

LEARNING RIPPLE DOWN RULES FOR EFFICIENT LEMMATIZATION

Matjaž Juršič, Igor Mozetič, Nada Lavrač

Department of Knowledge Technologies, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia

e-mail: matjaz@gmail.com, {igor.mozetic, nada.lavrac}@ijs.si

ABSTRACT

The paper presents a system, LemmaGen, for learning
Ripple Down Rules specialized for automatic generation of
lemmatizers. The system was applied to 14 different
lexicons and produced efficient lemmatizers for the
corresponding languages. Its evaluation on the 14 lexicons
shows that LemmaGen considerably outperforms the
lemmatizers generated by the original RDR learning
algorithm, both in terms of accuracy and efficiency.

1 INTRODUCTION

Lemmatization is the process of determining the canonical
form of a word, called lemma, from its inflectional variants.
Lemmas correspond to headwords in a dictionary. An
alternative approach to abstract the variability of word-
forms is stemming which reduces the word to its root or
stem. For example, in Slovene, the word-forms pisati,
pišem, pišeš, pišemo have a common lemma pisati, and a
common stem pi. For text analysis and knowledge
discovery applications, lemmatization yields more
informative results then stemming. However, both
problems are closely related and the approach described
here can be applied to stemming as well.
The difficulty of lemmatization depends on the language. In
languages with heavy inflection, such as the Slavic
languages, stems can combine with many different suffixes,
and the selection of appropriate ending and its combination
with the stem depends on morphological, phonological and
semantic factors. As a consequence, lemmatization of
highly inflectional languages is considerably more difficult
then the lemmatization of 'simple' languages, such as
English.
In computer science, the problem of stemming and
lemmatization was addressed already in 1968 [1]. For
English, the problem is considered solved by the Porter
stemmer [12]. However, the Porter stemmer was hand
crafted specifically for English and is not applicable to
other languages, specially those with heavy inflection.
Manual development of a lemmatizer requires involvement
of a linguistic expert, and is an impractical and expensive
undertaking. An alternative is to use machine learning tools
for automatic generation of lemmatization rules. There have
already been several approaches to learning lemmatization
rules:
• 1993-2002: A rule induction system ATRIS [8,9]
• 2002: If-then classification rules [7]
• 2002: Naïve Bayes [7]
• 2004: A first-order rule learning system CLog [3]

• 2004: Ripple Down Rule (RDR) learning [10, 11].
This paper is focused on Ripple Down Rule (RDR)
learning. The RDR learning approach was originally
proposed as a methodology for the GARVAN-ES1 expert
system maintenance [2]. The idea is that the rules are
incrementally added to the system. When new examples of
decisions are available, new rules are constructed and
added to the system. However, already existing rules might
contradict some new examples, therefore exceptions to the
original rules have to be added as well.
In this paper we describe an improved Ripple Down Rule
(RDR) learning system called LemmaGen [6], especially
tailored to the problem of word lemmatization. In Section 2
we describe the RDR format, how the rules can be applied
to lemmatization and how is the RDR structure
automatically constructed from the lemmatization examples
by LemmaGen. In Section 3 we describe the application of
LemmaGen to 14 different language lexicons, compare the
results with an alternative RDR implementation, and
evaluate the performance in terms of lemmatization
accuracy, efficiency, and applicability of the approach to
different languages.

2 LEARNING RIPPLE DOWN RULES

RDR rules form a tree-like decision structure with an
obvious interpretation:

if A then C
 except if B then
E
 except if D then
F
else if G then H

Rules and their exceptions are ordered, and the first
condition that is satisfied fires the corresponding rule. In
addition, explanation is also provided. Every `if-then’ rule
is augmented by its explanation in terms of the `because of’
appendix, which lists one or more training examples
covered by the rule (examples which `fire’ for the given
rule), which – in the process of learning - caused the
individual rule to appear in the rule list.
In the case of lemmatization, general concepts that appear
in RDR rules are instantiated to domain specific terms:
• Training examples are pairs (word-form, lemma).
• A rule condition is a suffix of the word-form which

ends the word that fires the rule.

`---> RULE:(suffix("") transform(""-->"") except(3));
 |---> RULE:(suffix("i") transform("i"-->"o") except(4));
 | |---> RULE:(suffix("li") transform("li"-->"ti"));
 | |---> RULE:(suffix("ni") transform("ni"-->"ti"));
 | |---> RULE:(suffix("ti") transform(""-->""));
 | `---> RULE:(suffix("ši") transform("ši"-->"sati"));
 |---> RULE:(suffix("l") transform("l"-->"ti"));
 `---> RULE:(suffix("mo") transform(""-->"") except(2));
 |---> RULE:(suffix("šemo") transform("šemo"-->"sati"));
 `---> RULE:(suffix("šimo") transform("šimo"-->"sati"));

Figure 1: A part of the RDR tree structure, constructed by LemmaGen for the lemmatization of Slovenian words.

• A rule consequent is a transformation which replaces

the word-form suffix by a new suffix, thus forming the
lemma. The transformation is written as {word-form
suffix} -> {lemma suffix}.

Some example RDR rules for the lemmatization of
Slovenian are given in Figure 1.
The original RDR learning algorithm, adapted to learn the
lemmatization rules, and applied and evaluated on the
Slovenian lexicon is described in [10, 11]. We have applied
this RDR algorithm to several additional language lexicons
and investigated the means of possible improvements. The
new algorithm, LemmaGen, implements the following
improvements:
• The original RDR algorithm processes training

examples sequentially and does not take into account
the number of examples covered by individual rules
and their exceptions. As a consequence, a rule high in
the RDR hierarchy (‘default rule’) might cover just a
small fraction of examples with a non-typical
transformation, and have a large number of exceptions
itself. LemmaGen performs lexicographical ordering of
training examples (starting from the end of words) and
orders rules and exceptions by the frequency of
examples.

• As there are identical word-forms with different
lemmas, the nodes in the RDR tree cannot distinguish
between different transformations. The original RDR

algorithm simply selected the first transformation it
encountered, while LemmaGen selects the most
frequent transformation.

• The LemmaGen learning algorithm is considerably
faster then the original RDR. It achieves speedups
between factors 2 and 10, depending on the lexicon
used for learning. Due to more compact RDR trees
produced, the lemmatization is also considerably
faster, between 10 and 40 fold. Improvements in the
efficiency of learning and lemmatization are in Figure
4.

If N is the number of training examples, and M is the length
of the longest word in the lexicon, then the time-complexity
of our learning algorithm is O(2*N*M). The worst-case
time complexity is therefore linear in the number of
examples.

3 APPLICATIONS ON THE MULTEXT-EAST AND
MULTEXT LEXICONS

We have applied LemmaGen on two sets of lexicons,
namely Multext-East [4] and Multext [5] (Multilingual Text
Tools and Corpora) to automatically learn lemmatizers for
different languages. There are altogether 14 lexicons for 12

No. of different

Language No. of
records Morph.forms Lemmas Morph.specs Morph.formsper lemma

Lemmas per
morph.form

Slovenian 557.970 198.507 16.389 2.083 12,63 1,0430
Serbian 20.294 16.907 8.392 906 2,07 1,0285

Bulgarian 55.200 40.910 22.982 338 1,95 1,1002
Czech 184.628 57.391 23.435 1.428 2,55 1,0441

English 71.784 48.460 27.467 135 1,80 1,0206
Estonski 135.094 89.591 46.933 643 2,19 1,1507

French 306.795 232.079 29.446 380 8,01 1,0164
Hungarian 64.042 51.095 28.090 619 2,03 1,1209 MU

LT
EX

T-
 E

AS
T

Romanian 428.194 352.279 39.359 616 9,35 1,0447
English 66.216 43.371 22.874 133 1,93 1,0182
French 306.795 232.079 29.446 380 8,01 1,0164
German 233.858 51.010 10.655 227 4,87 1,0174

MU
LT
EX

T

Italian 145.530 115.614 8.877 247 13,85 1,0636

Spanish 510.709 474.158 13.236 264 36,07 1,0069

Figure 2: Sizes and basic properties of the MULTEXT-EAST and MULTEXT training sets.

East and West European languages (see Figure 2). Each
lexicon contains records of the form (word-form, lemma,
morphological form). The last column (morph. form) was
not used in our experiments, but nevertheless it indicates
the complexity of different languages. One can speculate
that the higher number of morphological forms per lemma
indicates a more complex language. On the other hand, a
higher fraction of lemmas per morphological form (e.g.,
Bulgarian, Estonian, Hungarian) will probably prove to be
more difficult for learning and will result in lower
accuracies. ‘Simpler’ languages with lower number of
lemmas per morphological form (e.g., Spanish, German,
French, English) will likely have better lemmatizers with
higher accuracy. The available number of training
examples and how representative the training examples are
will also affect the accuracy (e.g., there are relatively few
training examples for Serbian).
For learning and testing experiments we used 5-fold cross
validation. For each language, cross validation was
performed 10 times. Both, the original RDR algorithm and
our improved LemmaGen were applied. Results are given
in Figure 3:
• Accuracy – Lemmatization assigns a transformation

(class) to a word-form. If there are P correctly
lemmatized word-forms, and N is the total number of
word-forms, then Acc = P/N.

• Accuracy was tested on the training set (yielding an
optimistic accuracy prediction), testing set (‘realistic’
prediction) and on unknown words from the testing set
(pessimistic prediction). In the last case we made sure
that no two words with the same lemma appear in both,
training and testing set in the same validation step.

• Standard deviation is averaged over all three sets
above. Lower values indicate higher stability of the
learning algorithm.

• Error is a relative decrease of the number of incorrectly
classified examples of LemmaGen relative to the
original RDR. Error = (Acc(RDR) - Acc(LemmaGen))
/ (1 – Acc(RDR)). An Error of -25 means that
LemmaGen commits 25% less incorrect classifications
then RDR.

The results indicate that LemmaGen outperformed the
original RDR in most of the cases, primarily due to the
improvements described in Section 2.
The (reverse) lexicographical ordering of examples and
subsequent use of example frequencies results in the
highest improvement of accuracy on the training set. This
might seem irrelevant since generally we are mostly
concerned with the accuracy on new, unknown examples.
However, in the case of lemmatization and lexicons
provided, it turns out that they mostly cover a typical text
corpora. Therefore, training examples cover most of the
domain, and accuracy on the training set is very relevant for
practical applications of lemmatizers.
We did test this hypothesis on a Slovene corpus of news
agencies texts which comprises almost 900.000 words [6].
It turned out that 84% of the words were covered by the
lexicon used for learning the lemmatizer. Therefore, the
expected accuracy is best computed by using the accuracy
on the training set in 84%, and accuracy on the unknown
words in 16% of the cases. If p is the fraction of words
covered by the learning lexicon then a realistic estimate of
the expected accuracy is: Acc = p*Acc(optimistic) + (1-
p)*Acc(pessimistic). In the case of Slovenian, we get: Acc
= 84%*97.61% + 16%*82.12% = 95.13%. This is slightly
above the actual accuracy on the testing set.

Accuracy (%)

Learning set
(optimistic)

Test set
(realistic)

Unkown words
(pessimistic)

Standard
deviation (%) Language

RDR LemmaGen Errors RDR LemmaGen Errors RDR LemmaGen Errors RDR LemmaGen Errors
Slovenian 95,35 97,61 -48,6 92,59 94,38 -24,1 80,68 82,12 -7,5 0,029 0,015 -47,88

Serbian 94,36 97,86 -62,1 70,34 73,49 -10,6 64,26 65,85 -4,5 0,150 0,059 -60,44
Bulgarian 91,22 93,68 -28,0 74,52 76,10 -6,2 69,29 71,52 -7,2 0,107 0,074 -30,29

Czech 96,61 97,89 -37,8 92,77 93,66 -12,3 78,09 81,13 -13,9 0,040 0,023 -41,02
English 97,75 98,84 -48,3 92,05 93,07 -12,8 89,27 91,03 -16,4 0,038 0,021 -45,27

Estonian 86,81 89,51 -20,5 73,52 73,93 -1,6 66,69 66,54 0,5 0,066 0,049 -25,83
French 96,72 98,80 -63,5 91,78 92,94 -14,1 86,80 88,22 -10,8 0,032 0,015 -54,19

Hungarian 90,23 91,88 -16,9 74,82 74,33 2,0 72,73 72,86 -0,5 0,091 0,072 -21,03MU
LT
EX

T-
 E

AS
T

Romanian 94,96 96,75 -35,6 78,16 79,17 -4,6 73,48 74,14 -2,5 0,036 0,033 -7,27
English 98,20 99,00 -44,5 93,29 94,14 -12,7 90,82 92,48 -18,1 0,052 0,029 -45,17
French 96,72 98,80 -63,5 91,79 92,95 -14,2 86,85 88,25 -10,7 0,034 0,012 -63,71
German 95,88 98,70 -68,5 95,06 97,13 -41,9 79,56 84,15 -22,4 0,062 0,026 -58,54
Italian 93,75 95,58 -29,2 85,87 86,08 -1,5 82,05 82,11 -0,3 0,041 0,040 -3,26MU

LT
EX

T

Spanish 99,10 99,48 -42,1 94,65 95,73 -20,1 94,32 95,45 -19,9 0,007 0,008 7,42

Figure 3: Comparison of accuracy between the original RDR lemmatizer and the improved LemmaGen.

Results in Figure 3 also enable the analysis of different
languages. The actual accuracies are mostly as expected,
except for Hungarian and Estonian. It turns out that the two
languages are not Indo-European, but belong to the Finno-
Ugric language group (along with Finnish). In these

languages words can be composed from morphemes in a
large number of ways. Consequently, lemmatization by
suffix transformation only appears to be of limited value
and a more expressive transformation language is needed.
Figure 4 gives the efficiency comparison.

Learning Lemmatization

RDR LemmaGen RDR LemmaGen Language
sec ms/rec sec ms/rec

Speedup
factor sec ns/rec sec ns/rec

Speedup
factor

Slovenian 26,80 60,0 3,02 6,8 8,9 2,53 22.633 0,10 867 26,1
Serbian 0,23 14,4 0,09 5,4 2,7 0,03 8.089 0,00 643 12,6

Bulgarian 2,03 46,0 0,32 7,2 6,4 0,30 26.958 0,01 670 40,2
Czech 4,42 29,9 0,56 3,8 7,9 0,42 11.279 0,03 722 15,6

English 0,43 7,5 0,23 4,0 1,9 0,10 6.946 0,01 752 9,2
Estonian 4,15 38,4 0,68 6,3 6,1 0,41 15.226 0,02 800 19,0

French 6,46 26,3 1,72 7,0 3,7 1,35 21.995 0,06 898 24,5
Hungarian 0,99 19,4 0,23 4,5 4,3 0,12 9.575 0,01 718 13,3MU

LT
EX

T-
 E

AS
T

Romanian 183,12 534,6 7,23 21,1 25,3 43,51 508.043 0,08 911 557,7
English 0,37 6,9 0,21 3,9 1,8 0,08 6.017 0,01 724 8,3
French 7,02 28,6 1,56 6,3 4,5 1,34 21.819 0,05 877 24,9
German 10,22 54,6 0,80 4,3 12,9 0,60 12.857 0,04 788 16,3

Italian 1,18 10,1 0,80 6,9 1,5 0,26 8.821 0,03 860 10,3MU
LT
EX

T

Spanish 22,97 56,2 3,88 9,5 5,9 3,57 34.923 0,09 894 39,1

Figure 4: Comparison of the learning and lemmatization efficiency between the original RDR and LemmaGen.

6 CONCLUSION

We have developed an improved learning algorithm for
automatic generation of lemmatization rules in the form of a
RDR tree, named LemmaGen. The algorithm has linear time
complexity, is very efficient, and can produce very accurate
lemmatizers from sufficiently large lexicons. The whole
LemmaGen system is freely available under the GNU open
source license from http://kt.ijs.si/software/LemmaGen .

References

 [1] Beth, L.J. Development of a stemming algorithm.
Mechanical Translation and Computational Linguistic
11, pp. 22–31, 1968.

 [2] Compton, P., Jansen, R. Knowledge in Context: a
strategy for expert system maintenance. Proc. 2nd
Australian Joint Artificial Intelligence Conference, pp.
292–306, 1988.

[3] Erjavec, T. Džeroski, S. Machine Learning of
Morphosyntactic Structure: Lemmatising Unknown
Slovene Words. Applied Artificial Intelligence 18(1),
pp. 17-40, 2004.

[4] Erjavec, T. MULTEXT-East Version 3: Multilingual
Morphosyntactic Specifications, Lexicons and Corpora.
Proc. 4th International Conference on Language
Resources and Evaluation LREC-2004, pp. 1535-1538,
2004.

[5] Ide, N., Véronis, J. MULTEXT: Multilingual Text
Tools and Corpora. Proc. 15th Conference on
Computational Linguistics 1, pp. 588-592, 1994.

[6] Juršič, M. Efficient Implementation of a system for
Construction, Application and Evaluation of RDR
Type Lemmatizers. Diploma Thesis, Faculty of
Computer and Information Science , University of
Ljubljana, 2007.

 [7] Mladenić, D. Automatic Word Lemmatization. Proc.
5th International Multi-Conference Information Society
IS-2002 B, pp.153-159, 2002.

 [8] Mladenić, D. Combinatorial Optimization in Inductive
Concept Learning. Proc. 10th International Conference
on Machine Learning ICML-1993, pp. 205-211, 1993.

 [9] Mladenić, D. Learning Word Noramlization Using
Word Suffix and Context from Unlabeled Data. Proc.
19th International Conference on Machine Learning
ICML-2002, pp. 427-434, 2002.

[10] Plisson, J., Lavrač, N., Mladenić, D. A rule based
approach to word lemmatization. Proc. 7th
International Multi-Conference Information Society IS-
2004 C, pp. 83-86, 2004.

[11] Plisson, J., Lavrač, N., Mladenić, D., Erjavec, T.
Ripple Down Rule Learning for Automated Word
Lemmatisation. AI Comm., in press, 2007.

[12] Porter, M.F. An Algorithm for Suffix Stripping.
Program 14(3), str. 130−137, 1980.

