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Abstract

Most of the research on abstractions with a sound formal basis was applied to theorem
proving and planning, and only a few results which show some computational advantage of
abstractions are known. The paper presents an application of abstractions to model-based
reasoning, with the goal to improve the efficiency of diagnosis. Model-based reasoning
about a system requires an explicit representation (a model) of the system’s components
and their connections. Diagnosing such a system consists of finding abnormal states of
components, so that the faulty system behavior is accounted for. Our approach is not
restricted to qualitative models, but requires an explicit fault model. We define three
abstraction operators which map a detailed, complex model to an abstract, simpler one.
A formal consistency condition which must be satisfied by any pair of adjacent models in
a hierarchy is specified. We define a diagnostic algorithm and prove its correctness and
completeness. Abstractions and the algorithm were applied to a complex medical problem:
ECG interpretation based on the model of the heart’s electrical activity. Results show
that hierarchical diagnosis has logarithmic time complexity when compared to a one-level
diagnosis—specifically, a speedup of a factor of 20 was achieved.

1 Introduction

There are two fundamentaly different approaches to diagnostic reasoning. In the first, heuris-
tic approach, one codifies diagnostic rules of thumb and experience of human experts in a
given domain. In the second, model-based approach, one starts with a model of a real-world
system which explicitly represents the structure and components of the system (e.g., de Kleer
1976, Genesereth 1984, Reiter 1987). When the system’s actual behavior is different from
the expected behavior, the diagnostic problem arises. The model is then used to identify
components and their internal states which account for the observed behavior.

In section 2 we compare our approach to model-based diagnosis, stimulated by a medical
application, to Reiter’s (1987) approach. In technical domains, a model typically defines
just normal behavior of components. A diagnosis is a minimal set of assumptions about the
normal behavior which, if removed, render the model behavior consistent with observations.
There is no need for a fault model, and the minimality criterion is essential. In our approach
a strong fault model exists and all diagnoses (single and multiple, including non-minimal) are
required since combined disorders might be treated differently than individual ones. There
is no distinction between normal and abnormal states of components, and a model defines a
mapping from any internal state to external observations. The diagnostic problem is then to



find the inverse mapping, i.e., all internal states for the given observations. However, due to
the ‘forward’ directionality bias of the model, its ‘backward’ application might be inefficient.

In section 3 we define three abstraction operators which map a detailed, complex model to
an abstract, simpler one. The operators allow for both structural and behavioral abstrac-
tions. Our approach is related to abstractions in theorem proving (Giunchiglia & Welsh 1989,
Plaisted 1981) and planning (abstrips, Sacerdoti 1974).

In section 4, a hierarchical diagnostic algorithm is defined and proved to be correct and com-
plete. The algorithm uses an abstract model to generate potential diagnoses, and a more
detailed model to verify them. Since the models are always used in the ‘forward’ direction,
for simulation, the algorithm is suitable for integrating numerical and qualitative models (e.g.,
Gallanti et al. 1989). With appropriate multi-level abstractions, the complexity of diagnosis
may be reduced from O(S) to O(logS), where the number of states to be verified at the de-
tailed level is S. A similar complexity reduction using abstractions is reported by Genesereth
(1984) and Korf (1987, in planning), but without any experimental evidence to support the
claim.

Two applications of abstractions, to a constraint satisfaction problem (map coloring) and to a
complex medical problem confirm the expected complexity reduction (section 5). In the med-
ical application—originating from the KARDIO project (Bratko, Mozetic & Lavrac 1989) the
problem is to diagnose heart disorders, given an ECG and a simulation model of the heart’s
electrical activity. Until now, all attempts to directly use the model for efficient diagnosis
failed—in an average case more than 50sec. is needed to find all diagnoses. By abstractions
and refinements, the model was represented at four levels of detail, and the average diagnostic
time was reduced to 2.7sec.

2 Model-based diagnosis

Model-based reasoning about a system requires an explicit representation (a model) of the
system’s components and their connections. Reasoning is typically based on theorem prov-
ing when a model is represented by first-order logic (Genesereth 1984, Reiter 1987), or on
constraint propagation (Davis 1984), possibly coupled with an ATMS (de Kleer & Williams
1987). For our approach it is essential that a model explicitly relates an internal state of com-
ponents to external observations. To illustrate such a representation, a well known example of
a binary adder, used by Genesereth (1984) and Reiter (1987) is represented by a logic program
with negation (Lloyd 1987). We found logic programs useful to represent models since they
can be naturally extended to efficiently solve constraints over finite domains (e.g. by forward
checking, Van Hentenryck 1989) and to solve systems of linear equations and inequalities over
real arithmetic terms (e.g. by a Constraint Logic Programming language CLP(R), Jaffar &
Michaylov 1987).

Example (binary adder)

adder( state(X1,X2,A1,A2,O1), in(In1,In2,In3), out(Out1,Out2) ) ←
xorg( X1, In1, In2, OutX1 ),
xorg( X2, In3, OutX1, Out1 ),
andg( A1, In1, In2, OutA1 ),
andg( A2, In3, OutX1, OutA2 ),
org( O1, OutA1, OutA2, Out2 ).



A model relates an internal state (ok or ab) to external observations (inputs and outputs, 0s
and 1s), and is specified by its structure and the functions of its components. In our example
a single clause is used to define the structure, where atoms in the body represent model com-
ponents (xor, and, or gates), and shared variables denote connections between components.
Normal behavior of the components is defined by the corresponding Boolean functions:

xorg( ok, In1, In2, Out ) ← xor( In1, In2, Out ).
andg( ok, In1, In2, Out ) ← and( In1, In2, Out ).
org( ok, In1, In2, Out ) ← or( In1, In2, Out ).

xor( 1, 1, 0 ). and( 1, 1, 1 ). or( 1, 1, 1 ).
xor( 1, 0, 1 ). and( 1, 0, 0 ). or( 1, 0, 1 ).
xor( 0, 1, 1 ). and( 0, 1, 0 ). or( 0, 1, 1 ).
xor( 0, 0, 0 ). and( 0, 0, 0 ). or( 0, 0, 0 ).

Abnormal behavior (a fault model) has to be defined as well. The weakest fault model allows
for any behavior, and is needed when a component consists of several diagnosable subcompo-
nents. When components are considered primitive, a stronger fault model which specifies as
abnormal any behavior that is not correct, is justified:

xorg( ab, In1, In2, Out ) ← ¬xor( In1, In2, Out ).
andg( ab, In1, In2, Out ) ← ¬and( In1, In2, Out ).
org( ab, In1, In2, Out ) ← ¬or( In1, In2, Out ).

Suppose that an adder is given an input in(1,0,1) and produces an incorrect output out(1,0)
(the correct output is out(0,1)). This indicates that the adder is faulty, and we can diagnose
it by submitting the following query to the model interpreter:

← adder( State, in(1,0,1), out(1,0) ).

The interpreter returns (through backtracking) eight states which correspond to the given
input-output observations:

State = state(ab,ok,ok,ok,ok);
State = state(ok,ab,ok,ab,ok);
State = state(ok,ab,ab,ab,ab); . . .

Reiter (1987) defines a model as a pair (sd, components). sd (system description) is a
set of first-order sentences defining how the system components are connected and how they
normally behave by referring to a distinguished unary predicate ab (meaning ‘abnormal’).
components is a finite set of constants, and an observation obs is a finite set of first-order
sentences. A diagnosis ∆ for (sd, components, obs) is a minimal subset ∆ ∈ components
such that

sd ∪ obs ∪ {ab(c) | c ∈ ∆} ∪ {¬ab(c) | c ∈ components −∆}
is consistent. Reiter’s diagnostic algorithm is based on the concept of a conflict set, originally
due to de Kleer (1976). Corresponding to Reiter’s definition, there are three diagnoses for
the faulty adder: {X1}, {X2, O1}, {X2, A2}. The last diagnosis {X2, A2} subsumes the
two states of the adder state(ok,ab,ok,ab,ok) and state(ok,ab,ab,ab,ab) found by our model
interpreter. We define a diagnosis as a correct answer substitution for the state of the model
which is a logical consequence of the model definition, and not only the minimal set of faulty
components, such that the consistency of sd and obs is restored. Notice, for example, that a
conjecture where all gates are simultaneously abnormal {X1, X2, A1, A2, O1} always restores



the consistency of sd and obs (but is not minimal) in Reiter’s approach. The corresponding
state(ab,ab,ab,ab,ab), however, is not a logical consequence of the model definition for the
given observation.

In our approach, a model M defines a mapping m (in general m is not a function) from
any state to external observations. We denote the domain of m (states) by τx, the range
(observations) by τy, and a typed version of m by mτ , where
∀x∈τx ∀y∈τy mτ (x, y)← m(x, y).

Definition (model description)
A model description M consists of a type-free definition of mτ (1), a type theory (2 and 3,
Lloyd 1987), and a formal system which defines the mapping m (4):

1. mτ (x, y)← τx(x), τy(y),m(x, y).

2. τ(a). for each constant a of type τ .

3. τ(f(x1, . . . , xn))← τ1(x1), . . . , τn(xn). for each functor f of type τ1 × . . .× τn → τ .

4. P a formal system which defines m.

Example (binary adder, continued)

mτ (x, y1, y2) ← τx(x), τy(y1), τy(y2), adder(x, y1, y2).

τx(state(x1, x2, x3, x4, x5)) ← τs(x1), τs(x2), τs(x3), τs(x4), τs(x5).

τy(in(y1, y2, y3)) ← τb(y1), τb(y2), τb(y3).
τy(out(y1, y2)) ← τb(y1), τb(y2).

τs(ok). τs(ab).

τb(0). τb(1).

Definition (diagnostic problem)
Given a model description M and observations y ∈ τy a diagnosis ∆ is a state ∆ ∈ τx such
that M |= mτ (∆, y).

The diagnostic problem is to find the inverse mapping m−1 for given observations y. Suppose
P is a simulation model and consists of a system of equations over reals. In general, it is
not possible to interpret equations or run simulation ‘backwards’ in order to find the inverse
mapping m−1. Even if the domain τx is finite and P is a system of constraints, any constraint
propagation method may be too inefficient for a system with a large number of components
and large domain τx. One possible solution is to represent M at several levels of abstraction
and to first solve the diagnostic problem at an abstract level where the model is simpler and
the search space smaller. The abstract, coarse solutions are then used to guide the search at
more detailed levels, where the model is more complex and the search space larger.

3 Abstractions and refinements

Suppose M and M ′ are detailed and abstract model descriptions, respectively. A relation
M 7→M ′ denotes an abstraction from M to M ′ and a refinement from M ′ to M . In general
7→ is a partial mapping (many-to-many) from M to M ′. Below we define three abstraction
operators which map M to M ′:

mτ (x, y)← τx(x), τy(y),m(x, y). 7→ m′τ (x, y)← τ ′x(x), τ ′y(y),m′(x, y).



by abstracting constituent components (2, 3 and 4) of the model description M to M ′.

Definition (abstraction/refinement operators)

1. Collapse/refinement of constants.
Different constants can be abstracted to a single constant, for example
τ(a1). 7→ τ ′(a′). τ(a2). 7→ τ ′(a′).
We represent the abstraction 7→ by a binary predicate h:
h(a1, a

′). h(a2, a
′).

2. Deletion/introduction of arguments.
Irrelevant arguments can be deleted at the abstract level, for example
τ(f(x1, . . . , xn))← τ1(x1), . . . , τn(xn). 7→ τ ′(f ′(x2, . . . , xn))← τ ′2(x2), . . . , τ

′
n(xn).

where τ 7→ τ ′, τi 7→ τ ′i(2≤ i≤ n), and f ′ is f with the first argument deleted. When
all arguments of f are eliminated we replace the functor f ′ by a constant a′. Term
abstractions are also represented by the predicate h:
h(f(x1, . . . , xn), f ′(x′2, . . . , x

′
n))← h(x2, x

′
2), . . . , h(xn, x

′
n). or

h(f(x1, . . . , xn), a′).

3. Simplification/elaboration of the mapping m and formal system P .
Only some useful abstractions of m 7→ m′ and the corresponding formal system P 7→ P ′

can be defined syntactically. For example:

(a) Partial evaluation (e.g., van Harmelen & Bundy 1988).
m′ can be defined by m′(x′, y′) ← m(x, y), hx(x, x′), hy(y, y

′) and partially evalu-
ated in order to eliminate predicates hx, hy and some p∈P from its definition.

(b) Dropping conditions (e.g., Sacerdoti 1974).
If m is defined by m(x, y)← c1, c2, . . . , cn then m′ can be simplified to
m′(x, y)← c′2, . . . , c

′
n where ci 7→ c′i (2≤ i≤n).

(c) Renaming predicates (e.g., Plaisted 1981).
Different predicates p1, p2∈P can be abstracted to the same predicate p′∈P ′.

In general, abstractions of m and P are defined implicitly by conditions C1 and C2,
defined below.

An abstraction was defined as a partial (not total) mapping since we found it useful to ignore
some unimportant features at the abstract level. For example, take the or gate from the
adder example as an abstraction of an actual realization with three transistors and resistors
(for details, see Mozetic 1990a). The abstraction ignores currents and maps only relevant
voltage ranges to low and high (0 ≤ V < 0.7 7→ 0 and 2 ≤ V ≤ 5 7→ 1). Irrelevant
voltage ranges (e.g., 0.7 ≤ V < 2) do not have any abstraction. However, in order to exploit
possible computational advantages of the multi-level over one-level model representation, two
conditions must be satisfied by any pair M and M ′.

Let us denote by τ− a subset of τ which is not abstracted since it is irrelevant at the abstract
level, and by τ+ a subset of τ which is abstracted. Define τ−(x)← ¬∃x′h(x, x′) and τ+(x)←
∃x′ h(x, x′). The following condition restricts the relation between the mapping mτ , and
subsets of its range τ−x and domain τ+y which are (not) abstracted.



Definition (restriction of incompleteness)
For any mτ , if M |= mτ (x, y) then τ−x (x) or τ+y (y).
With respect to the model M this is equivalent to:

C1 : ∀x, y m(x, y)⇒ ¬∃x′ hx(x, x′) ∨ ∃y′ hy(y, y′)
If we denote a subset of the mapping mτ which is abstracted by m+

τ and define m+
τ (x, y)←

τ+x (x), τ+y (y),m(x, y) then the following condition defines the relation between the detailed
and abstract mapping.

Definition (preservation of mapping)
For any m+

τ , if M |= m+
τ then there exists m′τ such that M ′ |= m′τ .

With respect to M and M ′ this is equivalent to:

C2 : ∀x, y (∃x′′, y′′ m(x, y) ∧ hx(x, x′′) ∧ hy(y, y′′)⇒ ∃x′, y′ m′(x′, y′) ∧ hx(x, x′) ∧ hy(y, y′)
Giunchiglia and Walsh (1989) define an abstraction as a total function which maps one formal
system into another where a formal system consists of a language, set of axioms, and deduc-
tive machinery. They define, among others, TI (theorem increasing) and NTI (non-theorem
increasing) abstractions. An abstraction is TI iff for any detailed level theorem there exists a
corresponding abstract level theorem. An abstraction is NTI iff for any non-theorem (which
yields an inconsistency when added to the detailed level axioms) its abstraction added to the
abstract system also yields an inconsistency. If negation is preserved across the abstraction
then TI and NTI abstractions are equivalent.

An abstraction in our definition is not a total, but a partial mapping, and therefore com-
pleteness is not necessarily preserved, but C1 must be satisfied. However, for the part of the
space which is abstracted (where C2 applies) our abstractions are TI/NTI. The approach by
Giunchiglia and Walsh is more theoretic and general than ours, since they do not restrict ax-
ioms to definite clauses and deductive machinery to resolution. Their abstractions are defined
in terms of derivability and they do not make any attempt at providing syntactic abstraction
operators.

Plaisted (1981) restricts abstractions to resolution systems, and uses them for theorem prov-
ing. His abstractions are inconsistency preserving, and thus NTI, but he does not capture
all NTI abstractions. He gives several instances of both syntactic and semantic abstractions.
Syntactic abstractions include renaming predicates, functors, and constants (our abstrac-
tion operator 1), deleting arguments of predicates and functors (our abstraction operator 2),
instantiating clauses, changing signs of literals and permuting arguments. These syntactic
abstractions are applied globally, to the whole set of axioms and ensure that inconsistency is
preserved. Our operators are applied only locally, to terms denoting states and observations
of the model. When they are applied globally, to the whole model definition, the condition
C2 is always satisfied.

Hobbs (1985) presents a theory of granularity where an abstraction is defined as a mapping
from a complex to a simpler ‘coarse-grained’ theory. He defines the indistinguishability rela-
tion ∼ by (∀x, y x ∼ y)⇔ (∀p ∈ R p(x)⇔ p(y)) where R is a set of predicates relevant to the
situation at hand. The intended meaning is that x and y are indistinguishable if no relevant
predicate distinguishes between them. This is a special case of Plaisted’s abstractions, where
constants are renamed in a systematic (but not necessary one-to-one) way. In our approach,
this corresponds to the abstraction operator (1), where the hierarchical relation h is specified
by ∀x∼ c h(x, c′) where c′ represents the equivalence class of all constants indistinguishable



from c.

Abstrips (Sacerdoti 1974) is an early application of abstraction to planning, where precon-
ditions of operators were abstracted according to their criticality. A precondition p of an
operator op can be defined as a mapping from a state of the world s to true or false, depend-
ing on all primitive conditions ci being satisfied or not:

p(op, s)← c1(κ1, s), ..., ci(κi, s), ..., cn(κn, s).
Each primitive condition ci is (automatically) assigned a criticality κi. In the abstract space,
all conditions ci with criticality κi < κ are deleted from the precondition definition:

p′(op, s)← c1(κ1, s), ..., ci−1(κi−1, s), ci+1(κi+1, s), ..., cn(κn, s).
This corresponds to our abstraction operator (3), where some model components are ignored.
Note that in the abstract space more operators are applicable, but those that achieve details
are never selected as relevant. In abstrips there is no abstraction of the world description
which would correspond to our operators (1) and (2). The relation h is therefore the identity
relation, and conditions C1 and C2 are obviously satisfied. Sacerdoti claims that there is no
need to delete unimportant details from the world description since they can be simply ig-
nored. In contrast, Korf (1987) proposes abstraction of both operators and state descriptions
in planning, but does not provide any specific abstraction operators.

Tenenberg (1987) defines an abstraction as a predicate mapping (not necessarily one-to-one),
which is a special case of Plaisted’s abstractions. However, TI and NTI abstractions may
map a consistent theory into an inconsistent one. This is known as the ‘false proof’ problem
(Plaisted 1981) since there may be a proof in the abstract space that does not correspond to
any proof in the detailed space. The aim of Tenenberg’s work is to ensure that consistency
is preserved. He places restrictions on the abstraction mappings which preserve consistency,
but has to sacrifice completeness. In this respect his approach is related to ours since we also
allow for the abstract model to be incomplete, but the incompleteness is restricted by the
condition C1.

4 Hierarchical diagnosis

Conditions C1 and C2 which must hold for any model abstraction M 7→ M ′ can be con-
joined into a consistency condition.

Definition (consistency condition)

CC : ∀x, y m(x, y) ∧ (∃x′′ hx(x, x′′))⇒ ∃x′, y′ m′(x′, y′) ∧ hx(x, x′) ∧ hy(y, y′)
The following logic program tests whether CC holds between models M and M ′.

Algorithm (consistency test)

consistent ← ¬inconsistent.
inconsistent ← hx(x, x′),m(x, y),¬exist x′y′(x, y).

exist x′y′(x, y) ← hx(x, x′), hy(y, y
′),m′(x′, y′).

Theorem. The consistency test algorithm is correct and complete. The proof is a corollary
to Lemmas 18.3 and 18.4 of (Lloyd 1987, p. 115).

Suppose that given is a list of models M1, . . . ,Mn, ordered from abstract to detailed where
corresponding state-observation mappings are defined by predicates m1, . . . ,mn. The hierar-
chical diagnostic algorithm is then defined by the following logic program which implements



a depth-first, backtracking search through the space of possible states.

Algorithm (hierarchical diagnosis)

D1 : diagi(y, x) ← hy(y, y
′), diagi−1(y

′, x′), hx(x, x′),mi(x, y).

D2 : diagi(y, x) ← ¬exists x′(x),mi(x, y).

D3 : exists x′(x) ← hx(x, x′).

Theorem. If the consistency condition CC is satisfied by any two adjacent models then the
hierarchical diagnostic algorithm is correct and complete with respect to the mapping mi.
The proof is by induction on the abstraction level i.

• Base case (i = 1). There is no abstraction of x above the top level and ¬∃x′ hx(x, x′)
holds. The bodies of the clauses D1 and D3 are unsatisfiable, and the clause D2 reduces to
diag1(y, x)← m1(x, y). Under the usual assumption about logic programs that predicate def-
initions are implicitely completed (Lloyd 1987) this proves that diag1 and m1 are equivalent.

• General case (i > 1). The algorithm is obviously correct since all pairs (x, y) are explicitly
verified by the mapping mi. We prove completeness by contradiction. Assume that the al-
gorithm is correct and complete at the level i − 1, i.e., diagi−1(y, x) ← mi−1(x, y). Suppose
(A) that there exists a mapping mi(a, b) which is not found by the algorithm. Therefore
¬diagi(b, a) holds, and both the body B1 of D1 and B2 of D2 (resolved with D3) must be
unsatisfiable. Assuming that the consistency condition CC holds, and replacing mi by m
and mi−1 by m′ we derive contradiction by resolution. For shortness, we do not transform
formulae to conjunctive normal form or skolemize variables, but instead use two additional
rules: P and ¬(P ∧Q) resolve to ¬Q (steps 5 and 6), and ∀x ¬P (x) and ∃x P (x) resolve to
2 (indicating contradiction, step 9).

A : m(a, b) (1)

B1 : ¬(hy(y, y
′) ∧m′(x′, y′) ∧ hx(x, x′) ∧m(x, y)) (2)

B2 : ¬(¬∃x′ hx(x, x′) ∧m(x, y)) (3)

CC : ¬m(x, y) ∨ ¬(∃x′′ hx(x, x′′)) ∨ (∃x′, y′ m′(x′, y′) ∧ hx(x, x′) ∧ hy(y, y′)) (4)

1, 2 : ¬(hy(b, y
′) ∧m′(x′, y′) ∧ hx(a, x′) (5)

1, 3 : ∃x′ hx(a, x′) (6)

1, 4 : ¬(∃x′′ hx(a, x′′)) ∨ (∃x′, y′ m′(x′, y′) ∧ hx(a, x′) ∧ hy(b, y′)) (7)

6, 7 : ∃x′, y′ m′(x′, y′) ∧ hx(a, x′) ∧ hy(b, y′) (8)

5, 8 : 2 (9)

Let us assume that the cost δ of finding all diagnoses for the detailed level model Mn (without
using abstractions) is a function vn of the number of states S to be verified:

δ(Mn) = vn(S) = O(S)
In the worst case, when faults of the model components are independent, all states have to
be verified. With multi-level models M1, . . . ,Mn, the cost of hierarchical diagnosis is the sum
of costs of verifying refinements of abstract diagnoses Di−1 at each level i. Bi−1 denotes a
branching factor from the level i − 1 to i. In addition, we also have to take into account
the number of newly introduced states Ni (without abstraction) which must be verified. The
overall cost is:

δ(M1, . . . ,Mn) =
∑n
i=1 vi(Di−1 ×Bi−1 +Ni)



where D0 = 0 and N1 = S1 (the number of states at the top level). When tree-structured
hierarchies are used the number of states at each level is Si = Si−1 × Bi−1. The number of
detailed level states can be expressed as a product of branching factors S =

∏n
i=1Bi−1 if we

take B0 = S1. Note that the number of abstraction levels needed is n = logB S when one
chooses a constant branching factor B. If we make a simplifying assumption that vi, Di and
Bi are constant across levels (v(D × B) = C), and there is no incompleteness (Ni>1 = 0),
then the linear complexity of finding all diagnoses is reduced to logarithmic:

δ(M1, . . . ,Mn) = v(D ×B)× n = C × logB S = O(logS)
The reduction comes from the fact that, while the total number of states grows exponentially,
the number of states to be verified is kept constant across levels. In our experiments this
actually turned out to be the case.

5 Experiments and results

An interesting special case of the inverse mapping problem is constraint satisfaction. In this
setting m corresponds to constraints which map a tuple of variables x to y ∈ {true, false},
depending on constraints being satisfied or not. First we show an application of abstractions
to a well known map coloring problem. Suppose constraints are represented by a conjunc-
tion of binary predicates next/2 for each pair of bordering countries. Next/2 holds when
its two arguments are assigned two different colors from the set of {blue, green, red, yel-
low}. For a map of 32 European countries, a chronological backtracking algorithm requires
more than 54 days to find a solution. An obvious abstraction (operator 1) collapses blue,
green 7→ dark and red, yellow 7→ light, and the map is at first colored by the two colors.
Constraints have to be abstracted as well (operator 3): any conjunction of three binary
predicates next/2 which connect three bordering countries is replaced by a ternary predicate
next/3. For example, next(Austria,Italy), next(Austria,Yugoslavia), next(Italy,Yugoslavia) 7→
next(Austria,Italy,Yugoslavia). As a side product, countries which do not have at least two
neighbours (e.g. Portugal) are ignored at the abstract level (operator 2). Next/3 holds
when one argument is assigned a different abstract color than the remaining two, e.g.,
next(dark,dark,light) holds. With such a two level representation, the first solution was found
in 11min. When an intermediate level was introduced, such that at first only one abstract
color is refined and the map colored by three colors, and only then all four colors are used, the
first solution was found in 4sec. All times are CPU times on Apollo DN 3000 with compiled
Quintus Prolog.

The next application involves a realistic medical problem. In KARDIO (Bratko, Mozetic &
Lavrac 1989), the ECG interpretation problem is formulated as follows: given a symbolic ECG
description, find all possible—single and multiple—heart disorders (cardiac arrhythmias). In
the medical literature there is no systematic description of ECG features which correspond
to complicated multiple disorders. Instead of constructing diagnostic rules directly we de-
veloped a simulation model of the electrical activity of the heart. The original model of the
heart in KARDIO can simulate over 2400 heart disorders to derive over 140000 corresponding
ECG descriptions. In the experiments described here we used a subset of the original model
which relates 943 heart failures to 5240 ECG descriptions. Due to the simulation nature
of the model its application in the ‘forward’ direction (deriving ECGs for a given disorder)
can be carried out efficiently. In contrast, diagnostic reasoning (finding disorders for a given
ECG) involves deep backtracking and renders the ‘backward’ application inefficient. Using



States without Refinements of Branching
Level States abstraction abstract diagnoses Diagnoses factor
i Si Ni Di−1 ×Bi−1 Di Bi
1 3 3 0 1.0 5
2 18 3 5 1.9 10
3 175 26 19 1.3 9
4 943 0 12 2.1 /

Four-level, hierarchical diagnosis 36 2.7 sec.
One-level, generate-and-test 943 50.4 sec.

Table 1: The number of states verified and diagnostic times needed to find all diagnoses from
the heart model, averaged over 3096 distinct ECG descriptions.

the naive generate-and-test method with chronological backtracking, the average diagnostic
time is more than 50sec., and the application of more sophisticated constraint satisfaction
techniques (different goal selection strategies, forward checking) provided no improvement.
The computational complexity is due to the large number of syntactically possible states
(52920), and high arity of predicates in the model (components have between 6 and 15 argu-
ments).

In order to improve diagnostic efficiency, we represented the heart model at four levels of
abstraction. First, the three-level model was constructed in a top-down way, using QuMAS,
a semiautomatic Qualitative Model Acquisition System (Mozetic 1987). The fourth, most de-
tailed level was then added manually, by rewriting the original KARDIO heart model (which
required a special interpreter) into a logic program which can be interpreted directly. All
three abstraction/refinement operators were used in the hierarchical model representation
(see Mozetic 1990a).

We compared diagnostic efficiency and the number of states to be verified by a hierarchical di-
agnostic algorithm and a one-level generate-and-test method (Table 1). Diagnostic efficiency
is the time needed to find all possible diagnoses for a given ECG, and was averaged over all
3096 distinct ECG descriptions at the detailed level. The heart model and the diagnostic
algorithm were compiled by Quintus Prolog and run on SUN 3. The experimental results are
consistent with the complexity analysis. In one-level diagnosis, for each ECG, all possible
states have to be verified. Thus v4(943) ∝ 50.4sec. and the average time to verify a state is
53msec. In hierarchical diagnosis the cost is

∑4
i=1 vi(Di−1×Bi−1+Ni). We can ignore the cost

of verifying states without abstraction (Ni) since corresponding pairs state-observation were
cached in a table. We further simplify the matter by assuming that costs of verifying states at
different levels were equal, thus yielding the overall cost

∑4
i=1 v(Di−1×Bi−1) = v(36) ∝ 2.7sec.

The approximate time to verify one state in hierarchical diagnosis is therefore 75msec. This
is close to one-level diagnosis and confirms that the number of states to be verified is an
indicative measure of complexity.

An alternative approach to use a deep model for efficient diagnosis is to ‘compile’ it into
shallow diagnostic rules. A general, domain independent ‘compilation’ procedure, and a com-
parison of diagnostic efficiency and space complexity between deep and shallow knowledge in



KARDIO is described in (Mozetic 1990b).

6 Conclusion

We applied abstractions to model-based diagnosis, and showed a considerable improvement
of diagnostic efficiency on a non-trivial medical problem. We defined three abstraction oper-
ators, formal conditions they have to satisfy, and a provably correct and complete diagnostic
algorithm. With appropriate abstractions, the linear complexity of diagnosis can be reduced
to logarithmic. The complexity reduction is due to simpler models and smaller search space
at the abstract levels. The search space size depends on the branching factor of hierarchical
relations and on the number of newly introduced states without abstraction (due to incom-
pleteness). Therefore, reducing incompleteness and introducing intermediate levels improves
the efficiency of hierarchical diagnosis. The questions how to find appropriate abstractions
and when constructing abstract models is cost-effective, remain open. Our current research
indicates that partial evaluation is a powerful technique to automatically construct abstract
models on top of an existing detailed model, provided that abstractions of states and ob-
servations are given. The main limitation of our approach is that it requires a strong fault
model and is geared towards the problem of finding all (including non-minimal) diagnoses.
In technical domains, fault models are less common than in medicine, one is usually inter-
ested in minimal diagnoses, and the question of suggesting additional measurements has to
be addressed. We are currently investigating how to upgrade an existing numerical simula-
tion model, introduce a weak fault model at the qualitative level, and then use abstraction
hierarchies to find minimal diagnoses.
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