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Abstract. As the world has been moving into a new era of globalization over 

the last decades, an information overload has been rapidly gaining its 

significance among the problems of modern society. A difficulty for a person to 

comprehend overwhelming amounts of data is especially present in today's 

scientific community. A scientist could once stayed in touch with quite a broad 

spectrum of areas similar to his or hers field of research, now, because of 

increasing number of publications, he or she is often forced into pursuing only 

very narrow area around his specialization. This paper presents a new 

methodology, which tries to alleviate this crisis by helping the scientists with 

vast amount of data - especially scientific text data - to automate the extraction 

of the parts, which lie in their context of interest. Particularly we are dealing 

with the problem of the so-called closed discovery, where one already knows 

which two topics he wants to address jointly. In these cases, our methodology 

suggests the best terms that connect both areas of research and gives hints, 

which are the most optimistic pathways to follow in order to come to new 

discovery. The paper also shows some promising results by performing 

benchmarks with repeating two interdisciplinary discoveries made on the 

database of medical articles named PubMed. 

Keywords: Bisociation, Knowledge Discovery, B-term Identification, PubMed, 

Text Mining, Network of Terms, Migraine-Magnesium, Autism-Calcineurin. 

1 Introduction 

Our approach to computational knowledge discovery is based on the concept of 

bisociation, as coined by Arthur Koestler [1]. Basically, a discovery in science (a 

situation, an idea), L, occurs when a scientist connects two habitually incompatible 

frames of reference (contexts, domains), M1 and M2. The event L is said to be 

bisociated with the two contexts. 

When one develops computational support for knowledge discovery in science, one 

has to take into account at least two issues: 

─ The scientific landscape has changed considerably since 1964. Today, scientists 

are faced with large amounts of already available knowledge (heterogeneous 

and distributed sources on the Web), and large quantities of data from high-

throughput experimental platforms. One goal of computational support for 

scientific discovery is to enhance human analytical capabilities and help her/him 

in connecting seemingly unrelated ideas. 

─ Computational support requires formal definitions of the above concepts 

(context, a discovery event, and bisociation), selection of appropriate knowledge 

and data representations, development of reasoning algorithms and user 

interfaces. 
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1.1 Knowledge representation 

In the BISON project (European FP7 FET-Open project, 2008-2011, 

http://www.bisonet.eu/), we investigate possible computational realizations of 

bisociative reasoning. We decided to base the knowledge representation on a 

bisociative information network, called BisoNet. A BisoNet and related bisociation 

concepts can be defined as follows: 

─ A BisoNet is a large graph, where nodes are concepts and edges are 

probabilistic relations. The assumption of the project is that it is relatively easy 

to construct a BisoNet automatically, from available resources on the Web. 

Unlike semantic nets and ontologies, it carries little semantics and to a large 

extend encodes just circumstantial evidence that concepts are somehow related 

through edges with some probability.  

─ A context (frame of reference) is represented by a BisoNet subgraph. An 

assignment of different subgraphs to different contexts is subjective to the user 

(domain expert). This is to support a move from her/his „normal‟ context to a 

habitually incompatible context, i.e. a creative jump „out-of-the-frame‟. 

─ A bisociation is an implicit link (to be discovered) between nodes or subgraphs 

from different contexts. 

─ Graph analysis algorithms can be used to compute links or structural similarities 

between distant nodes and subgraphs in a BisoNet. 

Three patterns of bisociation were identified so far in the BISON project: 

─ Bridging concepts connect dense subgraphs from different contexts.  

─ Bridging subgraphs are subgraphs that connect concepts from different 

contexts. 

─ Bisociations based on structural similarity are represented by subgraphs of 

two different contexts with a similar structure. 

1.2 Data Sources 

There are roughly three types of resources, from which a BisoNet can be constructed: 

─ Structured data (databases, thesauri, ontologies, …). An example of a BisoNet 

created from several biomedical databases is Biomine [2]. 

─ Textual data (scientific papers, web pages, news, …). An example resource in 

biomedicine are PubMed abstracts with MeSH annotations. 

─ Experimental data, for example, microarray data from wet lab experiments in 

biology or medicine. 

In general, we expect the need to construct, use and combine BisoNets from different 

types of resources. We envision several processing phases which eventually lead to 

computational support for creative discoveries by humans: 

─ Phase 1: Preprocessing of textual and experimental data with text mining and 

data mining tools, respectively.  

─ Phase 2: Creation and combination of different BisoNets. 

─ Phase 3: User-habitual context specification and interactive exploration. 

1.3 Context of this Work 

In this paper we concentrate on discoveries from textual sources. Finding links 

between seemingly unrelated concepts from texts was already addressed by Swanson 

[2]. The Swanson's approach implements closed discovery, the so-called A-B-C 

process. Here, concepts A and C are given and one searches for intermediate B 

concepts. 

A more challenging problem is open discovery, where only A is given, and target C 

concepts are proposed via intermediate B candidates (also referred as b-terms). An 

approach to open discovery was implemented in the RaJoLink system [3]. 
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This paper presents a very limited approach to computational discovery with an 

emphasis on the re-creation of Swanson‟s and RaJoLink approaches, and an 

evaluation on two published benchmark scenarios. Specifically, we narrow down the 

broad spectrum of possibilities outlined above to the following points: 

─ Two problem domains: migraine-magnesium, and autism-calcineurin (A-C 

concept pairs in the closed discovery scenario). 

─ Goal: find intermediate B concepts. 

─ Textual sources given: PubMed titles (migraine-magnesium) and abstracts 

(autism-calcineurin). 

─ Two types of graphs: 

o Document-based graph, where nodes are documents (titles and 

abstracts, respectively) and edges are weighted by similarities 

between nodes. 

o Term-based graph (a BisoNet) where nodes are terms from 

documents, and edges are their co-occurrences, appropriately 

weighted. 

─ A two-phase approach to discovery of B concepts: 

o Phase 1: Preprocessing and text mining (clustering) of documents to 

identify candidate B concepts, called b-terms here. 

o Phase 2: Creation of a term-based BisoNet from all relevant terms,  

including 'interesting' b-terms. 

─ Two contexts: defined by the problem (A- and C-related documents), and not by 

the user. Contexts are degenerated to single nodes (A and C) to which, however, 

rich phase 1 derived features are attached. 

─ Bisociations: bridging concepts B, linking A and C. 

─ Evaluation: comparison to the golden standard, as extracted from publications 

[3] [2]. 

A note worth mentioning: in our particular approach in this paper, a BisoNet creation 

is a major challenge, while BisoNet exploration is straightforward, once appropriate 

b-term candidates are identified and weighted. However, from the user‟s point of 

view, interactive exploration and appropriate presentation of the underlying features 

(extracted in phase 1 and attached to the nodes) seems very valuable in deciding 

which bridging concepts to pursue in further investigations. 

1.4 Structure of this Paper 

The purpose of this paper is to present a novel knowledge-from-text discovery 

methodology using term networks. At the beginning, we are given with the input to 

the whole procedure - raw texts. The goal and the output of the procedure is new 

knowledge about previously unknown relationships between entities, which are 

described in the input text. As we concentrate on bisociative knowledge, we put a 

strong emphasis on b-term identification phase. The structure of this paper closely 

follows the data though its development from raw text to the knowledge visualization 

enabled BisoNets. 

Figure 1 shows the organisation of the following sections. Section 2 - Data 

Preprocessing, briefly describes the pre-processing step, which generates list of terms 

tagged with various statistical data extracted from raw text, and used to identify b-

terms in the next phase. Section 3 - Identifying B-term Candidates is the main section 

of this paper. It presents an approach how one can retrieve important terms, b-terms, 

from a text using just statistical properties of the terms. For the proof of concept, we 

provide a case study on two datasets. Afterwards, in Section 4 - Selection of B-terms, 

we propose an expert guided technique for further refinement of the terms found in 

the previous step. Section 5 - Network Creation and Exploration sketches another 

simple UI tool, which helps an expert to actually find a new knowledge from the 

generated term network.  
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Figure 1: A process of transforming raw data to knowledge in four steps, which 

correspond to the four sections of this paper.  

An alternative view on the structure of the paper is the division on two main parts: 

computationally intensive part, presented by sections 2 and 3; and expert-user-

interaction intensive part presented by the sections: 4 and 5. 

2 Data Preprocessing 

The first step in the process of creating a network from text sources is text 

preprocessing. We do not want to burden a reader with too much details how we do 

that, since one can find these information in any introductory text-mining textbook. 

However, the two case studies we present in the next section use the following 

parameters to build the vector representations (bag of words) of the documents: 

─ Stopwords: depends on the dataset. However, in both cases we make sure that 

all words used also in b-term list are deleted out of stopwords list. Otherwise 

these words are filtered out and b-terms cannot be found. 

─ Stemmer: LemmaGen lemmatizer for English [5]. 

─ Term length: max term length (N-gram length) is based on max b-term length 

and is set to three in our two examples (only a few b-terms, e.g.: “calcium 

channel blocker”, contain three words). 

─ Min word frequency: is the minimum frequency (occurrence) of the words (in a 

text) which are to be included in the vocabulary. It is set to two. 

When converting documents to standard text-mining representation, TF-IDF vectors, 

stopwords are not removed from the word-set. This non-standard modification is due 

to extremely short documents in the specific titles dataset. In case when a domain 

specific stopword list is present (or constructed by user on the fly) this information is 

used later in the processing of documents, but not in the preprocessing step. 

The next step is to define how the network should be created - how does it look like, 

especially what the nodes in the network are. Since the purpose of this paper is to 

rediscover b-terms and to find out which rules make distinction between b-terms and 

all the other terms it seems reasonable, that all the terms (including b-terms) now 

become network nodes. The decision on how the terms will be represented is also 

non-trivial. We identified two basic approaches: Attached to the term is a (weighted) 

set of either: 

─ documents where it appears (document representation), or 

─ terms which co-appear with it (term representation). 
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The second option is equivalent to calculating (weighted) centroid of the documents 

in which the term appears. There is also an issue about weighting model to be used (if 

any). We tested many possible combinations while considering the quality of 

generated network. Therefore, we decided in favor of the next term/node 

representation: Each term is represented with the centroid (average) of TF-IDF (term 

frequency - inverse document frequency) vectors of documents. Additionally each 

vector in the centroid is weighted by the term-frequency of the term in the specific 

document. 

To enable b-term discovery, we include as much of the statistical information as we 

recognize is required and is possible to be retrieved from a text. The output of the 

preprocessing step is therefore, not only a list of b-terms, but also accompanying 

statistics, which comes along as tags of parsed terms. This additional information is 

crucial for the calculation of heuristics, which we present and evaluate in the next 

section. 

3 Identifying B-term Candidates 

To separate b-terms from the (usual) non b-terms, we create a set of heuristics which 

seem promising for b-term discovery. Subsequently, we evaluate these heuristics and 

choose the one performing the best (named b-potential) as the weight of a node in a 

created network. This section firstly lists all the heuristics used in the evaluation, and 

then it presents the results of evaluation on two datasets, namely: migraine-

magnesium and autism-calcineurin dataset. 

3.1 Heuristics 

The heuristics presented here are used in the evaluation of their capabilities to rank b-

terms. All of them operate only on the data - statistics - which is retrievable from the 

text during the pre-processing. The exact evaluation procedure is discussed in detail in 

the following sections, at this point, a heuristic is a function that evaluates a goodness 

of a term and returns one numeric output as an estimate of term‟s “b-term quality”. 

We are initially searching for such heuristic that sorting terms by its value, would 

result in finding all b-terms together either at the top or at the bottom of such sorted 

list (depending on whether higher is better or lower is better). This is an ideal case 

which we do not expect to find, however, we still want to find some, which sorting 

would bring much more b-terms compared to non b-terms either on the top or to the 

bottom. 

Following list contains more detailed specifications and definitions of some terms 

(mainly statistics) used in the heuristics descriptions below:  

─ all terms and centroids are represented in “term representation” - if not 

otherwise noted, 

─ similarity: stands for cosine similarity - if not otherwise noted, 

─ migraine/magnesium cluster: stands for centroid of all documents from 

migraine/magnesium context in the dataset, 

─ migraine/magnesium centroid: stands for centroid of all documents containing 

word “migraine”/”magnesium”, 

─ outliers: outliers are the documents that come from the migraine cluster but are 

(considering cosine similarity) closer to the magnesium cluster centroid – and 

vice versa. 

─ bissociation index: cosine similarity like measure to evaluate similarity between 

two vectors (defined in [6]). 

─ tpf, idpf: term pair frequency, inverse document pair frequency: pair frequency 

is a frequency of two terms together (they have to appear together in the same 

document, but not necessary consecutively in the text). 

Since the next list of heuristics is quite extensive, a reader can typically safely skip it, 

and return to it in the case he or she is interested into some specific heuristic found in 
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the evaluation subsection below. Some of the (simpler) specifications are in the form 

of natural language descriptions, while another (more complicated) are in the form of 

equations, which usually combine the simpler ones. 

─ freq: num. of all appearances of a term in all documents, 

─ docFreq: num. of documents where a term appears, 

─ freqRatio: freq / docFreq, 

─ simMig: similarity of a term to the migraine cluster, 

─ simMag: similarity of s term to the magnesium cluster, 

─ simRatio: simMig / simMag, 

─ simFact: simMig × simMag, 

─ simMigCent: similarity of term to the migraine centorid,  

─ simMagCent: similarity of term to the magnesium centorid, 

─ simCentRatio: simMagCent / simMagCent, 

─ simCentFact: simMagCent × simMagCent, 

─ simMigDoc: similarity of term to the migraine centorid (document repres.), 

─ simMagDoc: similarity of term to the magnesium centorid (document repres.), 

─ simDocRatio: simMigDoc / simMagDoc, 

─ simDocFact: simMigDoc × simMagDoc, 

─ docCountMig: num. of doc. in the migraine cluster where a term occurs, 

─ docRatioMig: docCountMigraine / docFreq, 

─ docCountMag: num. of doc. in the magnesium cluster where a term occurs, 

─ docRatioMag: docCountMagnesium / docFreq, 

─ docCountFact: docCountMigraine × docCountMagnesium, 

─ docCountRatio: docCountMigraine / docCountMagnesium, 

─ missclassMig: docRatioMigraine × simMagCent, 

─ missclassMag: docRatioMagnesium × simMigCent, 

─ bisMig: bissociation index of a term to the migraine centroid, 

─ bisMag: bissociation index of a term to the magnesium centroid, 

─ bisFact: bisMig × bisMag, 

─ bisRatio: bisMig / bisMag, 

─ bisMinMigMag: min(bisMig, bisMag), 

─ bisMaxMigMag: max(bisMig, bisMag), 

─ occurInOutlyer: num. of occurrences of a term in outliers, 

─ occurInNotOutlyer: num. of occurrences of a term in non-outliers, 

─ percInOutlyer: occurInOutlyer / freq, 

─ percInNotOutlyer: occurInNotOutlyer / freq, 

─ avgTfIdf: average TF-IDF of a term (in all documents where a term appears), 

─ sumTfIdf: sum of TF-IDFs of a term (in all documents where a term appears), 

─ bisocPotential: term‟s TF-IDF in migraine centroid × term‟s TF-IDF in magnesium 

centorid, 

─ bisocPotentialSum: term‟s TF-IDF in migraine centroid + term‟s TF-IDF in magnesium 

centorid, 

─ tpfIdpfMig: tpf(“migraine” term) × idpf(“migraine”, term), 

─ tpfIdpfMag: tpf(“magnesium” term) × idpf(“magnesium”, term), 

─ tpfIdpfFact: tpfIdpfMig × tpfIdpfMag, 

─ tpfIdpfRatio: tpfIdpfMig / tpfIdpfMag, 

─ random: used as a baseline for comparison. 

3.2 Benchmark 

Given is a "golden standard" list of b-terms available for the domain of observation. 

Thus, we can label the terms and observe how well the heuristics are promoting the 

true b-terms compared to regular non b-terms. 

We tested all heuristics on both datasets using analysis through ROC (Receiver 

Operating Characteristic curve) and AUROC (area under ROC). ROC curves were 

constructed in the following way: 

─ Sort all terms by observed heuristics (or reverse if reversing yields better area 

under ROC) 

─ In the case when a heuristics outputs the same estimate for many terms (for a 

block of terms) use random ordering for inner block sorting. Since this situation 
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is not rare in our datasets, we averaged AUROC through 20 different sorting of 

each list. We also list standard deviation of AUROC for each heuristic. 

─ Go from the start of the sorted term list and for each term determine if term is: 

b-term: draw vertical line (up) on the ROC curve, non b-term: draw horizontal 

line (right) on the ROC curve. 

Like this, we get one (averaged) ROC curve for each heuristic. The ROC‟s vertical 

axis scale is from 0 to number of b-terms and the horizontal is from 0 to number of 

non-b-terms. AUROC is defined by percentage (area under the curve divided by area 

under best possible curve). If a heuristic is perfect (it detects all b-terms and ranks 

them the top of the ordered list) we get a curve that goes firstly just up and then just 

left with an AUROC of 100%. The worst possible heuristic sorts all terms randomly 

regardless of being b-term or not and achieves AUROC of 50% in average. 

Next two subsections contain experimental results for two domains, namely migraine-

magnesium dataset [2] and autism-calcineurin dataset [3], used for the evaluation of 

chosen b-term discovery indicators 

3.2.1 Migraine-Magnesium Dataset Results (Training Dataset) 

Heuristic Cr AUROC Stdev 

 

... 

simDocFact (+) 93,78% 0,00% 

 

bisMag (-) 79,46% 0,00% 

tpfIdpfFact (+) 93,61% 0,06% 

 

simMag (-) 76,31% 0,00% 

bisocPotential (+) 93,57% 0,06% 

 

tpfIdpfRatio (+) 75,90% 0,07% 

docCountFact (+) 93,52% 0,06% 

 

simMagCent (-) 74,54% 0,00% 

docCountMig (+) 87,55% 0,20% 

 

occurInNotOutlyer (+) 71,15% 1,05% 

simMigDoc (+) 86,74% 0,00% 

 

docFreq (+) 71,08% 1,05% 

simFact (+) 85,06% 0,00% 

 

freq (+) 71,02% 1,06% 

simMig (+) 84,40% 0,00% 

 

sumTfIdf (+) 71,02% 1,06% 

tpfIdpfMig (+) 84,14% 0,22% 

 

tpfIdpfMag (+) 64,58% 0,85% 

simMigCent (+) 84,04% 0,00% 

 

missclassMag (+) 63,78% 0,00% 

missclassMig (+) 83,87% 0,00% 

 

simMagDoc (-) 63,47% 0,00% 

simCentRatio (+) 82,52% 0,00% 

 

bisFact (+) 61,90% 0,00% 

simCentFact (+) 82,39% 0,00% 

 

bisMaxMigMag (+) 60,75% 0,00% 

bisMig (+) 81,80% 0,00% 

 

bisMinMigMag (+) 56,41% 0,00% 

simRatio (+) 80,84% 0,00% 

 

occurInOutlyer (+) 56,18% 3,78% 

simDocRatio (+) 80,60% 0,00% 

 

percInOutlyer (+) 56,14% 3,77% 

docCountRatio (+) 80,56% 0,06% 

 

percInNotOutlyer (-) 56,14% 3,77% 

docRatioMig (+) 80,56% 0,06% 

 

freqRatio (+) 52,97% 4,66% 

docRatioMag (-) 80,56% 0,06% 

 

avgTfIdf (+) 52,97% 4,66% 

bisRatio (+) 80,40% 0,00% 

 

docCountMag (+) 51,85% 0,85% 

bisocPotentialSum (+) 80,32% 0,06% 

 

random (+) 50,96% 4,70% 
 

Table 1: Comparison results of all heuristics defined for b-term retrieval 

(ordered by quality - AUROC). First column is the name of the heuristic; 

second displays what is the correlation of heuristic: (+) positive - high value of 

heuristic means higher probability of term being a b-term and (-) negative -  

means just the opposite; third column is a percent of area under ROC curve; 

and the last is the standard deviation of AUROC. 

The dataset for this benchmark consists of two sets of PubMed [5] article titles. First 

set is about concept migraine and the second is about concept magnesium. All 

documents used in the analysis are retrieved using PubMed article search which is 

limited with the condition that an article was published before 1988 and using 

keywords “migraine” and “magnesium” – one for each concept. The date limitation is 

enforced due to Swanson‟s discovery of this specific bisociation in this year. For the 

stopwords and b-term list we use the lists that Swanson defined in his work. 

Stopwords are modified according to the discussion in the section 3.2. Also all the 
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other settings are used as defined in that section. The basic properties of the parsed 

and preprocessed dataset are: 

─ 8058 documents, 13433 distinct terms found, 

─ 2425 documents on migraine, 5633 documents on magnesium, 

─ 42 b-terms (97.7%) found among extracted terms (there are 43 b-terms in total 

defined by Swanson). 

 

 

Figure 2: ROC curves of 10 best heuristics on migraine-magnesuim dataset. 

ROC curves are divided to two separate plots since some curves are almost the 

same (e.g.: bisocPotential and docCountFact) and are not separable on the 

same plot. Subsection 3.2 discribes the charts and the meaning of axels in more 

details. 

Table 1 and Figure 2 show the results of the benchmark. On one hand Table 1 shows 

the performance (quality-wise) of all heuristics, while on the other hand, Figure 2 

offers the detailed perspective into the ROC curves just for the 10 best performing 

heuristics. We discuss and compare the heuristics in section 3.3 - Comparison of the 

Heuristics, at this point we would just like to point out to the property that the 
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majority of created heuristics are significantly better on separating b-terms from non 

b-terms, compared than the random decision maker. This result confirms the basic 

proposition of this paper, which suggests there are differences between b-terms and 

non b-terms already at the level of basic statistics indicators retrievable from the texts. 

3.2.2 Autism-calcineurin Dataset Results (Testing Dataset) 

Heuristic Cr AUROC Stdev 

 

... 

bisocPotential (+) 84,36% 3,17% 

 

docRatioMag (+) 63,62% 1,26% 

docCountFact (+) 83,96% 3,17% 

 

simMagCent (+) 59,92% 0,00% 

docCountMag (+) 78,32% 0,48% 

 

tpfIdpfMig (-) 57,54% 3,39% 

occurInOutlyer (+) 77,89% 4,36% 

 

simMagDoc (+) 57,45% 4,76% 

percInOutlyer (+) 77,33% 4,45% 

 

bisRatio (-) 56,65% 2,67% 

percInNotOutlyer (-) 77,33% 4,45% 

 

simCentFact (-) 56,51% 0,00% 

bisocPotentialSum (+) 76,17% 0,02% 

 

simDocRatio (-) 56,38% 4,91% 

freq (+) 75,66% 1,49% 

 

tpfIdpfMag (+) 56,22% 4,84% 

sumTfIdf (+) 75,66% 1,49% 

 

simRatio (-) 55,94% 2,67% 

docFreq (+) 73,38% 0,20% 

 

docCountMig (+) 55,49% 1,41% 

occurInNotOutlyer (+) 72,78% 0,23% 

 

tpfIdpfRatio (-) 55,49% 4,91% 

bisMaxMigMag (-) 66,71% 0,00% 

 

bisMag (+) 55,01% 2,67% 

simMigCent (-) 66,53% 0,00% 

 

simMag (+) 54,11% 2,67% 

simMig (-) 66,22% 0,00% 

 

bisFact (+) 53,77% 2,71% 

bisMig (-) 64,63% 0,00% 

 

simMigDoc (-) 53,50% 3,34% 

freqRatio (+) 64,45% 6,64% 

 

bisMinMigMag (+) 53,23% 2,71% 

avgTfIdf (+) 64,45% 6,64% 

 

simFact (+) 53,08% 2,71% 

simCentRatio (-) 63,90% 0,00% 

 

missclassMig (-) 52,41% 1,24% 

missclassMag (+) 63,67% 0,00% 

 

simDocFact (+) 50,79% 8,30% 

docCountRatio (-) 63,62% 1,26% 

 

tpfIdpfFact (+) 49,67% 8,30% 

docRatioMig (-) 63,62% 1,26% 

 

random (-) 48,62% 11,03% 
 

Table 2: Comparison results of all heuristics (ordered by quality - AUROC) for 

autism-calcineurin dataset. Columns are described in detail under Table 1. 

In this benchmark the goal was initially based on open discovery - just A concept 

(autism) is known. However, since the main goal of this paper is the b-term discovery 

we set an experiment as if both A and C concepts are known. As a result we again get 

closed discovery setting as in migraine-magnesium dataset. Both concepts (autism 

and calcineurin) of this benchmark are also retrieved using PubMed keyword search. 

Settings of the preprocessing phase are as discussed in the Subsection 3.2, with the 

slight modification, since authors in [2] do not use stopwords list but rather a 

vocabulary (which is in fact inverse of stopwords list - allowed words list). 

The basic overall statistics of the parsed and preprocessed dataset is: 

─ 22262 documents, 17514 distinct terms found, 

─ 14890 documents on autism, 7372 documents on calcineurin, 

─ 8 b-terms (66.6%) found among extracted terms (there are 12 b-terms in total 

identified by Authors). 

Table 2 and Figure 3 show the results of the benchmark on autism-calcineurin in the 

same way as Table 1 and Figure 2 show for the magnesium-migraine dataset. The 

differences between figures are effect of different numbers of b-terms in both datasets 

- just 8 b-terms are found among the extracted terms in the autism-calc. case.  

Note that the names of the heurstics are not correctly named in this benchmark. 

Names are again referencing magnesium-migraine dataset. Therefore a reader is asked 

to interpret the names by replacing migraine and magnesium with autism and 

calcineurin respectively.  This will be corrected in the final version of this paper. 
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Figure 3: ROC curves of 10 best heuristics on autism-calcineurin dataset. ROC 

curves are, similarly as on first dataset, divided to two separate plots since 

some curves are so similar that they are not separable if on the same plot. 

3.3 Comparison of the Heuristics 

Overall, the results of the two benchmarks are positive. They confirm the initial idea 

for this paper, which assumes that b-terms and non b-terms are separable already at 

the low level of statistical properties of the terms (like co-appearance, similarity, etc.). 

Both tests confirmed the hypothesis, as defined statistics are able to quite efficiently 

separate b-terms from the rest. 

When we examine Figure 2 in detail, we see that various heuristics have very diverse 

b-term retrieval characteristics. The best four (simDocFact, tpfIdpfFact, 
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bisocPotential, and docCountFact) are very similar by performance and also by 

characteristic ROC curve. They all discover first half of 43 b-terms after 

approximately 900 retrieved terms and all of b-terms before reaching 1,800 retrieved 

terms. The ROC curve is about linear with around one discovered b-term per every 42 

terms retrieved. Although this does not seem very promising, we have to take into 

consideration that there are still another 11,000 terms in the "term-pool" after all the 

b-terms are retrieved.  

Figure 3 shows similar, but somehow less clear picture. The main problem of this 

dataset is low number of b-terms found by the original paper authors [2]. As a 

consequence the resolution along y-axis is low, which partly confuses the picture. 

However, when we analyze it thoroughly, it reveals similar situation as Figure 2 - but 

with two exceptions. There are two b-terms which are found very late by all heuristics 

(around after a half of retrieved terms). It seems that the statistical properties of these 

two do not match the others. Nevertheless, excluding these two and taking into 

account that there are more terms in this dataset compared to the previous one, the 

numbers match up - all b-terms retrieved among the first 2.000-3.000 terms / out of 

18.000 terms, while retrieval is about linear. 

What does this outcome mean for the b-term selection step? The outcome can be 

viewed from two perspectives: 

─ The first is more theoretical and compares how many terms would an expert 

(with an eye to spot a b-term if he or she sees it) have to traverse before one 

finds them all. In our cases we conclude that only 15% of all terms have to be 

seen to retrieve all b-terms which results in 85% of work saved. 

─ The more practical aspect is an automatic generation of a list of terms, which is 

offered to an expert for the purpose of selection of b-terms. In this case, a list 

generated using by our heuristic ordered terms is 7 times more probable to 

contain a b-term than a randomly created list of terms. 

As the most promising heuristics we picked the one, which is found among the best in 

first scenario (training dataset from Table 1), namely bisocPotential. Our decision is 

not based on the AUROC performance alone, but we also employed Occam's razor 

principle and selected the simplest heuristics among similarly performing ones. The 

second experiment (testing dataset in Table 2) confirmed our choice, since the chosen 

measure is again among the best performing ones. The definition of bisocPotential is 

the following: 

                       (                 )         (                 ) 

Where       (                 ) is a value of the tfidf component of the term T 

in the X domain's centroid. 

From now on we refer to the new measure as b-potential or BP (shortened for b-

term-high-potential-measure). The following sections are building mainly on the 

result of this section and extensively use BP measure to offer the expert user the most 

relevant terms. 
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4 Selection of B-terms 

Now, as we have the measure to assess the quality of terms, namely b-potential, we 

are all set to include the expert into the research. We envision b-term selection in the 

closed discovery scenario in the following way (we briefly subsume the sections 2 

and 3 in the process overview below): 

─ We acquire documents from two domains, e.g. migraine and magnesium, by 

querying PubMed with keywords “migraine” and “magnesium” for documents 

published before 1979 (i.e. approximation of the Swanson‟s dataset). 

─ We preprocess documents in a typical text-mining way: we remove domain-

independent English stop words (such as a, the, they, is), apply stemming, and 

compute L2-normalized TF-IDF vectors corresponding to documents. 

─ We project the TF-IDF vectors onto 2-dimensional canvas (See Figure 4) by 

employing the least-squares meshes projection technique. The projected 

documents visually form two clusters (i.e. the migraine and magnesium cluster. 

─ We allow the user to explore the space of documents. By clicking on the point 

representing a document, the user is given additional information about the 

document. The most relevant information is the ranking of document‟s terms 

according to b-potential. BP in this usage, measures how much each term 

contributes to the similarity between its document and the opposite centroid 

vector. If the document is from the domain of migraine, for example, we 

compute the component-wise product of the document‟s TF-IDF vector and the 

magnesium centroid vector. It turns out that if we rank terms according to BP in 

this way, relevant b-terms tend to be ranked higher than other non-stop terms as 

discussed in previous section. 

 

Figure 4: 2-dimensional projection of documents (titles only) about magnesium 

(blue) and migraine (red). Outlier documents1 are bolded for a user to easily 

spot them. 

 

                                                           
1 The outliers do not seem to contain more b-terms than other documents. Empirical experiments to prove 

or reject this claim still need to be conducted. The outliers are defined to be those documents that lie closer 
to the opposite centroid than to their own centroid (e.g. documents about magnesium that lie closer to the 

migraine centroid than to the magnesium centroid). The identified outliers are emphasized (i.e. outlined) in 

the visualization 
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Figure 5 shows an example of the user guided application for b-terms selection. The 

user clicks on a particular point in the visualization. The documents in the proximity 

of the point are shown in the right panel. Each document is described with its label 

(either “magnesium” or “migraine”), its title (e.g. “The non-epileptiform basilar artery 

migraine”), and the list of terms that contribute to the similarity between the 

document and the opposite centroid vector, sorted descending according to their BP 

(e.g. “artery*, basilar artery*, basilar, migraine”). The terms marked with “*” are the 

b-terms identified by the user (in this screenshot, these are the Swanson‟s golden 

standard b-terms). Those put into brackets are the domain-specific stop words 

identified by the user (in this screenshot, these are the stop words available with the 

Swanson‟s dataset). 

 

Figure 5: Proposed user interaction oriented application for b-term selection 

The user is able to maintain two lists of terms: the list of domain-specific stop terms 

(such as patient, disease, treatment) and the list of b-terms.  

─ The list of stop terms can be initially populated with domain-specific stop terms 

provided with the domain (if available).  

─ The user can specify stop terms and b-terms through a dialog window, without 

resorting to visualization. In the dialog window, the user is presented with a 

sorted list of terms. 

─ The terms are sorted according to the BP weight. This tends to rank relevant b-

terms higher than other non-stop terms, which means that relevant b-terms are 

presented at the top of the list, mixed with domain-specific stop terms. The user 

is expected to explore the list, from top to bottom, and to mark terms either as 

being stop terms, b-terms, or neither. 

─ Besides BP we also tested bisociativity index measure (BI2). At first glance, this 

measure is comparable to our new BP measure. Further experiments need to be 

conducted to assess the quality of the two measures (e.g. compute area under 

ROC curve). 

                                                           
2 Bisociativity index (BI) as described in [7] is  

   (     )  ∑ (√   
     

  
 (  

|     (   
 )      (   

 )|

     ( )
)) 

       
     

     

Where    
     

  [   ]   Note that by definition the BI is a property of a link (between term tA and term tB) 
while BP measure is a property of a term. Therefore, we compute, for each term t, two BI values, namely 

bisociativity index between “migraine” centroid and the term, BI(t, mig.), and bisociativity index between 
“magnesium” centroid and the term, BI(t, mag.). To assign BI to a term, we decided to use the following 

formula:   ( )     (  (     )   (     )). 
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Figure 6: Bisociation visualizer application: user can display a network of 

terms and interactively browse through it. One also has the option to filter out 

terms and/or links with weights lower than some specified value (the slider 

controls at the top of the application). Both images show the application on the 

same data, with the only difference that the top image shows higher threshold 

setting than the bottom one. It is clear that increasing threshold manifests in 

more nodes and links displayed. 

5 Network Creation and Exploration 

The list all the terms with their b-potential values, the list of stop terms, and the list of 

b-terms (marked by user) are passed to this phase from the selection step. 

In this step, an expert goes through the data visualised as a graph and tries to deduct 

some new knowledge out of it. All the information derived in the previous steps - 

most notably b-potential weights ant b-terms labels play crucial role here by enabling 
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the expert to see deeper into the data, since the system is displaying data that are more 

relevant. 

The actual graph displayed to the user is constructed out of the terms using their BP 

weights in the following way: 

─ Nodes are terms (all terms including b-terms but without stop terms). Only those 

nodes are used that have their BP greater than some preset node weight 

threshold. 

─ Links between nodes are calculated using bisociativity index measure (BI). Only 

those links are generated that have BI weight greater than some preset link 

weight threshold. 

Graph can be dynamically displayed and explored. Currently, the debate, which 

system to use for visualization is still open. The possibilities which to employ include: 

─ BMVIS: Biomine visualization, 

─ CET (Creative Exploration Toolbox), 

─ Latino 

─ Orange for WS 

Besides standard functions for interactively navigating through graph (moving, 

zooming, unzooming, ...) the exploration step contains also two filtering controls. 

With them, the expert controls the size of the graph displayed and implicitly sets the 

ratio of importance between b-potential and bisociativity index measures. These two 

controls are be implemented as: 

─ Node weights (BP) threshold slider – only those nodes are displayed that have 

weight higher than the weight set on this control (see Figure 6). 

─ Link weights (BI) threshold (slider) – only those links are displayed that have 

weight higher than the weight set on this control. (see Figure 6). 

Conclusion and Further Work 

This work presents a new methodology designed to help bridging the contexts in the 

domains where there is an overflow of data present. The usage is envisioned as a 

heavily user interactive tool, which helps an expert to find the interesting terms and 

concepts. These are found by connecting his domain with some other field of 

research, in order to come to new, breakthrough discoveries. Even better usage 

scenario is when there are two experts from different fields interested in cooperation. 

In this case, the system is an ideal concept generator, which helps both scientists to 

start communicating in the terms that are familiar with, and meanwhile generating the 

promising ideas for research. 

In this paper, we illustrate the four-step methodology consisting of: preprocesing the 

data, identifying b-term candidates, selecting b-terms, and network exploration. The 

main research contribution of this work is concentrated around finding and evaluating 

the measure for identification of candidate b-terms. In two benchmarks, we provide 

preliminary evidence that using b-potential (heuristics designed for b-term 

identification) we achieve approximately 7 times boost in b-term identification 

compared to not using any strategy. In practice, this means that lists offered to the 

user for selection of the b-terms are 7 times more probable to contain b-terms 

compared to showing him or her just the random list of terms. 

Although we are satisfied with initial results of our approach, we still need to conduct 

much more testing, improve the methodology at certain points and implement user 

interface part of the system. Currently we see next promising ways to follow: 

─ Improve the technique for discovery of bisociative knowledge from networks. 

Currently we propose very simple model of expert-system user interface in the 
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last section of this paper. This model should be enhanced with some stronger 

functionality, which would enable the expert to see "deeper" in the data. 

─ Better b-potential heuristic. On ROC curve diagrams, we spotted that some 

heuristics express themselves with interesting and not anticipated function 

shapes. Even though we select the best heuristic for b-potential, the strange 

shapes are suggesting us that there might still be some hidden knowledge inside. 

Hence, by combining different heuristics (maybe via some voting models) it is 

perhaps possible to unveil this hidden knowledge and even further improve b-

term detection rate. 

─ Implement the user interface to the level, where we would be able to test the 

whole methodology, including real data and collaborative expert trying to find 

some novel knowledge. In case of success, this would be the ultimate proof of 

our concept. 
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