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Abstract—Biologists have been investigating the plant defense 

response to virus infections for a long time. Nevertheless, its model 

has still not been developed. One of the reasons is the deficiency in 

numerical kinetic data that brings up the importance of the expert 

knowledge. Therefore, we based our work on acquiring domain 

knowledge of biological pathways which provided a basis for the 

construction of a dynamic mathematical model. The goal of our 

work was to model the major pathway of the plant defense 

response – the salicylic acid pathway – and determine its dynamic 

parameters that are in correspondence with the knowledge 

acquired from the biology experts. For this purpose, we first 

selected the Hybrid Functional Petri Net formalism to represent 

the model due to its intuitive graph representation important for 

the biologists and its mathematical capabilities necessary for the 

simulation. The salicylic acid model was manually constructed and 

curated. In addition, the knowledge related to the model variables 

was acquired from the biology scientists and formalized in the 

form of constraints. This enabled an automatic optimization search 

for the model parameters that violate the minimal number of 

constraints. If the simulation results do not match the expert 

expectations, the network structure and the constraint definition 

are revised and the optimization parameter search is repeated. The 

final results of our system are both simulation results and 

optimized model parameters, which provide an insight into the 

biological system. Our constraint-driven optimization approach 

allows for an efficient exploration of the dynamic behavior of the 

biological models and, at the same time, increases their reliability. 
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I.  INTRODUCTION 

Plants and pathogens enter into various relations that do 
not necessarily damage the host plant. This interaction 
triggers a complex signaling network, referred to as plant 
defense response or plant defense signaling. For a successful 
defense the activation of plant defense must be rapid, 
efficient and targeted [1]. It was shown that salicylic acid 
(SA), jasmonic acid (JA) and ethylene (ET) pathways play a 
fundamental role in mediating the defense signaling response 
in plants [2]. 

The goal of systems biology is to build a holistic view of 
dynamical interactions between various biological pathways. 
In practice, these pathways are mostly qualitatively 
understood while the numerical data of the kinetic 
parameters are often sparse. Due to the small amount of 
existing quantitative data, mathematical optimization 
methods were recently employed in systems biology.  
Various local deterministic optimization techniques 
(Levenberg-Marquardt algorithm [3][4], Sequential 

Quadratic Programming [5]) and stochastic approaches 
(Simulated Annealing [6], Genetic Algorithms [7] and 
Evolutionary Algorithms [8]) are applied in systems biology. 

Plant defense response, like all biological mechanisms, 
has several dynamic parameters that are not accessible to 
experimental measurements, such as speeds of reactions and 
inhibition thresholds. One way to estimate these parameters 
is to fit the model to the experimental data (if they are 
available) [9]. On the other hand, the absence of kinetic data 
for model fitting raises the importance of qualitative 
knowledge of domain experts. This knowledge of biological 
pathways can serve as a basis for the construction of a 
dynamic mathematical model. Most of the plant-pathogen 
interaction studies are focused on individual interactions or 
subsets of the whole plant defense mechanism [10][11]. The 
first attempt to model the plant defense by constructing a 
Boolean network and carrying out numerical simulations of 
plant defense model was proposed by Genoud et al. [12]. 
However, this model is simple, containing 18 biological 
entities and 12 Boolean operators, whereas to fully 
investigate complex biological system one needs to consider 
a large number of components [13]. 

The goal of our work is to develop the iterative process to 
determine the dynamic parameters of the plant defense 
response, in correspondence with the knowledge acquired 
from the biology experts. In this study we concentrate on the 
model plant species Arabidopsis thaliana and its interaction 
with viruses. At the level of signal perception we selected the 
Turnip Crinkle Virus (TCV) infection. We concentrate our 
study to the one of the three major pathways that is the most 
studied: the SA pathway. The main contributions of this 
paper are: 

 Methodology for acquiring knowledge from the 
domain experts resulting in a new dynamic SA 
model 

 Formalized biological knowledge in the form of 
constraints 

 The dynamic model of the SA pathway. 
The structure of this paper is as follows. Materials and 

methods section describes the methodology used to search 
for the model parameters through the iteration process. Every 
step of this methodology is presented in a separate 
subsection. The Results section presents the results obtained 
by applying the described methodology and the discussion of 
the results from two iteration steps. The conclusion section 
summarises the main advances of the present work and 
discusses future aspects. 
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Figure 1. A schema of the utilized methodology for the constraint-driven 

optimization of plant defence model parameters. 

 
 

Figure 2. Types of biological molecules and reactions modelled with the 
Cell Illustrator. 

II. MATERIALS AND METHODS 

An overview diagram of the iterative model construction 
process is shown in Fig. 1. First, the SA model was manually 
constructed using the Hybrid Functional Petri Net formalism 
(HFPN) [14] and curated by biologists. Since the manual 
estimation of the parameters was unattainable, an automatic 
method was developed based on a differential evolution 
algorithm [15]. Here we illustrate the whole process loop of 
converging to the dynamic parameters of the SA pathway, 
that best satisfy the expert evaluation. This process includes 
eliciting knowledge from the biologists, formalizing it in the 
form of constraints, optimization of parameters that violate 
the minimal number of these constraints and the revision of 
the model structure and constraints. Eventually, the system 
yields both simulation results and optimized model 
parameters, which provide an insight into the biological 
system. The details of every step in this construction process 
are explained in the following subsections. 

A. Problem identification 

The final goal of developing the plant defense model is to 
verify whether the plant will have resistant reaction to 
survive the virus attack if some genes in the model are 
silenced. This would practically save time for the biology 
scientists in the design and performance of real-life 
experiments with plants that on average last two years. To be 
able to confirm or reject the hypothesis, the plant defense 
model has to be first developed together with the genes that 
are interesting candidates for silencing. 

The difficulty of the plant defense modeling task is 
reflected in its complexity and dynamics. The plant defense 
is complex due to the three highly-interconnected major 
pathways: salicylic acid (SA), jasmonic acid (JA) and 
ethylene (ET), whereas the exact relationships between the 
biological molecules are still unclear. The dynamics is also 
difficult to address due to the lack of quantitative kinetic data 

that would reveal the unknown kinetic parameters, such as 
speeds of reactions and inhibition thresholds. 

B. Choice of modeling formalism 

A Petri net (PN) is a graphical and mathematical 
formalism [16], chosen as the formalism for the plant 
defense model representation. There are different types of 
PNs. Standard PNs are discrete and qualitative. But with 
their various extensions, PNs allow the definition of both 
qualitative and quantitative models. One of the PN 
extensions is the HFPN [14].  

HFPN represents the combination of hybrid PN [17] and 
functional PN [18]. HFPN supports the modeling of 
continuous reactions controlled by switch mechanisms and 
the dependence of the reaction speeds on input 
concentrations, which is often needed to model real systems. 
Having in mind the overall goal of plant defense simulation 
model, we have selected the HFPN formalism using the Cell 
Illustrator software, which initially had the name Genomic 
Object Net [19]. This software allows to model ordinary 
differential equations (ODE) [20] hidden to the end user 
through a user-friendly HFPN graphical interface. The tool 
allows for an easy building of the network topology based on 
the experts’ knowledge without available experimental data. 
Cell Illustrator has a graphical editor that has drawing 
capabilities and allows biologists to model different 
biological networks and simulate the dynamic interactions 
between the biological components. On the other hand, Cell 
Illustrator does not have capability for automatic 
optimization of dynamic parameters.  For this reason, we 
have used additional combinatorial optimization parameter 
search (see subsection F.). 
 

C. Manual construction of the SA model 

To construct the plant defense response model topology, we 
have defined the types of biological components (molecules) 
and relations (reactions), shown in Fig. 2. 

Biological components are grouped into four classes: 
small compounds or metabolites (Chorismate, etc.), proteins 
(Chorismate synthase, etc.), genes (EDS5 gene, etc.) and 
protein complexes (NPR1 oligomer, etc.). Note also that 
components with similar functions are grouped into a single 
node that represents an entire family of these components. 



 
Figure 3. The simplified part of the model of a biosynthesis and signaling 

pathway of SA manually constructed in the Cell Illustrator. 

Six types of reactions were identified in the last version 
of the SA model: binding, degradation, inhibition, activation, 
transport and gene expression. We introduce binding - 
because in some cases it is an essential means of regulation - 
defined as a close interaction between at least two reactants 
resulting in a functional active complex. Degradation is a 
diminishing of one component by processing it to smaller 
non-functional pieces; we introduce it to our model as a 
process that decreases the component’s concentration. 
Inhibition is defined as a process when one component 
abolishes the performance of another component and 
prevents it from functioning. As activation we consider all 
the chemical reactions in which reactants A and B 
synergistically form a product C and the concentration of the 
product depends on the concentration of both substrates. 
Transport represents the moving of a biological component 
from one part of the cell to another. It is introduced in few 
cases when the biology experts considered it important for 
the plant defense response mechanism. Finally, gene 
expression is defined as the constant or regulated activation 
of a gene which produces a functional protein. 

D. Model analysis through simulation 

Analysis of the dynamic model behavior was performed 
through iterative simulations of the manually constructed 
model. Based on the experts’ evaluation the iterations were 
repeated until the simulation curves match their expectations. 
The simulation was performed initially in the Cell Illustrator 
software. The later simulations when the parameters were 
automatically estimated were executed in the simulator based 
on the C++ code exported from Cell Illustrator. The 
simulator outputs the time series curves of the dynamic 
behavior of the molecules of interest (see Fig. 4 and Fig. 5). 

E. Constraints formulation 

Formalizing the expert’s knowledge into mathematical 
formulas is an iterative process. After evaluation together 
with biology experts, it turned out that there is a lot of tacit 
domain knowledge that can be expressed explicitly. This 
knowledge is accumulated in biology literature and had to be 
recognized as valuable in the parameter optimization search. 
We have explicitly focused on the knowledge related to the 
biological molecules and the relationships between them. 
The following five types of relationships, formed as 
constraints between the entities, were defined: 

 Inequality relationship between molecules 

 Growth rate of the molecules (for example, quantity 
of molecule 1 grows faster than that of molecule 2) 

 Curve shape – e.g., it starts from zero, reaches a 
maximum and then drops back to zero level 

 Minimal amplitude and minimal growth of the curve 

 Temporal sequence in curve maxima 
o Same time (molecule 1 has the peak the 

same time as molecule 2)  
o Maximum before (molecule 1 has the peak 

before molecule 2) 

F. Combinatorial optimization parameter search  

Evolutionary algorithms are stochastic optimization 
methods utilizing the mechanisms of biological evolution in 
computer problem solving. One of the popular algorithms 
within this class is the differential evolution algorithm. The 
differential evolution (DE) algorithm performs a population-
based search that optimizes the problem by iteratively trying 
to improve a candidate solution with regard to a given 
measure of quality. The parallel version of DE algorithm 
developed by Filipič and Depolli [21] was used in our work. 

The optimal parameter setting of the plant defense model 
is defined as a combinatorial optimization problem. Criteria 
function for the optimization is the normalized sum of the 
normalized violations of constraints that are acquired from 
the biologists. If the criteria function has value 0 it means 
that all constraints are satisfied, while value 1 results from all 
non-satisfied constraints. All values in the range between 0 
and 1 denote that a certain percentage of the time-series 
curves that are involved in the definition of the specific 
constraint do not satisfy it.  

G. Human refinement of model and constraints 

If the model simulation with the automatically 
determined parameters does not match the expectations of 
the biologists, the model structure and the constraints are 
refined.  

H. Results interpretation 

The simulation results are interpreted by the biology 
experts. The results allow for qualitative conclusions 
regarding the dynamic behavior of the model. This means 
that, in practice, it is possible to compare different curves in 
order to conclude which are the major components 
influencing the plant defense response. 



 
 

Figure 5. The dynamic behavior of the SA, EDS1, PR1 and NPR1  

variables based on the optimal set estimated with respect to the criteria 
function calculated from the eight constraints during the step 2. 

 

 
 

Figure 4. The dynamic behavior of the SA, EDS1, PR1 and NPR1 variables 

based on the optimal set estimated with respect to the criteria function 

calculated from the eight constraints during the step 1. 

III. RESULTS AND DISCUSSION 

Here we illustrate the process of converging towards the 
biology experts expectations by presenting the results of two 
steps of the method described in the previous section. 

A. Step 1 - SA model v1.0 

The manually constructed SA sub-model contains 52 
biological molecules and 38 reactions which includes 
inhibitions. This was an initial model built manually in the 
Cell Illustrator. The simplified version of an SA model is 
presented in Fig. 3. The simulator outputs 4 curves (as time 
series with 1000 points) for each biological molecule, which 
were the most interesting for the biology scientists. For this 
model in total 8 constraints were acquired from the biologists 
at the beginning of the model construction process. After the 
DE algorithm search was performed with a population 
number set to 10,000, the optimal parameters with respect to 
criteria function were estimated. With this set of parameters, 
for each violated constraint there is number showing the 
number of violated time points. The criteria function was 
calculated as a normalized sum of all of these numbers.  

Below are the detailed values for individual constraints 
and the overall value of the criteria function: 

 
 
lowerThan(e.SA_chl, e.SA_cyto) = 0.088 
slowerRate(e.Chorismate, e.Prephenate) = 0.012 
slowerRate(e.Chorismate, e.Phenyl_pyruvate) = 0.052 
slowerRate(e.Chorismate, e.Phenylalanine) = 0.055 
zeroPeakZero(e.SA_cyto) = 0.096 
zeroPeakZero(e.PR1) = 0.037 
equalRate(e.Prephenate, e.Phenyl_pyruvate) = 0.028 
equalRate(e.Phenylalanine, e.Phenyl_pyruvate) = 0.007 
finalCriteria =  0.376/ 8= 0.047 

 
Based on this parameter set, the simulator outputs the 

curves of 4 biological molecules: SA, NPR1, PR1 and EDS1.  
Apart from the SA which is a small compound, the other 
three molecules are proteins. Their dynamic behavior is 
shown in Fig. 4. However, according to the biology experts 
some parts of these curves are not considered correct even 
though the total criteria function showed that on average 
0.047 (4.7%) of each constraint is violated. 

B. Step 2 - SA model v2.0 

After inspection of the curves from Fig. 4, the biology 
experts have revised the model structure. This revision 
resulted in a second model version: SA model v2.0 
containing 61 biological molecules and 56 reactions. Also, 
more constraints were specified leading to a set of 33 
constraints. 

The parameter search was once more performed with the 
same set up as in the step 1. Below are the shortened detailed 
values for individual constraints and the overall value of the 
criteria function: 

equalRate(e.Prephenate,e.Phenyl_pyruvate) = 0.004 
slowerRate(e.EDS1,e.EDS5) = 0.028 
maxSameTime(e.ROS,e.HRT) = 0.931 
maxAfter(e.HRT,e.MPK3)= 0.000 
lowerThan(e.SA_chl,e.SA) = 0.001 
zeroPeakZero(e.Chorismate) = 0.333 
stopFast(e.virus) = 0.000 
… 
finalCriteria = 4.521/ 33 = 0.137 



 
Here the total criteria function showed that on average 0.137 
(13.7%) of each constraint is not satisfied. The dynamic 
curves of the same 4 molecules (SA, EDS1, PR1 and NPR1) 
are shown in Fig. 5. Even though the criteria function shows 
more violated constraints compared to the step 1, the biology 
experts were more satisfied with the presented curves in Fig. 
5. 

One should have in mind that the number of constraints 
increased in the step 2 and, therefore, the criteria function 
values from the step 1 and step 2 are not directly comparable. 
The second important part in the evaluation of the results 
from the parameter optimization is the manual evaluation of 
the biology scientists. If the final 4 curves do not match the 
biologists’ expectations, even if the criteria function was 
equal to 0 in an ideal case, this is not considered as a good 
result and biologists would revise the constraints and model 
structure. The final result is a compromise between the 
criteria function value and the biologists expectations of the 
curve shapes.  

The selected parameter set is large, thus, making the 
search space enormous. This automatically directed us to use 
some of the stochastic optimization methods since the 
deterministic methods are in the case of the large parameter 
sets overly time-consuming. Interesting results are obtained 
using our evaluation method, albeit some limitations exist. 
Our method is based on the knowledge of the domain experts 
which is still subjective, and not on the explicit and objective 
numerical experimental data. Nevertheless, this knowledge is 
still valuable and very useful for guiding the model 
construction. The comparison of the simulation curves with 
the experimental datasets remains an open challenge of our 
approach. The common size of the experimental datasets in 
plant biology is from 2 to 11 time points. The experimental 
curves and the simulation curves do not have the same 
number of time points and it is difficult to compare them. An 
additional problem that arises is the determination of the 
common start and ending in these curves. 

 

IV. CONCLUSION 

This paper represents the loop of converging to the 
dynamic parameters of the SA pathway that best satisfy the 
experts’ evaluation. In the illustrative example of two 
iterations we show how the dynamic behavior of the 
simulated curves improves according to the experts’ 
evaluation. In future work we plan to revise through more 
iterations the constraints and the SA model structure until the 
criteria function obtains the smallest possible value and at 
the same time gives the curves that meet the criteria of 
biologists. This methodology can be extended to any other 
biological pathway or mechanism. 
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