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Abstract

The paper presents an application of abstractions to model-based reasoning with

the goal to improve the e�ciency of diagnosis. We de�ne three abstraction operators

which map a detailed, complex model to an abstract, simpler one. Our approach

is not restricted to discrete, qualitative models. We de�ne a provably correct and

complete diagnostic algorithm and analyse its complexity. Abstractions and the algo-

rithm were applied to a complex medical problem: ECG interpretation based on the

model of the heart's electrical activity. Results show that hierarchical diagnosis has

logarithmic time complexity when compared to a one-level diagnosis | in particular,

a speedup of a factor of 20 was achieved.

1 Introduction

There are two fundamentaly di�erent approaches to diagnostic reasoning. In the �rst,

heuristic approach, one encodes diagnostic rules of thumb and experience of human experts

in a given domain. In the second, model-based approach, one starts with a model of a

real-world system which explicitly represents the structure and components of the system

(e.g., de Kleer 1976, Genesereth 1984, Reiter 1987). When the system's actual behavior is

di�erent from the expected behavior, the diagnostic problem arises. The model is then used

to identify components and their internal states which account for the observed behavior.

From a formal viewpoint, a model-based diagnosis falls between the extremes of abduc-

tive and consistency-based approaches (Poole 1989). The main di�erence is, in abductive

approach the diagnoses imply the observations, while in the consistency-based approach

the observations imply the diagnoses. Our approach can be characterized as deductive

�
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University, Palo Alto, CA, July 23-25, 1990.

1



diagnosis since a model implies pairs state-observation. There is no distinction between

normal and abnormal states of components, and a model de�nes a mapping from any in-

ternal state to external observations. The diagnostic problem is then to �nd the inverse

mapping, i.e., all internal states for the given observation. However, due to the `forward'

directionality bias of the model (from states to observations), its `backward' application

might be ine�cient, and abstractions are introduced to improve the e�ciency.

In section 2 we de�ne a model representation formalism and illustrate it on a numeric

or gate model. In section 3 we de�ne three abstraction operators which map a detailed,

complex model to an abstract, simpler one. Our approach is related to abstractions in

theorem proving (Giunchiglia & Welsh 1989, Plaisted 1981) and subsumes abstrips ab-

stractions in planning (Sacerdoti 1974). Abstraction operators are applied to a detailed,

quantitative model of an or gate from which three successively more abstract qualitative

models are automatically derived.

In section 4, a hierarchical diagnostic algorithm is de�ned. The algorithm uses an

abstract model to generate potential diagnoses, and a more detailed model to verify them.

Since the models are always used in the `forward' direction, for simulation, the algorithm

is suitable for integrating numerical and qualitative models (e.g., Gallanti et al. 1989).

With appropriate multi-level abstractions, the complexity of diagnosis may be reduced

from O(S) to O(log S), where S is the number of states to be veri�ed at the detailed level.

A similar complexity reduction using abstractions is reported by Genesereth (1984) and

Korf (1987, in planning), but without any experimental evidence to support the claim.

An application of abstractions to a complex medical problem, described in section 5,

con�rms the expected complexity reduction. The problem|originating from the KARDIO

project (Bratko, Mozetic & Lavrac 1989) is to diagnose heart disorders, given an ECG and

a simulation model of the heart's electrical activity. Until now, all attempts to directly

use the model for e�cient diagnosis failed|in an average case more than 50sec: is needed

to �nd all diagnoses. By abstractions and re�nements, the model was represented at four

levels of detail, and the average diagnostic time was reduced to 2:7sec:

2 Model representation

Model-based reasoning about a system requires an explicit representation (a model) of

the system's components and their connections. Reasoning is typically based on theorem

proving when a model is represented by �rst-order logic (Genesereth 1984, Reiter 1987),

or on constraint propagation (Davis 1984), possibly coupled with an ATMS (de Kleer &

Williams 1987). We found typed logic programs (Lloyd 1987) useful to represent models

since they can be naturally extended to e�ciently solve constraints over �nite domains (e.g.,

by forward checking, Van Hentenryck 1989) and to solve systems of linear equations and

inequalities over real arithmetic terms (e.g., by a Constraint Logic Programming language

CLP(R), Ja�ar & Michaylov 1987).

In our approach it is essential that a model explicitly relates an internal state of

components to external observations. A model M de�nes a mapping m from any state

2



(normal and abnormal) to external observations. We denote the domain of m (states) by

�

x

, the range (observations) by �

y

, and a typed version of m by m

�

, where

8x2�

x

8y2�

y

m

�

(x; y) m(x; y):

De�nition(model description)

A model description M consists of a type-free de�nition of m

�

(1), a type theory (2 and 3,

Lloyd 1987), and a formal system which de�nes the mapping m (4):

1. m

�

(x; y) �

x

(x); �

y

(y);m(x; y):

2. � (a): for each constant a of type � .

3. � (f(x

1

; : : : ; x

n

)) �

1

(x

1

); : : : ; �

n

(x

n

): for each functor f of type �

1

� : : :� �

n

! � .

4. P , a formal system (e.g., a logic program, a system of constraints, a system of

equations) which de�nes m.

De�nition(diagnostic problem)

Given a model descriptionM and an observation y2�

y

a diagnosis � is a state �2�

x

such

that M j= m

�

(�; y).

In contrast to the abductive and consistency-based diagnosis, our approach can be charac-

terized as deductive diagnosis. At this point we do not appeal to the principle of parsimony,

and concentrate on the task of �nding all, minimal and non-minimal diagnoses. However,

�nding an individual diagnosis (a model state consistent with the given observation), or

determining an inconsistency of a state to the observation, is just a subproblem where

e�ciency considerations and the proposed solution apply as well.

The diagnostic problem is to �nd the inverse mapping m

�1

for given observations

y. Suppose P is a simulation model and consists of a system of equations over reals. In

general, it is not possible to interpret equations or run the simulation `backwards' in order

to �nd the inverse mapping m

�1

. Even if the domain �

x

is �nite and P is a system of

constraints, there may be no e�cient constraint propagation method for a system with a

large number of components and large domain �

x

. One possible solution is to represent M

at several levels of abstraction and to �rst solve the diagnostic problem at an abstract level

where the model is simpler and the search space smaller. The abstract, coarse solutions

are then used to guide the search at more detailed levels, where the model is more complex

and the search space larger.

2.1 An or gate example

A model of an or gate is speci�ed in CLP(R) where uni�cation is extended to solving

constraints over real arithmetic terms. The model description is structurally decomposed,

basic components are transistors and resistors (Figure 1).

The model relates internal states of transistors to real valued voltages and currents.

The description of an npn transistor is from Heinze, Michaylov & Stuckey (1987). The
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Figure 1: An or gate realized with three npn transistors.

transistor operates in three states: cuto�, saturated, and active. In digital circuits only the

cuto� and saturated states are of interest, while the active state, interesting in ampli�er

circuits, is included just for completeness. Vx and Ix denote the voltages and currents for

the base, collector and emmiter, respectively. Constants Beta, Vbe, and Vcesat are device

parameters.

org( s(S12,S3), X, Y, Z )  

norg( S12, X, Y, W ),

inv( S3, W, Z ).

norg( n(S1,S2), b(Vin1,Iin1), b(Vin2,Iin2), b(Vout,Iout) )  

switch( S1, Vin1, Iin1, Vout, Ic1 ),

switch( S2, Vin2, Iin2, Vout, Ic2 ),

Ic1+Ic2=Ic,

power( Ic, Vout, Iout ).

inv( S, b(Vin,Iin), b(Vout,Iout) )  

switch( S, Vin, Iin, Vout, Ic ),

power( Ic, Vout, Iout ).

switch( S, Vin, Iin, Vc, Ic )  

Ve=0, Beta=100, Vbe=0.7, Vcesat=0.3,

resistor( Vin, Vb, Iin, 4700 ),

transistor( S, Beta, Vbe, Vcesat, Vb, Vc, Ve, Iin, Ic, Ie ).

power( Ic, Vout, Iout )  

Vcc=5, Ic+Iout=Icc,

resistor( Vcc, Vout, Icc, 470 ),
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0�Iout, Iout�0.006.

resistor( V1, V2, I, R )  R>0, V1�V2=I*R.

transistor( cuto�, Beta, Vbe, Vcesat, Vb, Vc, Ve, Ib, Ic, Ie )  

Vb<Ve+Vbe, Ib=0, Ic=0, Ie=0.

transistor( saturated, Beta, Vbe, Vcesat, Vb, Vc, Ve, Ib, Ic, Ie )  

Vb=Ve+Vbe, Vc=Ve+Vcesat, Ib�0, Ic�0, Ie=Ic+Ib.

transistor( active, Beta, Vbe, Vcesat, Vb, Vc, Ve, Ib, Ic, Ie )  

Vb=Ve+Vbe, Vc�Vb, Ib�0, Ic=Beta*Ib, Ie=Ic+Ib.

The following is a part of the type theory of the or gate model, and a type-free de�nition

of inv

�

.

inv

�

(S, X, Y)  �

t

(S), �

b

(X), �

b

(Y), inv(S, X, Y).

�

t

(cuto�).

�

t

(saturated).

�

t

(active).

�

b

(b(V,I))  �

v

(V), �

i

(I).

�

v

(V)  real(V).

�

i

(I)  real(I).

The model can be used for simulation only, since it does not incorporate any fault model.

Take, for example, the following query:

 org( S, b(5,I1), b(0,I2), b(V,I) ).

The CLP(R) interpreter returns the following answer substitution, with some unresolved

constraints:

S=s(n(saturated, cuto�), cuto�),

I1=0.0009,

I2=0,

V=5�470*I,

0.006�I, I�0

3 Abstraction operators

A relation M 7!M

0

denotes an abstraction from a detailed modelM to an abstract model

M

0

. In general, 7! is a partial and not total mapping from M to M

0

. Below we de�ne

three abstraction operators which map M to M

0

.
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De�nition(abstraction operators)

1. Collapsing constants (in the domains of x and y).

Di�erent constants can be abstracted to a single constant. We represent constant

abstractions 7! by a binary predicate h. For example:

� (a

1

): 7! �

0

(a

0

): h(a

1

; a

0

):

� (a

2

): 7! �

0

(a

0

): h(a

2

; a

0

):

2. Deleting arguments of terms (x and y are terms in general).

Irrelevant arguments at the detailed level can be deleted, for example

� (f(x

1

; x

2

: : : ; x

n

)) �

1

(x

1

); �

2

(x

2

) : : : ; �

n

(x

n

): 7!

�

0

(f

0

(x

2

; : : : ; x

n

)) �

0

2

(x

2

); : : : ; �

0

n

(x

n

):

where � 7! �

0

; �

i

7! �

0

i

(2 � i � n); and f

0

is f with the �rst argument deleted. If

all arguments of f are eliminated we replace the functor f

0

by a constant a

0

. Term

abstractions are also represented by the predicate h:

h(f(x

1

; x

2

: : : ; x

n

); f

0

(x

0

2

; : : : ; x

0

n

)) h

2

(x

2

; x

0

2

); : : : ; h

n

(x

n

; x

0

n

): or

h(f(x

1

; x

2

: : : ; x

n

); a

0

):

3. Simplifying the mapping m and formal system P .

Only some useful abstractions of m 7! m

0

and the corresponding formal system

P 7! P

0

can be de�ned syntactically. If P is a set of w�s then the constituent atomic

formulas can be abstracted in the following ways:

(a) By uniformly renaming constant, function, and predicate symbols throughout

P (the renaming is typically many-to-one, analogous to operator 1).

(b) By uniformly deleting some arguments of functions and predicates throughout

P (analogous to operator 2).

In general, abstractions ofm and P are de�ned implicitly by the consistency condition

CC, in section 4.

Two examples of related work on abstractions:

1. Dropping conditions in ABSTRIPS (Sacerdoti 1974).

A precondition m(x; y) of an operator can be de�ned as a mapping m from a state of

the world x to y 2 ftrue; falseg depending on primitive conditions c

i

being satis�ed

or not: m(x; y) c

1

; c

2

; : : : ; c

n

: In the abstract space, some primitive conditions with

low criticality (e.g., c

1

) are deleted, and m is simpli�ed to: m

0

(x; y) c

2

; : : : ; c

n

:

2. Abstracting a quantitative to a qualitative model (Gallanti et al. 1989).

P is a system of linear equations �s = C�p, where �p are variations of the system

parameters which caused variations of the observable state �s, and C is a sensitiv-

ity matrix. Real-valued variables and matrix coe�cients are abstracted to 0 and 1:

�s;�p; c = 0 7! 0 and �s;�p; c 6= 0 7! 1. Linear equations are simpli�ed to
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boolean expressions: cx� y = z 7! cx� y = z, where

0 � 0 = 0. 0 � 1 = 1. 1 � 0 = 1. 1 � 1 = 0 _ 1.

A qualitative model is used to generate candidate diagnoses which are then veri�ed

by conventional methods for solving linear systems.

3.1 Abstracting the quantitative or gate model

For the purpose of diagnosis, when one has to identify just faulty components, the or gate

model is unneccessarily detailed. It does not really matted if the voltage is 4.4 or 4.6, what

is important is whether it is qualitatively high or low, and whether the transistors properly

operate as switching devices. Here we assume that only transistors can fail, and we ignore

the active state at the abstract level. Abstraction operators will be applied throughout the

model description. Since we will subsequently derive two more abstract or gate models,

the following qualitative model is placed at the third level of detail.

Recall that in the binary predicate h the �rst and second argument denotes the de-

tailed and abstract entities, respectively. In what follows, the �rst six lines specify constant

abstractions, the next three clauses specify term abstractions, and the last six clauses spec-

ify predicate abstractions.

h

t

(cuto�, ok).

h

t

(saturated, ok).

h

i

(0, 0).

h

i

(I, 1)  I>0.

h

v

(V, 0)  0�V, V<0.7. % low

h

v

(V, 1)  2�V, V�5. % high

h

n

(n(S1,S2), n(S1',S2'))  h

t

(S1,S1'), h

t

(S2,S2').

h

s

(s(S12,S3), s(S12',S3'))  h

n

(S12,S12'), h

t

(S3,S3').

h

b

(b(V,I), V')  h

v

(V,V'). % I is deleted

h(org(S,X,Y,Z), org

3

(S',X',Y',Z'))  

h

s

(S,S'), h

b

(X,X'), h

b

(Y,Y'), h

b

(Z,Z').

h(norg(S,X,Y,Z), norg

3

(S',X',Y',Z'))  

h

n

(S,S'), h

b

(X,X'), h

b

(Y,Y'), h

b

(Z,Z').

h(inv(S,X,Y), inv

3

(S',X',Y'))  

h

t

(S,S'), h

b

(X,X'), h

b

(Y,Y').

h(switch(S,Vin,Iin,Vc,Ic), switch

3

(S',Vin',Vc',Ic'))  % Iin is deleted

h

t

(S,S'), h

v

(Vin,Vin'), h

v

(Vc,Vc'), h

i

(Ic,Ic').

h(power(Ic,Vout,Iout), power

3

(Ic',Vout'))  % Iout is deleted
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h

i

(Ic,Ic'), h

v

(Vout,Vout').

h(X+Y=Z, sum

3

(X',Y',Z'))  

h

i

(X,X'), h

i

(Y,Y'), h

i

(Z,Z').

From the original or gate model, and the above abstractions, an abstract or gate model

was automatically derived through term rewriting and partial evaluation. The deriva-

tion can be regarded as an enhancement of explanation-based generalization without any

learning example (Van Harmelen & Bundy 1988). Predicates, for which no abstraction is

speci�ed are regarded as `non-operational' and are evaluated. The remaining predicates

and terms are rewritten according to the abstraction speci�cations.

org

3

( s(S12,S3), X, Y, Z )  

norg

3

( S12, X, Y, W ),

inv

3

( S3, W, Z ).

norg

3

( n(S1,S2), Vin1, Vin2, Vout )  

switch

3

( S1, Vin1, Vout, Ic1 ),

switch

3

( S2, Vin2, Vout, Ic2 ),

sum

3

( Ic1, Ic2, Ic ),

power

3

( Ic, Vout ).

inv

3

( S, Vin, Vout )  

switch

3

( S, Vin, Vout, Ic ),

power

3

( Ic, Vout ).

switch

3

( ok, 0, , 0 ). % cuto�

switch

3

( ok, 1, 0, 0 ). % saturated

switch

3

( ok, 1, 0, 1 ). % saturated

switch

3

( ab, 1, 1, 0 ). % open

power

3

( 0, 1 ).

power

3

( 1, 0 ).

power

3

( 1, 1 ).

sum

3

( 0, 0, 0 ).

sum

3

( 0, 1, 1 ).

sum

3

( 1, 0, 1 ).

sum

3

( 1, 1, 1 ).

The original or gate model does not entail any fault model, and neither can the ab-

stracted model. Therefore we introduced a strong fault model here, by adding a clause

switch

3

(ab,1,1,0). This speci�es that a switch

3

is abnormal (open) if for a high control

voltage Vin=1, the voltage drop across the switch is high, Vout=1, and there is no current

through the switch, Ic=0.
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3.2 Abstracting the qualitative or gate model

The next step involves just a structural abstraction, by ignoring the internal structure of

the nor gate and the inverter. The nor gate is considered abnormal if any constituent

transistor is in abnormal state.

h

n

(n(ok,ok), ok).

h

n

(n(ok,ab), ab).

h

n

(n(ab, ), ab).

h

s

(s(S12,S3), s(S12',S3))  h

n

(S12,S12').

h(org

3

(S,X,Y,Z), org

2

(S',X,Y,Z))  h

s

(S,S').

h(norg

3

(S,X,Y,Z), norg

2

(S',X,Y,Z))  h

n

(S,S').

h(inv

3

(S,X,Y), inv

2

(S,X,Y)).

The following is the automatically derived model at the second level of detail.

org

2

( s(S1,S2), X, Y, Z )  

norg

2

( S1, X, Y, W ),

inv

2

( S2, W, Z ).

norg

2

( ok, 0, 0, 1 ). norg

2

( ab, 0, 1, 1 ).

norg

2

( ok, 0, 1, 0 ). norg

2

( ab, 1, 0, 1 ).

norg

2

( ok, 1, 0, 0 ). norg

2

( ab, 1, 1, 1 ).

norg

2

( ok, 1, 1, 0 ).

inv

2

( ok, 0, 1 ).

inv

2

( ok, 1, 0 ).

inv

2

( ab, 1, 1 ).

Finally, a structurless description of an or gate at the most abstract, �rst level is

derived. Note that the resulting fault model is not the weakest, since it does not entail the

behavior org

1

(ab,0,0,0).

h

s

(s(ok,ok), ok).

h

s

(s(ok,ab), ab).

h

s

(s(ab, ), ab).

h(org

2

(S,X,Y,Z), org

1

(S',X,Y,Z))  h

s

(S,S').

org

1

( ok, 0, 0, 0 ). org

1

( ab, 0, 0, 1 ). org

1

( ab, 1, 0, 1 ).

org

1

( ok, 0, 1, 1 ). org

1

( ab, 0, 1, 0 ). org

1

( ab, 1, 1, 0 ).

org

1

( ok, 1, 0, 1 ). org

1

( ab, 0, 1, 1 ). org

1

( ab, 1, 1, 1 ).

org

1

( ok, 1, 1, 1 ). org

1

( ab, 1, 0, 0 ).
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4 Hierarchical diagnosis

In order to exploit possible computational advantages of multi-level over one-level model

representation, two conditions must be satis�ed by any pair M and M

0

. Let us denote by

�

�

a subset of � which is not abstracted since it is irrelevant at the abstract level, and by �

+

a subset of � which is abstracted. De�ne �

�

(x) :9x

0

h(x; x

0

) and �

+

(x) 9x

0

h(x; x

0

).

The following condition restricts the relation between the mapping m

�

, and subsets of its

range �

�

x

and domain �

+

y

which are (not) abstracted.

De�nition(restriction of incompleteness)

For any m

�

, if M j= m

�

(x; y) then �

�

x

(x) or �

+

y

(y). With respect to the model M this is

equivalent to:

C1 : 8x; y m(x; y)) :9x

0

h

x

(x; x

0

) _ 9y

0

h

y

(y; y

0

)

Note that the or gate model at the third level of detail is incomplete with respect

to the original model since the active states have no abstraction. Further, the condition

C1 is not satis�ed either, e.g., org(s(n(cuto�, saturated), cuto�), b(�2, ), b(10, ), b(2.65,

0.005)) is true, the state x has an abstraction s(n(ok,ok),ok), but the voltages �2 and 10

have no abstraction. This does not matter, however, since for diagnosis we need just the

three qualitative models.

If we denote a subset of the mapping m

�

which is abstracted by m

+

�

and de�ne

m

+

�

(x; y) �

+

x

(x); �

+

y

(y); m(x; y) then the following condition de�nes the relation between

the detailed and abstract mapping.

De�nition(preservation of mapping)

For any m

+

�

, if M j= m

+

�

then there exists m

0

�

such that M

0

j= m

0

�

. With respect to M and

M

0

this is equivalent to:

C2 : 8x; y (9x

00

; y

00

m(x; y)^h

x

(x; x

00

)^h

y

(y; y

00

))) 9x

0

; y

0

m

0

(x

0

; y

0

)^h

x

(x; x

0

)^h

y

(y; y

0

)

In the case of the or gate model, for example, the mapping org(s(n(saturated, cut-

o�), cuto�), b(5, 0.0009), b(0, 0), b(2.18, 0.006)) has an abstraction org

3

(s(n(ok,ok),ok),

1,0,1). In general, if the abstraction operators are applied globally (as was the case with the

or gate example), and not only locally, to terms denoting model states and observations,

the condition C2 is always satis�ed. The condition C2 seems a well known characterization

of a certain type of abstractions, e.g., Giunchiglia and Welsh (1989) call such abstractions

truthful. As far as we know, the condition C1 is unique to our approach. A comparison of

our approach to the related research on abstractions is in (Mozetic 1990a, 1991).

Conditions C1 and C2 which must hold for any model abstraction M 7! M

0

can be

conjoined into a consistency condition.

De�nition(consistency condition)

CC : 8x; y m(x; y) ^ (9x

00

h

x

(x; x

00

))) 9x

0

; y

0

m

0

(x

0

; y

0

) ^ h

x

(x; x

0

) ^ h

y

(y; y

0

)

The following logic program tests whether CC holds between models M and M

0

.
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Algorithm(consistency test)

consistent  :inconsistent:

inconsistent  h

x

(x; x

0

);m(x; y);:exist x

0

y

0

(x; y):

exist x

0

y

0

(x; y)  h

x

(x; x

0

); h

y

(y; y

0

);m

0

(x

0

; y

0

):

Theorem.The consistency test algorithm is correct and complete. The proof is a corollary

to Lemmas 18.3 and 18.4 of (Lloyd 1987, p. 115).

Suppose that given is a list of models M

1

; : : : ;M

n

, ordered from abstract to detailed

where corresponding state-observation mappings are de�ned by predicates m

1

; : : : ;m

n

.

The hierarchical diagnostic algorithm is then de�ned by the following logic program which

implements a depth-�rst, backtracking search through the space of possible states.

Algorithm(hierarchical diagnosis)

diag

i

(y; x)  h

y

(y; y

0

); diag

i�1

(y

0

; x

0

); h

x

(x; x

0

);m

i

(x; y):

diag

i

(y; x)  :exists x

0

(x);m

i

(x; y):

exists x

0

(x)  h

x

(x; x

0

):

Theorem. If the consistency condition CC is satis�ed by any two adjacent models then

the hierarchical diagnostic algorithm is correct and complete with respect to the mapping

m

i

. The proof is in (Mozetic 1990a).

4.1 Diagnosing the 3-level or gate

Take the three qualitative models of an or gate derived automatically from the quantitative

model. State-observation mappings are de�ned by m

i

(x; y) $ org

i

(S; In1; In2; Out) for

i = 1; 2; 3, where x = S, and y = hIn1; In2; Outi. Suppose that an observation y = h1; 0; 0i

is given which indicates that the or gate is faulty (the correct output would be 1). After

submitting the query, the hierarchical diagnostic algorithm returns the following answer

substitution:

 diag

3

( h1; 0; 0i; S ).

S = s(n(ab, ok), ok)

The answer indicates that the �rst transistor in the nor gate is faulty. The search space

exploited by the algorithm is in Figure 2. Note that only three out of eight states at

the third level are veri�ed as candidate diagnoses, since neither s(ok,ab) nor s(ab,ab) are

diagnoses at the second level.
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Figure 2: A search space for the 3-level or gate example. States veri�ed by the hierarchical

diagnostic algorithm are in ovals, and states which actually map to the given observation

1,0,0 have outgoing arrows.

4.2 Complexity of hierarchical diagnosis

Let us assume that the cost � of �nding all diagnoses for the detailed level model M

n

(without using abstractions) is a function v

n

of the number of states S to be veri�ed:

�(M

n

) = v

n

(S) = O(S)

In the worst case, when faults of the model components are independent, all states have

to be veri�ed and S =j �

x

j. Sometimes it is possible to reduce the number of states S

apriori, by domain speci�c knowledge. With multi-level models M

1

; : : : ;M

n

, the cost of

hierarchical diagnosis is the sum of costs of verifying re�nements of abstract diagnoses D

i�1

at each level i. B

i�1

denotes a branching factor from the level i�1 to i. In addition, we also

have to take into account the number of newly introduced states N

i

(without abstraction)

which must be veri�ed. The overall cost is:

�(M

1

; : : : ;M

n

) =

n

X

i=1

v

i

(D

i�1

�B

i�1

+N

i

)

where D

0

= 0 and N

1

= S

1

(the number of states at the top level). When tree-structured

hierarchies h

x

are used, and there is no incompleteness (N

i>1

= 0), the number of states

at each level is S

i

= S

i�1

� B

i�1

. If we take B

0

= S

1

then the number of detailed level

states can be expressed as a product of branching factors S =

Q

n

i=1

B

i�1

. With a constant

branching factor B, the number of abstraction levels needed is n = log

B

S. If we make a

simplifying assumption that v

i

;D

i

and B

i

are constant across levels (v(D �B) = C) then

the linear complexity of �nding all diagnoses is reduced to logarithmic:

�(M

1

; : : : ;M

n

) = v(D �B)� n = C � log

B

S = O(log S)

The reduction comes from the fact that, while the total number of states grows exponen-

tially, the number of states to be veri�ed is kept constant across levels. In our experiments

this actually turned out to be the case.
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5 Experiments and results

The experimental evaluation involves a realistic medical problem. In KARDIO (Bratko,

Mozetic & Lavrac 1989), the ECG interpretation problem is formulated as follows: given

a symbolic ECG description ECG, �nd all possible|single and multiple|heart disorders

(cardiac arrhythmias Arr). In the medical literature there is no systematic description of

ECG features which correspond to complicated multiple disorders. Instead of constructing

diagnostic rules directly we developed a simulation model of the electrical activity of the

heart. The model of the heart in KARDIO can simulate over 2400 heart disorders, but

in the experiments described here we used a subset of the original model which comprises

943 heart failures (single and multiple).

The mapping m is de�ned by m(Arr,ECG)  possible(Arr), heart(Arr,ECG). Pos-

sible(Arr) eliminates physiologically impossible and medically uninteresting heart states

and thus reduces their number from j �

x

j= 52920 to S = 943. Heart(Arr,ECG) simulates

the electrical activity of the heart for an arrhythmia Arr.

Due to the simulation nature of the model m its application in the `forward' direction

(deriving ECGs for a given disorder) can be carried out e�ciently. In contrast, diagnostic

reasoning (�nding disorders for a given ECG) involves deep backtracking and renders the

`backward' application ine�cient. Using the naive generate-and-test method with chrono-

logical backtracking, the average diagnostic time is more than 50sec:. The application of

more sophisticated constraint satisfaction techniques (reordering of constraints in heart,

forward checking) provided no improvement. The computational complexity is due to the

large domain size (52920), and high arity of predicates in the simulationmodel (components

have between 6 and 15 arguments).

In order to improve diagnostic e�ciency, we represented the heart model at four lev-

els of abstraction. First, the three-level model was constructed in a top-down way, using

QuMAS, a semiautomatic Qualitative Model Acquisition System (Mozetic 1987). The

fourth, most detailed level was then added manually, by rewriting the original KARDIO

heart model (which required a special interpreter) into a logic program which can be inter-

preted directly. All three abstraction/re�nement operators were used in the hierarchical

model representation (see Mozetic 1990b, 1991).

We compared diagnostic e�ciency and the number of states to be veri�ed by the

hierarchical diagnostic algorithm and the one-level generate-and-test method (Table 1).

Diagnostic e�ciency is the time needed to �nd all possible diagnoses for a given ECG, and

was measured and averaged over all 3096 distinct ECG descriptions at the detailed level.

The heart model and the diagnostic algorithm were compiled by Quintus Prolog and run

on SUN 3.

The experimental results are consistent with the complexity analysis. In one-level

diagnosis all possible states have to be veri�ed for each ECG. Thus v

4

(943) / 50:4sec:

and the average time to verify a state is 53msec: In hierarchical diagnosis the cost is

P

4

i=1

v

i

(D

i�1

�B

i�1

+N

i

). We can ignore the cost of verifying states without abstraction

(N

i

) since corresponding pairs state-observation were cached in a table. We further simplify

the matter by assuming that costs of verifying states at di�erent levels were equal, thus
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Domain Possible States without Re�nements of Branching

Level size states abstraction abstract diagnoses Diagnoses factor

i j �

x

j

i

S

i

N

i

D

i�1

�B

i�1

D

i

B

i

1 3 3 3 0 1.0 5

2 48 18 3 5 1.9 10

3 10080 175 26 19 1.3 9

4 52920 943 0 12 2.1 /

Four-level, hierarchical diagnosis 36 2.7 sec.

One-level, generate-and-test 943 50.4 sec.

Table 1: The number of states veri�ed and diagnostic times needed to �nd all diagnoses

from the heart model, measured and averaged over 3096 distinct ECG descriptions.

yielding the overall cost

P

4

i=1

v(D

i�1

� B

i�1

) = v(36) / 2:7sec: The approximate time

to verify one state in hierarchical diagnosis is therefore 75msec: This is close to one-level

diagnosis and con�rms that the number of states to be veri�ed is an indicative measure of

complexity.

6 Conclusion

We applied abstractions to model-based diagnosis, and showed a considerable improvement

of diagnostic e�ciency on a non-trivial medical problem. We de�ned three abstraction

operators, formal conditions they have to satisfy, and a provably correct and complete

diagnostic algorithm. With appropriate abstractions, the linear complexity of diagnosis can

be reduced to logarithmic. The complexity reduction is due to simpler models and smaller

search space at the abstract levels. The search space size depends on the branching factor

of hierarchical relations and on the number of newly introduced states without abstraction

(due to incompleteness). Therefore, reducing incompleteness and introducing intermediate

levels improves the e�ciency of hierarchical diagnosis. Despite the fact that our approach

is geared towards the problem of �nding all (including non-minimal) diagnoses, there are

strong indications that abstraction hierarchies can also be used to �nd minimal diagnoses

more e�ciently. The questions how to �nd appropriate abstractions and when constructing

abstract models is cost-e�ective, remain open. Our current research indicates that partial

evaluation is a powerful technique to automatically construct abstract models on top of an

existing detailed model, provided that abstractions of states and observations are given.

The main limitation of our approach is that we ignore probabilities, and do not address

the question of suggesting additional measurements.
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