Diagnostic Efficiency of
Deep and Surface Knowledge in KARDIO

[gor Mozetic
Austrian Research Institute for Artificial Intelligence
Schottengasse 3, 1010 Vienna
Austria
igor@ai-vie.uucp

Abstract

The KARDIO system deals with the problem of diagnosing cardiac arrhythmias
from symbolic descriptions of electrocardiograms. The system incorporates a qual-
itative model which simulates the electrical activity of the heart. In the paper we
outline two methods for an efficient application of a simulation model to diagnosis.
First, through abstractions and refinements, the model is represented at several lev-
els of detail. Second, the model is ‘compiled’ into surface diagnostic rules. Through
simulation, a relational table is generated and subsequently compressed into efficient
diagnostic rules by inductive learning. A novel contribution to the KARDIO, pre-
sented here, includes a comparison of diagnostic efficiency and space complexity of
four types of knowledge: a simulation model of the heart, a hierarchical four-level
model, a relational table, and compressed diagnostic rules.
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Figure 1: Deep and surface representations of the electrocardiographic knowledge.

1 Introduction

The heart can be viewed as a device with an electrical control system consisting of inter-
connected components. This electrical system works autonomously within the heart and
is responsible for generating the rhythmical stimulation impulses that cause the contrac-
tion of the heart muscle, and consequently changes in the electrical potentials in the body.
The changes of these potentials in time can be recorded as an electrocardiogram (ECG).
Disorders which can occur in the electrical control system of the heart are reflected in the
ECG curves. For example, an impulse generator may become silent or overactive, or some
electrical conductance may become partially or totally blocked. These disorders are called
cardiac arrhythmias and cause some characteristic changes in the ECG. The diagnostic
problem is to decide which cardiac arrhythmias could have caused an abnormal ECG.

In KARDIO (Bratko et al. 1989), the ECG interpretation problem is formulated as follows:
given a symbolic description of the ECG data, find all possible cardiac arrhythmias. There
are both single and multiple disorders in the electrical system of the heart. In the med-
ical literature (e.g. Goldman 1976), however, there is no systematic description of ECG
features which correspond to complicated multiple disorders. Further, there is no simple
rule yielding ECG features of multiple disorders, given ECG features of the constituent
single disorders. These were the two main problems we encountered when attempting to
construct the diagnostic knowledge base. Instead of directly constructing diagnostic rules
which deal with multiple disorders we took an indirect approach. We first developed a sim-
ulation model of the electrical system of the heart. The model is qualitative in the sense
that it does not deal with electrical signals represented numerically as functions of time,
but rather by symbolic descriptions. The model can be efficiently used for simulation, but
not for diagnosis.



In the paper we present and compare two alternative approaches to efficient application
of a simulation model to diagnosis. First, by representing a deep model at several levels
of abstraction, and second, by ‘compiling” a model into a set of surface diagnostic rules
(Figure 1). In section 2 we describe the deep model of the heart, its representation at
several levels of abstraction, and the hierarchical diagnostic algorithm. The underlying
idea is to first solve the diagnostic problem at an abstract level, where the model is simpler
and the search space smaller. The abstract, coarse solutions are then used to guide the
search at more detailed levels, where the model is more complex and the search space
larger.

In section 3 we show the automatic compilation of the model into a set of efficient diagnostic
rules. First, by exhaustive simulation, the model is transformed into a relational table.
Entries in the table are then used as examples by an inductive learning program, and the
table is compressed into a set of simple if-then rules.

We compare the complexity and efficiency of different diagnostic representations in section
4. Complexity is measured by the space required to store a knowledge base, and efficiency
is the average time needed to find all diagnoses. In our experiments, a nontrivial subset of
the original KARDIO problem domain was used. The model described here comprises 943
cardiac arrhythmias (both single and multiple) which arise by combining 29 single heart
disorders. The original KARDIO domain can be reconstructed by a set of rules specified
in (Bratko et al. 1989).

There are two novel contributions of the paper with respect to the KARDIO project.
First, the heart model is represented by a logic program which does not require any special
purpose interpreter. And second, four different representations (a one-level model, a four-
level hierarchical model, a relational table, and compressed diagnostic rules) are compared
on the same problem domain. In all cases, knowledge bases and diagnostic algorithms are
implemented as logic programs and compiled by Quitus Prolog.

2 Deep model of the heart

2.1 Detailed level model

There are two fundamentaly different approaches to diagnostic reasoning. In the first,
heuristic approach, one codifies diagnostic rules of thumb and experience of human experts
in a given domain (e.g., MYCIN, Shortliffe 1976). In the second, model-based approach,
one starts with a model of a real-world system which explicitly represents the structure and
components of the system (e.g., de Kleer 1976, Genesereth 1984, Reiter 1987). When the



system’s actual behavior is different from the expected behavior, the diagnostic problem
arises. The model is then used to identify components and their internal states which
account for the observed behavior.

A model of the electrical system of the heart comprises four types of components: impulse
generators, conductors of impulses, impulse summators, and projectors of impulses to the
ECG. In general, a component relates its qualitative state to the input and output. In
the heart, the state of a component corresponds to an isolated disorder A, the input is an
electrical impulse Impulse, and the output is either an electrical impulse or an individual
ECG feature E. Specifically, the components have the following form:

generator( Asrare, Impulseoyr )

conductor( Asrare, Impulsery, Impulseoyr )

summator( Impulse;y, Impulsery, Impulseoyr )

projector( Impulsern, FEour )

An arrhythmia Arr is defined as a 7-tuple of isolated disorders A:
Arr = <A1, c. ,A7>

Variables Ay, ..., A; denote states of the heart components (impulse generators or foci,
and conductors):

Arr = (SA, AF, AV, JF, BB, VF, VEF)

SA denotes the sino-atrial node, AF is an atrial focus, AV is the atrio-ventricular conduc-
tion, JF'is a junctional focus, BB denotes conduction through the bundle branches, VF'is
a regular ventricular focus, and VEF is an ectopic ventricular focus. Each component may
be in a normal or one of several abnormal states. For example, the normal state of the
heart, sinus rhythm (sr) is defined by

Arr = (sr, quiet, normal, quiet, normal, quiet, quiet )

where the SA node is in the state sr, other generators (AF, JF, VF, VEF) are quiet and
both conductors (AV, BB) are normal. Sometimes we use the attribute-value notation
instead of pure relational notation in order to improve the readability. Each element of a
relational tuple is assigned to a variable which corresponds to the element position in the
tuple. For example, a multiple arrhythmia, atrial tachycardia with the LGL syndrome and
junctional ectopic beats (at, lgl, jeb) is described by the following 7-tuple:
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Arr = (SA=quiet, AF=at, AV=Igl, JF=jeb, BB=normal, VF=quiet, VEF=quiet )

An ECG pattern ECG is a 10-tuple of individual ECG features E:
ECG = <E1, R ,E10>

The above arrhythmia (at, lgl, jeb) has three corresponding ECG patterns:

ECG = (Rhythm = regular, reqular,
P_wave = abnormal, abnormal,
Rate_of P = between_100_250, between_100_250,
Relation_P_QRS = after_P_always-QRS, after_P_always_QRS,
PR_interval = shortened, shortened,
QRS_complexr = normal, normal,
Rate_of QRS = between_100-250, between_100-250,
Ectopic_P = abnormal, absent
Ectopic_PR = after_QRS_is_P \ shortened, meaningless
Ectopic_QRS = normal normal )

For shortness and better readability we allow for an internal disjunction to appear in a
tuple. An expression () = vy, Es = v9 V v3) is equivalent to two pairs (vy, ve) and (vy, v3).

The heart model maps any arrhythmia (a single or a multiple disorder) to all corresponding
ECG patterns. The mapping m from Arrto ECG is a relation (many-to-many) since each
arrhythmia may have more than one corresponding ECG, and several arrhythmias may
map to the same ECG pattern. For example, for the left-most ECG pattern above there
are two possible arrhythmias:

(SA=quiet, AF=at, AV=Ilgl, JF=jeb, BB=normal, VF=quiet, VEF=quiet )
(SA=quiet, AF=at, AV=normal, JF=jeb, BB=normal, VF=quiet, VEF=quiet )

The mapping m(Arr,ECG) is defined by the possible(Arr), and the simulation model
heart(Arr,ECG). Possible eliminate physiologically impossible and medically uninterest-
ing heart states, and heart simulates the heart activity for an arrhythmia Arr:

m( Arr, ECG ) <«
possible( Arr ),
heart( Arr, ECG ).

Throughout the paper, we define models, rules, and algorithms by logic programs. We use
the standard Edinburgh Prolog syntax (e.g., Clocksin and Mellish 1984), where constants
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start with lowercase letters, variables start with capital letters, and all variables are im-
plicitly universally quantified. However, we divert from the standard syntax by allowing
for subscripts, and tuples instead of structured terms (e.g., (X, X5) instead of f(X;, X5)

).

The simulation model is defined by its structure (a set of components and their connections)
and functions of the constituent components. The following clause defines the structure of
the heart model:

heart( (SA, AF, AV, JF, BB, VF, VEF),
(Rhythm, P_wave, Rate_of P, Relation_P_-QRS, PR_interval,
QRS_complex, Rate_of QRS, Ectopic_P, Ectopic_PR, Ectopic_.QRS)) <+

sa_node_generator( SA, ImpulseSA ),

atrial_generator( AF, ImpulseAF ),

summator( ImpulseSA, ImpulseAF, ImpulseATR ),

anterograde_av_conductor( AV, ImpulseATR, ImpulseAV ),

Junctional_generator( JF, ImpulseJF ),

reqular_ventricular_generator( VF, Impulse VF' ),

ectopic_ventricular_generator( VEF, ImpulseVF ),

summator( ImpulseJF, ImpulseVF, ImpulselV ),

retrograde_av_conductor( AV, Impulsel V, ImpulseRET ),

summator( ImpulseAV, ImpulselV, ImpulseINV ),

summator( ImpulseRET, ImpulseATR, ImpulseSV ),

summator( ImpulseAV, ImpulseJF, ImpulseHIS ),

bundle_branches_conductor( BB, ImpulseHIS, ImpulseBB ),

summator( ImpulseBB, ImpulseVF, Impulse VENT ),

atrial_projector( ImpulseSV, P-wave, Rate_of P, Ectopic_P ),

atrio_vent_projector( ImpulseSV, ImpulseINV, Relation_P_QRS,
PR_interval, Ectopic_PR ),

ventricular_projector( Impulse VENT, Rhythm, QRS_complez,
Rate_of QRS, Ectopic_QRS ).

The head of the clause relates the state of the heart Arr to the output ECG. Atoms in
the body represent heart components (generators, conductors, summators and projectors),
and shared variables (impulses) denote connections between components.

Due to the simulation nature of the model m, its application in the ‘forward’ direction
m(<A1a s 7A7>) = <E17 SRR E10>

can be carried out efficiently. For a given disorder Arr, the logic program interpreter can
derive all ECG patterns resorting only to shallow backtracking. For diagnostic purposes,



however, the ‘backward’ application is required—for a given FCG find all Arr:
m71(<E1, R ,E10>) — <A1, . ,A7>

Since the model m is specified by a logic program there is no inherent obstacle to the ‘back-
ward’ application. However, the reasoning from ECG to Arr involves deep backtracking
where a large number of fruitless paths are explored, and therefore renders the ‘backward’
application inefficient. The main source of fruitless branching is the model component
summator(X,Y,Z) which, when applied, requires that for a given impulse Z, a pair of im-
pulses X and Y is to be found, such that their ‘sum’ yields Z. Usually, there is a number
of possible decompositions of Z, only few of which are consistent with other constraints in
the model, and further, those inconsistencies may be found only in late stages of the model
application.

Until now, all attempts to directly use the model for efficient diagnosis failed. Using the
naive generate-and-test method with chronological backtracking, the average diagnostic
time is more than 50 sec. The application of more sophisticated constraint satisfaction
techniques (different goal selection strategies and forward checking, e.g., Van Hentenryck
1989) provided no improvement. The computational complexity is due to the large number
of syntactically possible states (52,920), and high arity of predicates in the model. Impulses
are namely structured terms with 5 arguments, and the model components have therefore
between 6 and 15 primitive arguments.

2.2 Model abstractions and refinements

One approach to improve the diagnostic efficiency of the deep model is to represent it at
several levels of abstraction, and to first solve the diagnostic problem at an abstract level.
The abstract diagnoses are then used to restrict the search for more detailed diagnoses.

First we define three abstraction/refinement operators which can be used in a multi-level
model representation. The abstraction operators are applied when one simplifies a model
in a bottom-up fashion (from detailed to abstract). Complementary refinement operators
are used in a top-down model development (from abstract to detailed).

e Collapse/refinement of values.
Indistinguishable values of a variable can be abstracted into a single value. For

example, the values wide.LBBB and wide_RBBB of the ECG feature QQRS_complex
are abstracted to wide. We represent the abstraction by a binary predicate h:

h(wide LBBB, wide). h(wide_RBBB, wide).



e Deletion/introduction of variables.
Irrelevant variables can be deleted at the abstract level. For example, the last three
ECG features FEctopic_P, Ectopic_.PR, and FEctopic_.QRS can be ignored. This is
represented by the following clause:

h(<E1, .. ,El()), <Ei, c 7E"/7>) < h(El, Ei), cey h(E7, E;)
where E] denote the abstract ECG features.

e Simplification/elaboration of the mapping m.
Detailed level mapping m can be simplified to m’ by ignoring and/or simplifying
some model components. In general, however, the mapping abstractions are defined
by a formal consistency condition which must hold between m and m’ (for details
see Mozetic 1990a,b).

By an application of the abstraction and refinement operators, the heart model was repre-
sented at four levels of detail. All three abstraction/refinement operators were used. Apart
to the introduction of new variables, values of the variables were refined at each level of
detail. The hierarchical model defines different mappings myq, ..., my from Arrto ECG by
introducing new components at each level. First, the three-level model was constructed in
a top-down fashion, using QuUMAS, a semiautomatic Qualitative Model Acquisition System
(Mozetic 1987). The fourth, detailed level model, described in the previous subsection was
then added manually. The heart model at the first, most abstract level is very simple:

heart( Arr, ECG ) <«
generator( Arr, Impulse ),
projector( Impulse, ECG ).

generator( brady, form(under_60) ).
generator( rhythm, form(between_60-100) ).
generator( tachy, form(over-100) ).

projector( form(Rate), Rate ).

It consists of only two components, an impulse generator and a projector. Instead of a 7-
tuple, an arrhythmia description Arris a singleton and only three abstract arrhythmias are
considered: a bradycardia (brady), a normal rhythm (rhythm), and a tachycardia (tachy).
An ECG pattern is also a singleton, covering one ECG feature, Rate_of QQRS. An impulse
is a structured term, but at this level it has only one argument (rate) in contrast to five
arguments at the detailed level (shape, rhythm and rate of the regular part, and type and
shape of the ectopic part).

Suppose that given is a list of mappings mq,...,m,, ordered from abstract to detailed.
Hierarchical relations between detailed and abstract ECG patterns are defined by the
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predicate hg, and relations between detailed and abstract arrhythmias by the predicate h 4.
The hierarchical diagnostic algorithm is then defined by the following logic program which
implements a depth-first, backtracking search through the space of possible diagnoses:

diag;( ECG, Arr ) <«
hp( ECG, ECG”),
diag;—1( ECG’, Arr’ ),
ha( Arr, Arr’ ),
m;( Arr, ECG ).

diag;( ECG, Arr ) <«
—3Arr" ha( Arr, Arr’ ),
m;( Arr, ECG ).

The algorithm first climbs the hierarchy of ECG patterns, and recursively finds an abstract
diagnosis Arr’ which maps to the abstract ECG’. The detailed model m; then simulates
refinements Arrof Arr’to verify which arrhythmias actually map to the given ECG. Notice
that detailed arrhythmias which are not refinements of the abstract diagnosis Arr’are not
considered at all. With appropriate abstractions, this results in a major reduction of the
search space at the detailed level.

However, an abstract model may be incomplete with respect to the the detailed level
model, i.e., not all phenomena are necessarily abstracted. For example, the abstract model
of the heart above does not incorporate any conduction disorders—they are introduced
only at more detailed levels. Unfortunately, such incompleteness prevents the search space
reduction at an abstract level. The diagnostic algorithm has to resort to the inefficient
generate-and-test method for the arrhythmias Arr without abstractions. This is covered
by the second clause of the algorithm.

Formal conditions which have to be satisfied by the hierarchical model representation, and a
relation to the relevant work on abstractions are in (Mozetic 1990a,b). If the conditions are
satisfied, then the diagnostic algorithm is correct and complete. Further, with appropriate
abstractions, the algorithm reduces the linear complexity of the generate-and-test method
to logarithmic.

2.3 Hierarchical diagnosis

In this section we give an example of diagnostic reasoning based on the heart model rep-
resented at four levels of detail. Suppose the following ECG pattern at the fourth level of
detail is given:



ECG, = (Rhythm = regular,
P_wave = abnormal,
Rate_of-P = between_100-250,
Relation_P_QRS = after_P_always_-QRS,
PR_interval = shortened,
QRS_complexr = normal,
Rate_of QRS = between_100-250,
Ectopic_P = abnormal,
Ectopic_PR = after_ QRS_is_P,
Ectopic_QRS = normal)

The hierarchical diagnostic algorithm first uses hierarchies defined by hg to find a more
abstract ECG pattern. At the third level, the last three variables Ectopic_P, Ectopic_PR,
and Ectopic_ QRS are deleted:

ECGs = (Rhythm = regular,
P_wave = abnormal,
Rate_of P = between_100-250,
Relation_P_QRS = after_P_always_QRS,
PR_interval = shortened,

QRS_complex = normal,
Rate_of QRS = between_100_250)

At the second level of abstraction, variables Rhythm, Rate_of P, and PR_interval are
deleted. Values of P_wave = abnormal and QQRS_complex = normal are both abstracted to
the value present:

ECGy = (P-wave = present,
Relation-P_-QRS = after_P_always-QRS,
QRS _complexr = present,
Rate_of QRS = over_100)

At the most abstract level, all variables but Rate_of QRS are deleted:

ECG, = (Rate_of QRS=over_100)

The abstract model of the heart is then used to find a possible diagnosis at this extremely
simple level. The only possibility is tachy—a tachycardia in medical terminology. Now the
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algorithm resorts to hierarchies of arrhythmias h4 to refine this abstract diagnosis, and
uses more detailed heart models to verify which refinements can actually produce the given
ECG pattern.

Arry = (Arr)
Arry = (SV, AV, V)
Aty = (SA, AF, AV, JF, BB, VF)

Arry = (SA, AF, AV, JF, BB, VF, VEF)

Figure 2: Representation of arrhythmias at different levels of detail.

Hierarchies of arrhythmias are more complicated than hierarchies of ECG patterns. At
each level new variables are introduced, and typically a value of an abstract level variable
depends on values of tuples of detailed level variables and not only on individual detailed
level variables (as is the case with ECG patterns). Recall that individual variables corre-
spond to the states of the heart components and that their values denote isolated disorders.
Figure 2 defines hierarchies of tuples and dependencies between individual variables. At
the first level Arr denotes the state of the heart, regarded as an impulse generator. At the
second level, SV corresponds to a supra-ventricular focus, AV is the atrio-ventricular con-
duction, and IV denotes an intra-ventricular focus. Variables at the third and the fourth
level were defined in section 1.1.

Figure 3 gives some examples of hierarchical relations between values of individual variables
and tuples of variables. A variable which has no value assignment in a tuple can take any
value from its domain. Abbreviations for isolated arrhythmias used at the fourt level of
detail correspond to the following medical terms: st is sinus tachycardia, aeb are atrial
ectopic beats, at is atrial tachycardia, mat is multifocal atrial tachycardia, lgl is the LGL
syndrom, wpw is the WPW syndrom, avb! is the AV block, first degree, wen is the AV
block of type Wenckebach, mob2 is the AV block, type Mobitz 2, avb3 is the AV block,
third degree, jt is junctional tachycardia, jeb are junctional ectopic beats, vt is ventricular
tachycardia, [bbb is left bundle branch block, rbbb is right bundle branch block, and veb
are ventricular ectopic beats.

In our example, hierarchies in Figure 3 are used by the diagnostic algorithm to refine the
abstract level diagnosis tachy. The following dialog with the system illustrates the depth-
first search for diagnoses through abstraction spaces. The user responses are in italics and
each diagnosis is followed by the corresponding medical term.
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Arry: rhythm tachy brady

Arry: (SV=sv_tachy, AV=no_block, IV=quiet) (SV=quiet, AV=no_block, IV=iv_tachy)
(SV, AV=av_block_3, IV=iv_tachy)
SVa: sv_rhythm sv_tachy sv_brady quiet

SVs:  (SA=st, AF=quiet) (SA=st, AF=aeb) (SA=quiet, AF=at) (SA=quiet, AF=mat)

SVy:  (SA=st, AF=quiet) (SA=st, AF=aeb) (SA=quiet, AF=at) (SA=quiet, AF=mat)

AVsy: no_block av_block 2 av_block_3

AVs: mnormal lgl wpw avbl wen mob2 avb3

AVy: normal gl wpw avbl wen mob2 avb3

1Vy: iv_rhythm iv_tachy iv_brady quiet
1Vs: (JF=jt, BB, VF=quiet) (JF=quiet, BB, VF=vt)

IVy:  (JF=jt, BB, VF=quiet, VEF) (JF=quiet, BB, VF=vt, VEF) (JF=jeb, BB, VF=vt, VEF)
BBs3: normal bbb

BB4: normal 1bbb rbbb VEF,: quiet veb

Figure 3: Some examples of the hierarchical relation h4 between the abstract and detailed
level arrhythmias.

A possible diagnosis:
) Arry = tachy
Tachycardia
More detailed diagnosis? yes
) Arry = (SV=svu_tachy, AV=no_block, IV=quiet )
Supra-ventricular tachycardia
More detailed diagnosis? yes
) Arrg = (SA=quiet, AF=at, AV=normal, JF=quiet, BB=normal, VF=quiet )
Atrial tachycardia
More detailed diagnosis? yes
W) Arry = (SA=quiet, AF=at, AV=normal, JF=jeb, BB=normal, VF=quiet, VEF=quiet )
Atrial tachycardia with junctional ectopic beats
Alternative diagnosis? yes
) Arrs = (SA=quiet, AF=at, AV=Igl, JF=quiet, BB=normal, VF=quiet )
Atrial tachycardia with the LGL syndrome
More detailed diagnosis? yes
W) Arry = (SA=quiet, AF=at, AV=Ilgl, JF=jeb, BB=normal, VF=quiet, VEF=quiet )
Atrial tachycardia with the LGL syndrome and junctional ectopic beats

Alternative diagnosis? yes
) Arry = (SV=quiet, AV=no_block, IV=iv_tachy )
Intra-ventricular tachycardia 11
More detailed diagnosis? yes
) Arrg = (SA=quiet, AF=quiet, AV=normal, JF=jt, BB=normal, VF=quiet )
Junctional tachycardia

More detailed diagnosis? yes
VWA No congictent refinement !



For the given detailed ECG pattern, there are two possible diagnoses: atrial tachycardia
with junctional ectopic beats, and atrial tachycardia with the LGL syndrome and junctional
ectopic beats. The first diagnosis appear to be more general than the second one, but for
a physician it is important to be aware of both possibities, since the second diagnosis is
potentially more dangerous and might require a different treatment. Note that a diagnosis
possible at the third level, junctional tachycardia, has several refinements at the fourth
level, but none of them actually maps to the given ECG pattern.

3 Surface diagnostic rules

3.1 Derivation of a relational table

Another, indirect approach to use a deep model for efficient diagnosis is to ‘compile’ it.
The ‘compilation’ proceeds in two steps. First, by exhaustive simulation, the model is
transformed into a relational table. Entries in the table are then used as examples by an
inductive learning program, and the table is compressed into a set of simple if-then rules.

The heart model m relates all arrhythmias Arr to all corresponding ECG patterns FCG,
and through simulation one can generate a complete set of relations (Arr, ECG):

m(ATT, ECG) — <A1, ce ,A7,E1, c. ,E10>

Such a relational table can be used for efficient diagnosis, if not excessively large. In
KARDIO, for example, a table generated from the original model of the heart consists of
over 140,000 entries. When properly organized into a set of rules it still occupies over 5
Mb, stored as a text file.

In many practical applications it might not even be feasible to generate all pairs disorder-
observation, but only a small subset. Some inductive learning techniques must then be
applied to the subset in order to extend the coverage to the whole diagnostic space (or
at least most of it). The same approach of constructing a qualitative model, exhaustive
simulation, and induction of compressed diagnostic rules was taken by Pearce (1988) to
automatically construct a fault diagnosis system of a satellite power supply. Similarly,
Buchanan et al. (1988) show the advantage of using a classical simulation model to generate
a (non-exhaustive) set of learning and testing examples, which are then used to induce rules
for location of errors in particle beam lines used in high energy physics.
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3.2 Compression by inductive learning

In inductive learning (e.g., Michalski 1983), one is given a set of learning examples and some
background knowledge, and the goal is to find a concept description which is consistent
and complete with respect to the examples. A learning example is a pair

(object, class;)

where object is described by a tuple of attribute values (vy,...,v,), and class; denotes an
instance of the concept. The induced concept description is usually in the form of if-then
rules:

if A(vy,...,v,) then class; or if class; then A (vi,...,v,)

where A\(vy,...,v,) is a boolean expression. The goal of learning is to find a logical expres-
sion A for each class; which is as simple as possible, but sufficient to discriminate between
the class; and all other classes class;, i # j. It is worth emphasizing that in general, an
if-then rule is not a logical implication, but rather a relation if-then(class;, (vi,...,v,)).
The antecedent and the consequent of an if-then rule can be interchanged depending on
the problem solving strategy since they merely indicate the direction of inference.

The inductive learning techniques were applied to the generated relational table. First, 10
sets of learning examples were prepared. For each 17-tuple relation in the table, 10 new
8-tuple relations were formed by projection:

<A1,...,A7,Ek> < <A1,...7A7,E1,...,E10> (1 <k< ]_0)

Then an inductive learning program NEWGEM, an ancestor of AQ15 (Michalski et al.
1986) was used. The result of learning were 10 sets of compressed diagnostic rules:

if E1 then )\(Al, N ,A7)

if E10 then )\(Al, e ,A7)

A rule set k£ (1 < k < 10) relates an individual ECG feature Ej to corresponding ar-
rhythmias, described by A(Aj, ..., A7). Each rule in a set k relates a value v; of Ej to
a minimal description of corresponding arrhythmias A(Ay, ..., A7) which is still sufficient
to discriminate between v; and other values v;, i # j of Ej. For example, the following
two rules belong to the ECG feature QQRS_complexr and discriminate between the values
wide_non_specific, normal, and the remaining possible values.
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if QRS_complex = wide_non_specific
then VF =orV avrV vtV ufl

if QRS_complex = normal
then AV # wpw A

BB = normal A

VF = quiet

The first rule states that if a QRS_complex = wide_non_specific (i.e., wide, but not of type
LBBB or RBBB) then there is either a ventricular rhythm (vr), an accelerated ventricular
rhythm (avr), a ventricular tachycardia (vt), or a ventricular flutter (vfl) originating in
a ventricular focus (VF). States of the remaining heart components are unspecified. On
the other hand, if QRS_compler = normal then the ventricular focus must be quiet, the
conduction through bundle branches (BB) is normal, and the atrio-ventricular conduction
(AV) can be anything but the WPW syndrome (wpw).

The following two rules are slightly more complicated:

if P_wave = abnormal
then SA = quiet A
AF # wp V mat N
VE # vfi V of

if PR_interval = shortened
then AF # afiV af A

AV = wpw V lgl

V

SA = quiet A

AF = at V aeb V quiet N

AV = normal N

VF = quiet

Formally, an internal disjunction in the consequent of a rule is equivalent to a set mem-
bership, i.e., A =v; Vvy < A € {v1,v2}. The inequality is defined by A # v; Vv, &
A € Domain(A) —{vy,v2}. Notice that the last rule, for the PR_interval, has a disjunctive
consequent. In a logic program, such a rule is represented by two clauses:

if then( shortened, (SA, AF, AV, JF, BB, VF, VEF')) <+
AF € {wp, at, mat, aeb, quiet},
AV e {wpw, lgl}.
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if then( shortened, (SA, AF, AV, JF, BB, VF, VEF')) <«
SA = quiet,
AF € {at, aed, quiet},
AV = normal,
VF = quiet.

Let us illustrate diagnostic reasoning with the compressed rules by an example. Suppose
that given are values of three ECG features, P_wave = abnormal, PR_interval = shortened,
and QRS_complex = normal. A combination of the three corresponding rules defined above

yields:
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if P_wave = abnormal N PR_interval = shortened N QRS_complex = normal
then SA = quiet A
AF = at V aeb V quiet A

AV =gl N

BB = normal A
VF = quiet

V

SA = quiet N

AF = at V aeb V quiet A
AV = normal A

BB = normal A

VF = quiet

The set of possible diagnoses is now restricted and only two heart components, JF and VEF
are still unconstrained. The following logic program specifies the diagnostic algorithm:

diag( (Ey, ..., Ew), Arr) <
if theny ( By, Arr ),

if,thenlo(Elo, Arr ),
possible( Arr ).

A diagnosis is an intersection of the consequents of if-then rules for individual ECG fea-
tures, filtered through the possible which eliminate physiologically impossible and med-
ically uninteresting arrhythmias. In the actual implementation, however, the algorithm
computes with domains of variables (and not just ground values), and intersects disjunc-
tive consequents through the breath-first search (unlike the standard Prolog interpreter
which implements the depth-first search).

The application of learning to the 10 sets of examples required 40 hours of CPU time on
SUN 2 (Mozetic 1986). The compressed rules occupy 30 times less space than the relational
table, and can be used for efficient diagnosis. The reduction is due to the generalization of
arrhythmia descriptions in the process of learning. The equivalency to the relational table
is regained by the application of possible at the end of the diagnostic algorithm. In general,
however, a relational table and the corresponding set of compressed rules are not equivalent.
The difference is due to the projection of relational table entries to learning examples. The
conditions under which both, a relational table and compressed rules produce equivalent
diagnostic results are stated in (Bratko et al. 1989).
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4 Comparison of complexity and efficiency

Tables 1 and 2 outline the complexity of the hierarchical model of the heart at each level
of detail. For comparison, the complexity of the KARDIO model is given when possi-
ble. Table 1 comprises the number of components and the complexity of the arrhythmia
descriptions. n denotes the arity of Arr tuples, | Ay x ... x A, | is the number of syntac-
tically possible descriptions, | Arr | is the number of arrhythmias which satisfy the model
constraints, and | = Arr’ | is the number of arrhythmias with no abstraction.

Level of Model Arrhythmias
detail | components | Single n | Ay x ... x A, | |Arr| | —Ar |
1 2 3 1 3 3 3
2 9 8 3 48 18 3
3 16 24 6 10,080 175 26
4 17 29 7 52,920 943 0
KARDIO / 30 7 79,380 2,419 /

Table 1: The complexity of the heart model and the arrhythmia descriptions at different
levels of detail, and in KARDIO.

Level of ECG patterns Relational table entries
detail m |Eyx...xEy,| |ECG| |-ECG|||{(Arr,ECG)| |—(Arr, ECG)"|
1 1 3 3 3 3 3
2 4 64 12 0 23 )
3 7 41,472 263 6 333 79
4 10 3,386,880 3,096 0 5,240 0
KARDIO | 7-19 / / / 140,966 /

Table 2: The complexity of ECG descriptions and the relational table at different levels of
detail, and in KARDIO.

In Table 2 the complexity of ECG descriptions and the relational table are given. m
denotes the arity of ECG tuples, | By X ... X E,, | is the number of syntactically possible
ECG patterns, | ECG | is the number of distinct ECG patterns derived from the model,
and | "ECG’ | is the number of ECG patterns with no abstraction. | (Arr, ECG) | is the
number of entries in the relational table, and | =(Arr, ECG)’ | is the number of entries
with no abstraction.

Tables 1 and 2 indicate that the heart model at the levels 1 and 2 is incomplete with respect
to the levels 2 and 3, respectively. The level 3 model is complete with respect to the level
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Type of diagnostic knowledge Space (Kb) Time (sec)
(1) One-level model 15 50.35
(2) Hierarchical four-level model 45 2.67
(3) Relational table 750 0.22
(4) Compressed diagnostic rules 25 0.55

Table 3: Space requirements for different representations and the average time needed to
find all possible diagnoses for a given ECG pattern at the detailed level.

4. Recall that in the case of incompleteness, the hierarchical diagnostic algorithm has
to resort to the naive generate-and-test method, thus potentially decreasing the efficiency
of diagnosis. First experiments with the three-level model of the heart (Bratko et al.
1989) showed no considerable advantage of hierarchical diagnosis over the generate-and-
test method, due exactly to the high level of incompleteness in the model. Consequently,
the heart model at the level 2 was modified to decrease its incompleteness. Further, for all
arrhythmias Arrwithout abstraction (= Arr’) the hierarchical diagnostic algorithm resorted
to the corresponding relational table entries (Arr, ECG) in order to avoid the repetitive
generate-and-test.

We compared the space complexity and diagnostic efficiency of the four types of diag-
nostic knowledge: (1) one-level model of the heart, (2) hierarchical four-level model, (3)
relational table, and (4) compressed diagnostic rules. In all cases, knowledge bases and
diagnostic algorithms are implemented as logic programs and compiled by Quintus Prolog.
Complexity is measured by the space requirements of each representation together with
the corresponding algorithm, when both stored as text files. Diagnostic efficiency is the
time needed to find all possible diagnoses for a given ECG, and was measured on all 3096
distinct ECG patterns at the detailed level. Results in Table 3 are the average times over
3096 ECGs.

With the one-level model of the heart, three constraint propagation strategies were ap-
plied: inverting the order of constraints, forward checking, and naive generate-and-test with
chronological backtracking. Somehow surprisingly, the generate-and-test method turned
out to be the most efficient. This is due to the simulation nature and high directionality
bias of the model. When the model is used in the ‘forward’ direction, the average time
to derive an ECG for a given Arris only 0.063 seconds. This is consistent with the 50.35
seconds from Table 3 where the model is applied 943 times in the ‘forward’ direction, once
for each distinct Arr. In contrast, the model application in the ‘backward’ direction (from
a given ECG to Arr) with inverted order of constraints, requires as much as 66.30 seconds
on the average. The application of the forward checking technique was completely unsuc-
cessful, probably due to the high arity of constraints (between 6 and 15 arguments) in the
model definition.
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Figure 4: A tradeoff between space complexity and diagnostic efficiency for different repre-
sentations: (1) one-level heart model, (2) hierarchical four-level model, (3) relational table,
and (4) compressed diagnostic rules.

The relational table representation is the most time efficient since only a simple retrieval
is required, but, on the other hand, it is more space demanding. Compressed diagnostic
rules are optimal in terms of space and time efficiency and currently appear to be the best
representation for the ECG interpretation. Finally, the four-level model is obviously out-
performed by the compressed diagnostic rules, but still achieves satisfactory performance
from the practical point of view. More importantly, it is 20 times more efficient than the
one-level model, and requires only three times as much space (out of 45 Kb, 11 Kb are for
the relational table entries without abstractions).

The relation between different representations of diagnostic knowledge is better illustared

on a time/space tradeoff scale in Figure 4. Recall that (3) and (4) were automatically
derived from (1) while (2) was constructed semiautomatically on top of (1).
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5 Conclusion

We presented two approaches to an efficient application of a deep simulation model to di-
agnosis. First, by abstracting the model, and second, by compressing it into a set of surface
diagnostic rules. We compared the deep and surface electrocardiographic knowledge rep-
resentation in terms of space complexity and diagnostic efficiency. Compressed diagnostic
rules are both space and time efficient, and can be derived automatically. Some of them
are simple and have clear medical interpretation, but many are too complex to be easy to
understand. In contrast to dedicated diagnostic rules, model-based reasoning offers better
explanation facilities which can be even tuned to the desired level of detail. Further, the
hierarchical diagnostic algorithm can be easily modified to accommodate diagnostic rea-
soning under time constraints, and to offer a tradeoff between diagnostic specificity and
certainty.
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