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ABSTRACT 

AQ15 is a multi-purpose inductive learning system that 
uses logic-based, user-oriented knowledge representation, is 
able to incrementally learn disjunctive concepts from noisy or 
overlapping examples, and can perform constructive induction 
(i.e., can generate new attributes in the process of learning). 
In an experimental application to three medical domains, the 
program learned decision rules that performed at the level of 
accuracy of human experts. A surprising and potentially 
significant result is the demonstration that by applying the 
proposed method of cover truncation and analogical matching, 
called TRUNC, one may drastically decrease the complexity of 
the knowledge base without affecting its performance accuracy. 

I INTRODUCTION 

It is widely acknowledged that the construction of a 
knowledge base represents the major bottleneck in the 
development of any AI system. An important method for 
overcoming this problem is to employ inductive learning from 
examples of expert decisions. In this knowledge acquisition 
paradigm, knowledge engineers do not have to force experts to 
state their “know how” in a predefined representational for- 
malism. Experts are asked only to provide correct interpreta- 
tion of existing domain data or to supply examples of their 
performance. It is known that experts are better at providing 
good examples and counterexamples of decisions than at for- 
malizing their knowledge in the form of decision rules. Early 
experiments exploring this paradigm have also shown that 
decision rules formed by inductive learning may outperform 
rules provided by human experts [Michalski & Chilausky 80; 
Quinlan 831. 

An important part of the development of an inductive 
learning systems is its evaluation on practical problems. 
There are several criteria for evaluating inductive learning 
methods. We argue that the most important one is the 
classification accuracy of the induced rules on new objects. In 
the paper we present an experimental evaluation of the AQ15 
program for learning from examples in three medical domains: 
lymphography, prognosis of breast cancer recurrence, and 
location of primary tumor. These three domains are charac- 
terized by consecutively larger amounts of overlapping and 
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sparse learning events. Examples of a few hundred patients 
with known diagnoses were available, along with the assessed 
classification accuracy of human experts. We randomly 
selected 70% of examples for rule learning and used the rest 
for rule testing. For each domain, the experiment was 
repeated four times. The induced rules reached the 
classification accuracy of human experts. Performance of 
experts was measured in two out of three domains, (breast 
cancer and primary tumor) testing four and five experts, 
respectively, The experiments also revealed the interesting 
phenomenon that by truncating covers and applying analogical 
rule matching one may significantly reduce the size of the 
knowledge base without decreasing its performance accuracy. 
A more detailed presentation of the results and of the program 
AQ15 is in [Michalski, Mozetic & Hong 86; Hong, Mozetic & 
Michalski 861. 

II AN OVERVIEW OF AQ15 

The program AQ15 is a descendant of the GEM program 
and the AQl-AQll series of inductive learning programs, e.g., 
[Michalski & Larson 751. Its ancestors were experimented 
with in the areas of plant disease diagnosis [Michalski & Chi- 
lausky 80, chess end-games, diagnosis of cardiac arrhythmias 
(Mozetic 861, and others. 

All these systems are based on the AQ algorithm, which 
generates decision rules from a set of examples, as originally 
described in [Michalski 69; Michalski & McCormick 711. 
When building a decision rule, AQ performs an heuristic 
search through a space of logical expressions to determine 
those that account for all positive examples and no negative 
examples. Because there are usually many such complete and 
consistent expressions [Michalski 831, the goal of AQ is to find 
the most preferred one, according to a flexible extra-logical 
criterion. This criterion is defined by the user to reflect the 
needs of the application domain. 

Rules are represented as expressions in variable-valued 
logic system 1 (VL 
tional calculus wit it 

), which is a multiple-valued logic proposi- 
typed variables [Michalski 8z Larson 751. 

In VL1, a selector relates a variable to a value or a disjunction 
of values. A conjunction of selectors forms a complex. A cover 
is a disjunction of complexes describing all positive examples 
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and none of the negative examples of the concept. A cover 
defines the condition part of a corresponding decision rule. 

AQl5 is able to produce rules of different degrees of gen- 
erality (rules may be general, minimal or specific). The pro- 
gram implements incremental learning with perfect memory. 
The user may supply his decision hypotheses as initial rules. 
In this type of learning the system remembers all learning 
examples that were seen so far, as well as the rules it formed 
[Reinke & Michalski 861. A f orm of constructive induction is 
implemented in AQ15 as well. The program’s background 
knowledge, expressed in the form of rules, is used to generate 
new attributes not present in input data. The background 

error, and requires a somewhat more sophisticated evaluation. 
We can proceed further and remove the next “light” complex 
from the cover, and observe the performance. Each such step 
produces a different trade-off between the complexity of the 
description on one side, and the risk factor and the evaluation 
complexity on the other (Figure 1). At some step the best 
overall result may be achieved for a given application domain. 
This method of knowledge reduction by truncating ordered 
covers and applying analogical matching is called TRUNC. 

CPXl 
1 CPX2 
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I I I 
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knowledge rules are of two types: L-rules that define values of 
new variables by logical assertions, and A-rules that introduce 
new variables as arithmetic functions of original variables. 

III TRUNCATION OF COVERS AND 
ANALOGICAL MATCHING 

The underlaying idea behind the TRUNC method is that 
the meaning of a concept can be distributed between its expli- 
tit representation and the method of its interpretation 
(Michalski 86a, Michalski 86b]. This idea can be simply real- 
ized as described below. 

Figure 1. An example of a t-ordered cover. The cuts at a, b 
and c mark truncated covers with 1, 2 or 3 complexes, respec- 
tively. In each pair (x, y), x represents the t-weight, and y 
represents the u-weight. 

In AQ15 a concept is represented in the form of a simple 
conjunctive statement (called a complex), or as a disjunction of 
such statements. Each statement is associated with a pair of 
weights: t and u, representing the total number of instances 
(events) explained by the expression, and the number of events 
explained uniquely by that expression, respectively. The t- 
weight may be interpreted as a measure of the representative- 
ness of a complex as a concept description. The u-weight may 
be interpreted as a measure of importance of the complex. 
The complex with the highest t-weight may be interpreted as 
describing the most typical examples of the concept. It may 
also be viewed as a prototypical or the ideal definition of the 
concept. The complexes with lowest u-weights can be viewed 
as describing rare, exceptional cases. If the learning events 
from which rules are derived are noisy, such “light” complexes 
may be indicative of errors in the data. 

Two methods of recognizing the concept membership of 
an instance are distinguished: the strict match and the analogi- 
cal match. In the strict match, one tests whether an instance 
satisfies condition part of a rule. In the analogical match, one 
determines the degree of similarity or conceptual closeness 
between the instance and the condition part. Using the strict 
match, one can recognize a concept without checking other 
candidate concepts. In the analogical match, one needs to 
determine the most closely related concept. The analogical 
matching can be accomplished in a variety of ways, ranging 
from approximate matching of features to conceptual cohesive- 
ness (Michalski & Stepp 831. 

The above trade-off is related to the issues studied in 
Variable Precision Logic [Michalski & Winston 861. An 
interesting problem is to test how the cover truncation method 
affects the accuracy of recognition and the complexity of the 
decision rules in different practical settings. Section IV 
presents results of some such experiments, which in some cases 
came out very surprising. We now turn to the problem of ana- 
logical matching, and the resolution of conflict when several 
concept descriptions are matched by an event. 

The above weight-ordering of complexes suggests an 
interesting possibility. Suppose we have a t-weight ordered 
disjunction of complexes, and we remove from it the lightest 
complex. So truncated description will not strictly match 
events that uniquely satisfy the truncated complex. However, 
by applying the analogical match, these events may still come 
out to be the most similar to the correct concept, and thus be 
correctly recognized. A truncated description is of course 
simpler, but carries a potentially higher risk of recognition 

When strictly matching a new event against a set of (dis- 
junctive) rules, three outcomes are possible: there may be only 
one match, more than one, or no match (categories called SIN- 
GLE, MULTIPLE and NO-MATCH, respectively; Figure 2). 
Each category requires a different evaluation procedure, and a 
different method of determining the accuracy of concept recog- 
nition. For exact match (category SINGLE), the evaluation is 
easy: the decision is counted as correct if it is equal to the 
known classification of the testing object and as wrong other- 
wise. If there are several exact matches (the MULTIPLE case) 
or none (the NO-MATCH case) the system activates the fEezi- 
b/e evaluation scheme that determines the best decision (or the 
most probable one). Comparing this decision with the decision 
provided by experts, one evaluates it as correct or incorrect. 
Here we propose two simple heuristic classification criteria, 
one for the MULTIPLE case, and the other for the 
NO-MATCH case. 

~Y2$i$Lii~ 

SINGLE MULTIPLE 

Figure 2. The three possible cases when matching a new event 
against a set of decision rules. 
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Estimate of Probability for the MULTIPLE case (EP). 
Let Cl, . . . , C denote decision classes and e an event to be 
classified. FoFeach decision class C. we have a rule that con- 
sists of a disjunction of complexes Cpz , which, in turn are i 1 
conjunctions of selectors (Sel). We define the estimate of pro- 
bability, EP, as follows: 

1) ,!?p of a complex Cpx. is the ratio of the weight of the com- 
plex (the number of lea&ring examples covered by it) by the 
total number of learning examples (#examples), if the complex 
is satisfied by the event e, and equals 0 otherwise: 

Weight ( Cpxj) / #examples if complex Cpx, is 

EP(Cpxj,e) = satisfied by e, 

0 otherwise. 

2) EP of a class Ci is the probabilistic sum of EPs of its com- 
plexes. If the rule for C. consists of a disjunction of two com- 
plexes CpxI V Cpx2, we h ave: 

EP(Ci,e) = EP(Cpzl,e) + EP(Cpz,,e) - EP(Cpzl,e) EP(Cpx2,e) 

The most probable> class is the one with the largest EP, 
i.e., the one whose s:ll,isficd complexes cover the largest 
number of learning ex:~rrrl)lc~s. Obviously, if the class is not 
satisfied by the given event, its EP equals 0. 

Measure of Fit for the NO-MATCH case (MF). In this 
case the event belongs to a part of the decision space that is 
not covered by any decision rule and this calls for analogical 
matching. One way to perform such matching is to measure 
the fit between attribute values in the event and the class 
description, taking into consideration the prior probability of 
the class. We used in the experiments a simple measure, called 
measure offit, MF, defined as follows: 

1) MF of a selector Se1 k is 1, if the selector is satisfied. Other- 
wise, this measure is proportional to the amount of the deci- 
sion space covered by the selector: 

I 1 if selector Sel, is satisfied by e, 

MF(SeZk,e) = 
I #Values otherwise. 

I DomainSize 

where #Values is the number of disjunctively linked attribute 
values in the selector, and DomainSize is the total number of 
the attribute’s possible values. 

2) MF of a complex Cpxi is definr,d >js the product of MFs for 
a conjunction of its constituent selrc,tors, weighted by the pro- 
portion of learning examples covered by the complex: 

MF(Cpxj,e) = flMF(Selk,e) X (Weight(Cpxj) / #examples) 

3) M. of a class Ci is obtained as a probabilistic sum for a dis- 
junction of complexes. 

MF(Ci,e) = MF(Cpxl,e) + MF(Cpx,,e) - MF(Cpxl,e) MF(Cpx2,e) 

We can interpret the measure of best fit of a class as a 
combination of “closeness” of the event to a class and an esti- 
mate of the prior probability of the class. This measure can 
be further extended by introducing a measure of degree to 
which a selector is satisfied [Michalski & Chilausky 801. 

IV EXPERIMENTS AND ANALYSIS OF RESULTS 

The experiments were performed on data from three 
medical domains: lymphography, prognosis of breast cancer 
recurrence and location of primary tumor (Table 1). All data 
were obtained from the Institute of Oncology of the University 
Medical Center in Ljubljana, Yugoslavia [Kononenko, 
BratI & I?oskar 861. 

Lyrnyhq:r:q~hy. This domain is characterized by 4 decision 
classes (diagnoses) and 18 attributes. Data of 148 patients 
were available. Diagnoses in this domain were not verified and 
actual testing of physicians was not done. A specialist’s esti- 
mation is that internists diagnose correctly in about 60% and 
specialists in about 85% of cases. 

Prognosis of Breast Cancer Recurrence. The domain is 
characterized by 2 decision classes and 9 attributes. The set of 
attributes is incomplete as it is not sufficient to completely 
discriminate between cases with different outcome. Data for 
286 patients with known diagnostic status 5 years after the 
operation were available. Five specialists that were tested gave 
a correct prognosis in 64% of cases. 

Location of Primary tumor. Physicians distinguish 
between 22 possible locations of primary tumor. Patients’ 
diagnostic data involve 17 attributes (this set is also incom- 
plete). Data of 339 patients with known locations of primary 
tumor were available for the experiment. Four internists that 
were tested determined a correct location of primary tumor in 
32% of cases and four oncologists (specialists) in 42% of test 
cases. 

Domain Examples Classes Attrs Vals Attr 
Lymphography 148 4 18 3.3 
Breast cancer 286 2 9 5.8 
Primary tumor 339 22 17 2.2 

Table 1. The table presents the number of examples, of 
classes, of attributes, and the average number of values per 
attribute for each of the three medical domains. 

In all medical domains 70% of examples were selected for 
learning and the remaining 30% for testing. Each testing 
experiment was repeated 4 times with randomly chosen learn- 
ing examples. Final results are the average of 4 experiments 
(Table 2). 

In addition to results obtained from using complete 
(untruncated) rules, results of two other experiments are 
presented. In the first experiment we eliminated from rules all 
complexes that cover uniquely only one learning example 
(unique >l), and in the second we eliminated all complexes 
except the most representative one covering the largest 
number of learning examples (best cpx). Complexity of rules is 
measured by the number of selectors and complexes. 

Table 2 shows that some results came out very surpris- 
ing. When the cover of each class was truncated to only one 
(the heaviest) complex, the complexity of the rule set for lym- 
phography went down from the total of 12 complexes and 37 
selectors to only 4 complexes (one per class) and 10 selectors 
(see bold numbers). At the same time the performance of rules 

LEARNING / 1043 



Cover Complexity Accuracy Human Random 
Domain truncation Se1 CPX Experts Choice 

no 37 12 81% 

Lymphography unique >l 34 10 80% 85% 25% 
best cpx 10 4 82% (estimate) 

no 160 41 60% 
Breast cancer unique > 1 128 32 66% 64% 50% 

best cpx 7 2 68% 

no 551 104 39% 
Primary tumor unique >l 257 42 41% 42% 5% 

best cpx 112 20 29% 

Table 2. Average complexity and accuracy of AQ15’s rules learned from 70% of examples, over 
4 experiments, as compared to the performance of human experts and a random choice 
classification algorithm. 

went slightly up (f rom 81% to 82%)! A similar phenomenon 
occurred in the breast cancer domain, where the number of 
selectors and complexes went down from 160 and 41 to 7 and 
2, respectively; while the performance went slightly up from 
66% to 68%. This means that by using the TRUNC method 
one may significantly reduce the knowledge base without 
affecting its performance accuracy. Results for human experts 
are the average of testing of five and four domain specialists in 
the domains of breast cancer recurrence and primary tumor, 
respectively [Kononenko, Bratko & Roskar 86). In the 
domain of lymphography, physicians’ accuracy is given only as 
their estimate and was not, actually measured. 

The domain of lymphography seems to have some strong 
patterns and the set of attributes is known to be complete. 
There are four possible diagnoses but only two of them are 
prevailing. The d omain of breast cancer has only two decision 
classes but does not have many strong patterns. Domain of 
location of primary tumor has many decision classes and 
mostly binary attributes. There are only a few examples per 
class, and the domain seems to be without any strong pat- 
terns. Both domains are underspecified in the sense that the 
set of available attributes is incomplete (not sufficient to 
discriminate between different classes). The statistics in Table 
3 include average number of complexes per rule, average 
number of attributes per complex, average number of values 
per attribute and finally, average number of learning examples 
covered by one complex. We can see that in the domain of 
primary tumor decision rules consist of complexes that in 
average cover slightly more than 2 examples. In the domain of 
lymphography complexes in average cover 8 examples, which 
indicates a presence of relatively strong patterns. 

It is surprising that a cover truncation mechanism that 
strongly simplifies the rule base may have no effect on 
classification accuracy. Removing “light” complexes from a 
cover is equivalent to removing disjunctively linked conditions 

from a concept description. This process thus overspecializes a 
knowledge representation, producing an incomplete concept 
description (i.e., a one that does not cover some positive exam- 
ples). As the results show, this may lead to a substantial 
simplification of the concept description, without the decline in 
performance of the rules base. 

This knowledge reduction technique by specialization 
may be contrasted with knowledge reduction by generalization 
used in the ASSISTANT learning program, a descendant of 
ID3 [Quinlan 83). This program represents knowledge in the 
form of decision trees, and has been applied to the same medi- 
cal problems as here (Kononenko, Bratko & Roskar 861. The 
program applies a tree pruning technique based on the princi- 
ple of maximal classification accuracy. The technique removes 
certain nodes from a tree, and is equivalent to removing con- 

junctively linked conditions from a concept description. Thus, 
such ? knowledge reduction technique overgeneralizes the 
knowledge representation, producing an inconsistent concept 
description (i.e., a one that covers some negative examples). It 
is interesting to point out that this technique may also lead to 
an improvement of accuracy in decision making when learning 
from noisy and overlapping data. Table 4 presents the com- 
plexity and diagnostic accuracy of ASSISTANT’s trees built 
with and without the tree pruning mechanism [Kononenko, 
Bratko & Roskar 861. 

Tree pruning corresponds to the removal of selectors 
from complexes. This seems to suggest that when learning 
from noisy or overlapping data the knowledge reduction pro- 
cess may not only involve removal of complexes from a cover 
(a specialization process) but also removal of selectors from 
complexes (a generalization process). This means that a con- 
cept description would be both inconsistent and incomplete. It 
is an interesting problem for further research to determine 
conditions under which such a description produces better 
results than a consistent and complete one. 

Domain Cpx/Rule Attrs/Cpx Values/Attr Examples/Cpx 

Lymphography 3 3.1 1.8 8 
Breast cancer 20 3.9 1.7 5 
Primarv tumor 5.2 5.3 1.0 2.3 

Table 3. Average complexity of AQ15’s decision rules in the three medical domains, when no 
cover truncation mechanism was applied. 
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I 1 Tree Complexity Accuracy 1 
Domain pruning Nodes Leaves 

no 38 22 76% 

Table 4. Average complexity and accuracy of decision trees 
built by ASSISTANT on 70% of examples, over 4 experiments. 
In all three domains the tree pruning mechanism reduced the 
complexity and increased the accuracy. 

V CONCLUSION 

A major contribution of the paper is to show that a rela- 
tively simple, attribute-based inductive learning method is 
able to produce decision rules of sufficiently high quality to be 
applicable to practical problems with noisy, overlapping and 
incompletely specified learning events. The AQ15 program has 
shown itself to be a powerful and versatile tool for experiment- 
ing with inductive knowledge acquisition in such problems. It 
produces decision rules which are easy to interpret and 
comprehend. The knowledge representation in the program is 
limited, however, to only attribute-based descriptions. For 
problems that require structural descriptions one may use a 
related program INDUCE2 [Hoff, Michalski & Stepp 831 or its 
incremental learning version INDUCE4 [Mehler, Bentrup & 
Riedsel 861. A weakness of the experimental part of the paper 
is that the authors had no influence on the way the data were 
prepared for the experiments and the available data allowed us 
to test only a few of the features of AQ15. 

Another major result is a demonstration that the 
knowledge reduction by truncating the covers may lead in 
some cases to a substantial reduction of the rule base without 
decreasing its performance accuracy. Further research will be 
required to find for any given domain a rule reduction criterion 
that leads to the best trade-off between accuracy and complex- 
ity of a rule base. 
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