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Abstract

A stream of unstructured news can be a valuable source of hidden relations

between different entities, such as financial institutions, countries, or persons. We

present an approach to continuously collect online news, recognize relevant

entities in them, and extract time-varying networks. The nodes of the network are

the entities, and the links are their co-occurrences. We present a method to

estimate the significance of co-occurrences, and a benchmark model against which

their robustness is evaluated. The approach is applied to a large set of financial

news, collected over a period of two years. The entities we consider are 50

countries which issue sovereign bonds, and which are insured by Credit Default

Swaps (CDS) in turn. We compare the country co-occurrence networks to the CDS

networks constructed from the correlations between the CDS. The results show

relatively small, but significant overlap between the networks extracted from the

news and those from the CDS correlations.

Introduction

During the last decade, methods developed in the fields of mathematics, computer

science and statistical physics have contributed to the emergence of complex

networks analyses. These analyses have strongly penetrated into the areas of social

media, biology, and economics [1, 2]. A special type of networks extracted from

data are co-occurrence networks, used in diverse fields, such as: linguistics [3],

bioinformatics [4–6], ecology [7], scientometry [8, 9], and socio-technological

networks [10–12]. Co-occurrence networks are loosely defined as networks in
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which nodes represent some entities (for example persons, companies, genes,

etc.), and links represent the fact that these entities exist together in some

collection (for example database, article, etc.). For textual sources it is of

paramount importance to extract the links between entities that represent a real

relationship and are not created by chance. Furthermore, beside reliability, it is

important that the extraction of reliable co-occurrences is implemented by an

efficient algorithm. In the case of online textual sources, the stream of data can be

potentially large and fast, and the speed of processing can be a decisive factor in

the choice between alternative methods.

This paper addresses the question of reliable and efficient construction of co-

occurrence networks from textual sources on the web. The main result is a

significance algorithm, based on a simple algebraic method and counting

statistics, that can be efficiently used to extract significant co-occurrences in the

real data stream. Another result is a benchmark model, used to generate synthetic

data, on which the significance algorithm is tested and the required parameters are

determined. Finally, we investigate the relation between the networks extracted

from online texts and the networks drawn from economic data. We demonstrate

an application of our method by extracting a network of co-occurring countries

from financial news.

Alternative methods to construct co-occurrence networks have previously been

used [1]. The most common is the so called Maslov-Sneppen rewiring algorithm

[13] which is known to produce randomized networks and is a ‘‘microcanonical’’

alternative to the ‘‘canonical’’ configuration models, such as the Molloy Reed

model [14]. These methods create randomized versions of initial networks in

which degrees are conserved and afterward a comparison with real data is made to

check if certain patterns differ significantly from those obtained by the

randomization procedure. These methods can be cumbersome, especially if the

frequency of temporal changes in the network is very high.

Benchmark model which is presented in the paper is a simple linear hidden

variable model that we use to construct syntethic data. These data are not a

representative of the real co-occurence data and their statistics is not the one we

measure in co-occurence analysis. This data just have the same structure (i.e.

projection of bipartite graph) and through hidden variables we can construct

relationships as important or nonimportant in order to evaluate how well our

method performs with respect to different measurement parameters.

The case study, which is an integral part of the paper, analyzes textual data

collected from 2,500 RSS feeds from 170 major English-language news web sites,

with the subject of economy and finance. We acquired around 35,000 articles per

day, during a period of two years, about 18 million articles in total. The data

acquisition pipeline processes the data in real-time, and can easily be extended to

other news sources and languages. In that case, the number of processed articles

could increase many fold. Therefore, it is vital to have a method which can extract

significant co-occurrences from a large dataset efficiently. In the paper we present

an efficient algebraic method that can extract co-occurrences from simple

counting statistics. We believe that the method can be incorporated into the
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real-time acquisition pipeline, but we do not address the issue of efficiency in the

paper.

Other types of network analyses of online textual sources such as Twitter,

Facebook, Google, etc. are also an interesting topic of research. In particular, the

idea that one can extract some unaccounted economical/financial information

related to some entity from the online text materials, even before a market can

account for it, has been investigated thoroughly [15–19]. Several economic

indicators can also be represented as network measures, such as the impacting-

impacted vulnerability derived from CDS networks of companies [20]. Therefore

in the end, we use our method to find significant co-occurences of countries in the

news web sites. We then consider CDS (Credit Default Swaps) of the same

countries, and extract networks based on the correlations between CDS time series

over the same time windows. The results show relatively small, but significant

overlap between the networks extracted from the news and those from CDS

correlations.

This paper is organized as follows. First, we describe the textual data that we use

and the architecture of the real-time data acquisition pipeline. We then describe

the method for extraction of significant co-occurrences. Further, we develop a

benchmark model for the creation of realistic synthetic data. We test our

extraction algorithm on the benchmark model in order to estimate the statistics

we need for the method to work reliably. In the case study, we construct co-

occurrence networks from the textual data acquired, and compare them with the

CDS networks. Finally, we give conclusions and state what further developments

we might achieve with the methods described.

Data Acquisition

This section briefly describes the technology needed to extract bipartite networks

from textual sources on the web. The idea is to monitor a large number of

financial data sources (news and blog sites), acquire their content, extract relevant

entities, and construct networks in different time windows. Within a specific time

window (e.g., a month), nodes of the network are all the entities of interest (e.g.,

financial institutions or countries) which appear in the texts, and links are formed

by their co-occurrences in the same documents.

The technology required for network construction is implemented as a data

acquisition and processing pipeline (DacqPipe in short). It is responsible for

acquiring unstructured data from several data sources, preparing it for the

analysis, and brokering it to the appropriate analytical components. The DacqPipe

is running continuously, since October 2011, polling the web and proprietary

APIs for recent content, turning it into a stream of preprocessed text documents.

It is composed of two main parts: the data acquisition and the semantic data

processing. The pipeline is schematically presented in Figure 1.
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The data acquisition pipeline

The news articles and blogs are collected from 2,503 RSS feeds from 170 English

language web sites (14,567 domains), covering the majority of web news in

English and focusing on financial news and blog sources. We collect data from the

main news providers and aggregators (like yahoo.com, dailymail.co.uk,

nytimes.com, bbc.co.uk, wsj.com) and also from the main financial blogs (like

zerohedge.com). The fifty most productive web sites account for 80% of the

collected documents.

We started with continuous data acquisition on October 24, 2011. In the period

from November 2011 until the end of 2013, almost 18 million documents were

collected and processed. On an average work day, about 40,000 unique articles are

collected. The number of collected articles is substantially lower during weekends;

around 20,000 per weekend day. Holidays are also characterized by a lower

number of documents.

Content from news, blogs, forums, and other web content, is not immediately

ready to be processed by the text analysis methods. Web pages contain a lot of

‘noise’ or ‘boilerplate’ (i.e., undesired content such as advertisements, copyright

notices, navigation elements, and recommendations) that needs to be identified

and removed before the content can be analyzed. For this reason, the data

acquisition and preprocessing pipeline (DacqPipe) consists of a number of

components: (i) data acquisition components, (ii) data cleaning components, (iii)

natural-language preprocessing components and (iv) semantic annotation

components. The pipeline topology is shown in Figure 1.

The data acquisition components are mainly RSS readers that poll for data in

parallel. One RSS reader is instantiated for each web site of interest. The RSS

sources, corresponding to a particular web site, are polled one after another by the

same RSS reader to prevent the servers from rejecting requests due to

Figure 1. The data acquisition, processing and semantic annotation pipeline.

doi:10.1371/journal.pone.0099515.g001
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concurrency. An RSS reader, after it has collected a new set of documents from an

RSS source, dispatches the data to one of several processing pipelines. The

pipeline is chosen according to its current load (load balancing). A processing

pipeline consists of a boilerplate remover, duplicate detector, language detector,

sentence splitter, tokenizer, part-of-speech tagger, lemmatizer, stop-word detector

and a semantic annotator. Some of the components are custom-made while others

use the functionality available from the OpenNLP library [21].

Boilerplate Remover

Extracting meaningful content from web pages presents a challenging problem

which was extensively addressed in the static setting. Our setting, however, is

dynamic and focuses on content extraction from streams of HTML documents in

real time. We use the URL Tree content extraction algorithm [22], which is

specialized for content extraction from streams of HTML documents. The

algorithm is based on the observation that HTML documents from the same

source normally share a common template. The content extraction algorithm is

efficient, unsupervised, and language-independent.

Duplicate Detector

Due to news aggregators and redirect URLs, one article can appear on the web

with many different URLs pointing to it. To have a concise dataset of unique

articles, we have developed a duplicate detector that is able to detect if the

document was already acquired or not.

Language Detector

It detects the language used in a document and discards all the non-English

documents. The model is constructed by a machine learning algorithm, and

trained on a large multilingual set of documents. The basic features for model

training are the frequencies of several consecutive letters.

Sentence Splitter

The sentence splitter splits the text into sentences. The result forms the input to

the part-of-speech tagger. We use the OpenNLP [21] implementation of the

sentence splitter.

Tokenizer

Tokenization is the process of breaking a stream of text into words, phrases,

symbols, or other meaningful elements called tokens. In DacqPipe our own

implementation of the tokenizer is used, which supports the Unicode character set

and is based on rules.

Part-of-Speech Tagger

The part-of-speech (POS) tagger marks tokens with their corresponding word

type (e.g., noun, verb, proposition) based on the token itself and the context of the

token. A token might have multiple POS tags depending on the token and the

context. The part-of-speech tagger from the OpenNLP library [21] is used.
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Lemmatizer

Lemmatization is the process of finding the normalized forms of words appearing

in text. It is a useful preprocessing step for a number of language engineering and

text mining tasks, and especially important for languages with rich inflectional

morphology. In DacqPipe, we use LemmaGen [23] for lemmatization, which is

the most efficient publicly available lemmatizer trained on large lexicons of

multiple languages, whose learning engine can be retrained to effectively generate

lemmatizers of other languages. We lemmatize to English.

Stop-word Detector

In automated text processing, stop words are words that do not carry semantic

meaning. In DacqPipe, stop words are detected and annotated.

Semantic Data Processing

The data acquisition pipeline is general, domain independent, and biased towards

finance only by the selection of RSS sources. On the other hand, the semantic data

processing pipeline is tailored to finance by an lightweight ontology of financial

entities and terms. The ontology includes a dictionary of positive and negative

words for dictionary-based sentiment analysis. The ontology contains gazetteers,

which specify the lexicographic information about the possible appearances of

entities in text. This information is used by the semantic annotator to annotate the

entities in text.

Ontology of Financial Entities and Terms

The lightweight ontology of financial entities and concepts consists of three main

categories: financial entities, financial terms, related to the latest financial crisis,

and geographical entities. Most of the information extraction ontology is

automatically induced by reusing various data sources. The geographical entities

(continents, countries, cities, organizations (such as European Union and United

Nations) and currencies), and the relations between those were extracted from

GeoNames (http://www.geonames.org/Accessed 2014 Nov 6.). We used the IDMS

database and MSN Money (http://money.msn.com/Accessed 2014 Nov 6.) to

‘grow’ the ontology from a list of seed stock indices to its constituents (stocks)

and further on to the companies that issue these stocks. We added a list of ‘over-

the-counter’ stocks from OTC Markets (http://www.otcmarkets.com/home

Accessed 2014 Nov 6.). The hierarchy of financial terms related to the financial

crisis was developed in collaboration with experts in economics. It includes the

main European politicians and economy leaders, Central Banks and other

financial institutions, rating agencies, and fiscal and monetary policy terms.

Semantic Annotator

Each entity has associated gazetteers; gazetteers are rules describing the

appearance of an entity in text. For example, ‘The United States of America’ can

appear in text as ‘USA’, ‘US’, ‘The United States’ and so on. The rules include

capitalization, lemmatization, POS tag constraints, and must contain constraints
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(another gazetteer must be detected in the document or in the sentence) and

followed by constraints.

Semantic Annotation Database

The information about the location (specific paragraph) of terms (entities and

sentiment words) in each document is stored in an SQL database. Additionally,

the entity-class relationship and the hierarchy of ontology classes is also stored.

Meta-data about the document, including the document title, acquisition and

publication time, source domain, response URL, among others, allow drill-down

to the concrete document. Some aggregates, like the sentiment polarity of each

document and each paragraph, are also precomputed and stored in the database

for performance reasons. Such a database allows for efficient and diverse querying.

For example, document titles and response URLs, documents by sources, dates,

entity content, sentiment word content and aggregate sentiment by documents/

paragraphs.

Significance Algorithm

The data thus acquired can be naturally represented as a dynamic bipartite

network. In this representation, entities and documents are represented by two

classes of nodes. Documents are used as ‘dummy’ nodes since we focus on

interesting relationships between entities. Documents have time stamps which

enable the extraction of entity relationships as a function of time.

When other sources of data are scarce, an entity projection network can provide

important information and present a way to infer the structure of entity

interrelationships. We devise a simple method to extract the relationships between

entities based on their co-occurrence statistics. The method recognizes entities as

related if their co-occurrence in the data is significantly more frequent then

expected from a suitable null model, using a level of significance as a parameter in

the method. The null model is based on entity occurrence data and is very similar

to the well-known configuration model, but is much faster to compute. This

feature is important when large amounts of data are streamed in real time, as in

our case.

Data structure used in the algorithm is organized as documents with

timestamps and a list of entities in each document. Time stamps allow the

documents to be grouped in days, weeks or other suitable time frames. Each frame

is analyzed independently. A shorter time frame provides a better temporal

resolution although the frequency of events can sometimes be insufficient for

reasonable significance testing. On the other hand, longer time frames will

generally provide enough events for statistical testing, but a temporal resolution

can be too coarse-grained for the intended purposes. The question of time frames

will be further addressed in the section on benchmark models.

Some entities are more frequent in the data than others. We are interested in

relations between pairs of entities and not their individual properties, therefore,

we take the numbers of occurrences as an external parameter. It must be stressed
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that methods and models presented in this paper can be used to create projection

networks out of any temporal bipartite network. Two entities can appear in the

same document even if they do not have any real connection. Therefore, we want

to calculate, given the number of occurrences, whether two entities appear more

often together than expected by chance. The standard method is to use

configuration or a Maslov-Sneppen rewiring model as null-models. Here we

devise a simple analytical formula based on the configuration model, to compute

a significance score as a function of the number of occurrences and the total

number of documents. This formula is easy to compute and is much faster than

alternative Monte Carlo simulations. In the not-unrealistic case of huge data

flowing through the presented pipeline, the speed of computation becomes of

paramount importance.

In our method, considering two entities A and B with NA and NB occurrences

respectively, we count all possible configurations in which these entities can be

arranged:

N

NA

� �
NA

NA B

� �
N{NA

NB{NA B

� �
ð1Þ

where NAB is the number of A and B co-occurrences. In the data analysis scheme

we discard documents with only one entity in order to get proper statistics.

To write down the probability of having NA B co-occurrences we need to

normalize the above expression with sum of all possible configurations over all

possible co-occurrence values. This is equal to a number of ways we can put A and

B independently in N documents:

N

NA

� �
N

NB

� �
ð2Þ

Expected number of co-occurrences is therefore given by:

hNABi~
1

N

NA

� �
N

NB

� � Xmin (NA,NB)

NA B~0

NA B
N

NA

� �
NA

NA B

� �
N{NA

NB{NA B

� �
, ð3Þ

~
NANB

N
ð4Þ

where T is just the normalization constant, and the second moment is

hN2
A Bi~

NANB

N
NANBzN{NA{NB

N{1
ð5Þ

where both sums have been carried out in Mathematica.

Standard deviation is now

sA B~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NANB

N
N2{N(NAzNB)zNANB

N(N{1)

� �s
ð6Þ
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and we compute a standard significance score of the co-occurrence NA B from the

data as

ZA B~
NA B{hNA Bi

sAB
ð7Þ

Setting some fixed threshold Z0 we can distinguish significant ZwZ0 and non-

significant ZvZ0 relationships between the entities.

This method is different from the configuration model in that we treat

documents as identical ‘passive’ containers. As a consequence, we cannot choose

the distribution of the number of entities per document since it is already

determined by the algorithm. Therefore, we can expect results similar to the

configuration model only if the number of entities per document in the data

already has a distribution similar to the one coming out of our algorithm. We can

estimate the distribution given by our algorithm in the following way. First, let us

find the distribution when multiple occurrences of the same entity in a document

are allowed. The number of entities per documents obeys Poisson distribution

P(Nentities~k)~
l

k!
e{l ð8Þ

where l~

P
A

NA

N
. Now, we have to remove all configurations in which there are

multiple occurrences of the same entity. This procedure prefers configurations

that even more equally distribute the number of entities than predicted by a

Poisson distribution. Therefore, describing all documents by average value

P
A

NA

N
should provide reasonable conditions for distributions in data. In our data, the

distribution of the number of entities per document is approximately exponential,

as seen in Figure 2. Since all statistical moments are non-divergent for such a

distribution, the average value is a good first order representative of the data set

which coincides with the algorithm condition. This method has also recently been

used by [24]. We also add that the individual probability distribution that an

entity occurs in the document or that 2 entities co-occur in a document are heavy-

tailed distributions, as seen in Figure 3 and Figure 4.

The main advantage of this method is that it is very fast to compute. This is

ideal for the huge amount of real life data and is not necessarily useful only in our

context.

Benchmark Model for the Creation of Synthetic Data

In the previous section we have defined a method that we use to find significant

co-occurrences of entities in documents. If there are no underlying assumptions

of the hidden relationships between these entities that are worthy of further

investigation, then such an endeavor is unnecessary. For example: one can extract
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co-occurrences of the names of proteins from the corpus of biomedical papers

hoping that these co-occurrences are related to real protein-protein interactions in

the cell [25]. One can also extract co-occurrences of countries in financial news

hoping that they will correspond to the real financial riskiness of these countries.

Clearly, hidden relationships cannot be explicitly measured in the data and the

level to which significant co-occurrences correspond to these relationships is

impossible to estimate. To overcome such difficulties we create a simple model of

hidden relationships in the spirit of the many hidden variable models [26, 27]. In

this model we explicitly provide hidden relationships which we call importances

and use them to construct an ensemble of artificial networks. Our goal is to

investigate how many of the important relationships will be discovered by the

method with respect to different statistical parameters. The main idea behind this

hidden variable model is the one which is heavily used in community finding

Figure 2. Frequencies of the number of entities in the document. The distribution has exponential tail
which enforces approximations used in the paper. The exponent of the distribution is: {0:332+0:006.

doi:10.1371/journal.pone.0099515.g002

Figure 3. Distribution of occurrence of entities in the data has fat tail.

doi:10.1371/journal.pone.0099515.g003
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[28, 29], and is used to evaluate different community finding algorithms with

respect to their performance.

We therefore present a simple but broadly applicable benchmark model to test

robustness and predictability of the described method. The benchmark constructs

artificial data in which we can independently control relationships between the

entities. It also provides a way to change relationships smoothly in time if needed.

In this way, we emulate correlations present in the real data, which are the main

source of statistical artifacts. We use the benchmark to test the method and to find

applicable regimes in which extracted relationships are reliable, such as the level of

significance, the number of documents etc. A future envisioned application of the

benchmark is to compare different methods of relationship extraction from

dynamic bipartite networks and to use it as a testing ground for investigation of

more sophisticated methods. Evaluation of link importance in data and especially

in temporal networks is in its infancy and we concluded that it would be

reasonable to provide some way to create synthetic data which could be used to

compare the performance of different algorithms as they are presented to the

community.

We propose a simple benchmark model which creates a series of artificial

document nodes with a time stamp and a list of four entities attached to it. The

simplest case to calculate would be if we assign only two entities per document,

but such a benchmark would lack correlations. Namely, if documents contain

more than two entities, entities with several strong relationships will have in

general more co-occurrences even with entities they have no relationship with.

Documents with more than two entities introduce correlations as an immanent

part of real data, and we also have to incorporate them in our benchmark. The

choice of four entities per document is a compromise between simplicity and

correlations in the data. Further in the text we provide formulae for the general

model with p different entities per document.

Figure 4. Distribution of co-occurrences in the data has fat tail distribution.

doi:10.1371/journal.pone.0099515.g004
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Benchmark model with 4 entities

In the benchmark we independently control each pair of entities by assigning

them importance wij representing hidden relationships. Importance is in general a

positive real number. The probability for a document to contain entities i, j, k and

l we write as a function of all six importances (pairwise).

P(fi,j,k,lg)~f (wij,:::,wkl) ð9Þ

We use ‘‘f’’ and ‘‘g’’ to stress that the ordering of elements is not important and

to distinguish these probabilities from the later use of probabilities in which the

ordering is important. In principle it is possible to calculate probabilities for all

possible combinations of four entities but it seems to be rather expensive since

one would have to calculate
N
4

� �
numbers, where N is the number of entities.

To be more efficient we develop an algorithm which picks entities one by one and

still keep above probability. Such procedure requires only 4N calculations.

The simplest choice for the document probability is a sum of all six

importances and we will adopt it as a reasonable choice.

P(fi,j,k,lg)~
wijzwikzwilzwjkzwjlzwkl

Nfwg
ð10Þ

where Nfwg is a normalization factor. It should be mentioned that other choices

like product rules or some other rule could also be devised and they could possibly

be more realistic. However, for a more realistic function f we would need to have

a model of how the choices of entities are made by writers and we are not aware of

any such models. Since importances are not otherwise defined we can use this

formula as their definition when interpreting the results.

When simulating benchmarks we want to avoid choosing randomly among sets

of four entities -
N
4

� �
combinations. We reduce the problem to choosing entities

one by one - four times N combinations. For this we need probabilities:

1. P(i, � , � , � ) - probability to choose i as first

2. P(jji, � , � , � ) - probability to choose j as second, given i is first

3. P(kji, j, � , � ) - probability to choose k as third, given the first two

4. P(lji, j, k, � ) - probability to choose l as fourth, given the first three

5. P(i, j, k, l) - probability to choose i, j, k and l in that order

When constructing a document, probability for a first entity to be i is simply:

P(i)~
X
fj,k,lg

P(fi,j,k,lg)
4

ð11Þ

Division by 4 is the consequence of unordered character of the distribution

P(f� � �g). To calculate probability for a second entity to be j given we already have
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i we first need to calculate the probability of i and j to be in the same document:

P(fi,jg)~
X
fk,lg

P(fi,j,k,lg): ð12Þ

The probability that i was first picked and j second is P(i,j)~P(fi,jg)=12 and

using Bayes formula for conditional probability we have:

P(jji)~ P(i,j)
P(i)

ð13Þ

This procedure can now recursively done until we select all four entities.

Later we calculated the probabilities for a general number of entities in the

document but we report the exact probabilities for the case with 4 entities per

document.

P(fi,j,kg)~ 1
Nfwg

((N{5)(wijzwikzwjk)zsizsjzsk) ð14Þ

P(fi,jg)~ 1
2Nfwg

((N{5)(N{4)wijz2(N{4)(sizsj)zS) ð15Þ

P(fig)~ (N{3)

2Nfwg
(si(N{4)zS) ð16Þ

where si~
P

k wik is a strength of the entity i and S~
P

i si.

Normalization Nfwg can be calculated to be:

Nfwg~
1
4

(N{2)(N{3)S ð17Þ

Therefore, we can calculate probabilities needed to pick entities one by one:

P(i)~
1

2(N{2)S ((N{4)sizS) ð18Þ

P(jji)~ 1
3(N{3)

(N{5)(N{4)wijz2(N{4)(sizsj)zS
(N{4)sizS

ð19Þ

P(kji,j)~ (N{5)(wijzwikzwjk)zsizsjzsk

(N{5)(N{4)wijz2(N{4)(sizsj)zS
ð20Þ

P(lji,j,k)~
wijzwikzwilzwjkzwjlzwkl

(N{5)(wijzwikzwjk)zsizsjzsk
ð21Þ

For constant importances we do not need time stamps on documents and

create a bipartite network with ND documents on which various methods of data
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extraction can be tested. If, on the other hand, we want to test the time resolution

of such methods, we can give importances time dependence; then time stamps are

created as a realization of some random process in time.

General benchmark model

Although in this paper we are using the variant of the model in which there are

only 4 entities in each document, it is easy to generalize the results to documents

with p different entities in each document. In that case

P(fi1, . . . ,ipg)~
1

Nfwg

X
ia,ib[Vp

wiaib
, ð22Þ

is the probability that the document with p entities will have all entities from the

set fi1,:::,ipg:Vp. The probability that a subset of r entities Vr:fi1,:::,irg, Vr[Vp

will be found in the randomly chosen document is:

P(fi1, . . . ,irg)~
X

irz1,:::,ip[�VN

P(fi1, . . . ,ir,irz1, . . . ,ipg), ð23Þ

and the set �VN is a set of all the possible entities that are not found in the set

i1, . . . ,ir. We will define one other set Vs~Vp\Vr which is a set of entities that are

contained in the document but are not in the set of entities whose probability of

occurrence we calculate. Note that sets Vr and �VN have fixed values of indices

while set Vs has variable indices that are elements of �VN set.

Using equation (22) and equation (23) we write

P(fi1, . . . ,irg)~
1

Nfwg

X
Vs5�VN

X
ia,ib
[Vp

wiaib
: ð24Þ

Note that here the first summation runs over all possible subsets Vs of the set
�VN and the second runs over all elements of chosen set Vp~Vr|Vs. We can

break the equation (24) into a sum of three distinct parts:

P(i1, . . . ,ir)~
1

Nfwg
WrzWrszWsð Þ, ð25Þ

where

Wr

X
Vs5�VN

X
ia,ib
[Vr

wiaib
, ð26Þ

is a contribution of links connecting the entities of the set Vr;

Wrs~
X

Vs5�VN

X
ia[Vr ,
ib[Vs

wiaib
ð27Þ
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is a contribution of links connecting the entities in a set Vr with elements in all

possible sets Vs and

Ws~
X

Vs5�VN

X
ia,ib
[Vs

wiaib
ð28Þ

is a contribution of links that are connecting entities all possible sets Vs.

These contributions can be calculated as follows:

Wr ~
�N

s

 !
Tr,

Wrs ~
�N{1

s{1

 ! X
ia[Vr

sia{2Tr

 !
,

Ws ~
�N{2

s{2

 !
S
2

{
X

ia[Vr

siazTr

 !
,

ð29Þ

where �N~N{r and Tr~
P

ia,ib[Vr
wiaib

. Now we can write equation (25) as:

NfwgP(fi1, . . . ,irg)~
�N

s

 !
z

�N{2

s{2

 !
{2

�N{1

s{1

 ! !
Tr

z
�N{2

s{2

 !
S
2

z
�N{1

s{1

 !
{

�N{2

s{2

 ! !
Sr,

ð30Þ

where Sr~
P

ia[Vr
sia . This equation can be written in a more condensed form as:

P(fi1, . . . ,irg)~

�N{2

s{2

� �
Nfwg

( �N{s)( �N{s{1)

s(s{1)
Trz

�N{s
s{1

Srz
S
2

� �
ð31Þ

Once the probabilities are computed it is easy to compute ordered probabilities

needed for the computer simulation. Probability P(i1,:::,ir) that first the i1 was

chosen then i2 and all the way to ir is just:

P(i1,:::,ir)~
P(fi1,:::,irg)(p{r)!

p!
: ð32Þ

Note that this means that we can also work with ordered probabilities P(i1,:::,ir)

for which
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P(i1,:::,ip)~
1

Nw

X
ia,ib[Vp

wiaib
, ð33Þ

with normalization factor Nw~Nfwg:p!. A more detailed version of general

calculations is presented further.

If each document contains p entities, the probability of finding a set of entities

fi1,i2, . . . ,ipg is

P(fi1,i2, . . . ,ipg)~
1

Nfwg

X
1ƒavbƒp

wiaib
: ð34Þ

The probability of finding a subset of entities fi1,i2, . . . ,irg, where rvp, then

reads

P(fi1,i2, . . . ,irg)~
X

firz1,...,ipg
P(fi1,i2, . . . ,ipg)~

1
Nfwg

X
firz1,...,ipg

X
1ƒavbƒp

wiaib
: ð35Þ

Here the sum over indices a and b in (34) can be decomposed into three sums

in which none, one or both indices in the wiaib is summed over.

P(fi1,i2, . . . ,irg)~

1
Nfwg

X
firz1,...,ipg

X
1ƒavbƒrvp

wiaib
z

X
1ƒaƒrvbƒp

wiaib
z

X
rvavbƒp

wiaib

2
4

3
5 ,

ð36Þ

In particular these sums are calculated as follows. The sum term where none of

the indices in wiaib is summed over reads:

X
firz1,...,ipg

X
1ƒavbƒrvp

wiaib

~
X

1ƒavbƒrvp

1
(p{r)!

X
irz1

X
irz2 6¼irz1

. . .
X

ip 6¼firz1,...,ip{1g
wiaib

~
X

1ƒavbƒrvp

(N{r)!

(p{r)!(N{p)!
wiaib

~
N{r

p{r

 ! X
1ƒcvdƒr

wicid
:

ð37Þ

The sum term where one of the indices in wiaib is summed over reads:
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X
firz1,...,ipg

X
1ƒaƒrvbƒp

wiaib

~
X

1ƒaƒrvbƒp

1
(p{r)!

X
ib

X
irz1 6¼ib

. . .
X

ib{1 6¼firz1,...ib{2,ibg

X
ibz1 6¼firz1,...,ibg

. . .
X

ip 6¼firz1,...,ip{1g
wiaib

~
X

1ƒaƒrvbƒp

X
ib

(N{r{1)!

(p{r)!(N{p)!
wiaib

~
N{r{1

p{r{1

 ! X
1ƒcƒr

sic{2
X

1ƒcvdƒr

wicid

 !
:

ð38Þ

The sum term where both indices in wiaib are summed over reads:

X
firz1,...,ipg

X
rvavbƒp

wiaib

~
X

rvavbƒp

X
ia

X
ib 6¼ia

X
irz1 6¼fia,ibg

. . .
X

ia{1 6¼firz1,...ia{2,ia,ibg

X
iaz1 6¼firz1,...,ia,ibg

. . .
X

ib{1 6¼firz1,...ib{2,ibg

X
ibz1 6¼firz1,...,ibg

. . .
X

ip 6¼firz1,...,ip{1g
wiaib

~
X

rvavbƒp

X
ia

X
ib 6¼ia

(N{r{2)!

(p{r)!(N{p)!
wiaib

~
1
2

N{r{2

p{r{2

 !
S{2

X
1ƒcƒr

sicz2
X

1ƒcvdƒr

wicid

 !
:

ð39Þ

Here S~
Pp

a~1 sia . Further introducing

Sr~
X

1ƒcƒr

sic ð40Þ

and

Tr~
X

1ƒcvdƒr

wicid
ð41Þ

(38)
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and combining (37), (38) and (39), the expression for (35) becomes

P(fi1,i2, . . . ,irg)~

1
Nfwg

N{r{2

p{r{2

 !
(N{p)(N{p{1)

(p{r)(p{r{1)
Trz

N{p
p{r{1

Srz
1
2

S

� �
:

ð42Þ

The expressions given above are valid when pwrz1 because only in these cases

both Tr and Sr terms appear. The formula (42) is also applicable to the case r~1 if

we take T1~0 and to the case r~0 if we take T0~0 and S0~0.

Finally, the case r~p{1 requires separate approach. In particular,

P(fi1,i2, . . . ,ip{1g)~
X

ip 6¼fi1,i2,...,ip{1g

1
Nfwg

X
1ƒavbƒp

wiaib

~
X

ip 6¼fi1,i2,...,ip{1g

1
Nfwg

X
1ƒavbƒp{1

wiaib
z

X
1ƒaƒp{1

wiaip

0
@

1
A

~
1

Nfwg
(N{p{1)

X
1ƒavbƒp{1

wiaib
z

X
1ƒaƒp{1

sia

2
4

3
5

~
1

Nfwg
(N{p{1)Tp{1zSp{1
� �

:

ð43Þ

Results

In this section we present the evaluation of the proposed algorithm for estimating

the significance of entity co-occurrences. First the results obtained on synthetic

data are presented, followed by a comparison of temporal networks constructed

from country co-occurrences in financial news and from correlations between the

corresponding CDS time series.

Testing the method with syntethic data

We tested our method on artificial networks produced with the benchmark

model. We use artificial networks to estimate the statistics needed to reliably

construct financial interdependence networks from the available data. Such

networks can then be used as proxies for real financial networks.

We test two types of artificial networks created by the benchmark model, both

with N~100 nodes representing entities and L~4950 potential links in the
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projection network. The number of simulated documents N is between 102 and

104.

The first aforementioned type is constructed with k importances wij randomly

drawn from the set of two different values fw0,wIg, satisfying the constraint that

the number of importances wij with assigned value wI is exactly Nsignificant . Thus

L{Nsignificant relations have assigned weights w0~1 and Nsignificant important

relations have assigned weights wI~aw0, where a is a parameter we call

importance amplitude aw1. Using the method to determine the significant links

with the threshold Z0~2:0,3:0,5:0 on the realizations of artificial networks, we

can calculate a fraction of significant links that are also important, i.e. wij~wi

(positive predictive value - PPV) and a fraction of important links found to be

significant (sensitivity). See figure 5. The number of significant links in the figure

is Nsignif icant~100,250,500, with a variable number of documents N , and

importance amplitude a.

Figure 5 show that 3000–5000 documents are good enough to provide reliable

significance for extracted co-occurrences as long as importance is high enough. If

the difference between an important link and an average link is not large enough

Figure 5. PPV and sensitivity for the case of two types of importances. The x-axis gives the number of
documents and the y axis is importance amplitude. In the column A colors show positive prediction value and
in the column B colors represent sensitivity. The number of important links is Nsignif icant~100 for the first row,
Nsignif icant~250 for the second row and Nsignif icant~500 for the third row.

doi:10.1371/journal.pone.0099515.g005
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there is no number of documents that we tested that will result with in high PPV

or sensitivity.

In the second type of artificial networks, importance is a power law distributed

with exponent c. We determine significant links with some threshold Z0. The

number of such links is Ns. To measure the number of correctly selected links, we

compare the list of significant links to the list of Ns links with the highest

importance. Links occurring in both lists are true positives and their fraction with

respect to the Ns is a measure of the method’s performance. See figure 6 for values

of Z0~2,3,5.

It is clear that the method works well for exponent c,*4 . The reason is that for

higher exponents, important links do not have a large spread i.e., typical

importance in the data set is close to the highest importance in the data set, and

we can see again that the number of documents cannot improve statistics much.

The correlations between the co-occurrences imposed by the number of entities

per document in the data set are masking the real importance of the links.

Comparison of co-occurrence networks with CDS networks

The final goal of co-occurrence networks is to provide some information on the

relationships between entities of interest. We hope that the co-occurrence

networks of financial entities can provide information about shared risk of the

entities of interest. The idea is to compare data indirectly related to sovereign

Figure 6. PPV for the case of power law distributed importances. The x-axis gives the number of
documents and the y-axis is exponent of the power law for the second case. Colors show positive prediction
value. The threshold is Z0~2:0 for the panel A, Z0~3:0 for the panel B and Z0~5:0 for the panel C.

doi:10.1371/journal.pone.0099515.g006
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debt. A temporal network was extracted from co-occurrences of countries in

financial news, and another was constructed from the correlations between CDS

time series of the same countries.

In the financial literature [30, 31], CDS are often considered a good proxy for

the risk of default of a financial institution issuing bonds. The structure of that

financial instrument is ‘‘triadic’’ in the sense that a CDS is a special insurance

policy that a financial institution sells (seller) or buys (buyer) to hedge against the

risk that a third party (reference entity) will experience a default within some fixed

period (the maturity of the CDS), and the financial investments of the buyer will

be lost. In the formation of the price the triadic model (that accounts for the risk

of the buyer, the seller and the reference entity) will produce, at the end of

computation, a single value (the CDS price) for each financial institution. This

number is considered an estimation, from a market perspective, of the perceived

default risk but, as the CDS are financial products, the dynamics of the prices can

also follow other market trends that are not immediately bound to systemic risk.

We cautiously suggest that the CDS time series are a possible proxy of the systemic

risk of a country as this concept can involve many other components in addition

to financial ones. The networks are reconstructed using the correlation of pairs of

Figure 7. Precision at k for the matching between co-occurrence networks and the CDS networks. On
the left panels is precision at level k and on the right associated z score produced from comparison of the data
with 10.000 randomized versions of data. Top is the matching between two networks with 1 week integration
period and bottom is matching between 2 networks with 3 months integration period.

doi:10.1371/journal.pone.0099515.g007
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time series, one per country. We recall here that a high correlation between

country A and country B, during a given period, does not necessarily imply an

high risk as it is also important to consider the common level of the prices, i.e.

during normal business we can have high correlation but low risk while,

conversely, during bad business we can see small correlation and high risk. We

conclude that the correlation networks account for similar patterns in CDS prices

across different countries while the mapping with the systemic risk needs then to

be clearly stated from the price levels and possibly from other financial indicators.

The entity co-occurrence network was constructed from textual data in the

form of financial news and blogs from November 1, 2011 until December 31,

2013. In this period, the acquisition pipeline collected about 18 million

documents. They were filtered for strictly financial news, and each document had

to contain at least two different entities, each occurring at least twice. This filtering

resulted in more than 1.3 million documents to be analyzed. We chose the

observed entities to be 50 selected countries and the corresponding economic

indicators to be the countries’ CDS time series. We were hoping to see that

countries having a higher correlation in CDS prices tend to be cited together in

the news: higher correlation is reflected in the media as more co-occurrences.

Figure 8. Co-occurrence network created with Z0~15 for October 2012.

doi:10.1371/journal.pone.0099515.g008
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Links in the country co-occurrence network were created according to the

method for extraction of important co-occurrences, as presented in the

Significance Algorithm section. The links in the CDS network were created using

the Pearson’s correlation coefficient (c) among two CDS time series. The temporal

networks were constructed using a rolling window of three months that was

shifted for one month over a period of two years. This time window was chosen

using the benchmark model so that the average number of documents is large

enough to reliably detect hidden relationships.

Our comparison of networks constructed from significant co-occurrences and

CDS correlations was twofold. First, we examined the overlap of the most

important links in the networks, and second, we compared the structure of both

networks by investigating the similarity between their most central nodes.

To compare the networks in terms of their most important links we have used

the precision at k method [32], commonly used as a metric in recommender

systems. Precision at k is defined as follows. First, the links in both networks are

ordered by their importance. In the case of co-occurrences we use the significance

computed with our method and for the CDS networks we use the correlations as

Figure 9. CDS network created with Pearson’s correlation w0:9 for October 2012.

doi:10.1371/journal.pone.0099515.g009
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measures of importance. Then we count how many links are present in both

ordered lists in the first k entries. Finally, the precision at k is defined as the

fraction of the matched links

P(k)~
Number of matched links

k
: ð44Þ

We present the results of matching links for networks constructed in two

different sliding window settings: one week window sliding from week to week,

and a three month window sliding by one month. The results are summarized in

Figure 7. It is clear that in one week we are not able to collect statistics reliable

enough to match the co-occurrence networks with the CDS networks, or that the

relationship at such fine temporal scales does not exist. On the other hand, for 3-

month integrated data we see that there is a significant match between co-

occurrence networks and CDS networks. To evaluate the significance of the match

we have used the Z-score value. To obtain the expected number of matchings and

the standard deviation we have used 10.000 random permutations of ordered lists.

The distribution of random matchings is Poisson like, which allows the use of a Z-

score for significance testing. As can be seen in Figure 7, the matching for a one

week window is really very small and only modestly better then completely

random matching. On the other hand, the matching for the 3 month window is

significant with a signal easily surpassing 4s between k%50 and 150. One other

possible interpretation for this result is that in our case study we have used

country CDS data which are less volatile than the companies. We did not use

Figure 10. Monthly overlapping links of the co-occurrence and CDS networks, for Zw15 and cw0:9. Ten most significant links in the monthly
overlaps are listed.

doi:10.1371/journal.pone.0099515.g010
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companies in order to get good enough statistics, as evaluated with the benchmark

model, for the comparison with CDS data. Examples of the co-occurrence

network constructed with our method and the CDS network for the same period

are presented in Figures 8 and 9, respectively.

The networks shown in Figures 8 and 9 are constructed from the links between

the most significantly co-occurring countries, Zw15, and the highest correlating

CDS time series, cw0:9. In Figure 10 we show the monthly overlaps of links in the

co-occurrence and CDS networks over the period of two years. Among the most

important links that the two networks share we can observe many pairs of country

names that are known to be connected economically, as well as some

geographically (which in some cases implies similar economic indicators).

Another way to compare the structure of two networks is by looking at the

most important nodes that they have in common. We performed a k-core

decomposition [33] of the networks and compared the overlap between their

main cores, i.e. the kmax-cores of the respective networks. The monthly overlaps

and the lists of nodes in the overlaps are presented in Figure 11. The results show a

moderate level of overlap between the main core nodes, but provide insight into

commonly and repeatedly appearing nodes in the overlap. Additionally, we

examined the most central nodes in the networks, as denoted by the eigenvector

centrality measure [34]. The monthly overlaps of ten most central nodes in the co-

occurrence and CDS networks are presented in Figure 12. The overlap between

the most central nodes is also in this case moderate, but shows that similar nodes

are most important as in the overlap analysis with the k-core decomposition. Note

Figure 11. Monthly overlapping nodes of the co-occurrence and CDS networks’ main cores. The respective coreness is indicated in the form
kCO : kCSD.

doi:10.1371/journal.pone.0099515.g011
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that most of the overlapping nodes in Figure 12 belong also to the overlaps of the

main network cores as shown in Figure 11.

Conclusions

The method presented in the paper is simple and fast and therefore well suited for

implementation of fast significance detection in huge streams of data. We have

presented and implemented a pipeline for real-time acquisition and analysis of a

stream of financial news. The extraction of significant co-occurrences was tested

on historical data, but can be added to the real-time processing pipeline. More

sophisticated methods could outperform this method in realistic settings given

sufficient time.

We have also presented a method for the creation of bipartite networks based

on a hidden variable model with given importances. We have tested our model on

synthetic data which we produced with the benchmark model and used it to find a

time window which will, on average, have enough documents for a reasonable

reconstruction of entity relationships. Furthermore, every new method can be

tested with this benchmark to assess its validity and performance. It is important

to stress that the benchmark model can easily be extended to include time-

changing importances in order to test the statistics needed to capture the change

in the value of importances and so on. Furthermore, we are preparing a

manuscript in which we will use a generalization of this method for creation of

‘‘canonical’’ models of bipartite networks. Since all the relationships are linear it is

possible to invert the matrix that relates importances wij’s to co-occurrence

distribution P(fi,jg) and to extract from the data importances for which expected

distribution of co-occurrences is exactly the one found in the data.

We have also shown that in the cases of large enough datasets we can relate co-

occurrence networks with networks of mutual financial risk, such as CDS

networks. Our method was thoroughly investigated by means of the benchmark

Figure 12. Monthly overlaps of the ten most central nodes from the co-occurrence and CDS networks. Note that most of the overlapping noted belong
also to the overlaps of the main network cores as shown in Figure 11.

doi:10.1371/journal.pone.0099515.g012
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model for the reliable number of events that could discover relationships between

news data and CDS market. Our results show that the relationship between two

data sets is significant but very weak. This may be attributed to several causes. (i)

One possibility is that there is really no strong relationship between the news and

the market. In this case further investigation of this relationship should yield

similar results. (ii) We have used only news in the English language. It is possible

that English news is biased in such a way that only a small portion of the market is

well presented. In this case future research should include news samples in many

different languages to show a stronger relationship between news and the CDS

market. (iii) The relationship is hidden in longer time intervals and more

pronounced in shorter time intervals. In that case a significantly larger sample of

news should be used in order to provide for more reliable statistics in the shorter

time intervals. Further work on the applicability of this method and causal

relationships between CDSs and co-occurrences is proposed for the future.

Acknowledgments

We thank Sebastian Schroff from Stuttgart Stock Exchange for providing the CDS

data for selected countries. MP, HS and VZ have worked on the method and

benchmark model. BS, PKN, MG and IM have worked on the data acquisition

pipeline and BS and MP have worked on the CDS networks. All authors have

contributed to the text of the paper.

Author Contributions
Conceived and designed the experiments: MP HS BS PKN MG IM MP VZ.

Performed the experiments: MP HS BS PKN MG IM MP VZ. Analyzed the data:

MP HS BS PKN MG IM MP VZ. Contributed reagents/materials/analysis tools:

MP HS BS PKN MG IM MP VZ. Wrote the paper: MP HS BS IM MP VZ.

References

1. Caldarelli G (2007) Scale-free networks: complex webs in nature and technology. OUP Catalogue.

2. Jackson MO (2010) Social and economic networks. Princeton University Press.

3. Edmonds P (1997) Choosing the word most typical in context using a lexical co-occurrence network.
In: Proceedings of the 35th annual meeting of the Association for Computational Linguistics and Eighth
Conference of the European Chapter of the Association for Computational Linguistics. Association for
Computational Linguistics, pp. 507–509.

4. Cohen AM, Hersh WR, Dubay C, Spackman K (2005) Using co-occurrence network structure to
extract synonymous gene and protein names from medline abstracts. BMC bioinformatics 6: 103.

5. Wilkinson DM, Huberman BA (2004) A method for finding communities of related genes. Proceedings
of the National Academy of Sciences of the United States of America 101: 5241–5248.

6. Shalgi R, Lieber D, Oren M, Pilpel Y (2007) Global and local architecture of the mammalian microrna–
transcription factor regulatory network. PLoS computational biology 3: e131.

7. Freilich S, Kreimer A, Meilijson I, Gophna U, Sharan R, et al. (2010) The large-scale organization of
the bacterial network of ecological co-occurrence interactions. Nucleic acids research 38: 3857–3868.

Extraction of Temporal Networks from Co-Occurrences in Online Texts

PLOS ONE | DOI:10.1371/journal.pone.0099515 December 3, 2014 27 / 29



8. Su HN, Lee PC (2010) Mapping knowledge structure by keyword co-occurrence: a first look at journal
papers in technology foresight. Scientometrics 85: 65–79.

9. Mane KK, Börner K (2004) Mapping topics and topic bursts in pnas. Proceedings of the National
academy of Sciences of the United States of America 101: 5287–5290.

10. Cattuto C, Schmitz C, Baldassarri A, Servedio VD, Loreto V, et al. (2007) Network properties of
folksonomies. Ai Communications 20: 245–262.
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