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Abstract. The paper present a preliminary study of creative knowledge
discovery through bisociative data analysis. Bisociative reasoning is at
the heart of creative, accidental discovery (serendipity), and is focused on
finding unexpected links by crossing different contexts. Contextualization
and linking between highly diverse and distributed data and knowledge
sources is therefore crucial for implementation of bisociative reasoning.
In the paper we explore these ideas on the problem of analysis of microar-
ray data. We show how enriched gene sets are found by using ontology
information as background knowledge in semantic subgroup discovery.
These genes are then contextualized by the computation of probabilistic
links to diverse bioinformatics resources. Results of two case studies are
used to illustrate the approach.

1 Introduction

Biologists collect large quantities of data from wet lab experiments and high-
throughput platforms. Public biological databases, like Gene Ontology, Kyoto
Encyclopedia of Genes and Genomes and ENTREZ, are sources of biological
knowledge. Since the growing amounts of available knowledge and data exceed
human analytical capabilities, technologies that help analyzing and extracting
useful information from such large amounts of data need to be developed and
used.

The concept of association is at the heart of many of today’s ICT technolo-
gies such as information retrieval and data mining. However, scientific discovery
requires creative thinking to connect seemingly unrelated information, for exam-
ple, by using metaphors or analogical reasoning. These modes of thinking allow
the mixing of conceptual categories and contexts, which are normally separated.
The functional basis for these modes is a mechanism called bisociation [8]:

“The pattern underlying ... is the perceiving of a situation or idea, L,
in two self-consistent but habitually incompatible frames of reference,
M, and Ms. The event L, in which the two intersect, is made to vibrate



simultaneously on two different wavelengths, as it were. While this un-
usual situation lasts, L is not merely linked to one associative context
but bisociated with two.”

From the computational point of view, we say that two concepts are bisoci-
ated [14] if:

— there is no direct, obvious evidence linking them,
— one has to cross contexts to find the link, and
— this new link provides some novel insight into the problem domain.

We have to emphasize that context crossing is subjective, since the user has to
move from his ‘normal’ context (frame of reference) to an habitually incompati-
ble context to find the bisociative link [2]. Thus, contextualization is one of the
fundamental mechanisms in bisociative reasoning. In this paper we present an
approach to discovery and contextualization of genes which should help in anal-
ysis of microarray data. The approach is based on information fusion, semantic
subgroup discovery (by using ontologies as background knowledge in microar-
ray data analysis), and the linking of various publicly available bioinformatics
databases. We first explain the basic notions: information fusion, subgroup dis-
covery and semantic subgroup discovery.

1.1 Information fusion

Information fusion can be defined as the study of efficient methods for auto-
matically or semi-automatically transforming information from different sources
and different points in time into a representation that provides effective support
for human and automated decision making [1]. Recent investigations in using
information fusion to support scientific decision making within bioinformatics
include [3,9]. Smirnov et al. [12] exploit the idea of formulating an ontology-
based model of the problem to be solved by the user and interpreting it as a
constraint satisfaction problem taking into account information from a dynamic
environment.

An approach to the integration of biological databases GO, KEGG and EN-
TREZ is implemented in the SEGS information fusion engine (Searching for
Enriched Gene Sets, [16]). Another, much larger, integrated annotated bioinfor-
matics information source is Biomine [11].

1.2 Subgroup discovery

Subgroup discovery techniques are used to generate explicit knowledge in the
form of rules that allow the user to recognize important relationships in a set
of class labeled training instances, describing the target property of interest.
Consider two applications. In the first one, the induced subgroup describing
rules suggest the general practitioner how to select individuals for population
screening, concerning high risk for coronary heart disease (CHD) [4]. The rule
below describes a group of overweight female patients older than 63 years:



High_CHD_Risk « sex = female & age > 63 years &
body_mass_index > 25 kgm =2

In the second application [5], subgroup describing rules suggest genes that are
characteristic for a given cancer type (i.e., leukemia cancer) in an application
of distinguishing among 14 different cancer types: leukemia, CNS, lung cancer,
etc.:

Leukemia «— KIAA0128 is diff_expressed &
prostaglandin_d2_synthase is not diff_expressed

1.3 Semantic subgroup discovery

Semantic subgroup discovery refers to subgroup discovery, where semantically
annotated knowledge sources (ontologies) are used as background knowledge in
the data mining process. Using the technology of relational subgroup discovery
[17], we have developed an approach to information fusion and semantic data
mining, enabling background knowledge in the form of ontologies to be used in
relational machine learning. The relational subgroup discovery approach, which
was successfully adapted and applied to mining of bioinformatics data [15], and
further refined in the SEGS algorithm (Searching for Enriched Gene Sets, [16]),
is used in the information fusion and semantic subgroup discovery technology de-
scribed in this paper. Example rules below are induced by a semantic knowledge
discovery engine for two cancer types (ALL and AML) and ranked according to
the enrichment score. The rules are a conjunction of ontology terms from the
GO, KEGG and ENTREZ ontologies:

ALL « Func(’zinc ion binding’ & Comp(’chromosomal part’)
AML « Func('metal ion binding’) & Comp(’cell surface’) &
Proc(’response to pest,pathogen,parasite’)

1.4 Overview of the paper

This paper describes first steps in creative data and knowledge exploration
through semantic subgroup discovery and contextualization through link dis-
covery between diverse bioinformatics databases. The described approach to se-
mantic subgroup discovery employs semantically annotated knowledge sources
as background knowledge for subgroup discovery. In this paper we investigate a
special subgroup discovery task: the gene set enrichment analysis task. A gene
set is enriched if the genes that are members of the set are statistically signifi-
cantly differentially expressed compared to the rest of the genes.

The SEGS method [16] uses as background knowledge data from three pub-
licly available, semantically annotated biological data repositories GO, KEGG
and ENTREZ. Based on the background knowledge, it automatically formu-
lates biological hypotheses: rules which define groups of differentially expressed
genes. Finally, it estimates the relevance (or significance) of the automatically
formulated hypotheses on experimental microarray data. The Biomine service
[11] provides links to a large number of biomedical resources, complementing



our semantic subgroup discovery technology, due to the explanatory potential of
additional link discovery and Biomine graph visualization.

The paper is structured as follows. Section 2 gives an overview of five steps
in exploratory analysis of gene expression data. Section 3 describes an approach
to the analysis of microarray data, using semantic subgroup discovery in the
context of gene set enrichment. A novel methodology, a first attempt at bisocia-
tive discovery through contextualization, composed of using SEGS and Biomine
(SEGS+Biomine, for short) is in Section 4. Two preliminary case studies are
presented in Section 5.

2 Exploratory gene analytics

This section describes the methodological ingredients of the semantic subgroup
discovery technology, targeted at the analysis of differentially expressed gene sets:
gene ranking, the SEGS method for enriched gene set construction, linking of

the discovered gene set to related biomedical databases, and finally visualization
in Biomine. The shematic overview is in Figure 1.
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Fig. 1. Microarray gene analytics proceeds by first finding candidate enriched gene
sets, expressed as intersections of GO, KEGG and gene-gene interaction sets. Selected
enriched genes are then put in context of different bioinformatic resources, as computed
by Biomine link discovery engine.

The proposed method consists of the following five steps:

1. Ranking of genes. In the first step, class-labeled microarray data is pro-
cessed and analysed, resulting in a list of genes, ranked according to differ-
ential expression.

2. Ontology information fusion. A unified database, consisting of GO (pro-
cesses, functions and components), KEGG (biological pathways) and EN-
TREZ (gene-gene interactions) terms and relationships is constructed. To
this end, a set of scripts was written, enabling easy updating of the inte-
grated database.



3. Discovering groups of differentially expressed genes. The ranked list
of genes is used as input to the SEGS algorithm [16], an upgrade of the
RSD relational subgroup discovery algorithm [15], specially adapted to mi-
croarray data analysis. The result is a list of most relevant gene groups that
semantically explain differential gene expression in terms of gene functions,
components and processes as annotated in biological ontologies.

4. Finding links between gene group elements. The elements of the dis-
covered gene groups (GO and KEGG terms or individual genes) are entered
as queries to the Biomine crawler. Biomine computes most probable links
between these elements and a number of public biological databases. These
links help the experts to uncover unexpected relations and biological mech-
anisms potentially characteristic for the underlying biological processes.

5. Gene group visualization. Finally, in order to help in explaining the dis-
covered ontological relationships, the discovered gene relations are visualized
using Biomine visualization toolbox.

3 SEGS: Search for Enriched Gene Sets

The goal of gene set enrichment analysis is to find groups of genes—the so-called
gene sets—that are enriched. A gene set is enriched if the genes that are members
of that gene set are statistically significantly differentially expressed compared to
the rest of the genes. Two methods for testing the enrichment of gene sets were
developed: Gene Set Enrichment Analysis (GSEA) [13] and Parametric Analy-
sis of Gene Set Enrichment (PAGE) [7]. Originally, these methods take terms
(gene sets) from the Gene Ontology (GO), the Kyoto Encyclopedia of Genes
and Genomes (KEGG) and ENTREZ interactions, and test whether the genes
that are annotated by a specific term are statistically significantly differentially
expressed in the given dataset.
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Fig. 2. Schematic representation of the SEGS method.

The novelty of our SEGS method, developed by Trajkovski et al. [16] and
used in this study, is that the method does not only test existing gene sets
for differential expression but it also generates new gene sets that represent



novel biological hypotheses. In short, in addition to testing the enrichment of
individual GO and KEGG terms, this method tests the enrichment of newly
defined gene sets constructed by the intersection of GO terms, KEGG terms
and gene sets defined by taking into account also the gene-gene interaction data
from ENTREZ.

The SEGS method has four main components: the background knowledge,
the hypothesis language, the hypothesis generation procedure and the hypothesis
evaluation procedure. The schematic workflow of the SEGS method is shown in
Figure 2.

4 SEGS+Biomine: Contextualization of genes

We made an attempt at exploiting bisociative discoveries within the biomedical
domain by explicit contextualization of enriched gene sets. We applied two meth-
ods that use publicly available background knowledge for supporting the work
of biologists: the SEGS method for searching for enriched gene sets [16] and the
Biomine method for contextualization by finding links between genes and other
biomedical databases [11]. We combined the two methods in a novel way: we used
SEGS for hypothesis generation and evaluation from microarray experimental
data, and then input the SEGS results into Biomine for inter-context link dis-
covery and visualization (see Figure 3). We believe that by forming hypotheses
with SEGS, constructed as conjunctions of terms from different ontologies (dif-
ferent contexts), discovering links between them by Biomine, and visualizing the
SEGS hypotheses and the discovered links by the Biomine graph visualization
engine, the interpretation of the biological mechanisms underlying differential
gene expression is easier.

Biomine
databases
SEGS
rules | —_ [Biomine Graph
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Fig. 3. SEGS+Biomine workflow.

In the Biomine project [11], data from several publicly available databases
were merged into a large graph and a method for link discovery between entities
in queries was developed. In the Biomine framework vertices correspond to enti-
ties and concepts, and edges represent known, annotated relationships between



vertices. A link (a relation between two entities) is manifested as a path or a
subgraph connecting the corresponding vertices.

Vertex Type Source Database  Vertices Degree
Article PubMed 330,970  6.92
Biological process GO 10,744  6.76
Cellular component GO 1,807 16.21
Molecular function GO 7,922 7.28

Conserved domain ENTREZ Domains 15,727 99.82
Structural property ENTREZ Structure 26,425  3.33

Gene Entrez Gene 395,611  6.09
Gene cluster UniGene 362,155  2.36
Homology group  HomoloGene 35,478 14.68
OMIM entry OMIM 15,253 34.35
Protein Entrez Protein 741,856  5.36

Table 1. Databases included in Biomine.

The Biomine graph data model consists of various biological entities and
annotated relations between them. Large, annotated biological data sets can
be readily acquired from several public databases and imported into the graph
model in a straightforward manner. Some of the databases used in Biomine
are summarized in Table 1. Currently, Biomine consists of a total of 1,968,951
vertices and 7,008,607 edges. This particular collection of data sets is not meant
to be complete, but it certainly is sufficiently large and versatile for real link
discovery.

5 Two case studies

In the first case study, SEGS was applied to find enriched gene sets for distin-
gushing between two cancer types. In the second case, SEGS and Biomine were
combined in order to find an underlying mechanism which might explain why
some specific cells are growing faster then the others, in terms of genetic markers.

5.1 Functional genomics

In functional genomics, gene expression monitoring by DNA microarrays (gene
chips) provides an important source of information that can help in understand-
ing many biological processes. The database we analyzed consists of a set of
gene expression measurements (examples), each corresponding to a large num-
ber of measured expression values of a predefined family of genes (attributes).
Each measurement in the database was extracted from a tissue of a patient with



a specific disease; this disease is the class for the given example. The domain,
described in [5,10] and used in our experiments, is a typical scientific discovery
domain characterised by a large number of attributes compared to the number
of available examples. As such, this domain is especially prone to overfitting,
as it has two different cancer classes and a few training examples, where the
examples are described by thousands of attributes presenting gene expression
values. While the standard goal of machine learning is to start from the labeled
examples and construct models/classifiers that can successfully classify new, pre-
viously unseen examples, our main goal is to uncover interesting patterns/rules
that can help to better understand the dependencies between classes (diseases)
and attributes (gene expressions values).

Gene Set ES
Enriched in ALL
1. ALL « GO_Func(’zinc ion binding’) & 0.60

GO_Comp(’chromosomal part’) &
GO_Proc(’interphase of mitotic cell cycle’)
2. ALL « GO_Proc('DNA metabolism’) 0.59
3. ALL « GO_Func(’ATP binding’) & 0.55
GO_Comp(’chromosomal part’) &
GO_Proc("DNA replication’)
Enriched in AML
1. AML «— GO_Func('metal ion binding’) & 0.54
GO_Comp(’cell surface’) &
GO_Proc(’response to pest,pathogen,parasite’)
2. AML «+ GO_Comp(’lysosome’) 0.53
3. AML «— GO_Proc(’inflammatory response’) & 0.51
GO_Comp(’cell surface’)

Table 2. The top most enriched gene sets found in the leukemia dataset with the
p-value < 0.001.

Sample top-ranked rules, induced by a semantic knowledge discovery engine
for two cancer types (ALL and AML), ranked according to enrichment score
(ES), are listed in Table 2. Note that in Table 2 a term enrichment is used,
meaning the enrichment of differential expression of a set of genes, annotated by
the given conjunction of GO, KEGG and/or ENTREZ terms.

5.2 Systems biology

In the systems biology domain, our goal is to help the expert to find a biological
interpretation of wet lab experiment results. In the particular experiment, the
task is to analyse microarray data in order to distinguish between fast and slowly
growing cell lines. The aim of this study was to explain the differences between



the cases of fast and slowly growing cell lines through differential expression of
gene sets, responsible for cell growth.

Gene Set

1. SLOW-vs-FAST « GO_Proc(’DNA metabolic process’) &
INTERACT( GO_Comp(’cyclin-dependent
protein kinase holoenzyme complex’))

2. SLOW-vs-FAST < GO_Proc(’DNA replication’) &
GO_Comp('nucleus’) &
INTERACT( KEGG_Path(’Cell cycle’))

3. SLOW-vs-FAST «— . ..

Table 3. Top SEGS rules found in the cell growth experiment. The second rule states
that one possible distinction between the slow and fast growing cells is in genes par-
ticipating in the process of DNA replication which are located in the cell nucleus and
which interact with genes that participate in the cell cycle pathway.

Table 3 gives the top rules resulting from the SEGS search for enriched gene
sets. For each rule, there is a corresponding set of over expressed genes from
the experimental data. Figure 4 shows a part of the Biomine graph which links
a selected subset of enriched gene set to the rest of the nodes in the Biomine
graph.

We believe that SEGS in combination with Biomine may give a wet lab sci-
entist additional hints on what to focus on when comparing the expression data
of cells. Additionally, such an in-silico analysis can considerably lower the costs
of in-vitro experiments with which the researchers in the wet lab are trying to
get a hint of a novel process or phenomena observed. This may be especially true
for situations when just knowing the final outcome one cannot explain the drug
effect, organ function, or disesase satisfactory, since the gross, yet important
characteristics of the cells (organ function) are hidden (do not affect visual mor-
phology) or could not be recognized soon enough. An initial predisposition for
this approach is wide accessibility and low costs of high throughput microarray
analyses which generate appropriate data for in-silico analyses.

6 Conclusions

A prototype version of the gene analytics software, which enchances SEGS and
creates links to Biomine queries and graphs is available as a web application at
http://zulu.ijs.si/web/segs_ga/.

In the future work we plan to enchance the contextualization of genes with
biomedical literature as available in PubMed. To this end, we already have a
preliminary implementation of software, called Texas [6], which createas a prob-
abilistic network (BisoNet, compatible to Biomine) from textual sources. By
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Fig. 4. Biomine subgraph related to three genes from the enriched gene set produced
by SEGS. Note that some information is hidden, due to preliminary nature of these
results.

is found in

focusing on different types of links between terms (e.g., frequent and rare coocu-
rances) we expect to get hints at some unexpected relations between concepts.

Our long term goal is to help biologists at better understanding of inter-
contextual links between genes and their role in explaining (at least qualitatively)
underlying mechanisms which regulate gene expressions.

7 Acknowledgment

The work presented in this paper was supported by the Slovenian Research
Agency grant Knowledge Technologies, and by the grant of the European Com-
mission under the 7th Framework Programme FP7-ICT-2007-C FET-Open, con-
tract no. BISON-211898. We thank Igor Trajkovski for his work on SEGS, and
Hannu Toivonen and Kimmo Kulovesi for their help with using Biomine.

References

1. H. Bostrom et al. On the definition of information fusion as a field of research.
Technical report, University of Skévde, School of Humanities and Informatics,
2007.

2. W. Dubitzky. Personal communication, FP7 BISON project review, Leuven, June
2009.

3. E. Dura, B. Gawronska, B. Olsson and B. Erlendsson, Towards Information Fusion
in Pathway Evaluation: Encoding Relations in Biomedical Texts. Proc. of the 9th
International Conference on Information Fusion, 2006.



10.

11.

12.

13.

14.

15.

16.

17.

D. Gamberger and N. Lavra¢. Expert-Guided Subgroup Discovery: Methodology
and Application. Journal of Artificial Intelligence Research 17:501-527, 2002.

D. Gamberger, N. Lavrag, F. Zelezny, and J. Tolar. Induction of comprehensi-
ble models for gene expression datasets by the subgroup discovery methodology.
Journal of Biomedical Informatics 37:269-284, 2004.

M. Jursi¢é, N. Lavra¢, I. Mozeti¢, V. Podpec¢an, H. Toivonnen. Constructing in-
formation networks from text documents. ECML/PKDD 2009 Workshop ”Explo-
rative Analytics of Information Networks”, Bled, 2009.

S.Y. Kim and D.J. Volsky. PAGE: Parametric Analysis of Gene Set Enrichment.
BMC' Bioinformatics 6:144, 2005.

A. Koestler. The Act of Creation, The Macmillan Co, New York, 1964.

S. Racunas and C. Griffin, Logical data fusion for biological hypothesis evaluation.
Proc. of the 8th International Conference on Information Fusion, 2005.

S. Ramaswamy et al. Multiclass cancer diagnosis using tumor gene expression
signitures. In Proceedings of the National Academy of Science, USA, 98(26): 15149—
15154, 2001.

P. Sevon, L. Eronen, P. Hintsanen, K. Kulovesi, and H. Toivonen. Link discovery
in graphs derived from biological databases. In Proceedings of 3rd International
Workshop on Data Integration in the Life Sciences, (DILS’06), July 2006. Springer.
Smirnov, M. Pashkin, N. Shilov, T. Levashova and A. Krizhanovsky, Intelligent
Support for Distributed Operational Decision Making. In: Proceedings of the 9th
International Conference on Information Fusion, 2006.

P. Subramanian, P. Tamayo, V.K. Mootha, S. Mukherjee, B.L. Ebert, M.A.
Gillette, et al. Gene set enrichment analysis: A knowledge based approach for inter-
preting genome-wide expression profiles. In Proceedings of the National Academy
of Science, USA, 102(43):15545-15550, 2005.

H. Toivonen. Personal communication, FP7 BISON project meeting, Ulster, Sep.
2008.

I. Trajkovski, F. Zelezny, N. Lavra¢, and J. Tolar. Learning relational descriptions
of differentially expressed gene groups. IEEE Transactions of Systems, Man and
Cybernetics C, special issue on Intelligent Computation for Bioinformatics, 38(1):
16-25, 2008a.

I. Trajkovski, N. Lavra¢, and J. Tolar. SEGS: Search for enriched gene sets in
microarray data. Journal of Biomedical Informatics, 41(4):588-601, 2008b.

F. Zelezny and N. Lavra¢. Propositionalization-based relational subgroup discovery
with RSD. Machine Learning, 62(1-2): 3363, 2007.



