
URL Tree: Efficient Unsupervised Content Extraction from
Streams of Web Documents

Borut Sluban
Department of Knowledge Techologies

Jožef Stefan Institute
Jamova 39, Ljubljana, Slovenia

borut.sluban@ijs.si

Miha Grčar
Department of Knowledge Techologies

Jožef Stefan Institute
Jamova 39, Ljubljana, Slovenia

miha.grcar@ijs.si

ABSTRACT
The Web represents the largest, and an increasingly grow-
ing, source of information. Extracting meaningful content
from Web pages presents a challenging problem, already ex-
tensively addressed in the offline setting. In this work, we
focus on content extraction from streams of HTML docu-
ments. We present an infrastructure that converts continu-
ously acquired HTML documents into a stream of plain text
documents. The presented pipeline consists of RSS readers
for data acquisition from different Web sites, a duplicate re-
moval component, and a novel content extraction algorithm
which is efficient, unsupervised, and language-independent.
Our content extraction approach is based on the observa-
tion that HTML documents from the same source normally
share a common template. The core of the proposed con-
tent extraction algorithm is a simple data structure called
URL Tree. The performance of the algorithm was evaluated
in a stream setting on a time-stamped semi-automatically
annotated dataset which was made publicly available. We
compared the performance of URL Tree with that of several
open source content extraction algorithms. The evaluation
results show that our stream-based algorithm already starts
outperforming the other algorithms after only 10 to 100 doc-
uments from a specific domain.

Categories and Subject Descriptors
E.1 [Data Structures]: Trees; H.3.3 [Information Stor-
age and Retrieval]: Information Search and Retrieval—
Information filtering, Retrieval models; I.7 [Document and
Text Processing]: Miscellaneous

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
content extraction; boilerplate removal; stream data; Web
content; unsupervised learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’13, Oct. 27–Nov. 1, 2013, San Francisco, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2263-8/13/10 ...$15.00.
http://dx.doi.org/10.1145/2505515.2505654.

1. MOTIVATION AND RELATED WORK
The Web has become the largest source of information and

heterogeneous data. The data is available in different repre-
sentations (texts, graphs, knowledge stores, databases, time
series, etc.), languages, and sizes (the concept of big data is
becoming more and more important), and can have different
dynamics (static data, slow or fast-paced streams). Consid-
ering only news sites, blogs, and social media, new content
is produced continuously at an increasing pace. From this
perspective, we can view the Web as a generator of data
streams that contain valuable information that is often hard
to discover due to the information overload problem. Man-
aging such amounts of unstructured streaming data in terms
of information and knowledge discovery requires satisfying,
among other things, two major conditions: (i) efficient on-
line processing with near-real time information delivery and
(ii) differentiation between the relevant content in HTML
documents and the accompanying text called the boilerplate
(template and navigation items, recommendations, adver-
tisements, copyright notices, etc.).

Automated content extraction, template identification, or
boilerplate removal for a general Web page proves to be a
challenging task and has attracted much attention in the
scientific literature and industry. Early approaches were
mostly based on handcrafted rules and could only be ap-
plied to Web pages from a limited number of sources. The
main drawback of these approaches was the inability to eas-
ily adapt to the changes that occur over time in the HTML
structure of Web pages. In contrast, template detection al-
gorithms [1] aim at finding invariant and changing sections
of Web pages automatically. In [8], the Document Object
Model (DOM) trees of a set of Web pages are analyzed
to find the optimal mapping between the tree nodes and
thereby identify the content nodes. In [6], the cooccurence
of the terms in a set of Web pages is analyzed and the en-
tropy of each text block is computed. The informative text
blocks are then identified by thresholding. The approach
in [2] excludes template items by detecting similar content
with a common layout style during the index building pro-
cess of a search engine. More recent approaches mainly focus
on textual features. NCleaner [3] uses a character-level n-
gram language model to distinguish between, as they call it,
clean and dirty text. The boilerpipe algorithm [4] describes
text blocks with“shallow text features”and builds a decision
tree that is used to classify the text blocks of an arbitrary
Web page as content or boilerplate. jusText [7] implements
a set of rules that characterize text blocks as either “good”
or “bad”. The algorithm first performs a context-free clas-

sification of text blocks and then refines it with a set of
context-aware rules. Readability,1 a popular reading tool,
manipulates the DOM tree of a Web page by employing
several heuristics based on textual and structural features
to remove the boilerplate. More exhaustive overviews of the
content extraction field can be found in [7] and [5].

In contrast to the existing methods which are mostly su-
pervised, language-dependent, and/or unaware of the stream
setting, we propose an efficient, online, unsupervised,
language-independent approach to content extraction from
streams of HTML documents.

The main contributions of this work are as follows. First,
we describe an infrastructure for content extraction from a
continuous stream of documents from different Web sites
(see Section 2). Second, we propose a URL normaliza-
tion procedure for identifying duplicates (see Section 3).
Third, we present the URL Tree data structure and the cor-
responding stream-based content extraction algorithm (see
Section 4). Fourth, we compare the performance of the
proposed algorithm to 10 different open source algorithms
(see Section 5). Finally, we publish the time-stamped semi-
automatically annotated dataset that we used for the eval-
uation purposes. With this, we provide the essential means
for further research in this area. Several ideas for further
work are presented in Section 6.

2. STREAM SETTING
Most of the content extraction algorithms, incl. the meth-

ods presented in Section 1, extract content in an offline set-
ting. By “offline setting” we refer to extracting the relevant
text from each HTML document separately, independently
of any other acquired documents, except perhaps using a
static labeled dataset in the model training phase. Such
content extraction algorithms do not take into account that
a subset of the previously acquired documents potentially
shares the same template and thus the same boilerplate texts
that are part of this template. Our approach makes use of
the fact that documents are continuously being acquired by
RSS readers, which generate sub-streams of documents with
the same template. The template can thus be identified as
a set of repeatedly observed text segments in a sub-stream
and therefore separated from the main content. We base
our work on the assumption that it is easier to distinguish
between relevant and irrelevant content given the history of
documents from the same source. This is analogous to re-
touching a damaged movie frame as opposed to retouching
a damaged photo: the first task is easier because fragments
from the preceding frame can be used. The content extrac-
tion process on a stream of HTML documents is illustrated
in Figure 1.

In our workflow, HTML documents are acquired by RSS
readers,2 which periodically check the corresponding Web
sites for the most recent RSS documents. An RSS document
is essentially an XML containing titles and short descrip-
tions (summaries) of a certain number of the most recent
posts. Each RSS item also provides a link (i.e., URL) to the
Web page containing the full content and the RSS reader is
responsible for downloading the corresponding HTML doc-

1http://www.readability.com/developers/api/reader
2In our case, an RSS reader is a software component de-
signed to retrieve content updates from a particular Web
site. RSS stands for Really Simple Syndication.

Duplicate removal

Content extraction

RSS reader

RSS reader

RSS reader

Plain text HTML
tokenizer

HTML
tokenizer

HTML
tokenizer

Plain text

Plain text
URL Tree

URL Tree

URL Tree URL
normalizer

Figure 1: The content extraction process on streams
of Web documents.

ument. In our case, one RSS reader is acquiring documents
from one Web site (e.g., BBC at http://www.bbc.co.uk)
through one or more RSS feeds provided by the site (e.g.,
BBC lists its RSS feeds at http://www.bbc.co.uk/news/

10628494). Each RSS reader keeps the history of acquired
documents by representing each document with a hash code
computed out of the document’s title, description, and pub-
lication date as observed in the RSS document. With this,
the RSS reader avoids downloading the same document mul-
tiple times when processing subsequent RSS documents from
the same site.

Multiple copies of the same document that were not iden-
tified by this caching mechanism in the RSS readers are
filtered out by the URL normalization component. This
process is more thoroughly described in Section 3.

The HTML tokenization component removes HTML mark-
up, CSS styles, and JavaScript code, and extracts text blocks
from an HTML document. Text blocks are defined as chunks
of text delimited with at least one (opening or closing) HTML
tag. Certain inline HTML tags (such as em, strong, i, font,
a, etc.) are ignored when partitioning textual content into
text blocks.

The content and boilerplate of an HTML document are
identified by employing the proposed URL Tree data struc-
ture which is the core of our content extraction algorithm.
This process is more thoroughly discussed in Section 4.

3. URL NORMALIZATION
In the content extraction pipeline, news content is ac-

quired from different Web sites (e.g., http://www.reuters.
com, http://www.bbc.co.uk, etc.) through their RSS feeds.
The RSS feeds provide references to the latest news arti-
cles or blog posts (HTML documents) in the form of Uni-
form Resource Locators (URLs). Based on the response
URL,3 a document belongs to a specific domain. By the
domain of an HTML document, we refer to the combina-
tion of the top level domain (TLD) and the second-level do-
main name of the document’s (response) URL, e.g., news.eu
would be the domain of the HTML document at http://

www.news.eu/politics/europe/article1.html. Note that
documents acquired from the same Web site can in fact orig-
inate from different domains.

Although collecting duplicate content from a single Web
site is avoided by the caching mechanism in the RSS reader,
some HTML documents from the same domain may still be
acquired multiple times (within-domain duplicates). One

3The response URL is obtained from a request URL after
the redirections (if any) have been resolved.

reason is that the same HTML documents are served over
multiple RSS feeds covering different topics of interest (e.g.,
politics and economy). The caching mechanism in the RSS
reader, relying on the metadata contained in an RSS XML
document (in our case, document title, description, and pub-
lication date), often receives different metadata from differ-
ent RSS feeds even though they reference the same HTML
document. Another reason is news aggregators that refer-
ence documents from various different sites/domains (e.g.,
Google News collects news from BBC, CNN, and many other
news sites). The same document can thus be acquired
through an aggregator (e.g., by the Google News RSS reader)
and through its publisher’s RSS feed (e.g., by the BBC RSS
reader).

As already said, RSS feeds provide references to HTML
documents in the form of URLs. This would seem to imply
that within-domain duplicates can be easily avoided, sim-
ply by observing these URLs. However, it turns out that
a URL of an HTML document, in its raw form, is not a
unique identifier of that document. Consequently, it cannot
be used as a tool to properly detect and avoid duplicates in
the data acquisition process, but it is nevertheless a good
starting point. Understanding how URLs are composed and
how they are used enables us to construct a “nearly unique”
document identifier.

A URL is usually composed in the following way:

protocol://domainname/path1/.../pathN/file?query

For example:

http://www.ft.com/world/2013/02/news.html?feed=3

In the following, we present a URL normalization pro-
cess which results in a URL-based nearly-unique identifier
of an HTML document, called the URL key. Each step of
the process decreases the differentiation between documents
and thereby increases the ability to avoid collecting dupli-
cated content. The complete URL normalization process is
as follows (input: a request URL as given in an RSS XML
document):

1. Follow the redirections to convert the request URL into
the corresponding response URL.

Example request URL:
http://news.google.com/news/url?sa=t&fd=R&usg=

AFQjCNHEIIAoeLGPfbkX6IdaQ2xoYptq-w&url=http://

abcnews.go.com/kabc/story?section%3Dnews/local/

los_angeles%26id%3D8691010

The corresponding response URL:

http://abcnews.go.com/kabc/story?section=news/

local/los_angeles&id=8691010

2. Convert the title of the corresponding document, as given
in the RSS XML document, into a 128-bit hash code and
append it as a query parameter to the URL, specifically:
cid =<hash code>. In addition, normalize the encoding

and sort the query parameter names alphabetically in the
query part.

Example (URL after Step 2):

http://abcnews.go.com/kabc/story?_cid_=090

c0a49e55c9734bc2311e08ff006d4&id=8691010

§ion=news/local/los_angeles

3. Normalize the query with the query normalization rules.
For each rule in the rule list, check if it is applicable to the
URL. A rule is defined with a regular expression and a
list of query parameters (usually just one) that need to be
retained. Several examples are given in Table 1. A rule
is applicable if the regular expression matches the URL.
In that case, the query parameters are filtered according
to the rule. If none of the rules apply, the query part is
dropped completely.

Example (URL after Step 3):

http://abcnews.go.com/kabc/story?id=8691010

Table 1: URL normalization rule examples.

Regular expression (trigger)4
Query

parameter
to retain

abcnews\.go\.com id
www\.fitchratings\.com.*?/detail\.cfm pr id
bbs\.chinadaily\.com\.cn/viewthread\.php tid
www\.hurriyetdailynews\.com/n\.php n
globeandmail\.golfcanada\.ca articleId
podcast\.ft\.com/index\.php pid
www\.aljazeera\.com(\?.*)?$ cid
www\.dailymail\.co\.uk/home/index\.html cid
www\.foxnews\.com/on-air.*?/index\.html cid

The resulting URL (after Step 3) represents the corre-
sponding URL key. In Figure 2, we show how URL normal-
ization contributes to the identification of duplicates, solely
by comparing URL keys of documents. The presented re-
sults were computed on 569,583 documents collected by our
data acquisition pipeline described in Section 2. The doc-
uments were collected from 31 Web sites over a period of
eight weeks (Oct 24 – Dec 19, 2011).

177,393
(31.1%)

193,666
(34.0%)

194,083
(34.1%)

277,530
(48.7%)

0

50,000

100,000

150,000

200,000

250,000

300,000

Unmodified
request URL

Unmodified
response URL
(after Step 1)

Normalized
response URL
(after Step 2)

Query
normalization
(after Step 3)

N
um

be
r o

f i
de

nt
ifi

ed
w

ith
in

-d
om

ai
n

du
pl

ic
at

es

Figure 2: Number of identified within-domain du-
plicates after each step of the URL normalization
process.

The results show that a significant amount of documents
(almost 50%) can be filtered out in the data acquisition pro-
cess if we apply URL normalization. The removal of within-
domain duplicates is essential for content extraction with a
URL Tree as it prevents perceiving content blocks as boiler-
plate.
4Due to space limitation, the start of each regular expression
“http://” is omitted.

4. CONTENT EXTRACTION ALGORITHM
In our approach, we assume that each HTML document

with a unique URL key represents a unique document. Our
content extraction algorithm is based on the observation
that documents from the same domain, whose URL keys
differ only in the document identifier, have a lot of boiler-
plate in common. To determine which text blocks are boil-
erplate, we count their occurrences in the stream. We store
the occurrence counts in the URL Tree structure. When a
new document arrives in the stream and passes the dupli-
cate removal filter, its URL key is mapped to a branch in a
URL Tree. If the branch does not yet exist in the tree, it
is created. The nodes in the branch (i.e. parts of the URL
key) hold statistics about the text blocks extracted from the
document.

For a newly observed document, each node in the branch
is updated as follows: (i) the number of observed documents
(ns) is increased by 1, (ii) each text block is normalized (all
non-alphabetic characters are removed from the string, and
the string is made all-lowercase) and converted into an MD5
hash code (a set of unique text block hash codes B = {bi}
is used from here on), and (iii) the counter for each of the
text blocks in B (let us denote it with c(bi)) is increased
by 1. The URL Tree construction process is illustrated in
Figure 3.

Document URL:
http://www.ft.com/co/2013/02/n1.html?f=3

Document URL key:

http://www.ft.com:80/co/2013/02/n1.html

Tree branch:
com ft www co 2013 02

Root

Stream

How many times
did I see “About Us”

in the stream so
far?

Domain

Path

Root

How many times
did I see “About

Us” in this part of
the tree?

Domain Path

Figure 3: Constructing a URL Tree.

After the URL Tree has ‘seen’ enough documents at a spe-
cific node, that node can be used as a classification model
to distinguish between content and boilerplate. The classi-
fication process can employ different heuristics. The default
heuristic is as follows (input: a document and its URL key):

• The leaf corresponding to the URL key is identified in the
URL Tree (note that the leaf always exists because the
document is inserted into the tree before its text blocks
are classified) and selected for the classification process.

• If the number of observed documents (i.e., support) in the
selected node is less than the predefined threshold, i.e.,
ns < nmin, the tree is traversed towards the root until a
node satisfying ns ≥ nmin is found and selected. If such a
node cannot be found, the root node is selected.

• For each text block extracted from the document, the
statistics at the selected node are examined to determine
whether the text block is content or boilerplate as follows:

◦ The text block is normalized (all non-alphabetic char-
acters are removed from the string, and the string is
made all-lowercase) and converted into an MD5 hash
code. This hash code serves as the key for retrieving
the corresponding counter c(bi).

◦ If the counter c(bi) exceeds the predefined thresh-
old cmax, i.e., c(bi) > cmax, then the text block is
classified as boilerplate. Otherwise, it is classified as
content.

5. EVALUATION
Unlike the content extraction algorithms that work in of-

fline settings, our URL Tree-based algorithm is designed
to work efficiently on real-time streams of Web documents
and to benefit from the continuous inflow of new (evolving)
data. In our experiments, we used a time-stamped dataset
of Web documents and compared the performance of our
URL Tree-based algorithm to 10 different content extrac-
tion algorithms developed within four open source projects.

5.1 Dataset
The experiments were performed on a stream of HTML

documents acquired from 31 Web sites over the period from
Oct 24 to Dec 19, 2011. The initial stream of 569,583
documents was reduced to 292,053 documents after within-
domain duplicate removal (URL normalization) as presented
in Section 3. This dataset is a part of the data acquired dur-
ing the European project FIRST.5

A total of 56,436 documents, sampled from the beginning
(Oct 24, 2011 – Oct 31, 2011), the middle (Nov 10, 2011 –
Nov 30, 2011) and the end of the stream (Dec 10, 2011 – Dec
19, 2011), were annotated with manually designed regular
expressions tailored for specific Web site templates. The
annotated dataset is available for download and preview at
http://first.ijs.si/urltreedataset.

5.2 Performance measures
We measured the performance of content extraction with

basic measures from information retrieval, namely recall (R),
precision (P), and their harmonic mean, the F1-score. We
computed these measures for each annotated document as
follows:

Ri =
|extracted relevant text|
|all relevant text| (1)

Pi =
|extracted relevant text|
|all extracted text| (2)

F1i =
2 · Pi ·Ri

Pi + Ri
(3)

The quantity of “extracted relevant text” in Eq. 1 and 2
was computed with DiffLib,6 a software library that enabled
us to compute the size of the intersections between the text
labeled as content in the annotated dataset and the different
text outputs produced by the employed algorithms. Each
text is transformed into a sequence of words/tokens and the
length of the longest common subsequence is the length of
the extracted relevant text.

In the stream setting, we present the performance of an
algorithm as its overall performance until and including the
currently processed document j (also referred to as the cu-
mulative moving average):

F1 =
1

j

j∑
i=1

F1i . (4)

5http://www.project-first.eu
6http://difflib.codeplex.com

5.3 Open source algorithms
We evaluated 10 different algorithms from four open source

projects and compared their performance with the proposed
URL Tree algorithm. The selected algorithms are listed in
Table 2.

Table 2: Open source algorithms.

Algorithm Description

Boilerpipe7 [4]
- DE The default extractor based on a decision

tree and shallow text features.
- AE An extractor tuned towards news articles.
- ASE Extracts only whole sentences.
- LCE Extracts the largest text block.
- NWRE An extractor based on predefined word-

count heuristics.
jusText8 [7] Designed to preserve mainly text contain-

ing full sentences.
NCleaner9 [3]
- default Uses character-level n-gram models as

classifiers.
- non-lexical Relies on non-lexical text features.

Readability10

- .NET A .NET (C#) port of Readability.
- Python A Python port of Readability.

5.4 URL Tree classification heuristics
To extract content with URL Tree, we used four different

classification heuristics:

Strict: The default heuristic (discussed in Section 4) with
parameters nmin and cmax set to 5 and 1, respectively.

Strict-support-N : Similar to the strict heuristic, except
that only the nodes with support ns greater than N
are selected when traversing a URL Tree branch.

Strict-at-domain: The strict heuristic, always applied at
the domain node.

Relaxed-at-domain-N : The strict heuristic with an addi-
tional rule: If the support in the corresponding domain
node is greater than N , then the threshold for content
is increased to 2, i.e., text blocks with c(bi) > 2 are
declared as boilerplate and blocks with c(bi) ≤ 2 as
content.

5.5 Results
We conducted two separate experiments. In the first ex-

periment we streamed our dataset of 292,053 HTML docu-
ments (see Section 5.1) through the URL Tree content ex-
tractor employing the strict classification heuristic. We mea-
sured F1 at each of the 56,436 annotated documents (i.e.,
gold standard), for each of the 33 domains separately. From
the results presented in Figure 4 we see that the performance
of URL Tree, as expected, increased over time. Furthermore,
for the majority of the domains, URL Tree achieved good F1

7https://code.google.com/p/boilerpipe
8https://code.google.com/p/justext
9http://sourceforge.net/projects/webascorpus/
files/NCleaner/NCleaner-1.0

10http://code.google.com/p/nreadability,
https://github.com/buriy/python-readability

scores already after 10 to 100 documents from an individual
domain. F1 scores higher than 0.7 were observed for all the
domains, scores higher than 0.84 for three quarters of the
domains, and for more than a third of the domains, the F1

scores exceeded 0.9. The best scores were achieved for the
domains chosun.com, usatoday.com, and newyorker.com,
whereas the lowest scores were obtained for the domains
abcnews.go.com, cbsnews.com, and foxnewsinsider.com.

Gold-standard document sequential number

Cu
m

ul
at

iv
e

F 1

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1

1 25 49 73 97 12
1

14
5

16
9

19
3

21
7

24
1

26
5

28
9

31
3

33
7

36
1

38
5

40
9

43
3

45
7

48
1

Figure 4: URL Tree content extraction evaluation
results for each domain separately.

In the second experiment, we compared the performance
of URL Tree with that of the 10 selected open source content
extractors (see Section 5.3). We employed the four heuris-
tics discussed in Section 5.4. The first 35,321 documents
(which included the first 10,000 gold-standard documents)
were used as the tuning set to select the best value for N
for the two parametrized heuristics. We varied N from 100
to 1,000 (by 100). According to our observation on the tun-
ing set, N was set to 100 for the strict-support-N heuristic
(termed strict-support-100) and to 500 for the relaxed-at-
domain-N heuristic (termed relaxed-at-domain-500). With
these settings, the experiment was re-run on the rest of the
stream (i.e., the test set).

The results are given in Figure 5. The figure shows the
F1 scores aggregated over all the domains. The best per-
forming open source algorithms, in our specific experimen-
tal setting, were the two Readability implementations (F1

of approximately 0.84), followed by the five different flavors
of Boilerpipe (F1 ranging from 0.76 to 0.81).

We can see that URL Tree outperformed the other algo-
rithms relatively early in the process. The F1 score of the
strict heuristic reached over 0.85 after about 4,000 docu-
ments (which corresponded to around 1,000 gold-standard
documents) and remained over this value throughout the
rest of the stream. It also proved beneficial to experiment
with several different heuristics. The heuristics strict-sup-
port-100 and strict-at-domain both outperformed the strict
heuristic and exhibited comparable results with F1 scores
around 0.86. Furthermore, the relaxed-at-domain-500 heu-
ristic clearly outperformed the other three heuristics, with
an F1 score of about 0.89.

6. DISCUSSION
In this paper, we discussed a URL Tree-based approach

to content extraction from streams of HTML documents.
The presented approach is efficient (in terms of process-
ing speed), unsupervised, language-independent, and out-
performs the other algorithms we evaluated in our RSS data

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1
10

01
20

01
30

01
40

01
50

01
60

01
70

01
80

01
90

01 1
10

01
20

01
30

01
40

01
50

01
60

01
70

01
80

01
90

01
10

00
1

11
00

1
12

00
1

13
00

1
14

00
1

15
00

1
16

00
1

17
00

1
18

00
1

19
00

1

1. URL Tree - Relaxed-at-domain-500 (0.89)
2. URL Tree - Strict-at-domain (0.86)
3. URL Tree - Strict-support-100 (0.86)
4. URL Tree - Strict (0.85)

5. Readability - Python (0.84)
6. Readability - C# (0.84)

7. Boilerpipe - LCE (0.81)
8. Boilerpipe - AE (0.80)
9. Boilerpipe - DE (0.80)
10. Boilerpipe - ASE (0.79)
11. Boilerpipe - NWRE (0.76)

12. jusText (0.67)
13. NCleaner (0.60)
14. NCleaner - non-lexical (0.50)

Gold-standard document sequential number

Cu
m

ul
at

iv
e

F 1

Tuning set Test set

Figure 5: Stream-based content extraction evaluation results. We limit the view to the first 20,000 test
documents. The final F1 scores (after all the 46,436 test documents) are given in the brackets.

acquisition setting. However, it has some drawbacks as
well. One of its weaknesses is that it cannot be applied
to small, diverse datasets of HTML pages. It is specifically
designed to work in scenarios such as our RSS data acquisi-
tion pipeline. It could potentially also be applied to crawling
large and dynamic Web sites. In this case the URL normal-
ization rules would need to be changed in order to get the
value for the cid parameter from the HTML header rather
than the RSS metadata. Another thing to point out is the
memory consumption. Our implementation of URL Tree
consumes around 6,5 MB of RAM for every 1,000 inserted
documents. Even though this aspect was completely ignored
in this paper, it needs to be handled in real-life applications.

We have employed a URL Tree-based content extractor in
a data acquisition pipeline running continuously since April
2011. So far, we have collected and preprocessed over 15
million unique documents from 175 Web sites providing al-
together around 2,500 RSS feeds. Let us also briefly note
that the stream of plain text that the pipeline produces is
used as an input for a range of analytical components that
look for correlations between occurrences of extracted enti-
ties and different financial indicators such as credit default
swaps and stock market indices. To handle the memory con-
sumption issue, the employed instance of URL Tree holds a
maximum of 10,000 documents for each domain. In addi-
tion, it removes documents older than 14 days (however, it
always keeps at least the 100 most recent documents). This
mechanism was defined rather ad-hoc and we plan to in-
vestigate the impact of different strategies on the accuracy
more thoroughly. Our preliminary results show that remov-
ing outdated documents from the tree does not affect the
accuracy.

In future work, we plan to explore how URL Tree and
several other content extractors perform on different types
of boilerplate (advertisements vs. menu items vs. copyright
notices etc.). Furthermore, we plan to explore whether it
would be better to use a similarity hashing scheme rather
than representing text blocks with MD5 hash codes. Last
but not least, we plan to explore the possibility of updating
the URL normalization rule list in a semi- or fully automatic
manner.

7. ACKNOWLEDGMENTS
We would like to thank Marko Brakus for creating the ini-

tial annotated dataset. This work was partially funded by
the Slovenian Research Agency and by the European Com-
mission in the context of the FP7 projects FIRST and FOC,
under the grant agreements no. 257928 and 255987, respec-
tively.

8. REFERENCES
[1] Z. Bar-Yossef and S. Rajagopalan. Template detection

via data mining and its applications. In Proc. of the
Int. Conf. on World Wide Web, pages 580–591, 2002.

[2] L. Chen, S. Ye, and X. Li. Template detection for large
scale search engines. In Proc. of the ACM Symposium
on Applied Computing, pages 1094–1098, 2006.

[3] S. Evert. A lightweight and efficient tool for cleaning
web pages. In Proc. of the Int. Conf. on Language
Resources and Evaluation (LREC), 2008.

[4] C. Kohlschütter, P. Fankhauser, and W. Nejdl.
Boilerplate detection using shallow text features. In
Proc. of the ACM Int. Conf. on Web Search and Data
Mining, pages 441–450, 2010.

[5] T. Kovačič. Evaluating Web Content Extraction
Algorithms. Bachelor’s Thesis, Faculty of Computer
and Information Science, University of Ljubljana,
Slovenia, 2012.

[6] S.-H. Lin and J.-M. Ho. Discovering informative
content blocks from web documents. In Proc. of the
ACM SIGKDD Int. Conf. on Knowledge Discovery and
Data Mining, pages 588–593, 2002.

[7] J. Pomikálek. Removing Boilerplate and Duplicate
Content from Web Corpora. PhD thesis, Faculty of
Informatics, Masaryk University, Brno, Czech Republic,
2011.

[8] K. Vieira, A. S. da Silva, N. Pinto, E. S. de Moura,
J. a. M. B. Cavalcanti, and J. Freire. A fast and robust
method for web page template detection and removal.
In Proc. of the ACM Int. Conf. on Information and
Knowledge Management, pages 258–267, 2006.

