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ABSTRACT 
 

The paper  presents a system,  LemmaGen, for learning 
Ripple Down Rules specialized for automatic generation of 
lemmatizers.  The system was applied to 14 different 
lexicons and produced efficient lemmatizers for the 
corresponding languages. Its evaluation on the 14 lexicons 
shows that LemmaGen considerably outperforms the 
lemmatizers generated by the original RDR learning 
algorithm, both in terms of accuracy and efficiency. 
 
1 INTRODUCTION 
 

Lemmatization is the process of determining the canonical 
form of a word, called lemma, from its inflectional variants. 
Lemmas correspond to headwords in a dictionary. An 
alternative approach to abstract the variability of word-
forms is stemming which reduces the word to its root or 
stem. For example, in Slovene, the word-forms pisati, 
pišem, pišeš, pišemo have a common lemma pisati, and a 
common stem pi. For text analysis and knowledge 
discovery applications, lemmatization yields more 
informative results then stemming. However, both 
problems are closely related and the approach described 
here can be applied to stemming as well. 
The difficulty of lemmatization depends on the language. In 
languages with heavy inflection, such as the Slavic 
languages, stems can combine with many different suffixes, 
and the selection of appropriate ending and its combination 
with the stem depends on morphological, phonological and 
semantic factors. As a consequence, lemmatization of 
highly inflectional languages is considerably more difficult 
then the lemmatization of 'simple' languages, such as 
English. 
In computer science, the problem of stemming and 
lemmatization was addressed already in 1968 [1]. For 
English, the problem is considered solved by the Porter 
stemmer [12]. However, the Porter stemmer was hand 
crafted specifically for English and is not applicable to 
other languages, specially those with heavy inflection. 
Manual development of a lemmatizer requires involvement 
of a linguistic expert, and is an impractical and expensive 
undertaking. An alternative is to use machine learning tools 
for automatic generation of lemmatization rules. There have 
already been several approaches to learning lemmatization 
rules: 
• 1993-2002: A rule induction system ATRIS [8,9] 
• 2002: If-then classification rules [7] 
• 2002: Naïve Bayes [7] 
• 2004: A first-order rule learning system CLog [3] 

• 2004: Ripple Down Rule (RDR) learning [10, 11]. 
This paper is focused on Ripple Down Rule (RDR) 
learning. The RDR learning approach was originally 
proposed as a methodology for the GARVAN-ES1 expert 
system maintenance [2]. The idea is that the rules are 
incrementally added to the system. When new examples of 
decisions are available, new rules are constructed and 
added to the system. However, already existing rules might 
contradict some new examples, therefore exceptions to the 
original rules have to be added as well. 
In this paper we describe an improved Ripple Down Rule 
(RDR) learning system called LemmaGen [6], especially 
tailored to the problem of word lemmatization. In Section 2 
we describe the RDR format, how the rules can be applied 
to lemmatization and how is the RDR structure 
automatically constructed from the lemmatization examples 
by LemmaGen. In Section 3 we describe the application of 
LemmaGen to 14 different language lexicons, compare the 
results with an alternative RDR implementation, and 
evaluate the performance in terms of lemmatization 
accuracy, efficiency, and applicability of the approach to 
different languages. 
 
2  LEARNING RIPPLE DOWN RULES 
 
RDR rules form a tree-like decision structure with an 
obvious interpretation: 
 

if A then C 
    except if B then 
E 
    except if D then 
F 
else if G then H 

 
Rules and their exceptions are ordered, and the first 
condition that is satisfied fires the corresponding rule. In 
addition, explanation is also provided. Every `if-then’ rule 
is augmented by its explanation in terms of the `because of’ 
appendix, which lists one or more training examples 
covered by the rule (examples which `fire’ for the given 
rule), which – in the process of learning - caused the 
individual rule to appear in the rule list. 
In the case of lemmatization, general concepts that appear 
in RDR rules are instantiated to domain specific terms: 
• Training examples are pairs (word-form, lemma). 
• A rule condition is a suffix of the word-form which 

ends the word that fires the rule. 



 

 
`---> RULE:( suffix("") transform(""-->"") except(3) ); 
       |---> RULE:( suffix("i") transform("i"-->"o") except(4) ); 
       |      |---> RULE:( suffix("li") transform("li"-->"ti") ); 
       |      |---> RULE:( suffix("ni") transform("ni"-->"ti") ); 
       |      |---> RULE:( suffix("ti") transform(""-->"") ); 
       |      `---> RULE:( suffix("ši") transform("ši"-->"sati") ); 
       |---> RULE:( suffix("l") transform("l"-->"ti") ); 
       `---> RULE:( suffix("mo") transform(""-->"") except(2) ); 
              |---> RULE:( suffix("šemo") transform("šemo"-->"sati") ); 
              `---> RULE:( suffix("šimo") transform("šimo"-->"sati") ); 

Figure 1: A part of the RDR tree structure, constructed by LemmaGen for the lemmatization of Slovenian words. 
 
• A rule consequent is a transformation which replaces 

the word-form suffix by a new suffix, thus forming  the 
lemma. The transformation is written as {word-form 
suffix} -> {lemma suffix}. 

Some example RDR rules for the lemmatization of 
Slovenian are given in Figure 1. 
The original RDR learning algorithm, adapted to learn the 
lemmatization rules, and applied and evaluated on the 
Slovenian lexicon is described in [10, 11]. We have applied 
this RDR algorithm to several additional language lexicons 
and investigated the means of possible improvements. The 
new algorithm, LemmaGen, implements the following 
improvements: 
• The original RDR algorithm processes training 

examples sequentially and does not take into account 
the number of examples covered by individual rules 
and their exceptions.  As a consequence, a rule high in 
the RDR hierarchy (‘default rule’) might cover just a 
small fraction of examples with a non-typical 
transformation, and have a large number of exceptions 
itself. LemmaGen performs lexicographical ordering of 
training examples (starting from the end of words) and 
orders rules and exceptions by the frequency of 
examples. 

• As there are identical word-forms with different 
lemmas, the nodes in the RDR tree cannot distinguish 
between different transformations. The original RDR 

algorithm simply selected the first transformation it 
encountered, while LemmaGen selects the most 
frequent transformation. 

• The LemmaGen learning algorithm is considerably 
faster then the original RDR. It achieves speedups 
between factors 2 and 10, depending on the lexicon 
used for learning. Due to more compact RDR trees 
produced, the lemmatization is also considerably 
faster, between 10 and 40 fold. Improvements in the 
efficiency of learning and lemmatization are in Figure 
4.  

If N is the number of training examples, and M is the length 
of the longest word in the lexicon, then the time-complexity 
of our learning algorithm is O(2*N*M). The worst-case 
time complexity is therefore linear in the number of 
examples. 
 
3 APPLICATIONS ON THE MULTEXT-EAST AND 
MULTEXT LEXICONS 
 

We have applied LemmaGen on two sets of lexicons, 
namely Multext-East [4] and Multext [5] (Multilingual Text 
Tools and Corpora) to automatically learn lemmatizers for 
different languages. There are altogether 14 lexicons for 12  

 
No. of different 

Language No. of 
records Morph.forms Lemmas Morph.specs Morph.formsper lemma 

Lemmas per 
morph.form 

Slovenian 557.970 198.507 16.389 2.083 12,63 1,0430 
Serbian 20.294 16.907 8.392 906 2,07 1,0285 

Bulgarian 55.200 40.910 22.982 338 1,95 1,1002 
Czech 184.628 57.391 23.435 1.428 2,55 1,0441 

English 71.784 48.460 27.467 135 1,80 1,0206 
Estonski 135.094 89.591 46.933 643 2,19 1,1507 

French 306.795 232.079 29.446 380 8,01 1,0164 
Hungarian 64.042 51.095 28.090 619 2,03 1,1209 MU

LT
EX

T-
 E

AS
T 

Romanian 428.194 352.279 39.359 616 9,35 1,0447 
English 66.216 43.371 22.874 133 1,93 1,0182 
French 306.795 232.079 29.446 380 8,01 1,0164 
German 233.858 51.010 10.655 227 4,87 1,0174 

MU
LT
EX

T 

Italian 145.530 115.614 8.877 247 13,85 1,0636 



 

Spanish 510.709 474.158 13.236 264 36,07 1,0069 

Figure 2: Sizes and basic properties of the MULTEXT-EAST and MULTEXT training sets. 

East and West European languages (see Figure 2). Each 
lexicon contains records of the form (word-form, lemma, 
morphological form). The last column (morph. form) was 
not used in our experiments, but nevertheless it indicates 
the complexity of different languages. One can speculate 
that the higher number of morphological forms per lemma 
indicates a more complex language. On the other hand, a 
higher fraction of lemmas per morphological form (e.g., 
Bulgarian, Estonian, Hungarian) will probably prove to be 
more difficult for learning and will result in lower 
accuracies. ‘Simpler’ languages with lower number of 
lemmas per morphological form (e.g., Spanish, German, 
French, English)  will likely have better lemmatizers with 
higher accuracy.  The available number of training 
examples and how representative the training examples are 
will also affect the accuracy (e.g., there are relatively few 
training examples for Serbian). 
For learning and testing experiments we used 5-fold cross 
validation. For each language, cross validation was 
performed 10 times. Both, the original RDR algorithm and 
our improved LemmaGen were applied. Results are given 
in Figure 3: 
• Accuracy – Lemmatization assigns a transformation 

(class) to a word-form. If there are P correctly 
lemmatized word-forms, and N is the total number of 
word-forms, then Acc = P/N. 

• Accuracy was tested on the training set (yielding an 
optimistic accuracy prediction), testing set (‘realistic’ 
prediction) and on unknown words from the testing set 
(pessimistic prediction). In the last case we made sure 
that no two words with the same lemma appear in both, 
training and testing set in the same validation step. 

• Standard deviation is averaged over all three sets 
above. Lower values indicate higher stability of the 
learning algorithm. 

• Error is a relative decrease of the number of incorrectly 
classified examples of LemmaGen relative to the 
original RDR. Error = (Acc(RDR) - Acc(LemmaGen)) 
/ (1 – Acc(RDR)). An Error of -25 means that 
LemmaGen commits 25% less incorrect classifications 
then RDR. 

The results indicate that LemmaGen outperformed the 
original RDR in most of the cases, primarily due to the 
improvements described in Section 2. 
The (reverse) lexicographical ordering of examples and 
subsequent use of example frequencies results in the 
highest improvement of accuracy on the training set. This 
might seem irrelevant since generally we are mostly 
concerned with the accuracy on new, unknown examples. 
However, in the case of lemmatization and lexicons 
provided, it turns out that they mostly cover a typical text 
corpora. Therefore, training examples cover most of the 
domain, and accuracy on the training set is very relevant for 
practical applications of lemmatizers. 
We did test this hypothesis on a Slovene corpus of news 
agencies texts which comprises almost 900.000 words [6]. 
It turned out that 84% of the words were covered by the 
lexicon used for learning the lemmatizer. Therefore, the 
expected accuracy is best computed by using the accuracy 
on the training set in 84%, and accuracy on the unknown 
words in 16% of the cases. If p is the fraction of words 
covered by the learning lexicon then a realistic estimate of 
the expected accuracy is: Acc = p*Acc(optimistic) + (1-
p)*Acc(pessimistic). In the case of Slovenian, we get: Acc 
= 84%*97.61% + 16%*82.12% = 95.13%. This is slightly 
above the actual accuracy on the testing set. 

 
Accuracy (%) 

Learning set 
(optimistic) 

Test set 
(realistic) 

Unkown words 
(pessimistic) 

Standard 
deviation (%) Language 

RDR LemmaGen Errors RDR LemmaGen Errors RDR LemmaGen Errors RDR LemmaGen Errors
Slovenian 95,35 97,61 -48,6 92,59 94,38 -24,1 80,68 82,12 -7,5 0,029 0,015 -47,88

Serbian 94,36 97,86 -62,1 70,34 73,49 -10,6 64,26 65,85 -4,5 0,150 0,059 -60,44
Bulgarian 91,22 93,68 -28,0 74,52 76,10 -6,2 69,29 71,52 -7,2 0,107 0,074 -30,29

Czech 96,61 97,89 -37,8 92,77 93,66 -12,3 78,09 81,13 -13,9 0,040 0,023 -41,02
English 97,75 98,84 -48,3 92,05 93,07 -12,8 89,27 91,03 -16,4 0,038 0,021 -45,27

Estonian 86,81 89,51 -20,5 73,52 73,93 -1,6 66,69 66,54 0,5 0,066 0,049 -25,83
French 96,72 98,80 -63,5 91,78 92,94 -14,1 86,80 88,22 -10,8 0,032 0,015 -54,19

Hungarian 90,23 91,88 -16,9 74,82 74,33 2,0 72,73 72,86 -0,5 0,091 0,072 -21,03MU
LT
EX

T-
 E

AS
T 

Romanian 94,96 96,75 -35,6 78,16 79,17 -4,6 73,48 74,14 -2,5 0,036 0,033 -7,27
English 98,20 99,00 -44,5 93,29 94,14 -12,7 90,82 92,48 -18,1 0,052 0,029 -45,17
French 96,72 98,80 -63,5 91,79 92,95 -14,2 86,85 88,25 -10,7 0,034 0,012 -63,71
German 95,88 98,70 -68,5 95,06 97,13 -41,9 79,56 84,15 -22,4 0,062 0,026 -58,54
Italian 93,75 95,58 -29,2 85,87 86,08 -1,5 82,05 82,11 -0,3 0,041 0,040 -3,26MU

LT
EX

T 

Spanish 99,10 99,48 -42,1 94,65 95,73 -20,1 94,32 95,45 -19,9 0,007 0,008 7,42



 

Figure 3: Comparison of accuracy between the original RDR lemmatizer and the  improved LemmaGen. 

 
Results in Figure 3 also enable the analysis of different 
languages. The actual accuracies are mostly as expected, 
except for Hungarian and Estonian. It turns out that the two 
languages are not Indo-European, but belong to the Finno-
Ugric language group (along with Finnish). In these 

languages words can be composed from morphemes in a 
large number of ways. Consequently, lemmatization by 
suffix transformation only appears to be of limited value 
and a more expressive transformation language is needed. 
Figure 4 gives the efficiency comparison. 

 
Learning Lemmatization 

RDR LemmaGen RDR LemmaGen Language 
sec ms/rec sec ms/rec

Speedup
factor sec ns/rec sec ns/rec 

Speedup
factor 

Slovenian 26,80 60,0 3,02 6,8 8,9 2,53 22.633 0,10 867 26,1
Serbian 0,23 14,4 0,09 5,4 2,7 0,03 8.089 0,00 643 12,6

Bulgarian 2,03 46,0 0,32 7,2 6,4 0,30 26.958 0,01 670 40,2
Czech 4,42 29,9 0,56 3,8 7,9 0,42 11.279 0,03 722 15,6

English 0,43 7,5 0,23 4,0 1,9 0,10 6.946 0,01 752 9,2
Estonian 4,15 38,4 0,68 6,3 6,1 0,41 15.226 0,02 800 19,0

French 6,46 26,3 1,72 7,0 3,7 1,35 21.995 0,06 898 24,5
Hungarian 0,99 19,4 0,23 4,5 4,3 0,12 9.575 0,01 718 13,3MU

LT
EX

T-
 E

AS
T 

Romanian 183,12 534,6 7,23 21,1 25,3 43,51 508.043 0,08 911 557,7
English 0,37 6,9 0,21 3,9 1,8 0,08 6.017 0,01 724 8,3
French 7,02 28,6 1,56 6,3 4,5 1,34 21.819 0,05 877 24,9
German 10,22 54,6 0,80 4,3 12,9 0,60 12.857 0,04 788 16,3

Italian 1,18 10,1 0,80 6,9 1,5 0,26 8.821 0,03 860 10,3MU
LT
EX

T 

Spanish 22,97 56,2 3,88 9,5 5,9 3,57 34.923 0,09 894 39,1

Figure 4: Comparison of the learning and lemmatization efficiency between the original RDR and LemmaGen. 

 
6 CONCLUSION 
 

We have developed an improved learning algorithm for 
automatic generation of lemmatization rules in the form of a 
RDR tree, named LemmaGen. The algorithm has linear time 
complexity, is very efficient, and can produce very accurate 
lemmatizers from sufficiently large lexicons. The whole 
LemmaGen system is freely available under the GNU open 
source license from http://kt.ijs.si/software/LemmaGen . 
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