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Abstract. In this paper, we present an approach to ontology querying for the 
purpose of supporting the semantic annotation process. We present and evaluate 
two algorithms, (i) a baseline algorithm and (ii) a graph-based algorithm based 
on the bag-of-words text representation and PageRank. We evaluate the two 
approaches on a set of semantically annotated geospatial Web services. We 
show that the graph-based algorithm significantly outperforms the baseline al-
gorithm. The devised solution is implemented in Visual OntoBridge, a tool that 
provides an interface and functionality for supporting the user in the semantic 
annotation task. The improvement over the baseline is also reflected in practice.  

1 Introduction and Motivation 

Semantic annotations are formal, machine-readable descriptions that enable efficient 
search and browse through resources and efficient composition and execution of Web 
services. It this work, the semantic annotation is defined as a set of interlinked do-
main-ontology elements associated with the resource being annotated. For example, 
let us assume that our resource is a database table. We want to annotate its fields in 
order to provide compatibility with databases from other systems. Further on, let us 
assume that this table has a field called “employee_name” that contains employee 
names (as given in Fig. 1, left side). On the other hand, we have a domain ontology 
containing knowledge and vocabulary about companies (an excerpt is given in Fig. 1, 
right side). In order to state that our table field in fact contains employee names, we 
first create a variable for the domain-ontology concept Name and associate it with the 
field. We then create a variable for an instance of Person and link it to the variable for 
Name via the hasName relation. Finally, we create a variable for an instance of Com-
pany and link it to the variable for Person via the hasEmployee relation. Such annota-
tion (shown in the middle in Fig. 1) indeed holds the desired semantics: the annotated 
field contains names of people which some company employs (i.e., names of employ-
ees).  

Note that it is possible to instantiate any of the variables with an actual instance 
representing a real-world entity. For example, the variable ?c could be replaced with 



an instance representing an actual company such as, for example, Microsoft  Com-
pany. The annotation would then refer to “names of people employed at Microsoft”. 

The annotation of a resource is a process in which the user (i.e., the domain expert) 
creates and interlinks domain-ontology instances and variables in order to create a 
semantic description for the resource in question. Formulating annotations in one of 
the ontology-description languages (e.g., WSML [1]) is not a trivial task and requires 
specific expertise.  

 

Fig. 1. Annotation as a “bridge” between a resource and the domain ontology. 

In the European projects SWING1 and ENVISION2, we have for this reason devel-
oped Visual OntoBridge (VOB) [2], a system that provides a graphical user interface 
and a set of machine learning algorithms that support the user in the annotation task. 
VOB allows the user to (i) visualize the resource and the domain ontology (much like 
this is done in Fig. 1), (ii) create variables by clicking on the domain-ontology con-
cepts, and (iii) interlink the variables and/or instances by “drawing” relations between 
them. 

In addition, the user is able to enter a set of natural-language (Google-like) queries, 
according to which the system provides a set of “building blocks” that can be used for 
defining the annotation. 

The main purpose of this paper is to present and evaluate the developed ontology 
querying facilities implemented in VOB. The paper is organized as follows. In Sec-
tion 2, we present two approaches to ontology querying, the baseline approach and the 
proposed graph-based approach. We evaluate these two approaches in Section 3 and 
present our conclusions in Section 4. We discuss some related work in Section 5. 

                                                            
1  Semantic Web Services Interoperability for Geospatial Decision Making (FP6-26514), 

http://138.232.65.156/swing/ 
2  Environmental Services Infrastructure with Ontologies (FP7-249120), http://www.envision-

project.eu/ 



2 Ontology Querying Approach 

Establishing annotations manually is not a trivial task, especially if the domain ontol-
ogy contains a large number of entities and/or the user is not fully familiar with the 
conceptualizations in the ontology. VOB provides functionality for querying the do-
main ontology with the purpose of finding the appropriate concepts and triples. A 
triple in this context represents two interlinked instance variables (e.g., ?Company 
hasEmployee ?Person) and serves as a more complex building block for defining 
semantic annotations. 

The process of querying the domain ontology is as follows. The user enters a set of 
Google-like natural-language queries. The system then provides the user with two 
lists—the list of proposed concepts and the list of proposed triples. The user inspects 
the two lists, from top to bottom, and selects the relevant entities. If the required con-
cepts/triples are not found at the top of the list, the user should consider reformulating 
the queries. The selected concepts and triples are transferred to the graphical annota-
tion editor, where the user is able to revise and extend the annotation as required. 

VOB employs text mining techniques, the PageRank algorithm, and consults a 
Web search engine to populate the two lists of recommended building blocks. In the 
following sections, we first present two important technical aspects of our ontology 
querying approach and later on discuss the developed ontology querying algorithms in 
more details. 

2.1 Text Preprocessing and PageRank 

In this section, we present two important aspects of our ontology querying procedure, 
i.e., the bag-of-words vector representation of documents and the (Personalized) Pag-
eRank algorithm. 

Bag-of-Words Vectors and Cosine Similarity.  
Most text mining approaches rely on the bag-of-words vector representation of docu-
ments. To convert text documents into their bag-of-words representation, the docu-
ments are first tokenized, stop words are removed, and the word tokens are stemmed 
[4, 5]. N-grams (i.e., word sequences of up to a particular length) can be considered in 
addition to unigrams [17]. Infrequent words and terms (n-grams) are removed from 
the vocabulary (regularization). The remaining words and terms represent the dimen-
sions in a high-dimensional bag-of-words space in which every document is repre-
sented with a (sparse) vector. The words and terms in this vector are weighted accord-
ing to the TF-IDF weighting scheme (TF-IDF stands for “term frequency—inverse 
document frequency”; see http://en.wikipedia.org/wiki/Tf*idf). A TF-IDF weight 
increases proportionally to the number of times a word appears in the document, but 
is decreased according to the frequency of the word in the entire document corpus.  

Cosine similarity is normally used to compare bag-of-words vectors. It measures 
the cosine of the angle between two vectors. Note that cosine similarity is equal to dot 
product, provided that the two vectors are normalized in the Euclidean sense. 



PageRank and Personalized PageRank. 
PageRank [6] is a link analysis algorithm that assigns a numerical weighting to each 
element of a set of interlinked documents, such as the World Wide Web, with the 
purpose of “measuring” its relative importance within the set. The algorithm can be 
applied to any collection of entities with reciprocal references. 

PageRank effectively computes the importance of a vertex in the graph with re-
spect to a set of source vertices. The way PageRank is typically used, every vertex is 
considered a source vertex. This means that we are interested in the importance of 
vertices in general (i.e., with respect to the entire set of vertices). Note that it is possi-
ble to modify the algorithm to limit the set of source vertices to several selected verti-
ces or only one vertex. This variant of PageRank is called Personalized PageRank 
(P-PR). “Personalized” in this context refers to using a predefined set of nodes as the 
starting nodes for random walks. At each node, the random walker decides whether to 
teleport back to the source node (this is done with the probability 1 – d where d is the 
so-called damping factor) or to continue the walk along one of the edges. The proba-
bility of choosing a certain edge is proportional to the edge’s weight compared to the 
weights of the other edges connected to the node. In effect, for a selected source node 
i in a given graph, P-PR computes a vector of probabilities with components PRi(j), 
where j is one of the nodes in the graph. PRi(j) is the probability that a random walker 
starting from node i will be observed at node j at an arbitrary point in time. 

2.2 Baseline Ontology Querying Algorithm 

In [3], we presented and evaluated several term matching techniques that serve as the 
basis for automating the annotation process. To produce the two lists of recommenda-
tions as discussed in the previous section, it is possible to directly apply the term 
matching techniques. The algorithm is as follows: 

1. Each concept and each possible domain-relation-range triple in the domain ontolo-
gy is grounded through a Web search engine [3]. Grounding a term means collect-
ing a set of documents and assigning them to the term. In our case, the terms are 
the concept and relation labels in the domain ontology. With the ontology being 
grounded, it is possible to compare a natural-language query to the grounded do-
main-ontology entities. To ground a concept, the search engine3 is queried with the 
corresponding concept label. To ground a triple, on the other hand, the search en-
gine is queried with the search term created by concatenating the label of the rela-
tion domain, the label of the relation, and the label of the relation range, respective-
ly.  

2. The groundings are converted into TF-IDF bag-of-words vectors [5]. Each vector 
is labeled with the corresponding domain ontology entity (either the concept or the 
triple label). These vectors constitute the training set (i.e., the set of labeled exam-
ples). 

                                                            
3  We use the Yahoo search engine through their API. 



3. The training set is used to train the centroid classifier [7]. Each centroid is comput-
ed as the l2-normalized sum of the corresponding TF-IDF vectors. 

4. The set of queries, provided by the user, is first grounded through a Web search 
engine. For each query, the corresponding centroid TF-IDF vector is computed. 
These TF-IDF vectors constitute the test set (i.e., the set of unlabeled examples). 

5. Given a bag-of-words vector from the test set, the centroid classifier is employed to 
assign a classification score to each target class, that is, to each ontology entity. 
These scores are aggregated over the entire set of query vectors.  

Given the set of bag-of-words vectors representing the user’s queries, the classifier is 
thus able to sort the domain ontology concepts and triples according to the relevance 
to the queries. This gives us the two required lists of annotation building blocks: the 
list of concepts and the list of triples. 

2.3 Incorporating Ontology Structure: The OntoBridge Approach 

To establish the baseline discussed in the previous section, we treated the domain 
ontology as a flat list of entities. What we did not take into account is that these enti-
ties are in fact interlinked. This means that the domain ontology can be represented as 
a graph in which vertices are entities and edges represent links. In this section, we 
show how we can couple text similarity assessments with PageRank to exploit the 
ontology structure for determining relevant ontology entities. 

To employ PageRank, the domain ontology is first represented as a graph. This can 
be done in numerous different ways. Naively, we could represent each concept with a 
vertex and interconnect two vertices with an undirected edge if there would exist at 
least one domain-relation-range definition involving the two concepts. However, 
since only the concepts would then be represented with vertices and would thus be the 
only entities able to “accumulate” rank, we would not be able to rank the triples. With 
a slightly more sophisticated transformation approach, it is possible to include the 
triples as well. This type of transformation is illustrated in Fig. 2. We create additional 
vertices (i.e., vertices representing triples; drawn as squares and triangles in the fig-
ure) to “characterize” all possible relations between the two concepts. We also include 
vertices representing triples based on inverse relations (drawn as triangles in the fig-
ure) even though they are not explicitly defined in the domain ontology. The reason 
for this is that we do not want the random walker to reach a triple vertex and then 
head back again; we want it to reach the other concept through a pair of directed edg-
es.  

In more details, the proposed ontology-to-graph transformation process is as fol-
lows: 

1. Represent each concept with a vertex. 
2. Represent each triple c1-r-c2  T, where T is the set of triples in the domain ontol-

ogy, with two vertices: one representing c1-r-c2 and one representing the corre-
sponding inverse relation, c2-r

–1-c1.  
3. For each pair of concepts c1, c2 and for each relation r such that c1-r-c2  T, do the 

following: 



─ Connect the vertex representing c1 to the vertex representing c1-r-c2 with a di-
rected edge and weight it with C(Q, c1-r-c2). Here, Q = {q1, q2, q3…} is a set of 
natural-language queries and C(Q, c1-r-c2) is computed as qQC(q, c1-r-c2). 
C(a, b) refers to cosine similarity between the centroid of groundings of con-
cept/relation a and the centroid of groundings of concept/relation b. A centroid 
is computed by first converting the corresponding groundings to TF-IDF feature 
vectors and then computing the l2-normalized sum of these feature vectors. 

─ Connect the vertex representing c1-r-c2 to the vertex representing c2 with a di-
rected edge and weight it with 1. 

─ Connect the vertex representing c2 to the vertex representing c2-r
–1-c1 with a di-

rected edge and weight it with C(Q, c1-r-c2). 
─ Connect the vertex representing c2-r

–1-c1 to the vertex representing c1 with a di-
rected edge and weight it with 1. Note that since this is the only edge going out 
of this vertex, its weight can in fact be an arbitrary positive value. This is be-
cause PageRank normalizes the weights of the outgoing edges at each vertex so 
that they sum up to 1. 

4. Represent each bag-of-words vector qi, representing the test set Q = {q1, q2, q3…}, 
with a vertex. Note that the test set represents the user queries. 

5. For each bag-of-words vector qi representing the query and each concept cj, if 
C(qi, cj) > 0, create a directed edge from qi to cj and weight it with C(qi, cj). 

This process is illustrated in Fig. 2 where wi represent the weights computed in Step 3 
of the presented ontology-to-graph transformation process. 

 

Fig. 2. Representing ontologies as graphs. 

When the graph is created and properly weighted, we run PageRank to rank vertices 
(i.e., concepts and triples) according to the relevance to the query. The vertices repre-
senting the query are therefore used as the source vertices for PageRank. Note that a 
triple c1-r-c2  T “accumulates” the ranking score in two different vertices: in the 
vertex representing c1-r-c2 and in the vertex representing c2-r

–1-c1. It is thus necessary 
to sum the ranking scores of these two vertices to obtain the ranking score of the cor-
responding triple.  



With the discussed procedure, every concept and every triple is ranked by Pag-
eRank. We can therefore populate the two lists of annotation building blocks and 
present these to the user. 

3 Evaluation of the Ontology Querying Algorithms 

We evaluated our approach to ontology querying in the context of a project commit-
ted to develop an infrastructure for handling geospatial Web services. In the devised 
system, geo-data is served by a database of spatial-information objects through stand-
ardized interfaces. One of such standard interfaces, defined by the Open Geospatial 
Consortium (OGC), is the Web Feature Service (WFS) [16]. WFS are required to 
describe the objects that they provide (e.g., rivers, roads, mountains…). These objects 
are also termed “features”. Each feature is described with a set of attributes (e.g., 
water bodies can have depth, temperature, water flow…).  

We used a set of WFS schemas, enriched with the golden-standard annotations and 
user queries, to evaluate the developed ontology querying algorithms. The evaluation 
process and the evaluation results are presented in the following sections. 

 

Fig. 3. The golden-standard acquisition form for the feature type “regions”. The feature type 
(green box) with all its attributes (yellow boxes) is visualized in the left-hand side, the corre-
sponding queries, provided by one of the participants, can be seen in the right-hand side. 

3.1 Golden Standard 

For the experiments, we acquired a set of Web Feature Services (WFS). Each WFS 
was accompanied with the corresponding semantic annotation and several sets of user 
queries. The service schemas were annotated with the SWING ontology (available at 
http://first-vm2.ijs.si/envision/res/swing.n3). It contains 332 concepts, 141 relations, 
and 4,362 domain-relation-range triples (taking the basic triple-inference rules into 
account). We asked the domain experts at Bureau of Geological and Mining Research 
(BRGM, France) to provide us with natural-language queries with which they would 
hope to retrieve relevant building blocks for the annotations. For this purpose, we 
gave each of the participating domain experts a set of forms presenting the WFS 



schemas. A participant had to describe each feature type with a set of English queries, 
one query per attribute and one additional query for the feature type itself. Fig. 3 
shows one of such golden-standard acquisition forms. 

We received input from 3 domain experts, each assigning queries to 7 feature types 
(41 queries altogether by each of the participants). We have identified 114 concepts 
and 96 triples (unique in the context of the same feature type) relevant for annotating 
the feature types involved in the golden-standard acquisition process. Since the ac-
quired golden standard thus contained both, the queries and the corresponding build-
ing blocks, we were able to assess the quality of the ontology querying algorithms by 
“measuring” the amount of golden-standard building blocks discovered in the domain 
ontology, given a particular set of queries. We measured the area under the Receiver 
Operating Characteristic (ROC) curve to evaluate the lists produced by the algorithm. 
We discuss the evaluation process and present the results in the following section. 

 

Fig. 4. Evaluation results for the baseline methods. 

3.2 Evaluation of the Baseline Algorithm 

In this section, we establish the baselines and determine the setting in which the base-
line algorithm, presented in Section 2.2, performs best. Through the evaluation, we 
determined the number of search-result snippets used for grounding domain ontology 
entities and user queries. We experimented with 10, 25, 50, and 100 documents per 
grounding. 

The results are shown in Fig. 4. The chart in the figure presents the evaluation re-
sults for the list of proposed concepts and the list of proposed triples. Both series 
show the average area under the ROC curve (y axis) with respect to the number of 
documents per grounding (x axis). 

From the results, we can conclude that the concepts—as well as the queries when 
used for ranking the concepts—should be grounded with at least 50 documents 
(91.47% AUC). As we can see from the chart, at around 50 documents, all available 
useful information is already contained in the collected documents. On the other hand, 

0.9147

0.8952

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0 20 40 60 80 100 120

A
U
C

Number of documents

Baseline concepts Baseline triples



the triples—as well as the queries when used for ranking the triples—should be 
grounded with only around 10 documents (89.52% AUC). We believe this is because 
the triples are more precisely defined than the concepts (i.e., the corresponding search 
terms contain more words), which results in a smaller number of high-quality search 
results.  

 

Fig. 5. Evaluation results for the graph-based methods. 

3.3 Evaluation of the Graph-Based Algorithm 

When evaluating the graph-based algorithm, the most important parameter to tune is 
the PageRank damping factor. We experimented with the damping factor values of 
0.2, 0.4, 0.6, 0.8, and 0.9. The results are presented in Fig. 5. The chart in the figure 
presents the evaluations result for the list of proposed concepts and the list of pro-
posed triples. Both series represent the average area under the ROC curve (y axis) 
with respect to the value of the damping factor (x axis). The chart also shows the 
baselines (see the previous section). 

When evaluating the baseline algorithm, we learned that the concepts should be 
grounded with 50 documents each, so should the queries when used to rank the con-
cepts. On the other hand, the triples should be grounded with only 10 documents each, 
so should the queries when used to rank the triples. The evaluation of the graph-based 
algorithms fully confirms these findings at low damping factor values. This is ex-
pected because low damping factor values mean putting less emphasis on the struc-
ture—the random walker “gets tired” after only a few steps and “jumps” back to a 
source vertex. However, as we increase the damping factor towards the values at 
which the graph-based algorithms perform best, we achieve better results when simp-
ly grounding concepts, triples, and queries with 50 documents each. Note that this 
grounding size setting was also used for computing the results in Fig. 5. 

The damping factor should be set to 0.6 for the concepts and 0.8 for the triples. 
This means that we can either run PageRank twice or set the damping factor to 0.7 to 
increase the speed at the slight expense of quality on both sides. The rewarding fact is 
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that we managed to significantly beat the baselines. We have increased the average 
AUC for 5.48% on the concepts and for 6.82% on the triples. This presents a big dif-
ference. For example, if the correct triples were distributed amongst the top 597 of 
4,362 suggestions with the baseline algorithm, they will now be distributed amongst 
the top 319 suggestions (almost half less). Also, we believe that the user will have to 
inspect far less than 319 items to find the required building blocks as he will be able 
to interact with the system (i.e., reformulate queries to direct the search). To support 
this claim, we computed the average AUC by taking, for each annotation, only the 
most successful annotator into account (i.e., the annotator that formulated the query 
resulting in the highest AUC). In this modified setting, the average AUC on the triples 
rose to 98.15%. This reduces the number of items that need to be inspected from 319 
to 161 (of 4,362). The improvement over the baseline method is also reflected in prac-
tice. Several user queries and the corresponding retrieved concepts (top 10 according 
to the relevance) from the SWING ontology are shown in Table 1. 

Table 1. Several user queries and the corresponding retrieved concepts. 

User query Retrieved concepts 
“rare birds, sequoia forests, natural 
parks” 

ImportantBirdArea, AviFauna, Bird, 
NationalProgram, QuarrySite, Lake, 
NationalCoordinator, ProtectedArea, 
NaturalSite, Mammal… 

“protected fauna and flora in France” WildFauna, WildFlora, Fauna, Flora, 
ProtectedArea, AviFauna, Znieff 4 , 
ZnieffTypeI, ZnieffTypeII, Natural-
Site…

“locaiton5 of open-pit mine” AllowedMiningDepth, QuarrySite, Leg-
islation, QuarryAdministration, Quarry-
SiteManagement, MineralResource, 
QuarryLocation, MineralProperty, Con-
structionApplication, Location… 

4 Conclusions 

Semantic annotations are formal, machine-readable descriptions that enable efficient 
search and browse through resources and efficient composition and execution of Web 
services. Formulating annotations in one of the ontology-description languages is not 
a trivial task and requires specific expertise. In this paper, we presented an approach 
to ontology querying for the purpose of supporting the semantic annotation process. 
In the approach, we use the bag-of-words text representation, employ a Web search 

                                                            
4  ZNIEFF stands for “Zone naturelle d’intérêt écologique, faunistique et floristique” and 

denotes protected natural areas in France. This example demonstrates that we are able to use 
descriptive queries to discover concepts labeled with acronyms. 

5  This example shows that our ontology-querying approach is even resilient to typos. 



engine to ground ontology objects and user queries with documents, and run Pag-
eRank to take the ontology structure into account.  

We evaluated the approach in the context of geospatial Web services. In the evalu-
ation process, we used a set of Web Feature Service (WFS) schemas, enriched with 
the golden-standard annotations and user queries. In the experiments, we varied the 
number of grounding documents and PageRank damping factor. We concluded that it 
is best to ground the concepts, triples, and user queries with 50 documents each and to 
set the damping factor to 0.7. The achieved AUC for retrieving concepts was 96.94% 
and for retrieving triples, 96.34%. With these results, we managed to achieve a signif-
icant improvement over the baselines. 

5 Related Work 

The main contribution of this paper is a novel ontology querying algorithm. In this 
section, we overview several techniques that can be used to assess the relevance of an 
object (with respect to another object or a query) or the similarity between two objects 
in a network. Some of these techniques are: spreading activation [8], hubs and author-
ities (HITS) [9], PageRank and Personalized PageRank [6], SimRank [10], and diffu-
sion kernels [11]. These methods are extensively used in information-retrieval sys-
tems. The general idea is to propagate “authority” from “query nodes” into the rest of 
the graph or heterogeneous network, assigning higher ranks to more relevant objects. 

ObjectRank [12] employs global PageRank (importance) and Personalized Pag-
eRank (relevance) to enhance keyword search in databases. Specifically, the authors 
convert a relational database of scientific papers into a graph by constructing the data 
graph (interrelated instances) and the schema graph (concepts and relations). To speed 
up the querying process, they precompute Personalized PageRank vectors for all pos-
sible query words. HubRank [13] is an improvement of ObjectRank in terms of space 
and time complexity without compromising the accuracy. It examines query logs to 
compute several hubs for which PPVs are precomputed. In addition, instead of pre-
computing full-blown PPVs, they compute fingerprints [14] which are a set of Monte 
Carlo random walks associated with a node.  

Stoyanovich et al. [15] present a ranking method called EntityAuthority which de-
fines a graph-based data model that combines Web pages, extracted (named) entities, 
and ontological structure in order to improve the quality of keyword-based retrieval of 
either pages or entities. The authors evaluate three conceptually different methods for 
determining relevant pages and/or entities in such graphs. One of the methods is 
based on mutual reinforcement between pages and entities, while the other two ap-
proaches are based on PageRank and HITS, respectively. 
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