
Temporal Interval Reasoning with CLP(Q)

Igor Mozetič

Jožef Stefan Institute

Jamova 39, 1000 Ljubljana, Slovenia

igor.mozetic@ijs.si

Abstract

Temporal reasoning is an important aspect of
common-sense reasoning. The SUMO upper ontol-
ogy incorporates Allen’s influential axiomatization
of temporal relations, but without reasoning capa-
bilities. We propose a refinement of the SUMO
temporal ontology, implemented in CLP(Q), a
Constraint Logic Programming system over the do-
main of rational numbers.

1 Introduction

An ontology is a conceptualization of a domain of
interest. In the Semantic Web context, it should
be formalized and provide enough detail and struc-
ture to enable computers to process its content.
An upper ontology is limited to concepts that are
meta, generic and abstract, i.e., general enough to
address a broad range of domain areas. There is
an attempt by IEEE to define the Standard Upper
Ontology (IEEE, 2003), currently embodied in the
SUMO (Suggested Upper Merged Ontology). The
SUMO (Niles and Pease, 2001) provides a founda-
tion for middle-level and domain ontologies, and its
purpose is to promote data interoperability, infor-
mation retrieval, automated inference, and natural
language processing. Some of the general topics
covered in the SUMO include:

• Structural concepts such as instance and sub-
class

• General types of objects and processes

• Abstractions including set theory, attributes,
and relations

• Numbers and measures

• Temporal concepts, such as duration

• Parts and wholes

• Basic semiotic relations

• Agency and intentionality.

SUMO is represented in a simplified form of the
KIF language (Knowledge Interchange Format)
which is based on the first-order logic and has for-
mally defined semantics (Hayes and Menzel, 2001).
However, to the best of our knowledge, there is no
theorem prover or interpreter of the KIF language
publicly available. As a consequence, the SUMO
cannot be directly used for reasoning.

The motivation for this paper is the lack of rea-
soning capabilities in the existing SUMO ontology.
We attempt to extend the SUMO, by defining a
part of the ontology in compatible terms and im-
plementing it in an executable language. Here we
focus on temporal reasoning, as an important as-
pect of common-sense reasoning. To represent ax-
ioms about temporal concepts, SUMO adopted the
influential Allen’s temporal interval algebra (Allen,
1983), but without any reasoning capabilities.

We have actually implemented the temporal inter-
val algebra in CLP(Q) . This simple implementa-
tion allows for the reasoning about temporal events,
such as:

• “If X precedes Y, and Y overlaps with Z, what
are the possible temporal relations between X
and Z ?”

• “If X takes longer then Y, can X occur during
Y ?”

• “Given a set of temporally related events, what
are the possible consistent scenarios on the
time line ?”

In Section 2, we give an overview of the Allen’s
interval algebra and some of its extensions. Section
3 presents Constraint Logic Programming (CLP),
and CLP(Q) in particular. We show the CLP(Q)
implementation of the temporal axioms in Section
4, and give some examples of reasoning.

2 Allen’s interval algebra

Allen (1983) proposed an interval algebra frame-
work to represent hierarchical and possibly indef-
inite and incomplete temporal information. This
differs from the representation based on times-
tamps, since it allows for relative relations and
at different levels of granularity. Events are rep-
resented by time intervals (in contrast to time
points). There are thirteen basic relations between
time intervals (Figure 1). The basic relations are
disjoint and exhaustive.

b

m

o

s

d

f

bi

mi

oi

si

di

fi

eq

X before Y

X meets Y

X overlaps Y

X starts Y

X during Y

X finishes Y

X equals Y

Relation Symbol Inverse Meaning

Figure 1: The basic relations between time inter-
vals.

In order to represent indefinite information, Allen
allows for any subset (disjunction) of the basic re-
lations to hold between two time intervals. A set
of temporally related events forms a network, with
edges corresponding to (possibly disjunctive) rela-
tions between events. van Beek (1991) refers to
such networks as IA (Interval Algebra) networks.
There are two fundamental queries one can ask of
IA networks:

1. Finding feasible relations between all pairs of
events, and

2. Determining the consistency of temporal rela-
tions.

For IA networks, answering such queries was shown
to be an NP-complete problem (Vilain et al., 1989).
Therefore, van Beek (1991) proposed a restricted
class of IA networks, called SIA (Simple Interval
Algebra) networks. This class restricts the dis-
junctive relations between the time intervals just
to those that can be expressed as conjunctions of
equalities and inequalities between the interval end-
points. van Beek (1991) argues that the restricted
class still covers most of the practical cases, while at
the same time he gives a tractable polynomial time
algorithms for answering the fundamental queries
of the SIA networks.

3 Constraint Logic Programming

Constraint Logic Programming (CLP, Jaffar and
Lassez (1987); Cohen (1990)) is a generalization
of logic programming. Unification, the basic op-
eration in logic programs, is replaced by a more
general mechanism of constraint satisfaction over
a specific computation domain. An instance of the
general CLP scheme is obtained by selecting a com-
putation domain, a set of allowed constraints and
designing a solver for the constraints. CLP com-
bines the advantages of logic programming (declar-
ative semantics, nondeterminism, partial answers)
with the efficiency of specialized constraint satis-
faction algorithms. CLP(Q) is an instance of the
CLP scheme which extends logic programs with
interpreted arithmetic functions and a solver for
systems of linear equations and inequalities over
the domain of Q (rational numbers). In our ex-
periments we use an implementation of CLP(Q)
(Holzbaur, 1995) which is incorporated in the SIC-
Stus and Yap Prolog.

A CLP(Q) program is a set of clauses of the form:

H ← C1, . . . , Cn.

and a CLP(Q) query is a clause without head:

← C1, . . . , Cn.

where H is an atom and Ci are negated or non-
negated atoms or arithmetic constraints. Arith-
metic constraints are bracketed by { and }, and
consist of equations or inequalities, built up from
rational constants, variables, +,−, ∗, / and =,≥,≤
, >,<. All of these symbols have the usual meaning
and parentheses may be used. An atom is a predi-

cate symbol applied to a number of terms. A term
is a constant, a variable, an uninterpreted func-
tor applied to a number of terms, or an arithmetic
term. Variables start with capitals and are implic-
itly universally quantified in front of a clause, and
constants start with lower-case letters.

CLP(Q) is restricted to systems of linear equa-
tions and inequalities. Non-linear constraints are
accepted but not resolved — they are just delayed
until (if) they eventually become linear. In the case
of the Allen’s temporal algebra, all constraints are
linear. In general, however, a reply to a query is not
just an answer substitution (as is the case with logic
programs), but also potentially unresolved residual
constraints between the variables involved.

4 CLP(Q) implementation and

examples

In CLP(Q) we represent a temporal interval by a
term i(X1,X2), where X1 and X2 are rationals, rep-
resenting the start and end points of the interval:

interval(i(X1,X2)) ← {X1 < X2}.

Duration of an interval is trivially defined by the
following clause:

duration(i(X1,X2), Dur) ←
{X1 < X2, Dur = X2−X1}.

Basic temporal relations are defined in terms of
equalities and inequalities between the endpoints.
The following are the six basic relations and equal-
ity, their inverses are obvious:

temp(b, i(X1,X2), i(Y1,Y2)) ← {X2 < Y1}.
temp(m, i(X1,X2), i(Y1,Y2)) ← {X2 = Y1}.
temp(o, i(X1,X2), i(Y1,Y2)) ←

{X1 < Y1, X2 > Y1, X2 < Y2}.
temp(s, i(X1,X2), i(Y1,Y2)) ←

{X1 = Y1, X2 < Y2}.
temp(d, i(X1,X2), i(Y1,Y2)) ←

{X1 > Y1, X2 < Y2}.
temp(f, i(X1,X2), i(Y1,Y2)) ←

{X1 > Y1, X2 = Y2}.
temp(eq, i(X1,X2), i(Y1,Y2)) ←

{X1 = Y1, X2 = Y2}.

The SIA relations are all powersets of the basic re-
lations which are consistent and can be expressed
as conjunctions of (in)equalities between the end-

points. There are altogether 82 SIA relations which
can be derived from the above basic definitions (and
their inverses). For example, a disjunctive inter-
val relation (X meets or overlaps or starts Y , in
CLP(Q) represented by a list [m,o,s]) is defined as:

sia([m,o,s], i(X1,X2), i(Y1,Y2)) ←
{X1 =< Y1, X2 >= Y1, X2 < Y2}.

Simple query. What are the constraints on the
interval Y which overlaps with i(1,4):

← temp(o, i(1,4), i(Y1,Y2)).
Y1 > 1, Y1 < 4, Y2 > 4

Composition of two relations. Given “X starts
Y and Y overlaps with Z”, what is the relation
between X and Z:

← temp(s, i(X1,X2), i(Y1,Y2)),
temp(o, i(Y1,Y2), i(Z1,Z2)),
temp(Rel, i(X1,X2), i(Z1,Z2)).

Rel = b ? ;
Rel = m ? ;
Rel = o ?

Backtracking yields three answer substitutions
which can be simplified into a SIA [b,m,o] with the
only two relevant constrains remaining: X1 < Y1
and X2 < Y2.

Scenario. Let’s take an example description of
events from (van Beek, 1991): “Fred was reading
the paper while eating his breakfast. He put the
paper down and drank the last of his coffee. Af-
ter breakfast he went for a walk.” Here we have
four events: Paper, Break, Coffee, Walk. The (in-
definite) temporal relations between them are de-
scribed by the following four SIA relations:

sia([d,di,eq,f,fi,o,oi,s,si], Paper, Break)
sia([d,o,s], Paper, Coffee)
sia([d], Coffee, Break)
sia([b], Break, Walk)

Feasible relations. Assume that each event, e.g.,
Coffee is represented by an interval i(C1,C2), and
similarly Walk by i(W1,W2). Given the above SIA
network, we can compute all feasible temporal re-
lations between any pair of events. E.g., between
Coffee and Walk, the only feasible relation is before:

← sia net([i(P1,P2), i(B1,B2),
i(C1,C2), i(W1,W2)]),

temp(Feasible, i(C1,C2), i(W1,W2)).
Feasible = b,

... and some residual constraints

Consistent scenario. Another interesting ques-
tion about a SIA network is finding a consistent
scenario, i.e., a projection of the network to the
time line. This can be simply realized by sorting
the interval endpoints, while maintaining the con-
sistency of constraints.

← sia net([i(P1,P2), i(B1,B2),
i(C1,C2), i(W1,W2)]),

sort([P1, P2, B1, B2, C1, C2, W1, W2],
Scenario).

We get five consistent scenarios:

Scenario = [P1,C1,P2,C2,B2,W1,W2], B1=P1
Scenario = [P1,B1,C1,P2,C2,B2,W1,W2]
Scenario = [B1,P1,P2,C2,B2,W1,W2], C1=P1
Scenario = [B1,P1,C1,P2,C2,B2,W1,W2]
Scenario = [B1,C1,P1,P2,C2,B2,W1,W2]

Note that the endpoints can be sorted without as-
signing actual numerical values to them!

Duration. Assume an interval X with duration
longer then an interval Y :

← duration(i(X1,X2), Xd),
duration(i(Y1,Y2), Yd), {Xd > Yd}.

Xd= -X1+X2, Y1-Y2 < 0, Yd= -Y1+Y2,
X1-X2-Y1+Y2 < 0

Can X occur during Y ? No, the corresponding
query fails. Query for all the feasible relations be-
tween X and Y yields the following answers: [b, m,
o, bi, mi, oi, si, di, fi]. Note that this is no longer
a SIA relation since it cannot be represented by
conjunctive constraints.

5 Conclusion

This modest contribution can be regarded as an at-
tempt at making an ontology operational. In our
view, it does not suffice to use or develop an ex-
pressive language to formalize an ontology. The
language must also be executable in order to enable
automated reasoning and derivation of explicit con-
sequences from implicit knowledge in the ontology.
When choosing between different competing repre-
sentation languages, their operationality should be
an important consideration.

Acknowledgements

This research was supported by the 6th FP Project
IST-2003-506826 SEKT.

References

Allen, J.F. Maintaining knowledge about temporal
intervals. Communications of the ACM 26, pp.
832-843, 1983.

Cohen, J. Constraint logic programming languages.
Communications of the ACM 33 (7), pp. 52-68,
1990.

Hayes, P., Menzel. C. A Semantics for
the Knowledge Interchange Format.
http://reliant.teknowledge.com/IJCAI01/
HayesMenzel-SKIF-IJCAI2001.pdf, 2001.

Holzbaur, C. OFAI clp(q,r) Manual, Edition 1.3.3.
Austrian Research Institute for Artificial Intelli-
gence, Vienna, TR-95-09, 1995.

IEEE P1600.1. Standard Upper Ontology Working
Group (SUO WG). http://suo.ieee.org/, 2003.

Jaffar, J., Lassez, J.-L. Constraint logic program-
ming. Proc. 14th ACM Symp. on Principles of
Programming Languages, pp. 111-119, Munich,
1987.

Niles, I., and Pease, A. 2001. Towards a Standard
Upper Ontology. Proc. 2nd Intl. Conf. on Formal
Ontology in Information Systems (FOIS-2001),
Chris Welty and Barry Smith (Eds), Ogunquit,
Maine, October 17-19, 2001.

van Beek, P. Temporal query processing with
indefinite information. Artificial Intelligence in
Medicine 3, pp. 325-339, 1991.

Vilain, M., Kautz, H., van Beek, P. Constraint
propagation algorithms for temporal reasoning:
A revised report. Readings in Qualitative Rea-
soning about Physical Systems, pp. 325-339,
1991.

