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Abstract. The bile acid and xenobiotic system describes a biological
network or system that facilitates detoxification and removal from the
body of harmful xenobiotic and endobiotic compounds. While life sci-
entists have developed a relatively comprehensive understanding of this
system, many mechanistic details are yet to be discovered. Critical mech-
anisms are those which are likely to significantly further our understand-
ing of the fundamental components and the interaction patterns that
govern this systems gene expression and the identification of potential
regulatory nodes. Our working assumption is that a creative informa-
tion exploration of available bile acid and xenobiotic system information
could support the development (and testing) of novel hypotheses about
this system. To explore this we have set up an information space con-
sisting of information from biology and finance, which we consider to be
two semantically distant knowledge domains and therefore have a high
potential for interesting bisociations. Using a cross-context clustering ap-
proach and outlier detection, we identify bisociations and evaluate their
value in terms of their potential as novel biological hypotheses.

Keywords: Clustering, outlier detection, bisociative information
exploration.

1 Introduction

Bisociative information exploration is based on the assumption that the pool-
ing of information from different domains could facilitate the discovery of new
knowledge. In this study we explore bisociative information discovery based on
literature from molecular biology and finance. Our hypothesis is that the biso-
ciative approach may help life scientists interested in the bile acid and xenobiotic
system to generate (and possibly test) novel hypotheses which will ultimately
support the discovery of biological mechanisms.

The presented approach is based on the work by Petrič et al. [10] who devel-
oped methods to investigate the role of outliers in literature-based knowledge
discovery. Their approach rests upon the assumption that cluster outliers of two
document sets with known classification can be used to discover new, useful
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knowledge. In this context we define outliers as domain-labeled documents that
are further away from the centroid of their knowledge domain then the majority
of documents from its domain.

The work by Petrič et al.[10], which focuses on the domains of biology and
medicine, differs from our approach in the way that we consider selected docu-
ments from two unrelated domains, namely, finance and biology. With unrelated
domains we mean knowledge domains or domain theories (as defined in Part
I: Bisociation [2]) that share less concepts than the knowledge domains of bi-
ology and medicine for instance. Therefore we expect to find less documents
than between related domains, which in turn enables us to have a more detailed
semi-automatic analysis of those documents.

We investigate the cluster outliers and their opposite-domain neighborhood
in order to identify bisociations between biology and finance. In particular, we
are looking for shared features in scientific abstracts across the two domains.
Such features might be common terms or even sets of relationships within one
domain which have correspondences in the other domain.

2 The Bile Acid and Xenobiotic System

The bile acid and xenobiotic system (BAXS) defines a biological network that
facilitates two distinct but intimately overlapping physiological processes. The
enterohepatic circulation and maintenance of bile acid concentrations (Fig. 1)
and the detoxification and removal from the body of harmful xenobiotic (e.g.
drugs, pesticides) and endobiotic compounds (e.g., steroid hormones) [8]. The
system involves the coordination of several levels of gene activity, including con-
trol of mRNA and protein expression and regulation of metabolizing enzyme and
transporter protein function in tissues such as liver, intestine/colon and kidney.
Bile acids are necessary for the emulsification and absorption of dietary fats and
are therefore valuable compounds, however as their build-up can cause harm,
their concentrations need to be appropriately regulated and recycled. Similarly
there is a requirement for a system that can “sense” the accumulation of xeno-
biotic and endobiotic compounds and facilitate their detoxification and removal
from the body. The BAXS accomplishes this and maintains enterohepatic cir-
culation (the circulation of biliary acids from the liver as depicted in Fig. 1)
through a complex network of sensors in the form of nuclear receptors that func-
tion as ligand-activated transcription factors (see molecular interaction network
depicted in Fig. 2). They serve to detect fluctuations in concentration of many
compounds and initiate a physiological response by regulating the BAXS.

Transcriptional regulation by nuclear receptors1 involves both activating and
repressive effects upon specific “sets” of genes. There is considerable overlap ex-
hibited between nuclear receptors in the genes they target and also the ligands

1 Nuclear receptors are a class of proteins within the interior of cells responsible for
sensing the presence of steroid and thyroid hormones and certain other molecules.
In response, these receptors work in concert with other proteins to regulate the
expression of specific genes, thereby controlling the development, homeostasis, and
metabolism of the organism.
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Fig. 1. The enterohepatic circulation system of the BAXS

that bind to and activate them, i.e. each gene has multiple functions within
this system depending on the tissue it is expressed. It is these factors that con-
tribute, for example, to the phenomenon of drug-drug interactions, e.g. between
St. John’s Wort and Cyclosporine or St. John’s Wort and oral contraceptive [1,7].

The goal of the BAXS application within the BISON project is to support
the discovery of hitherto unknown but important biological mechanisms in the
BAXS. Critical mechanisms are those which are likely to significantly further
our understanding of the fundamental components and the interaction patterns
that govern BAXS gene expression and the identification of potential regulatory
nodes. It has been established that the overall flux of the BAXS is achieved
through a regulatory transcriptional network mediated through the activities of
members of the nuclear receptors (such as FXR, LXR, PXR, CAR) and nuclear
factors (such HNF1α, HNF4α). However, given the overall complexity of the
bile acid/xenobiotic system it is difficult to assess the exact importance of each
receptor and modulatory factor with respect to BAXS activity in different tis-
sues. One of the key issues in the understanding of the BAXS is to decipher the
components and the interaction patterns that govern BAXS gene expression and
the identification of potential regulatory nodes. This understanding is essential
to identify targets for treatment regimes, to understand the components impact-
ing drug-drug interactions, to provide a framework for the design of large-scale,
integrated prediction studies, and to aid in the definition of high-quality “gold
standards” or research frameworks for future systems biology studies.

To investigate the potential of bisociative exploration of the BAXS, we are
pooling two groups of information resources from the biological and financial
domains respectively.
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Fig. 2. The gene network and molecular interactions of the BAXS

3 Materials and Methods

OntoGen2 is a semi-automatic and data-driven ontology editor facilitating the
editing of topic ontologies (a hierarchy of topics connected with the subtopic of
relation). The editor uses text mining and machine learning techniques to help
create ontologies from a set of text documents. For this the tool adopts k-means
clustering and latent semantic indexing techniques(LSI) [6]. A screenshot of the
tool is shown in Fig. 3.

In OntoGen each text document is represented as a term vector which is
generated by the standard bag of words approach and the assignment of the
term frequency / inverse document frequency (TFIDF )3 measure to each term.
The similarity between term vectors is calculated using Cosine similarity and
shown in the center of Fig. 3. The similarity values are recalculated when the
document selection changes. For further mentioning of the similarity between
documents we refer to these similarity values calculated by OntoGen.

2 http://ontogen.ijs.si/
3 Elements of vectors are weighted with the TFIDF weights as follows [3]: the ith
element of the vector containing frequency of the ith term is multiplied with IDFi =
log(N/dfi), where N represents the total number of documents and dfi is document
frequency of the ith term (i.e. the number of documents from the whole corpus in
which the ith term appears).

http://ontogen.ijs.si/
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Fig. 3. Screenshot of the OntoGen’s user interface. Left: The ontology concepts we
created (top) and the functionality to create further sub concepts (bottom). Right:
Details of the ontology, underlying documents and similarity graph information.

One of OntoGen’s powerful features allows to visualize the similarity among
a set of selected documents, which is called Concept visualization(as shown in
Fig. 4). This visualization is created using dimensionality reduction techniques
by combining linear subspace and multidimensional scaling methods. For a de-
tailed description and explanation of OntoGen’s main components and function-
ality we refer to work by Fortuna and colleagues [3,6,5,4].

In the following we describe how we generated and explored the document
outliers across two domains: BAXS and finance. Petrič et al. [10] outline pro-
cedures that facilitate the identification of cross-context outliers with OntoGen.
The main steps comprise the k-means clustering of documents with two differ-
ent labels, the further subdivision of each cluster according to the labels and
the outlier analysis of these misclassified documents in contrast to the clusters.
Before going into the details of outlier detection, we describe the retrieval of the
scientific documents for both domains. A document in this study refers to the
abstract and associated keywords of a published scientific article.

The document corpus for the biological domain (as relevant to the BAXS)
consists of documents from PubMed4. PubMed is a free resource containing
over 20 million biomedical article citations and articles.

To compile a corpus of BAXS-relevant PubMed abstracts, we used keywords
and phrases that reflect important concepts in relation to BAXS research. Fur-
thermore, we restricted the search to articles that discuss these concepts in
the context of human biology (ignoring other species). We used the following

4 www.pubmed.gov

www.pubmed.gov
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Fig. 4. OntoGen’s concept visualization of all documents. Yellow crosses denote docu-
ments and the white labels depict document terms. The 3 potential clusters are labeled
accordingly

PubMed query to select the articles:

(‘‘bile acids and salts’’ [MeSH Terms] OR

(‘‘bile’’ [All Fields] AND ‘‘acids’’ [All Fields] AND

‘‘salts’’ [All Fields] ) OR ‘‘bile acids and salts’’

[All Fields] OR (‘‘bile’’ [All Fields] AND

‘‘acids’’ [All Fields]) OR ‘‘bile acids’’ [All Fields]) OR

(‘‘xenobiotics’’ [MeSH Terms] OR

‘‘xenobiotics’’ [All Fields] ) AND ‘‘humans’’ [MeSH Terms]

The query resulted in 21 565 articles of which 16 106 had an abstract. In addition to
the abstracts, we retrieved all articles with the MeSH terms provided by PubMed,
i.e., we included also articles with MeSH5 terms only. With this approach we com-
piled 21 276 documents containing either abstracts, MeSH terms or both.

The information resources from the financial domain are abstracts from the
financial literature. We obtained these from the Journal Storage6 (JSTOR).
Currently, JSTOR contains approximately 1224 journals, which are categorized

5 Medical Subject Headings (MeSH) provides a vocabulary of ca. 25 000 terms used to
characterize the content of biomedical document such as articles in scientific journals.

6 http://dfr.jstor.org/

http://dfr.jstor.org/
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into 19 collections and 53 disciplines. The archive currently offers approximately
295 000 individual journal issues and about 6.4 million articles of which about
3.2 million articles are full-text articles available online. Out of 27 613 available
finance articles that we retrieved, 7674 provided an abstract. In addition to the
abstracts, we retrieved a set of JSTOR-generated keywords for each abstract.

We created a simple text file for the BAXS and finance articles, respectively,
each file containing all the abstracts in that domain. Within each file the docu-
ments were organized as a sequence of lines, each line representing a document,
and the first word in the line is used as the title of the document. A list of 532
English stop words was used to filter out the “low-content” words followed by
Porter stemming to reduce inflected (or derived) words to their stem [9]. For the
construction of the similarity graph the document labels were ignored.

After some experimentation and visual analysis of the clusters, we generated
the final set of clusters using k-means clustering with k = 3. Viewing the resulting
clustering of the document vectors (as shown in Fig. 4), one can easily recognize
the three clusters. In order to get an idea about the information content of the
clusters and the area between them, a more detailed view on Fig. 4 (shown in
Fig. 5) is provided.

Fig. 5. Zoomed in detail from the top centre of Figure 4 (area between BAXS1 and
Finance cluster).

Another interesting feature of OntoGen is its ability to determine the most
common keywords for each cluster. OntoGen uses two methods to extract the
keywords (1) using centroid vectors to get descriptive keywords and (2) Support
Vector Machine classification to extract distinctive keywords. In this study we
considered keywords extracted frommethod (1) only. The keywords provide users
with an idea of the meaning of the clusters. According to this we characterized
the three clusters as follows:
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1. The Finance Cluster characterized by the keywords priced, market, stocks,
returned, firm,trading, investments, models, portfolio and rate.

2. The BAXS1 Cluster with the keywords cells, activity, protein, drug, trans-
port, receptor, enzyme, xenobiotics, expression and gene.

3. The BAXS2 Cluster with the keywords bile, cholesterol, patients, liver,
acid, diseases, age, bile acid, biliary and ursodeoxycholic.

In order to determine the outliers for each cluster, we separated the documents
of each of the three clusters according to the assigned document labels BAXS and
FIN. The resulting topic ontology is depicted in Fig. 6.

Fig. 6. Visualization of the topic ontology with the root in the middle and its three
ascending nodes/clusters (Finance, BAXS1, BAXS2 ) of which each has two ascending
nodes/clusters corresponding to either labels BAXS or FIN.

Fig. 6 suggests that each cluster contains outliers, i.e., BAXS in Finance for
BAXS-labeled documents in the Finance cluster, FIN in BAXS1 for FIN-labeled
documents in the BAXS1 cluster, and FIN in BAXS2 for FIN-labeled documents
in the BAXS2 cluster. A detailed breakdown of the distribution of outliers over
the clusters is provided in Table 1 as a contingency table.

The rows in the table described the number of documents falling into one of
the three clusters, and the columns describe the number of documents labeled
BAXS and FIN respectively. Out of 7674 FIN-labeled documents, 7671 were as-
signed to cluster Finance, 2 documents were assigned to cluster BAXS1, and
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Table 1. Contingency table: Overview of document distribution over the clusters Fi-
nance, BAXS1 and BAXS2

Cluster/Label FIN BAXS Total

Finance 7671 59 7730
BAXS1 2 9129 9131
BAXS2 1 12 088 12 089

Total 7674 21 276 28 950

1 document was assigned to cluster BAXS2. Out of 21 276 BAXS-labeled docu-
ments, 59 were assigned to cluster Finance, 9129 documents were assigned to
cluster BAXS1, and 12 088 documents were assigned to cluster BAXS2. From a
total of 28 950 documents 26,5% are labeled as FIN and 73,5% as BAXS. The num-
ber of documents shared between the clusters is 26,7% in the Finance cluster,
31,5% in BAXS1 cluster and 41,8% in BAXS2 cluster of all documents.

In order to show the ratio between the documents with initial label and the
cluster membership of documents, we combined the documents and outliers from
the two clusters BAXS1 and BAXS2 to a single cluster, BAXS, as shown in the
confusion matrix in Table 2. Out of 7674 FIN documents, 3 were assigned to
combined BAXS cluster, and out of 21 276 BAXS documents, 59 were assigned to
the Finance cluster. That is, from all FIN documents 0.04% were outliers and
from all BAXS documents 0.28% were outliers.

Table 2. Confusion matrix: Overview of correctly and misclassified documents for the
labels FIN and BAXS

Initial label
FIN BAXS

Cluster membership
Finance 7671 59
BAXS 3 21 217

The aim of this study is to interpret the outliers in context to the documents
which are most similar for each cluster. As looking at 62 outliers and their most
similar neighbours for each cluster would be manually not feasible we reduced
the amount of BAXS outliers within the Finance cluster.

From the 59 BAXS outliers within the Finance cluster, we decided to consider
13 of them to be relevant for this study. The decision making process was ac-
complished by experts analysing the 59 BAXS documents and filtering them. We
selected the outliers that were most relevant to BAXS but also most promising
to find relationships in finance. The list of outliers and the topic covered is shown
in Table 3.

As next step we investigated the most similar documents for each outlier
document for each cluster. We considered the 5 most similar documents for the
BAXS clusters (BAXS1 and BAXS2) and the 6 most similar documents for the
Finance cluster. The reason for considering one more document from the Finance
cluster was that FIN-labeled documents were generally much shorter than BAX
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Table 3. General topic of outlier documents

Outlier Topic

BO 01 Data analysis using statistical models
BO 02 Study about how paracetamol dissolves in different conditions
BO 03 A new model in pharmacokinetics is introduced
BO 04 Paper discusses legal criteria and judicial precedents related to hormesis
BO 05 How to calculate reference doses for toxic substances
BO 06 Nonlinear system to model concentration of hormones important for

menstrual cycle
BO 07 Paper about volume of distribution and mean residence time of phar-

maceutics in the body
BO 08 Book about chronic kidney disease and future perspective for Japan
BO 09 Application of data mining methods for biomonitoring and usage of

xenobiotics
BO 10 Xenobiotics in the air close to industrial centres affect mechanisms of

inheritance
BO 11 Data analysis about colorectal polyp prevention
BO 12 Statistical data analysis for Alzheimer’s disease
BO 13 Costs and effectiveness of anti-fungal agents for patients are assessed
FO 01 Analysis about how new drug launches affect life expectancy
FO 02 Analysis of Russian’s investment in transport infrastructure
FO 03 Relationship between choice of treatment for illness and getting a job

documents, and were therefore considered to offer less information than the BAXS
documents. The set of abstracts we retrieved contained on average 8 sentences
for PubMed abstracts and 4 for JSTOR.

As OntoGen wasn’t designed or intended to be used in such a way we adopted
the following procedure to obtain the documents that are most similar to an out-
lier. First, we selected the outlier of interest and deselected all other documents.
Then, using OntoGen, we recalculated the similarity of all documents for this out-
lier. The most similar documents to the outlier are then listed below the outlier.

In order to find the most similar documents from a different cluster, one had
to assign the considered outlier to the other cluster. This was achieved by the
selection of the outlier and selecting OntoGen’S move function (shown in the top
left corner in Fig. 7). After the outlier was moved to one of the other clusters,
the procedure was repeated to obtain the most similar neighborhood documents.

Petrič et al. [10] considered only neighborhood documents within the same
cluster for the interpretation of outliers. Our approach extends this approach by
taking into account the neighborhood documents from the other clusters. Thus,
possible relationships between the clusters can be assessed, where the outliers
serve as link between the most similar neighborhood documents. Table 4 lists the
common bridging terms between the outliers and their neighborhood documents
that we found.
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Fig. 7. Screenshot showing how the outlier document FIN 10.2307 3528838 in cluster
BAXS2 can be moved to different clusters

4 Results and Discussion

Initially, we wanted to look at all 16 outliers and how they might be linked or
related to the topic they cover. For this we first looked at the selected BAXS
outlier documents and how they cover the topics of all BAXS outliers within the
Finance cluster. As shown in Fig. 8, the 13 outliers (the dark labels) seem to
cover most of the topic space of all 59 outliers. We realized that the outliers
are not evenly distributed over this space, which is due to the bias created by
manual selection by the experts. In fact, there are more outliers close to each
other on the left side of the diagram then on the right side.

If we look at the topics covered by each outlier (as shown in Table 3), we see
that most of them cover topics related to clinical studies, statistical analysis or
models related to BAXS in one way or another.

The FIN outliers, on the other hand, do not seem to be similar to each other.
There do not seem to be any obvious relationships between the life expectancy
affected by drug launches (FO 01), how Russians invest in their transport infras-
tructure (FO 02), or how the choice of treatment for illness is related to getting
a job (FO 03).

Therefore, we analyzed the outliers in detail and determined the terms they
share with their most similar neighbor documents. The results of this analysis
are summarized in Table 4. The table lists the most frequent bridging terms
(b-terms) between each outlier and their neighbors.

Then we looked at the bridging terms for the BAXS outliers within each
cluster. The b-terms between the 13 BAXS outliers and the documents in the
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Fig. 8. Concept visualization of all BAXS outlier documents within the Finance cluster.
The relevant outliers under investigation are highlighted in black

Finance cluster are usually general terms such as model, event, predict, estimate
or risk. The b-terms within the BAXS1 cluster and BAXS2 appear to be more
specific, i.e., biological or medical terms such as hygiene, hormone, pharmacoki-
netic, colon cancer. The b-terms between the 3 Finance outliers within BAXS1
and BAXS2 do not provide any new insights compared to Table 3

Meaningful bisociative relationships between the outliers and their neighbor
documents could not be found. As this neglects the neighbor documents within
the other clusters, we decided to search for relationships between the neighbor
documents from the clusters. For this we picked the outliers BO 05 and FO 02
(see Table 4) due to their common b-terms in each cluster.

The BO 05 outlier relates finance models concerned with the risk of investment
to abstracts which analyze the risk of cancer depending on different factors.
The most promising outlier for this was FO 02, as it relates BAXS abstracts to
transporter pathways within and across cells with the transporting infrastructure
within and across countries.
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Table 4. Discovered bridging terms via outliers with most similar neighbours
from the clusters Finance, BAXS1 and BAXS2.

Outlier Finance BAXS1 BAXS2

BO 01 event, model, simulation model regression
BO 02 model, predict, statistical model, dissolution dissolution
BO 03 curve, distribution, long-

term, model
model, pharmacokinetic model, pharmacokinetic

(PK), kinetic
BO 04 decision-making, regula-

tory, agency
hormesis, toxic, regulator humans (Mesh)

BO 05 risk, estimate, observe NOAEL, BMD risk
BO 06 cycles, non-linear systems,

model
hormone cycle, women, hormone

BO 07 volume, estimate clearance, estimate, phar-
macokinetic

volume

BO 08 japanese, assume, analyse filtration humans, middle aged
(Mesh)

BO 09 decision-tree, predict,
model

environmental PCB, biomonitoring,
HCB

BO 10 air, risk hygiene, air, xenobiotics
(Mesh)

xenobiotics

BO 11 estimation, method colorectal, colon cancer recurrence, prevention,
polyp

BO 12 model, predict model, analysis, PLSDA Alzheimer’s disease, pa-
tient

BO 13 cost, hospitals antifungal cost, leukemia
FO 01 health, expenditure, cost-

effectiveness
drug, database drug

FO 02 Russia, transport, transit transport transit, transport
FO 03 choice renal treatment, disease,

chronic, cholestasis

5 Conclusions

In this case study we investigated the potential bisociations between the finance
and BAXS domain based on document outliers as determined by a cross-context
clustering approach.

One main issue in this study is the asymmetric nature of knowledge, i.e., we
have more knowledge about the BAXS than about the finance domain. Another
issue is the asymmetric nature of the data sources (73% BAXS documents and
27% Finance documents). Both put a strong bias on the discovered outliers in
this study and therefore reduce the quality of the results. Based on this study it
would appear that the most promising method to find potential bisociations is to
look at the neighbor documents from the different clusters related to one outlier.
The use of scientific abstracts only could be another reason for the lack of finding
interesting relationships between the domains. More work is needed to explore
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this approach to bisociative information discovery but the approach presented
here shows promise in the discovery of novel connections between domains
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6. Fortuna, B., Mladenič, D., Grobelnik, M.: Semi-automatic Construction of Topic
Ontologies. In: Ackermann, M., Berendt, B., Grobelnik, M., Hotho, A., Mladenič,
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