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Abstract

The paper describes an interplay between numerical and qualitative mod-

els represented in a uniform Constraint Logic Programming framework. In

the context of model-based diagnosis a detailed, numerical model is used to

discriminate between competing diagnoses at the abstract, qualitative level.

A distinguishing feature of our approach is that the abstract proof is used

to guide the veri�cation at the detailed level, and to refute impossible re-

�nements as soon as possible by introducing additional constraints on the

variables. An implemented instance of this framework, CLP(<), which is

used in the paper, comprises a solver for systems of linear equations and

inequalities over real-valued variables.

1 Introduction

In model-based approach to diagnosis one starts with a model of a real-

world system which explicitly represents the structure and behavior of com-

ponents of the system (e.g., de Kleer & Williams 1987, Reiter 1987). When

the system's actual behavior di�ers from the expected behavior, the diag-

nostic problem arises. The model is then used to identify the set of faulty

components which account for the observed behavior.

In our view there are two major obstacles which prevented a wider ap-

plication of model-based techniques to real-world problems. First, models

are usually restricted to qualitative descriptions. GDE (de Kleer & Williams
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1987), for example, is unable to solve simultaneous equations, which makes

it unpractical for a large class of applications. Second, the complexity of

algorithms which �nd all minimal diagnoses is exponential in the number of

components. This problem was addressed only recently, either by focusing

just to a small number of most probable diagnoses (de Kleer & Williams

1990, Mozetic & Holzbaur 1991a), by interleaving diagnosis and treatment

(Friedrich et al. 1990), or by introducing abstractions (Gallanti et al. 1989,

Mozetic 1990).

In the paper we address both issues, the integration of numerical and

qualitative models, and the reduction of diagnostic complexity through ab-

stractions. The following is an outline of our approach:

1. speci�cation of a numerical model of the normal behavior of the system,

2. speci�cation of abstraction operators,

3. automatic derivation of an abstract, qualitative model,

4. addition of a weak fault model (which makes no speci�c assumption

about the abnormal behavior) to the normal behavior model,

5. for given observations, computing minimal diagnoses at the abstract

level,

6. discriminating between alternative abstract diagnoses by referring back

to the numerical model,

7. using the abstract proof to refute impossible re�nements.

The emphasis of the paper is on items 6 and 7, i.e., on the interplay

between the qualitative and numerical models. While the whole scheme is

domain independent, we illustrate it on an example of an electrical circuit

| an OR gate realized with three transistors.

In section 2 we present CLP(<), a language suitable for numerical mod-

eling within the logic programming framework (Holzbaur 1990). It should

be noted that CLP(<) is only an instance of the general Constraint Logic

Programming scheme (Ja�ar et al. 1986).

In section 3 we de�ne three abstraction operators. They specify how a

detailed, numerical model can be simpli�ed by collapsing constants (thus

de�ning a quantity space), by deleting irrelevant arguments (i.e., model pa-

rameters), and by unfolding non-operational predicates (i.e., ignoring the

internal structure of some model components). Abstraction operators are

then used to automatically derive an abstract, qualitative model of the sys-

tem (Mozetic & Holzbaur 1991b). Abstractions turned out to be useful in

reducing the search space in theorem proving (Plaisted 1981, Giunchiglia

& Walsh 1989), planning (Sacerdoti 1974, Korf 1987), and in model-based

diagnosis (Gallanti et al. 1989, Mozetic 1990).
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Section 4 outlines the hierarchical diagnosis. Since the original, numerical

model and the derived, qualitative model comprise just the normal behavior

of the system, �rst a weak fault model is added. This makes no assumption

about how components can fail, and is characteristic for the consistency-

based approach to diagnosis (e.g., Reiter 1987, de Kleer & Williams 1987).

For given observations, di�erent than expected, the diagnostic algorithm

refers to the qualitative model and computes abstract diagnoses. These

identify minimal sets of components which, if assumed to be faulty, render

the model behavior consistent with the observations. However, there might

be alternative, competing diagnoses, and the abstract model cannot discrim-

inate between them without additional information. At this point, one can

refer back to the detailed, numerical model.

Section 5 addresses the mapping back of the abstract proof (Giunchiglia

& Walsh 1990) and constraint resolution at the numerical level. Not only are

the abstract diagnoses re�ned by applying the abstraction operators in the

`inverse' direction, but the abstract proof is used as well. Its role is to refute

impossible derivations at the detailed level as soon as possible. A refutation

amounts to determining the unsatis�ability of a system of linear equations

and inequalities over real-valued variables, and is realized by the Shostak's

`Loop Residue' algorithm (Shostak 1981).

2 Modeling with CLP(<)

We represent models by Constraint Logic Programs (CLP, Ja�ar et al. 1986)

which are logic programs extended by interpreted functions. A proper im-

plementation of a CLP scheme allows for an easy integration of specialized

problem solvers into the logic programming framework. For example, in our

implementation (Holzbaur 1990) specialized solvers communicate with the

standard Prolog interpreter via extended semantic uni�cation and are imple-

mented in Prolog themselves. So far, three solvers have been implemented:

constraint propagation over �nite domains by forward checking, CLP(B) |

a solver over boolean expressions, and CLP(<) | a solver for systems of

linear equations and inequalities over <eals.

We illustrate the diagnostic algorithm on a model of an OR gate. The

initial numerical model of anOR gate (predicate org

n

) is �rst abstracted into

a qualitative model (org

q

, Figure 1), and then both are used for diagnosis.

The OR gate is realized by three npn transistors and resistors. The model

relates qualitative states of transistors to real-valued voltages and currents.

The model components are represented by atomic formulas, and connections

between the components by shared variables.

The description of an npn transistor is from Heintze, Michaylov & Stuckey

(1987b). The transistor operates in three states: cuto�, saturated, and ac-

tive. In digital circuits usually only the cuto� and saturated states are of

interest, and therefore the active state, relevant in ampli�er circuits, is omit-
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Figure 1: A numerical and a qualitative model of an OR gate.

ted. Vx and Ix denote the real-valued voltages and currents for the base,

collector and emmiter, respectively. Constants Beta, Vbe, and Vcesat are

device parameters.

org

n

( comps(S1,S2,S3), obs(X,Y,Z) )  

norg

n

( S1, S2, X, Y, W ),

inv

n

( S3, W, Z ).

norg

n

( S1, S2, b(Vin1,Iin1), b(Vin2,Iin2), b(V,I) )  

switch

n

( S1, Vin1, Iin1, V, Ic1 ),

switch

n

( S2, Vin2, Iin2, V, Ic2 ),

Ic1+Ic2=Ic,

power

n

( Ic, V, I ).

inv

n

( S, b(V,I), b(Vout,Iout) )  

switch

n

( S, V, I, Vout, Ic ),

power

n

( Ic, Vout, Iout ).

switch

n

( S, Vin, Iin, Vc, Ic )  

Ve=0, Beta=100, Vbe=0.7, Vcesat=0.3,

resistor

n

( Vin, Vb, Iin, 4700 ),

transistor

n

( S, Beta, Vbe, Vcesat, Vb, Vc, Ve, Iin, Ic, Ie ).

power

n

( Ic, Vout, Iout )  

Vcc=5, Ic+Iout=Icc,

resistor

n

( Vcc, Vout, Icc, 470 ),

0�Iout, Iout�0.006.

resistor

n

( V1, V2, I, R )  R>0, V1�V2=I*R.

transistor

n

( cuto�, Beta, Vbe, Vcesat, Vb, Vc, Ve, Ib, Ic, Ie )  

Vb<Ve+Vbe, Ib=0, Ic=0, Ie=0.
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transistor

n

( saturated, Beta, Vbe, Vcesat, Vb, Vc, Ve, Ib, Ic, Ie )  

Vb=Ve+Vbe, Vc=Ve+Vcesat, Ib�0, Ic�0, Ie=Ic+Ib.

This model is unnecessarily detailed for a number of tasks. For diagnosis,

for example, it does not really matter if a voltage is 4.4 or 4.6, but whether it

is qualitatively high or low, and whether a transistor properly operates as a

switching device. We can specify some currents as irrelevant, voltages 0{0.7

and 2{5 as indistinguishable, and derive a qualitative model of the OR gate.

In the following section we specify abstraction operators more precisely.

We illustrate their applicability by providing an automatic abstraction of a

numerical model of the OR gate into a qualitative model.

3 Abstraction operators

Underlying the formulation of abstractions is a typed logic program (Lloyd

1987). Types provide a natural way of expressing the concept of a domain

and are convenient for specifying abstraction operators in a compact form.

We assume that variables and constants have types such as � . Functions

have types of the form �

1

� : : :� �

n

! � , and predicates have types of the

form �

1

� : : :� �

n

.

The following three abstraction operators capture all the possible ways

in which atomic formulas can be simpli�ed. They de�ne a class of atomic

abstractions and it turns out that these cover most of the previous work on

abstractions in Arti�cial Intelligence (Giunchiglia & Walsh 1989). We use

a binary predicate h

�

to denote abstractions of constants and functions of

range type � , and a binary predicate h to denote predicate abstractions.

1. Collapsing constants.

Di�erent constants can be renamed into a single constant. For exam-

ple, assume that a

1

and a

2

are of type � , and that they are collapsed

into a single constant a

0

:

h

�

(a

1

; a

0

): h

�

(a

2

; a

0

):

2. Function abstractions.

Functions can be renamed and irrelevant arguments deleted. For ex-

ample, let f be of type �

1

� : : :� �

n

! � , its �rst argument be deleted,

and f be renamed to f

0

:

h

�

(f(X

1

; X

2

: : : ; X

n

); f

0

(X

0

2

; : : : ; X

0

n

)) h

�2

(X

2

; X

0

2

); : : : ; h

�n

(X

n

; X

0

n

):

3. Predicate abstractions.

Predicates can be renamed and some arguments deleted. For example,

let p be of type �

1

� : : :� �

n

, its �rst argument be deleted, and p be

renamed to p

0

:

h(p(X

1

; X

2

: : : ; X

n

); p

0

(X

0

2

; : : : ; X

0

n

)) h

�2

(X

2

; X

0

2

); : : : ; h

�n

(X

n

; X

0

n

):
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The following speci�es the three abstraction operators for the OR gate

example.

Collapsing constants:

h

s

(cuto�, ok).

h

s

(saturated, ok).

h

i

(0, zero).

h

i

(I, pos)  I>0.

h

v

(V, low)  0�V, V<0.7.

h

v

(V, high)  2�V, V�5.

Function abstractions:

h

c

(comps(S1,S2,S3), comps(S1',S2',S3'))  

h

s

(S1,S1'), h

s

(S2,S2'), h

s

(S3,S3').

h

o

(obs(X,Y,Z), obs(X',Y',Z'))  h

b

(X,X'), h

b

(Y,Y'), h

b

(Z,Z').

h

b

(b(V, I), V')  h

v

(V,V'). % I is deleted

Predicate abstractions:

h(org

n

(Comps,Obs), org

q

(Comps',Obs'))  

h

c

(Comps,Comps'), h

o

(Obs,Obs').

h(norg

n

(S1,S2,X,Y,Z), norg

q

(S1',S2',X',Y',Z'))  

h

s

(S1,S1'), h

s

(S2,S2'), h

b

(X,X'), h

b

(Y,Y'), h

b

(Z,Z').

h(inv

n

(S,X,Y), inv

q

(S',X',Y'))  

h

s

(S,S'), h

b

(X,X'), h

b

(Y,Y').

h(switch

n

(S,Vin, Iin,Vc,Ic), switch

q

(S',Vin',Vc',Ic'))  

h

s

(S,S'), h

v

(Vin,Vin'), h

v

(Vc,Vc'), h

i

(Ic,Ic').

h(power

n

(Ic,Vout, Iout), power

q

(Ic',Vout'))  

h

i

(Ic,Ic'), h

v

(Vout,Vout').

h(X+Y=Z, sum

q

(X',Y',Z'))  

h

i

(X,X'), h

i

(Y,Y'), h

i

(Z,Z').

From the numerical model of the OR gate and the above abstractions, a

qualitative model was automatically derived through term rewriting and par-

tial evaluation. Predicates, for which no abstraction is speci�ed (resistor

n

,

transistor

n

) are treated as non-operational and their de�nitions are un-

folded. The remaining predicates and terms are rewritten according to the

abstraction operators. The derivation can be regarded as an enhancement of

explanation-based generalization without a learning example (Van Harmelen

& Bundy 1988). The relation to the explanation-based generalization and a

detailed description of the abstraction algorithm is in Mozetic & Holzbaur

(1991b). Here is the result of its application:
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org

q

( comps(S1,S2,S3), obs(Vin1,Vin2,Vout) )  

norg

q

( S1, S2, Vin1, Vin2, V ),

inv

q

( S3, V, Vout ).

norg

q

( S1, S2, Vin1, Vin2, V )  

switch

q

( S1, Vin1, V, Ic1 ),

switch

q

( S2, Vin2, V, Ic2 ),

sum

q

( Ic1, Ic2, Ic ),

power

q

( Ic, V ).

inv

q

( S, V, Vout )  

switch

q

( S, V, Vout, Ic ),

power

q

( Ic, Vout ).

switch

q

( ok, low, , zero ).

switch

q

( ok, high, low, zero ).

switch

q

( ok, high, low, pos ).

power

q

( zero, high ).

power

q

( pos, low ).

power

q

( pos, high ).

sum

q

( zero, zero, zero ).

sum

q

( zero, pos, pos ).

sum

q

( pos, zero, pos ).

sum

q

( pos, pos, pos ).

4 Hierarchical diagnosis

Both, the original and the abstractOR gate model are just models of normal

behavior, and they do not specify anything about the possible failures. If

we want to solve diagnostic tasks then a fault model, which speci�es how a

component behaves when it is faulty, has to be added. However, in many

domains this is not known and one has to resort to a weak fault model. A

weak fault model allows for any behavior and does not impose any constraints

on faulty components.

In our case we assume that resistors cannot fail, and that all the com-

ponents are correctly connected. Components which can fail are transistor

n

at the numerical level, and switch

q

at the qualitative level. For these two

components, a weak fault model is de�ned by the following two clauses:

transistor

n

( ab, , , , , , , , , ).

switch

q

( ab, , , ).

Now assume that the voltages Vin1 = 4.5 and Vin2 = 0 were applied to

the input of an actual OR gate, and the voltage Vout = 0.2 was measured

at the output. Clearly, the OR gate does not perform the intended boolean
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{1,2,3}

{1,3}{1,2} {2,3}

{1} {2} {3}

{} {}

{3}{2}{1}

{2,3}{1,2} {1,3}

{1,2,3}

f1g � � � comps(ab, ok, ok)

f3g � � � comps(ok, ok, ab)

Figure 2: Search lattices and minimal diagnoses for the numerical (left) and

the qualitative (right) model of the OR gate.

function (assuming positive logic), and we want to locate the faulty transis-

tors. Note that in general there might be multiple faults. The augmented

numerical model can be used for diagnosis directly, by submitting the fol-

lowing query to the CLP(<) interpreter:

 org

n

( Diag

n

, obs(b(4.5,Iin1), b(0,Iin2), b(0.2,Iout)) ).

However, in order to reduce the search space and to minimize a relatively

expensive numerical computation, one can �rst use the abstract, qualitative

model to �nd potential diagnoses. First, the observation is abstracted and

the following query is submitted to the standard Prolog system:

 org

q

( Diag

q

, obs(high, low, low) ).

There are six answer substitutions (diagnoses) which satisfy the query.

One of them, Diag

q

= comps(ab,ab,ab), for example, states that all three

transistors are faulty. Such answers are not very useful, since one wants just

diagnoses which refer to a minimal number of faulty components. In order

to �nd minimal diagnoses, an algorithm on top of the model interpreter was

implemented (Mozetic & Holzbaur 1991a). The algorithm searches through

the subset-superset lattice, where nodes correspond to di�erent sets of com-

ponents being faulty (Figure 2). The root f1,2,3g corresponds to all compo-

nents being faulty, and the bottom node fg to all components being normal.

In the case of the qualitative OR gate model, the algorithm returns the

following two minimal diagnoses:

Diag

q

1 = comps(ab,ok,ok)

Diag

q

2 = comps(ok,ok,ab)

The interpretation is that either the �rst or the third transistor is faulty.
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Figure 3: The re�nements of an abstract diagnosis resulting from the `in-

verse' application of the h

c

abstraction operator.

In order to discriminate between these two alternatives, the hierarchical

diagnostic algorithm refers back to the original, numerical model.

There are four re�nements of the �rst diagnosis (Figure 3):

Diag

n

11 = comps(ab,cuto�,cuto�)

Diag

n

12 = comps(ab,cuto�,saturated)

Diag

n

13 = comps(ab,saturated,cuto�)

Diag

n

14 = comps(ab,saturated,saturated)

but none of them is possible with respect to the numerical model. On the

other hand, the second diagnosis has one re�nement:

Diag

n

23 = comps(saturated,cuto�,ab)

which is actually admitted by the numerical model.

The role of abstractions in diagnosis is twofold. First, the search space is

reduced since only re�nements of the abstract diagnoses have to be veri�ed

at the detailed level. For example, since comps(ok,ab,ok) is not a diagnosis

at the abstract level, there is no need to consider its four re�nements. With

appropriate abstractions this may result in an exponential improvement of

diagnostic e�ciency, as reported by Mozetic (1990).

Second, when there is an abstract diagnosis, we can `unabstract' its

derivation and thus provide a frame within which all detailed level deriva-

tions should be con�ned. As a consequence, a detailed derivation which falls

out of the designated frame can be immediately terminated and recognized

as unsuccessful. In the next section we show how a proof of the �rst abstract

diagnosis

Diag

q

1 = comps(ab,ok,ok)

is used in proving that the �rst re�nement

Diag

n

11 = comps(ab,cuto�,cuto�)

is impossible at the detailed level.
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5 Mapping back and constraint resolution

with CLP(<)

A distinguishing feature of our approach is that not only are the abstract

diagnoses re�ned, but also the abstract proof is used to guide the proof or

refutation at the detailed level. The idea of constructing abstractions and

mapping back the proof was originally proposed by Plaised (1981) in the

context of resolution systems, and recently extended by Giunchiglia & Walsh

(1990) to any axiomatic formal system. We restrict ourselves to Constraint

Logic Programs and SLD resolution (Lloyd 1987), and place special attention

to the treatment of numerical constraints which arise during mapping back.

In the following we show how the �rst of the four possible re�nements of

Diag

q

1

Diag

n

11 = comps(ab,cuto�,cuto�)

is refuted by the numerical model and mapping back of the abstract proof

(Figure 4).

Given the observation and the constraints from mapping back the con-

stants from the abstract proof, the detailed proof for norg

n

succeeds with

some constraints. We provide a more detailed description of the refutation

of inv

n

. The re�nement of the abstract proof step

inv

q

( ok, high, low )

leads to the following goal at the numerical level:

inv

n

( cuto�, b(V,I), b(0.2,Iout) )

with the additional constraints

C1) I = �0.00212766*V+0.0106383

C2) V � 2.18

C3) V � 5

The constant cuto� in the goal is the re�nement of ok at the qualitative level,

and 0:2 comes from the observation. The additional constraints on I and V

result from mapping back the abstract proof and the execution of the nu-

merical model up to this point. Note that C1 is equivalent to V = 5�470�I ,

a more `natural' version of the equation from the user's point of view, but

CLP(<) does not have such preferences.

An inverter consists (is de�ned in terms) of a switch and a power supply

at both, the detailed and the abstract level. Mapping back the abstract

proof step

switch

q

( ok, high, low, pos )

into

switch

n

( cuto�, V, I, 0.2, Ic )

adds a constraint on Ic

10



Detailed proof Abstract proof

org

n

(ab,cuto�,cuto�, b(4.5,Iin1), b(0,Iin2), b(0.2,Iout))

norg

n

(ab,cuto�, b(4.5,Iin1), b(0,Iin2), b(V,I))

switch

n

(ab, 4.5, Iin1, V, Ic1)

resistor

n

(4.5, Vb1, Iin1, 4700)

transistor

n

(ab, 100, 0.7, 0.3, Vb1, V, 0, Iin1, 0, Ie1)

switch

n

(cuto�, 0, Iin2, V, Ic2)

resistor

n

(0, Vb2, Iin2, 4700)

transistor

n

(cuto�, 100, 0.7, 0.3, Vb2, V, 0, Iin2, 0, Ie2)

0 + 0 = 0

power

n

(0, V, I)

resistor

n

(5, V, I, 470)

I � 0.006

inv

n

(cuto�, b(V,I), b(0.2,Iout))

switch

n

(cuto�, V, I, 0.2, Ic)

resistor

n

(V, Vb, I, 4700)

transistor

n

(cuto�, 100, 0.7, 0.3, Vb, 0.2, 0, I, Ic, Ie)

Vb < 0.7

I = 0

FAIL

org

q

(ab,ok,ok, high,low,low)

norg

q

(ab,ok, high,low,high)

switch

q

(ab,high,high,zero)

switch

q

(ok, low,high,zero)

sum

q

(zero, zero, zero)

power

q

(zero, high)

inv

q

(ok, high, low)

switch

q

(ok, high,low,pos)

power

q

(pos, low)

Iin1=�0.000212766*Vb1+0.000957446

Iin2=�0.000212766*Vb2

Iin2=0, Vb2=0

I=�0.00212766*V+0.0106383

V�2.18

Vb=11*V�50

V<4.61

V=5

V�5, V�2

Ic1=0

Ic2=0

Ic>0

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 4: Mapping back and accumulation of constraints.
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C4) Ic > 0

A switch at the numerical level consists of a resistor and a transistor.

When the detailed level goal

transistor

n

( cuto�, 100, 0.7, 0.3, Vb, 0.2, 0, I, Ic, Ie )

is to be selected for resolution, the following constraints have been collected

so far:

C1) I = �0.00212766*V + 0.0106383

C2) V � 2.18

C3) V � 5

C4) Ic > 0

C5) Vb = 11*V � 50

Some constants in the goal are from the de�nition of switch

n

and the con-

straint C5 was added by resistor

n

. Before we proceed with the refutation,

we sketch the operation of our CLP(<) implementation (Holzbaur 1990).

Linear equations are kept in solved form. Variables appearing in the

equations are split into two disjoint sets: dependent variables and indepen-

dent variables. Dependent variables are expressed through terms containing

independent variables. When a new equation is to be combined with a sys-

tem of equations in solved form, all its dependent variables are replaced by

their de�nitions which results in an expression over independent variables.

An independent variable is selected then, and the expression is solved for

it. After the resulting de�nition has been back-substituted into the equation

system, the isolated variable can be added as a new dependent variable, and

the equation system is in solved form again. Inequalities are expressed in

terms of independent variables.

In our particular system of equations I and Vb are the only dependent

variables. All the remaining variables are independent. Now assume that

the head of the following clause is uni�ed with the goal above:

transistor

n

( cuto�, Beta, Vbe, Vcesat, Vb, Vc, Ve, Ib, Ic, Ie )  

G1) Vb < Ve + Vbe,

G2) Ib = 0,

G3) Ic = 0, Ie = 0.

The execution of the program proceeds with the subgoals of the transistor

n

clause. The �rst subgoal is an inequality constraint. Our implementation

of CLP(<) decides the satis�ability of a system of linear inequalities by a

version of the Shostak's `Loop Residue' algorithm (Shostak 1981, Kraemer

1989). Each inequality is represented as an edge in the inequality graph G.

The algorithm only deals with loops in G. For each loop, the residual in-

equality of the loop is computed and entered as a new edge into G. The loop

residue computation is iterated until no more loops can be created, or one of

these new edges is determined to correspond to an unsatis�able inequality.

Each loop residue computation essentially eliminates one variable | there-
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fore an unsatis�able inequality will eventually result in a ground inequality

k < 0, where k is a positive constant. The basic algorithm was extended to

strict and nonstrict inequalities.

In our example, a graph G encodes the inequalities that arise during the

evaluation. Initially there are just two edges corresponding to V � 5 and

V � 2:18.

The �rst goal (G1) from the body of transistor

n

adds a new edge to G.

Inequalities of the form A < B are normalized into A�B < 0. If the terms

A and B contain dependent variables, their de�nitions are used. In our case

(G1)

Vb < Ve + Vbe

is reexpressed in terms of V and values of Ve and Vbe

11*V � 50 < 0 + 0.7

which is normalized into

V � 4.61 < 0

This new edge of G subsumes the old inequality V � 5. The loop residue

algorithm has been extended to narrow interval boundaries. Therefore the

stronger bound V < 4:61 replaces the old one | edge V � 5 is essentially

deleted from G.

The subgoal selected next (G2) is Ib = 0. As Ib is uni�ed to I , a

dependent variable, the C1 constraint reads as:

0 = �0.00212766*V + 0.0106383

which instantiates V to 5. This creates an infeasible loop in G since 5�4:61 =

0:39 and 0:39 < 0, which is clearly unsatis�able. Therefore the original goal

transistor

n

from the above and consequently switch

n

and inv

n

fail. Without

the constraints from the abstract proof, the refutation of inv

n

for the given

observation would have taken additional proof steps.

In general, the utilization of an abstract proof increases the number of

constraints that have to be processed at the detailed level | by CLP(<)

in our example. Although tighter constraints correspond to a reduction of

search space, the additional constraints have to be processed after all. The

ultimate question whether one can bene�t from hierarchical diagosis depends

heavily on the application which determines the algebraic domains for the

models. This in turn leads to the selection of appropriate decision procedures

for the algebras. The computational complexity of these decision algorithms

as a function of both the number and `size' of equations or general constraints

is the key to the answer of this question.

In our concrete example the utilization of abstractions leads to simpler

constraints. The metrics measures the simplicity of constraints in terms

of the number of variables they involve. Although our CLP(<) solver has

to deal with more constraints, they get simpler when the restrictions from

the abstract level are added. One of the optimization methods that can be

13



applied in an implementation of CLP(<) is to have specialized code for con-

straints over 0,1,2,: : : variables. Therefore it is reasonable to expect better

performance on smaller constraints. If the CLP(<) solver is a logic program

as in our implementation, this specializations can be produced quickly, safely

and elegantly by partial evaluation.

In total, the role of CLP(<) in the context of hierarchical diagnosis is

manyfold. First, it allows to compute with a domain theory over real-valued

variables at the numerical level of the model. Second, it admits the speci-

�cation of abstraction operators that share the computational domain with

the numerical model. The third function is to guarantee the satis�ablity of

the numerical constraints collected during abstraction and mapping back.

Our implementation of CLP(<) is preferred over existing versions (Heintze

et al. 1987a, Ja�ar 1990) since it allows for the simultaneous use of solvers

for di�erent domains in a consistent framework. This suits well the compu-

tational demands that arise in the context of hierarchical abstractions. The

numerical level of the model can be formulated with CLP(<) for example,

and successive abstractions thereof typically utilize constraint propagation

over �nite domains. The implementation of the specialized solvers is based

on user-de�nable extended uni�cation. As the solvers are written in Prolog,

they can easily be customized to speci�c demands. The choice of Prolog

as an implementation language for the equation solver for CLP(<) led to a

reduction in code size by an order of magnitude.

Beside the principal (software engineering) issues that motivated our im-

plementation of CLP(<), the availability and the quality of Sicstus Prolog

(Carlsson & Widen 1990) somehow aposteriori justi�ed the selection of Pro-

log as an implementation language. Sicstus Prolog has a compiler which can

produce native machine code and a garbage collector. The basic mechanisms

provided for the implementation of freeze/2 and dif/2 are very useful for the

implementation of extended uni�cation, the basis of our approach.

Our �rst CLP(<) implementation was based on the C-Prolog interpreter

(Holzbaur 1990). For the performance comparison against the C implemen-

tations of CLP(<) this was disadvantageous, as the uni�cation extensions,

i.e., the CLP(<) solver, were interpreted only. However, given the Sicstus

compiler, the performance of our current Prolog CLP(<) implementation is

somewhere in-between the IBM (Ja�ar 1990) and the Monash (Heintze et al.

1987a) implementations. A further improvement of our version of CLP(<),

which did not require any extra e�ort from our side, accrues from the in-

creased numerical precision in 
oating point operations in Sicstus (double

precision). Since Sicstus also provides in�nite precision integer arithmetics,

the implementation of CLP(Q) (Q = rationals) is easy and reasonably e�-

cient.
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6 Conclusion

The contribution of this paper is a relatively self-contained presentation of

the integration of qualitative and numerical models in the context of hi-

erarchical diagnosis. Since hierarchical models, abstraction operators, the

abstraction algorithm, and the diagnostic algorithm are expressed as (con-

straint) logic programs, we are able to provide a very concise and compact

speci�cation of these components. This in turn allows for the exposition of

the interplay between the di�erent abstraction levels in some depth.

We cover the speci�cation of a numerical model, the speci�cation of ab-

straction operators, hierarchical diagnosis, and in particular detail the `
ow'

and the resolution of constraints between the numerical and the qualitative

model. Because of the logically sound treatment of the abstraction operators

by the underlying computational domain, we are able to use them in any

direction. In this paper we concentrate on the `mapping back' of constraints

from the qualitative to the numerical level.
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