables are replaced

by constants.

De�nition. A diagnosis D for hSD, COMPS, OBSi is an instance of COMPS such

that SD j= 8m(D,OBS).

Intuitively, a diagnosis is an assignment of states to components such that it is `consis-

tent' with OBS and logically follows from SD. States of some components may be irrelevant

(note the universal closure).

De�nition. A con
ict C for hSD, COMPS, OBSi is an ok-instance of COMPS such

that SD j= 8:m(C,OBS).

The de�nition of a con
ict is standard, i.e., a set of components which cannot be

simultaneously ok. It can be straightforwardly extended to the de�nition of a minimal

con
ict.

Example. Suppose SD consists of the weak fault model of the adder, and the ob-

servation OBS = h1,0,1, 0,0i is given. Then hok,ok,ok,ok,abi and hab,ab,A1,A2,O1i are

diagnoses, while hok,X2,A1,ok,oki is a con
ict.

This characterization of a diagnosis subsumes most of the previous ones. In the

consistency-based approach

[

Reiter, 1987

]

, a diagnosis

1

is a set of abnormal (6=ok) compo-

1

Reiter's de�nition of a diagnosis actually includes the minimality criterion and corresponds to our

de�nition of a minimal diagnosis (see subsequent de�nitions).

5

nents such that SD and OBS are consistent with all the other components being ok. In

Sherlock

[

de Kleer and Williams, 1989

]

the de�nition is extended to include a behavioral

mode (state) for each component. In both cases a diagnosis is essentially a ground instance

of COMPS. However, a diagnosis needs not commit a state to each component when the

state is `don't care'

[

Poole, 1989

]

. This led to the de�nition of a partial diagnosis

[

de Kleer

et al., 1990

]

which corresponds to a non-ground instance of COMPS but, on the other

hand, does not include states of components.

Apart from being simple, our de�nitions are also operational since diagnoses and con-

icts can e�ectively be computed by a logic programming system. The search for a logical

consequence of SD is realized by the search for an answer substitution � such that SD [

f:m(A�,OBS)g is unsatis�able, where A is constrained to be an ok-instance of COMPS.

If such a substitution exists we can conclude D = A� is a diagnosis. If not, and regarding

SD under the closed world assumption

[

Lloyd, 1987

]

, we can conclude that C = A is a

con
ict. Like in consistency-based diagnosis, A can be interpreted as an assumption that

some components are not abnormal, i.e., they are ok.

Example. Suppose SD is the strong fault model of the adder, and OBS = h1,0,1,0,0i.

The following query returns four answer substitutions, i.e., diagnoses:

 A= hX1,X2,ok,A2,O1i, adder(A, h1,0,1, 0,0i).

A = hok,ok,ok,ok,s0i;

A = hok,ok,ok,s0,oki;

A = hs0,s0,ok,ok,oki;

A = hs0,s0,ok,s1,s0i

The �rst three diagnoses are minimal while the fourth is subsumed by the �rst and the

third one, but not by the second one. The following two de�nitions make the notions of

subsumption and minimality precise.

De�nition. A diagnosis D

0

= hS

0

1

; : : : ; S

0

n

i subsumes a diagnosis D = hS

1

; : : : ; S

n

i (we

write D

0

� D) i� 8i = 1; : : : ; n (S

0

i

= ok) _ (S

0

i

= S

i

).

De�nition. A minimal diagnosis is a diagnosis which is subsumed by no other diag-

nosis.

Note that a minimal diagnosis is always ground since any non-ground diagnosis is

subsumed by its ok-instance. Further, for a minimal number of abnormal components,

there might be several minimal diagnoses since a component might be assigned di�erent

abnormal (6=ok) states.

In the next section we present IDA, an algorithm which actually computes minimal

diagnoses. Its distinguishing feature in comparison to most consistency-based algorithms

is that it computes minimal diagnoses directly from diagnoses, and not from con
icts.

Further, the search for the minimal diagnoses is clearly separated from calls to the model.

The separation is realized by a function TP

[

Reiter, 1987

]

which implements a call to the

underlying theorem prover.

6

3 Computing minimal diagnoses

It is convenient to represent the search space of diagnoses and con
icts as a subset-superset

lattice (Figure 2). The top element of the lattice corresponds to a tuple where all com-

ponents are 6=ok, and the bottom element to the tuple where all components are ok. A

diagnosis is represented by a set of components which are 6=ok, and a con
ict, i.e., a set of

components which cannot simultaneously be ok, by the complement of the set. Note that

in this representation a smaller con
ict corresponds to a larger set.

{}

{5}{4}{3}{2}{1}

{1,2,3,4,5}

{2,3,4,5}{1,3,4,5}{1,2,3,4} {1,2,3,5} {1,2,4,5}

{3,4,5}{2,4,5}{2,3,5}{2,3,4}{1,4,5}{1,3,5}{1,3,4}{1,2,5}{1,2,4}{1,2,3}

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

{}

{5}{4}{3}{2}{1}

{1,2,3,4,5}

{2,3,4,5}{1,3,4,5}{1,2,3,4} {1,2,3,5} {1,2,4,5}

{3,4,5}{2,4,5}{2,3,5}{2,3,4}{1,4,5}{1,3,5}{1,3,4}{1,2,5}{1,2,4}{1,2,3}

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

Figure 2: Search lattices for the structural (left), and weak and strong fault model of

the adder (right), given the observation h1,0,1, 0,0i. � denote minimal con
icts, and

 minimal diagnoses. For the structural and weak fault model all supersets of minimal

diagnoses are also diagnoses. For the strong fault model only nodes in dashed ovals denote

non-minimal diagnoses.

Example. The diagnosis hab,ab,ok,ok,oki is represented by the set f1,2g, and the

con
ict hok,X2,A1,ok,oki by the set f2,3g.

First we de�ne the TP function that takes as arguments SD, OBS, and a label L, an

element of the lattice. TP veri�es whether L is a diagnosis or a con
ict by calling the

model. If the call to the model succeeds, TP returns a diagnosis which is extracted from

the answer substitution. If the call fails then L is a con
ict. In the following :X denotes

the complement of a set X, i.e., :X = f1; : : : ; ng �X.

Function TP(SD, OBS, L)

A := hS

1

; : : : ; S

n

i j S

i

= ok; i 2 :L (A is an ok-instance of COMPS)

if 9� such that SD [f:m(A�;OBS)g is unsatis�able

then return D := :fi j S

i

= ok; S

i

2 A�g (D is a diagnosis, D � L)

else return false (L is a con
ict).

Note that a successful call to TP might return a diagnosis D deep below the label L and

that D � L always holds. This is due to the non-ground calls to the model, i.e., S

j

(j 6= i)

7

in A are distinct variables. On the other hand, a label can only be veri�ed whether it is

a con
ict or not. Our TP function is therefore exactly the opposite of the one de�ned by

Reiter

[

Reiter, 1987

]

, i.e., the roles of diagnoses and con
icts are reversed.

Reiter's algorithm

[

Reiter, 1987

]

searches the lattice bottom-up (from con
icts to di-

agnoses), in a breadth-�rst fashion (diagnoses of smaller cardinality are found �rst). Our

algorithm implements a top-down, depth-�rst search through the lattice. In diagnosing

real systems, the search lattice is large and minimal diagnoses are usually near the bottom

of the lattice. Depth-�rst search, coupled with our TP function, allows for deep `dives'

into the lattice and in an average case at least a few diagnoses are found e�ciently. Fur-

ther, by relaxing the problem and by a simple modi�cation to the basic algorithm, we can

ensure that the worst case complexity remains polynomial. Before we de�ne the All diags

procedure which computes all minimal diagnoses and con
icts, we need one additional

de�nition.

De�nition. Suppose Xs is a collection of sets. A hitting set H for Xs is a set, such

that H \X 6= fg for each X 2 Xs. A hitting set is minimal i� no proper subset of it is a

hitting set.

Function H(Xs)

non-deterministically returns a minimal hitting set for a collection of sets Xs.

Procedure All diags(Ds, Cs)

inputs: SD, OBS,

Ds := fg, Cs := fg,

outputs: Ds, a set of all minimal diagnoses,

Cs, a set of all minimal con
icts,

while 9L (L := :H(Ds)) ^ (L 6� C; C 2 Cs)

do if TP(SD, OBS, L) returns D

then Min diag(D, Cs),

Ds := Ds [fDg

else Cs := Cs [fLg � fC j C � L; C 2 Csg

(delete non-minimal con
icts C from Cs).

The procedure starts with the label L = f1; : : : ; ng. In each iteration of the while loop,

either a minimal con
ict or a minimal diagnosis is found (through a call to the Min diag

procedure). A label generated as a complement of a hitting set of previous diagnoses ensures

that a new diagnosis will be distinct from the previous ones. The second condition in the

while statement (L 6� C; C 2 Cs) prevents redundant TP calls since any label which is a

subset of a con
ict is also a con
ict. The procedure terminates when all minimal diagnoses

and con
icts are found. This is due to the fact that minimal diagnoses are exactly minimal

hitting sets of con
icts

[

Reiter, 1987

]

and therefore the while loop condition cannot be

satis�ed any more.

8

The Min diag procedure is invoked when a diagnosis D, not necessarily minimal, is

found. The procedure searches the sub-lattice under D until it �nds a minimal diagnosis.

Procedure Min diag(D, Cs)

inputs: SD, OBS,

D, a diagnosis,

Cs, a set of con
icts,

outputs: D, a minimal diagnosis,

Cs, an updated set of con
icts,

while 9L (L := D � fig; i 2 D) ^ (L 6� C; C 2 Cs)

do if TP(SD, OBS, L) returns D

0

then D := D

0

else Cs := Cs [fLg � fC j C � L; C 2 Csg

(delete non-minimal con
icts C from Cs).

At each step the Min diag procedure removes an arbitrary element i from the diagnosis.

This corresponds to the assumption that the component i is ok. If the TP call succeeds

the returned diagnosis is a new candidate for a minimal one. If the TP call fails L is a

con
ict and i is not removed from D ever again since any subset of a con
ict is also a

con
ict. The procedure terminates either when D = fg, i.e., all components are ok, or

when all generated subsets of a diagnosis turn out to be con
icts. The Min diag procedure

is similar to the algorithm for computing the �rst diagnosis by Friedrich et al.

[

Friedrich et

al., 1990

]

. The di�erence is that we allow for non-ground calls to the model (which enable

`dives' deep down the lattice), and that a minimal diagnosis can be computed from any

diagnosis, not just from the top element of the lattice.

Example. Suppose SD is the weak fault model of the adder, and OBS = h1,0,1, 0,0i.

The algorithm returns minimal diagnoses Ds = ff4g,f5g,f1,2gg, and minimal con
icts Cs

= ff1,3g,f2,3gg. The following is an annotated and abbreviated trace of the algorithm.

call All diags(Ds=fg, Cs=fg)

L = :H(fg) = f1,2,3,4,5g

suppose TP(SD, OBS, f1,2,3,4,5g) returns a diagnosis D = f5g

(in the worst case the very same label f1,2,3,4,5g could be returned)

call Min diag(f5g, fg)

L = f5g � fi=5g = fg

TP(SD, OBS, fg) returns false, fg is a con
ict

Cs = ffgg

exit Min diag(f5g, ffgg)

Ds = ff5gg

L = :H(ff5gg) = f1,2,3,4g

suppose TP(SD, OBS, f1,2,3,4g) returns a diagnosis D = f4g

call Min diag(f4g, ffgg)

9

L = f4g � fi=4g = fg, however fg � C=fg and there is no alternative L

exit Min diag(f4g, ffgg)

Ds = ff4g,f5gg

L = :H(ff4g,f5gg) = f1,2,3g

suppose TP(SD, OBS, f1,2,3g) returns a diagnosis D = f1,2,3g

call Min diag(f1,2,3g, ffgg)

L = f1,2,3g � fi=1g = f2,3g

TP(SD, OBS, f2,3g) returns false, f2,3g is a con
ict

Cs = ff2,3gg, note that fg is deleted from Cs since fg � L=f2,3g

L = f1,2,3g � fi=2g = f1,3g

TP(SD, OBS, f1,3g) returns false, f1,3g is a con
ict

Cs = ff1,3g, f2,3gg

L = f1,2,3g � fi=3g = f1,2g

TP(SD, OBS, f1,2g) returns a diagnosis D = f1,2g

L = f1,2g � fi=1g = f2g, however f2g � C=f2,3g and thus another L is generated

L = f1,2g � fi=2g = f1g, however f1g � C=f1,3g and there is no alternative L

exit Min diag(f1,2g, ff1,3g,f2,3gg)

Ds = ff4g,f5g,f1,2gg

L = :H(ff4g,f5g,f1,2gg) = f1,3g, however f1,3g is a con
ict and another L is generated

L = :H(ff4g,f5g,f1,2gg) = f2,3g, however f2,3g is also a con
ict and there is no other L

exit All diags(Ds=ff4g,f5g,f1,2gg, Cs=ff1,3g,f2,3gg

4 Controlling the complexity

If the number of the system components is n there might be O(2

n

) minimal diagnoses.

In general, attempting to compute all minimal diagnosis is asking for more information

than one could ever hope to use.

[

Friedrich et al., 1990

]

show that even the next diagnosis

problem is intractable: given a set of already found minimal diagnoses Ds, deciding whether

a next minimal diagnosis D 62 Ds exists is NP-complete. The statement holds for a weak

fault model, and with a strong fault model things get worse since then even deciding

whether an arbitrary diagnosis exists is NP-complete. This has been shown in

[

Friedrich

et al., 1990

]

for consistency-based diagnosis, and in

[

Bylander et al., 1989

]

for abductive

diagnosis.

From the above results we can identify two sources of potential intractability: the search

through the lattice, and the type of the fault model used. A nice feature of our algorithm

is that it separates the lattice search from the TP calls and therefore enables to address

each issue individually.

10

4.1 Computing the �rst k diagnoses

Let us �rst assume that, ignoring the type of the model, a call to TP requires constant

time. Then the single source of exponential complexity in our algorithm is the computation

of a minimal hitting set in the while loop of the All diags procedure. Given a collection Ds

of subsets of f1; : : : ; ng (already found minimal diagnoses) computing a minimal hitting

set H(Ds) (a complement of the label L) is NP-complete

[

Garey and Johnson, 1979, p.

222

]

. However, if jDs j = k then there is at most n

k

hitting sets, and computing a minimal

hitting set is in O(n

k

). Each label L in the All diags procedure is either a (non-minimal)

diagnosis or a minimal con
ict. For k diagnoses there is at most n

k

minimal con
icts, and

computing a label L which is not a con
ict requires at most n

k

�n

k

comparisons, i.e., is in

O(n

2k

). If L is a con
ict, the number of diagnoses k does not increase, and computing the

next label (or deciding that there is none) remains polynomial. If L is a diagnosis then the

Min diag procedure �nds a minimal diagnosis in no more then n steps, and produces no

more then n con
icts. Therefore, for a �xed set of k diagnoses Ds, the algorithm decides

whether the next diagnosis exists (and �nds one) in polynomial time O(n

2k

). Note that

this does not contradict the result reported in

[

Friedrich et al., 1990

]

since no bound on the

number of already found diagnoses was set there. However, due to their pessimistic result,

a diagnostic algorithm was proposed which computes just the �rst diagnosis in polynomial

time. Our All diags procedure can be trivially modi�ed to the K diags procedure which

computes the �rst k diagnoses in polynomial time.

0.1

1

10

100

0 1000 2000 3000 4000 5000

T
im

e
[C

P
U

 s
ec

]

No. of components

15 diagnoses
10 diagnoses

5 diagnoses
1 diagnosis

1

10

100

1000

10000

0 10 20 30 40 50 60

K diagnoses

all, 1-K diagnoses
next, Kth diagnosis

Figure 3: Diagnostic time for the �rst k diagnoses as a function of the number of com-

ponents n (left) and as a function of k (n = 5000, right) for the m-bit ripple carry adder

(n = 5�m). Logarithmic time scale indicates a sub-exponential increase of time with the

number of gates.

In an experimental evaluation, we constructed a model consisting of thousands of com-

ponents, and measured the CPU time required to �nd the �rst k diagnoses (Figure 3). The

model is an m-bit ripple carry adder

[

de Kleer, 1991

]

consisting of m strong models of the

binary adder (see Figure 1). The output Out2

i�1

of the adder i � 1 is connected to the

11

input In3

i

of the adder i (i = 2; : : : ;m). All inputs and outputs were set to 0, except for

the Out1

m

of the last adder m which was set to 1 (this is the only faulty output). Note

that the inputs are propagated through almost every gate of this circuit, and that an m-bit

adder consists of 5 �m gates. Results in Figure 3 indicate that even such large devices

can be diagnosed e�ciently. De Kleer reported

[

de Kleer, 1991

]

that the unfocused GDE

[

de Kleer and Williams, 1987

]

can diagnose a 4-bit adder in 60 CPU seconds, while the

unfocused Sherlock

[

de Kleer and Williams, 1989

]

can do a 6-bit adder in 60 CPU seconds.

His new algorithm with focusing can �nd 5 probable diagnoses for a 500-bit adder (2500

gates) in 6 CPU seconds on Symbolics XL1200

[

de Kleer, 1991

]

. Without focusing, our

algorithm IDA computes the �rst 5 diagnoses (which happen to be the probable ones) in 4

CPU seconds. IDA is implemented in SICStus Prolog

[

Carlsson and Widen, 1991

]

and the

experiments were run on a SUN IPX workstation

2

. The m-bit ripple carry adder model

was speci�ed by a pure Prolog program | no CLP(B) or combination of di�erent models

was used.

4.2 Combining structural, weak, and strong fault models

Another potential source of combinatorial explosion in diagnosis is the type of the model

used, and in this subsection we analyze its impact on the complexity of the TP function. In

order to control the overall complexity and to ensure a smooth degradation of performance

we propose to use several, increasingly more detailed and computationally demanding

models. This is related to the notion of abstraction which has been formally de�ned

in the context of theorem proving

[

Giunchiglia and Walsh, 1989

]

, and to some extend

exploited in model-based diagnosis

[

Gallanti et al., 1989, Mozeti�c, 1991, Struss, 1992

]

. A

crucial observation is that a class of abstractions, called truthful, when applied to a model

M=hSD,COMPS,OBSi yields an abstract model M

0

where diagnoses are preserved, i.e.,

Ds � Ds

0

[

Mozeti�c, 1991

]

. An obvious consequence of this is that con
icts are preserved

when moving from the abstract M

0

to the detailed model M , i.e., Cs

0

� Cs. Here we

propose to use three types of models of increasing complexity: a structural model (M

00

), a

weak (M

0

), and a strong fault model (M).

Given a structural model, for any faulty output, a con
ict is precisely the set of

all components connected (directly or indirectly) to it

[

Bakker et al., 1989

]

. For f faulty

outputs there is exactly f minimal con
icts, and at most n

f

minimal diagnoses. No search

is needed to �nd all con
icts Cs

00

, and therefore all minimal diagnoses Ds

00

can be computed

in O(n

f

) time.

Diagnoses Ds

00

are then veri�ed by the weak fault model. Those that are rejected are

removed from Ds

00

and added to the set of con
icts Cs

00

. Note that the remaining set Ds

00

contains all minimal diagnoses of cardinality � f for the weak fault model. Additional

diagnoses can be computed by calling the K diags procedure with the parameters set to

Ds

00

and Cs

00

instead of empty sets.

2

IDA is available via anonymous ftp from ftp.ai.univie.ac.at.

12

A weak fault model de�nes connectivity and normal behavior of components. In

order to ensure that no model call requires exponential time, the TP function has to be

modi�ed so that all model calls are ground

[

Friedrich et al., 1990

]

. This is easily achieved

by introducing another distinguished constant, say ab (which stands for a state 6=ok),

and instantiating all free variables to ab. Nothing else in the algorithm changes, and the

complexity analysis remains valid. As a consequence, in addition to all k minimal diagnoses

Ds

0

of cardinality jD

0

j � f , the K diags procedure can compute an additional k + 1-st

minimal diagnosis in O(n

2k

) time.

The minimal diagnoses Ds

0

can then be veri�ed by the strong fault model M . A

combination of di�erent abnormal behaviors de�ned by the strong model is a potential

source of combinatorial explosion. For a minimal diagnosis D

0

there might be O(2

jD

0

j

)

di�erent minimal diagnoses Ds. However, the cardinality of a minimal diagnosis D

0

is

typically small, jD

0

j � n, and therefore the veri�cation is usually tractable. In the worst

case it can happen that no minimal diagnosis from Ds

0

is admitted by the strong fault

model. But even then we know that any minimal diagnosis D is of cardinality jD j > f ,

and we can use the weak fault model to compute the next, k + 1-st minimal diagnosis.

5 Using CLP(B) as a theorem prover

In this section we show how a richer computational domain than the Herbrand universe

interacts with the models and the diagnostic algorithm. Whereas we will employ a more

powerful theorem prover TP, we will stick with the diagnostic algorithm, in particular

with its data structures for the ground representation of minimal diagnoses and con
icts.

As far as TP is concerned, we stay in the context of logic programming but extend

syntactic uni�cation by solving equations over interpreted terms

[

Ja�ar and Lassez, 1987

]

| boolean expressions in this particular case. The resulting constraint logic programming

language CLP(B) was realized in a general framework

[

Holzbaur, 1990

]

, where the imple-

mentation reduces to the Prolog formulation of a specialized uni�cation algorithm. There

exist several boolean uni�cation algorithms

[

Crone-Rawe, 1989

]

. We chose one that was

published by

[

B�uttner and Simonis, 1987

]

; the origin of the method goes back to

[

Boole,

1947

]

. The algorithm computes the most general boolean ring uni�er � of two terms t

1

and

t

2

. It operates on a deterministic disjunctive minimal normal form

[

Martin and Nipkov,

1986

]

for terms in the boolean ring hV ,�,^,0,1i, where V is the set of variables and � is

the xor operator.

5.1 Reformulation of the models

Instead of using extensional descriptions of the structural, weak and strong fault models we

can formulate them in terms of boolean algebra expressions. For a structural model this is

always possible, for a weak fault model the restriction to boolean component descriptions

13

applies, and for a strong fault model we have the additional restriction that only the

exoneration model can be expressed in boolean terms. In the following we encode correct

inputs and outputs and the normal state as 0 (zero) instead of ok, and the abnormal state

and faulty inputs and outputs as 1. For brevity we only show the or gate reformulations.

� structural model: org((:X ^ :Y ^ Z) _ W, X, Y, Z).

If the inputs X;Y to the component are correct and the output Z is faulty we

conclude that the device is faulty. Otherwise we cannot conclude anything, which is

encoded through an unbound boolean variable W .

� weak fault model: org(((X _ Y) � Z) _ W, X, Y, Z).

If the boolean function the component computes disagrees with the output, we con-

clude that the device is faulty. Otherwise we cannot conclude anything.

� exoneration model: org((X _ Y) � Z, X, Y, Z).

If the boolean function the component computes disagrees with the output, we con-

clude that the device is faulty. Otherwise we conclude it functions correctly.

The boolean uni�cation algorithm operates on normal form expressions; all boolean

functions are expressed in terms of � and ^.

Example:

:X ! 1 � X

X _ Y ! X � Y � X^Y

Given the observation h1,0,1, 0,0i, the weak fault model of the adder returns the fol-

lowing answer substitutions which constitute a solved system of boolean equations in the

normal form:

 adder(hX1,X2,A1,A2,O1i, h1,0,1, 0,0i).

X1 = 1 � A � A^W1,

X2 = 1 � A � A^W2,

A1 = B � B^W3 � W3,

A2 = A � A^W4 � C � C^W4 � W4,

O1 = B � B^C � B^C^W5 � B^W5 � C � C^W5 � W5

Note that this answer substitution captures all diagnoses, i.e., the whole lattice above the

boundary between the diagnoses and con
icts.

5.2 Impact on the diagnostic algorithm

If we employ the diagnostic algorithm unchanged, it will of course compute the same set

of minimal diagnoses and con
icts. We can, however, take advantage of the fact that TP,

utilizing CLP(B) to decide the unsatis�ability of SD [f:m(A�, OBS)g, computes the

most general answer substitution �. For our algorithm, this means that each call to TP

returns either a con
ict or a minimal diagnosis.

14

The �rst simpli�cation of the algorithm consists in dropping the part of the algorithm

which re�nes diagnoses (Min diag).

Example. CLP(B) returns the above answer substitutions for the weak fault model of

the adder for the �rst TP(SD, OBS, f1,2,3,4,5g) call. According to the de�nition of TP,

this is turned into a diagnosis by setting a maximum number of state variables to ok (0).

In the implemented algorithm this is done sequentially after the model returned the most

general answer substitution. Assume that we already succeeded setting X1, X2, A1 to 0,

which is logically equivalent to the model call:

 adder(hX1,X2,A1,A2,O1i, h1,0,1, 0,0i), X1=0, X2=0, A1=0.

A2 = 1 � C � C^W4,

O1 = C � C^W5 � W5

Next, A2 is set to 0, forcing C to 1 and O1 to 1, thus yielding the �rst minimal singleton

diagnosis f5g. Similarly, from the label f1,2,3,4g we discover the second minimal diagnosis

f4g. In both cases we know that the diagnoses are minimal | there is no need to check

the label fg.

Besides not having to explicitly verify the minimality of the diagnoses, there is an

additional possibility to take advantage of the generality of the answer substitutions.

Example. After the discovery of the two single faults f4g and f5g, the label f1,2,3g

leads to the following call to the model with the answer substitutions:

 adder(hX1,X2,A1,A2,O1i, h1,0,1, 0,0i), A2=0, O1=0.

X1 = 1,

X2 = 1,

A1 = W3

This corresponds to the minimal diagnosis f1,2g | no need to check f1g or f2g. In

addition, under the assumption that both A2 and O1 are ok (sublattice f1,2,3g), we known

that neither X1 nor X2 can possibly be ok. The answer substitution tells us that they

are de�nitely abnormal (1). In the original algorithm this information is not available and

therefore not considered. Through the second modi�cation of the algorithm we do not

only compute a minimal diagnosis from a successful call to the model, but also one con
ict

per de�nite abnormal state variable. In our example the two con
icts are f1,3g and f2,3g.

The two labels would have been tested by the original version of the algorithm.

Therefore, from three calls to the model we got the three minimal diagnoses and even

the two con
icts, which in total covers the lattice.

6 Conclusion

We de�ned a diagnostic algorithm which clearly separates the search through the space

of potential diagnoses from the models and their computational domains. The decom-

15

position enables an independent analysis and control of the computational complexity.

IDA presents an e�cient and solid skeleton for more sophisticated algorithms. The non-

deterministic choice of label L in All diags and Min diag, for example, calls for the incor-

poration of probabilities of faults to guide the search (like de Kleer's focusing

[

de Kleer,

1991

]

). From the probabilities of components' failures one can assign probabilities to al-

ternative labels, and then select the highest probability label �rst. The incrementality

makes it suitable to interleave the diagnostic process with repair

[

Friedrich et al., 1990,

Friedrich et al., 1992

]

, or add di�erent probing strategies

[

de Kleer and Williams, 1987,

de Kleer and Williams, 1989

]

. The replaceability of the model interpreter allows for the

applicability to a broad spectrum of domains | each of them can be modeled either by

a widely available Prolog or by an instance of the Constraint Logic Programming (CLP)

scheme.

In CLP, syntactic uni�cation is replaced by a more general constraint satisfaction over

speci�c domains. As an example, we illustrated the applicability of CLP(B) for compact

modelling and diagnosis of combinatorial circuits. Another model interpreter, CLP(<), can

solve systems of simultaneous linear (in)equations over <eals. This is beyond the capabil-

ities of local constraint propagation methods used by ATMS-based systems. CLP(<) was

applied to diagnose analog circuits operating under the AC conditions

[

Mozeti�c et al., 1991,

Novak et al., 1993

]

. It enables modeling and diagnosis of soft faults | drifts from the

nominal parameter values, and computation with parameter tolerances. In a medical ap-

plication, the heart model in KARDIO

[

Bratko et al., 1989

]

was speci�ed by a pure logic

program, and recently reformulated in terms of constraints over �nite domains

[

Mozeti�c

and Pfahringer, 1992

]

. IDA works with any of the above models.

Acknowledgements

This work was supported in part by the Austrian Federal Ministry of Science and Research

and in part by the Austrian \Fonds zur F�orderung der wissenschaftlichen Forschung" under

grant P9426-PHY. Thanks to Bernhard Pfahringer, Carl Uhrik, and Gerhard Widmer for

valuable comments, and to Robert Trappl for making this work possible.

References

[

Bakker et al., 1989

]

Bakker, R.R., Hogenhuis, P.A., Mars, N.J.I., van Soest, D.C. Diag-

nosis of technical systems using design descriptions. Proc. Second Generation Expert

Systems, pp. 107-116, Avignon, France, 1989.

[

Boole, 1947

]

Boole, G. The Mathematical Analysis of Logic, Macmillan, 1947.

[

Bratko et al., 1989

]

Bratko, I., Mozeti�c, I., Lavra�c, N. KARDIO: A Study in Deep and

Qualitative Knowledge for Expert Systems. MIT Press, Cambridge, MA, 1989.

16

[

B�uttner and Simonis, 1987

]

B�uttner, W., Simonis, H. Embedding Boolean expressions

into logic programming. Journal of Symbolic Computation 4, pp. 191-205, 1987.

[

Bylander et al., 1989

]

Bylander, T., Allemang, D., Tanner, M.C., Josephson, J.R. Some

results concerning the computational complexity of abduction. Proc. Intl. Conf. on

Principles of Knowledge Representation and Reasoning, pp. 44-54, Toronto, Morgan

Kaufmann, 1989.

[

Carlsson and Widen, 1991

]

Carlsson, M., Widen, J. SICStus Prolog User's Manual.

Swedish Institute of Computer Science, Kista, Sweden, 1991.

[

Cohen, 1990

]

Cohen, J. Constraint logic programming languages. Communications of the

ACM 33 (7), pp. 52-68, 1990.

[

Crone-Rawe, 1989

]

Crone-Rawe, B. Uni�cation algorithms for boolean rings. SEKI Work-

ing Paper SWP-89-01, University of Kaiserslautern, Germany, 1989.

[

de Kleer, 1991

]

de Kleer, J. Focusing on probable diagnoses. Proc. 9th Natl. Conf. on

Arti�cial Intelligence, AAAI-91, pp. 842-848, Anaheim, CA, MIT Press, 1991.

[

de Kleer et al., 1990

]

de Kleer, J., Mackworth, A.K., Reiter, R. Characterizing diagnoses.

Proc. 8th Natl. Conf. on Arti�cial Intelligence, AAAI-90, pp. 324-330, Boston, MIT

Press, 1990.

[

de Kleer and Williams, 1987

]

de Kleer, J., Williams, B.C. Diagnosing multiple faults. Ar-

ti�cial Intelligence 32, pp. 97-130, 1987.

[

de Kleer and Williams, 1989

]

de Kleer, J., Williams, B.C. Diagnosis with behavioral

modes. Proc. 11th Intl. Joint Conf. on Arti�cial Intelligence, IJCAI-89, pp. 1324-

1330, Detroit, Morgan Kaufmann, 1989.

[

Friedrich et al., 1990

]

Friedrich, G., Gottlob, G., Nejdl, W. Physical impossibility instead

of fault models. Proc. 8th Natl. Conf. on Arti�cial Intelligence, AAAI-90, pp. 331-336,

Boston, MIT Press, 1990.

[

Friedrich et al., 1992

]

Friedrich, G., Gottlob, G., Nejdl, W. Formalizing the repair process.

Proc. 10th European Conf. on Arti�cial Intelligence, ECAI-92, pp. 709-713, Vienna,

John Wiley & Sons, 1992.

[

Friedrich and Nejdl, 1990

]

Friedrich, G., Nejdl, W. MOMO: Model-based diagnosis for

everybody. Proc. 6th IEEE Conf. on AI Applications, CAIA-90, pp. 206-213, Santa

Barbara, CA, IEEE Press, 1990.

[

Gallanti et al., 1989

]

Gallanti, M., Roncato, M., Stefanini, A., Tornielli, G. A diagnostic

algorithm based on models at di�erent level of abstraction. Proc. 11th Intl. Joint Conf.

on Arti�cial Intelligence, IJCAI-89, pp. 1350-1355, Detroit, Morgan Kaufmann, 1989.

17

[

Garey and Johnson, 1979

]

Garey, M.R., Johnson, D.S. (1979). Computers and Intractabil-

ity. W.H. Freeman and Co., New York.

[

Genesereth, 1984

]

Genesereth, M.R. The use of design descriptions in automated diagno-

sis. Arti�cial Intelligence 24, pp. 411-436, 1984.

[

Giunchiglia and Walsh, 1989

]

Giunchiglia, F., Walsh, T. Abstract theorem proving. Proc.

11th Intl. Joint Conf. on Arti�cial Intelligence, IJCAI-89, pp. 372-377, Detroit, MI,

Morgan Kaufmann, 1989.

[

Holzbaur, 1990

]

Holzbaur, C. Speci�cation of constraint based inference mechanisms

through extended uni�cation. Ph.D. thesis, Dept. of Medical Cybernetics and AI,

University of Vienna, Austria, 1990.

[

Ja�ar and Lassez, 1987

]

Ja�ar, J., Lassez, J.-L. Constraint logic programming. Proc. 14th

ACM Symp. on Principles of Programming Languages, pp. 111{119, Munich, 1987.

[

Lloyd, 1987

]

Lloyd, J.W. Foundations of Logic Programming (Second edition). Springer-

Verlag, 1987.

[

Martin and Nipkov, 1986

]

Martin, U., Nipkov, T. Uni�cation in boolean rings. Proc. 8th

Intl. Conference on Automated Deduction, pp. 506-513, 1986.

[

Mozeti�c, 1991

]

Mozeti�c, I. Hierarchical model-based diagnosis. Intl. Journal of Man-

Machine Studies 35 (3), pp. 329-362, 1991. Also in Hamscher, W.C., Console, L., de

Kleer, J. (Eds.) Readings in Model-based Diagnosis, pp. 354-372, Morgan Kaufmann,

San Mateo, CA, 1992.

[

Mozeti�c et al., 1991

]

Mozeti�c, I., Holzbaur, C., Novak, F., Santo-Zarnik, M. Model-based

analogue circuit diagnosis with CLP(<). Proc. 4th Intl. GI Congress, pp. 343-353,

Munich, Springer-Verlag, 1991.

[

Mozeti�c and Pfahringer, 1992

]

Mozeti�c, I., Pfahringer, B. Improving diagnostic e�ciency

in KARDIO: abstractions, constraint propagation, and model compilation. In E. Ker-

avnou (Ed.), Deep Models for Medical Knowledge Engineering, Elsevier, Amsterdam,

1992.

[

Novak et al., 1993

]

Novak, F., Biasizzio, A., Santo-Zarnik, M., Mozeti�c, I. On automatic

fault isolation using DFT methodology for active analog �lters. Proc. European Test

Conf., ETC-93, IEEE Press, 1993.

[

Poole, 1989

]

Poole, D. Normality and faults in logic-based diagnosis. Proc. 11th Intl. Joint

Conf. on Arti�cial Intelligence, IJCAI-89, pp. 1304-1310, Detroit, Morgan Kaufmann,

1989.

[

Raiman, 1989

]

Raiman, O. Diagnosis as a trial: the alibi principle. Report, IBM Scienti�c

Center, Paris, 1989.

18

[

Reiter, 1987

]

Reiter, R. A theory of diagnosis from �rst principles. Arti�cial Intelligence

32, pp. 57-95, 1987.

[

Saraswat et al., 1990

]

Saraswat, V.A., de Kleer, J., Raiman, O. Contributions to a theory

of diagnosis. Proc. First Intl. Workshop on Principles of Diagnosis, pp. 33-38, Stanford

University, Palo Alto, 1990.

[

Struss, 1992

]

Struss, P. What's in SD? Towards a theory of modeling for diagnosis. In

Hamscher, W.C., Console, L., de Kleer, J. (Eds.) Readings in Model-based Diagnosis,

pp. 419-449, Morgan Kaufmann, San Mateo, CA, 1992.

[

Struss and Dressler, 1989

]

Struss, P., Dressler, O. \Physical negation" | integrating fault

models into the general diagnostic engine. Proc. 11th Intl. Joint Conf. on Arti�cial

Intelligence, IJCAI-89, pp. 1318-1323, Detroit, Morgan Kaufmann, 1989.

19

