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Abstract— A major challenge for next generation data mining
systems is creative knowledge discovery from highly diverse and
distributed data and knowledge sources. This paper presents
an approach to information fusion and creative knowledge
discovery from semantically annotated knowledge sources: by
using ontology information as background knowledge for se-
mantic subgroup discovery, rules are constructed that allow the
expert to recognize gene groups that are differentially expressed
in different types of tissues. The paper presents also current
directions in creative knowledge discovery through bisociative
data analysis, illustrated on a systems biology case study.

I. INTRODUCTION

Biologists collect large quantities of data from wet lab

experiments and high-throughput platforms. Public biolog-

ical databases, like Gene Ontology, Kyoto Encyclopedia

of Genes and Genomes and ENTREZ, are some of the

sources of biological knowledge. Since the growing amounts

of available knowledge and data exceed human analytical

capabilities, technologies that help analyzing and extracting

useful information from such vast amounts of data need to

be developed and used.

This paper presents an approach to information fusion

and semantic subgroup discovery, by using ontologies as

background knowledge in microarray data analysis. Let us

first explain the basic notions: information fusion, subgroup

discovery, semantic subgroup discovery and bisociative rea-

soning which is at the heart of creative, accidental discovery

(serendipity).

Information Fusion: Information fusion can be defined

as a study of efficient methods for automatically or

semi-automatically transforming information from different

sources and different points in time into a representation that

provides effective support for human and automated decision

making [1]. Recent investigations in using information fusion

to support scientific decision making within bioinformatics

include [2], [7]. Smirnov et al. [10] exploit the idea of formu-

lating an ontology-based model of the problem to be solved

by the user and interpreting it as a constraint satisfaction

problem taking into account information from a dynamic

environment. An approach to the integration of biological

databases GO, KEGG and ENTREZ is implemented in the

SEGS information fusion engine (Searching for Enriched
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Gene Sets) [13]. Another, much larger, integrated annotated

bioinformatics information resource is Biomine [9]. The

later two approaches are used for information fusion in the

methodology presented in this paper.

Subgroup Discovery: Subgroup discovery techniques are

used to generate explicit knowledge in the form of rules

that allow the user to recognize important relationships

in a set of class labeled training instances, describing the

target property of interest. Consider two applications. In the

first one, the induced subgroup describing rules suggest the

general practitioner how to select individuals for population

screening, concerning high risk for coronary heart disease

(CHD) [3]. The rule below describes a group of overweight

female patients older than 63 years:

High CHD Risk ← sex = female & age > 63 years &

body mass index > 25 kgm−2

In the second application [4], subgroup describing rules sug-

gest genes that are characteristic for a given cancer type (i.e.,

leukemia cancer) in an application of distinguishing among

14 different cancer types: leukemia, CNS, lung cancer, etc.:

Leukemia ← KIAA0128 is diff expressed &
prostaglandin d2 synthase is not diff expressed

Semantic Subgroup Discovery: Semantic subgroup dis-

covery refers to subgroup discovery, where semantically

annotated knowledge sources (ontologies) are used as back-

ground knowledge in the data mining process. Using the

technology of relational subgroup discovery (RSD) [14],

we have developed an approach to information fusion and

semantic data mining, enabling background knowledge in the

form of ontologies to be used in relational machine learning.

The relational subgroup discovery approach, which was

successfully adapted and applied to mining of bioinformatics

data [12], generates descriptive rules as conjunctions of

ontology terms from the GO, KEGG and ENTREZ ontolo-

gies. For instance, an induced description of geneGroup(A)

discovered by RSD for the CNS (central nervous system)

cancer class in a problem of distinguishing between 14

cancer types, determines group of genes A differentially

expressed in CNS as a conjunction of two relational features:

fi(A) = interaction(A,B) & process(B,’phosphorylation’) and

fk(A) = interaction(A,B) & process(B,’negative regulation of

apoptosis’) & component(B,’intracellular membrane-bound

organelle’).

The RSD semantic subgroup discovery approach was fur-

ther refined in the SEGS algorithm (Searching for Enriched

Gene Sets) [13], which is used in the information fusion and
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semantic subgroup discovery technology described in this

paper.

Bisociative Reasoning: The concept of association is at

the heart of many of today’s ICT technologies such as

information retrieval and data mining. However, scientific

discovery requires creative thinking to connect seemingly

unrelated information, for example, by using metaphors or

analogical reasoning. These modes of thinking allow the

mixing of conceptual categories and contexts, which are

normally separated. The functional basis for these modes is

a mechanism called bisociation [6].1

Goals and Structure of the Paper: This paper investigates

a special subgroup discovery task, i.e., the gene set enrich-

ment analysis task, where gene set enrichment is defined as

follows: A gene set is enriched if the genes that are members

of the set are statistically significantly differentially expressed

compared to the rest of the genes. This task is addressed

by first performing semantic subgroup discovery with SEGS

[13] (outlined in Section II-A), followed by link discovery

and graph visualization using Biomine [9] (outlined in Sec-

tion II-B). The methodology combining the two approaches,

named SEGS+Biomine (described in Section III), has been

applied to a problem of bisociative knowledge discovery

from cell line microarray data (described in Section IV).

II. BACKGROUND TECHNOLOGIES: SEGS AND BIOMINE

A. SEGS: Search for Enriched Gene Sets

The goal of gene set enrichment analysis is to find groups

of genes—gene sets—that are enriched, so that genes in

the set are statistically significantly differentially expressed

compared to the rest of the genes. Two methods for testing

the enrichment of gene sets were previously developed:

Gene Set Enrichment Analysis (GSEA, [11]) and Parametric

Analysis of Gene Set Enrichment (PAGE, [5]). Originally,

these methods take terms (gene sets) from the Gene Ontol-

ogy (GO), the Kyoto Encyclopedia of Genes and Genomes

(KEGG) and ENTREZ interactions, and test whether the

genes that are annotated by a specific term are statistically

significantly differentially expressed in the given dataset.

The SEGS method [13] employs semantically annotated

knowledge sources as background knowledge for semantic

subgroup discovery. Data from three publicly available, se-

mantically annotated biological repositories GO, KEGG and

ENTREZ are used. Based on this background knowledge,

SEGS automatically formulates biological hypotheses: rules

which define groups of differentially expressed genes. Fi-

nally, it estimates the relevance/significance of the formu-

lated hypotheses on experimental microarray data. Compared

to GSEA and PAGE, the novelty of SEGS is that it does

not only test existing gene sets (defined by individual GO

or KEGG terms), but that it formulates and tests also new

gene sets, constructed by the combination of GO terms,

1Bisociative reasoning is at the heart of creative, accidental discovery
(serendipity), and is focused on finding unexpected links between concepts
of different contexts. Bisociation, as a basis of creative knowledge discovery,
is investigated in EU project BISON (http://www.bisonet.eu/).
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Fig. 1. Schematic representation of the SEGS method.

KEGG terms, and by taking into account also the gene-gene

interaction data from ENTREZ.

Schematic workflow of the SEGS method (Figure 1) shows

its main components: gene ranking, RSD-like hypothesis

generation, and hypothesis evaluation (using one, or a com-

bination of different evaluation methods).

Consider a functional genomics case study. The data we

analyzed with SEGS consists of a set of gene expression

measurements (examples), each corresponding to a large

number of measured expression values of genes (attributes).

Each measurement was extracted from a tissue of a patient

with a specific disease; this disease is the class for the given

example. The domain, described in [4], [8] and used in our

experiments, is a typical scientific discovery domain charac-

terized by a large number of attributes compared to the num-

ber of available examples. As such, this domain is especially

prone to overfitting, as it has two different cancer classes and

few training examples, where the examples are described by

thousands of attributes presenting gene expression values.

While the standard goal of machine learning is to start from

the labeled examples and construct models/classifiers that

can successfully classify new, previously unseen examples,

our main goal is to uncover interesting patterns/rules that can

help to better understand the dependencies between classes

(diseases) and attributes (gene expressions values).

Table I shows sample top-ranked rules, induced by the

SEGS semantic subgroup discovery engine, for two cancer

types (ALL and AML), from gene expression profiles ob-

tained by the Affymetrix HU6800 microarray chip, contain-

ing probes for 6817 genes, for 73 class-labeled samples of

expression vectors. The rules are ranked according to the

enrichment score (ES) which measures the enrichment of

differential expression of a set of genes, annotated by the

given conjunction of GO, KEGG and/or ENTREZ terms.

B. Biomine

In the Biomine project [9]2 data from several public

biological databases were merged into a large graph and a

method for link discovery between entities in queries was

developed. Nodes in the Biomine graph correspond to entities

and concepts (such as gene, protein, domain, phenotype,

biological process, tissue), and semantically labeled edges

connect the known, annotated relationships between the

nodes. A link (a relation between two entities) is manifested

as a path or a subgraph connecting the corresponding nodes.

Currently, the Biomine graph consists of a total of 1,968,951

2http://www.cs.helsinki.fi/group/Biomine
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Gene Set Description ES

Enriched in ALL
1. ALL ← Func(’zinc ion binding’) & 0.60

Comp(’chromosomal part’) &
Proc(’interphase of mitotic cell cycle’)

2. ALL ← Proc(’DNA metabolism’) 0.59
3. ALL ← Func(’ATP binding’) & 0.55

Comp(’chromosomal part’) &
Proc(’DNA replication’)

Enriched in AML
1. AML ← Func(’metal ion binding’) & 0.54

Comp(’cell surface’) &
Proc(’response to pest,pathogen,parasite’)

2. AML ← Comp(’lysosome’) 0.53
3. AML ← Proc(’inflammatory response’) & 0.51

Comp(’cell surface’)

TABLE I

ENRICHED GENE SET DESCRIPTIONS FOUND IN THE ALL-AML DATA.

nodes and 7,008,607 edges. Some of the databases used in

Biomine are summarized in Table II. Although this collection

of data sets is not complete, it is sufficiently large and

versatile for exploratory link discovery.

Node Type Source Database Nodes Degree

Article PubMed 330,970 6.92
Biological process GO 10,744 6.76
Cellular component GO 1,807 16.21
Molecular function GO 7,922 7.28
Conserved domain ENTREZ Domains 15,727 99.82
Structural property ENTREZ Structure 26,425 3.33
Gene Entrez Gene 395,611 6.09
Gene cluster UniGene 362,155 2.36
Homology group HomoloGene 35,478 14.68
OMIM entry OMIM 15,253 34.35
Protein Entrez Protein 741,856 5.36

TABLE II

DATABASES INCLUDED IN BIOMINE.

III. SEGS+BIOMINE METHODOLOGY FOR BISOCIATIVE

KNOWLEDGE DISCOVERY

The SEGS+Biomine method, aimed at exploratory analy-

sis of differentially expressed gene sets, is performed through

semantic subgroup discovery by SEGS, followed by link

discovery and visualization by Biomine. The Biomine service

is a valuable addition to SEGS, complementing our semantic

subgroup discovery technology by additional explanatory

potential due to additional link discovery and Biomine graph

visualization. In our methodology, Biomine is used through

its web interface which allows for querying via Biomine

named entities, such as a set of GO terms, resulting in a

Biomine (sub)graph, which can be visualized for exploration

purposes. A sample Biomine graph is shown in Figure 3.

The SEGS+Biomine methodology consists of the follow-

ing ingredients: gene ranking, hypothesis generation by the

SEGS method for enriched gene set construction, linking

of the discovered gene set to related biomedical databases

for bisociative link discovery with Biomine, and Biomine

subgraph visualization. The workflow is depicted in Figure 2.

1) Ranking of genes. In the first step, class-labeled mi-

croarray data is processed and analysed, resulting in a

list of genes, ranked according to differential expres-

sion.

2) Ontology information fusion. A unified database, con-

sisting of GO (processes, functions and components),

KEGG (biological pathways) and ENTREZ (gene-gene

interactions) terms and relationships is constructed.

To this end, a set of scripts was written, to facilitate

updating the integrated database.

3) Discovering groups of differentially expressed genes.

The ranked list of genes is used as input to the SEGS

algorithm [13]. The result is a list of most relevant

gene group descriptions that semantically explain dif-

ferential gene expression of group members in terms of

gene functions, components and processes as annotated

in biological ontologies.

4) Finding bisociative links between gene group elements.

The elements of the discovered gene groups (individual

GO and KEGG terms describing a gene set) are entered

as queries to the Biomine crawler. Biomine computes

most probable links between these elements in a

number of its biological databases. These links help

the experts to uncover unexpected bisociative relations

and biological mechanisms potentially explaining the

underlying biological processes.

5) Gene group visualization. Finally, in order to explore

and visually explain the discovered relationships, the

discovered links are visualized using the Biomine

visualization engine.

Biomine

databases

SEGS

rules

Enriched

gene sets

Biomine

graph crawler

Graph

visualizer

Fig. 2. SEGS+Biomine wokflow (focusing on Biomine, as details of the
SEGS workflow are shown in Figure 1).

IV. BISOCIATIVE EXPLORATION: A SYSTEMS BIOLOGY

USE CASE

In systems biology, the goal is to help the expert to find

biological interpretation of wet lab experimental results. We

performed an experiment in bisociative knowledge discovery

by merging two methods, SEGS and Biomine, that use

publicly available biological knowledge for supporting the

work of biologists. We combined the two methods in a novel

way. First, for the given microarray experimental data, gene

group descriptors were identified by the SEGS hypothesis

construction and evaluation method, resulting in a list of

enriched gene sets (described by conjunctions of GO and

KEGG terms). The resulting gene groups are described by

terms from different contexts (different ontologies). The
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SEGS results were then used as input to Biomine to find

links between these terms, thus performing bisociative inter-

context link discovery and visualization. We believe that by

forming hypotheses with SEGS, constructed as conjunctions

of terms from different ontologies, discovering links between

them by Biomine, and visualizing the SEGS hypotheses

and the discovered links by the Biomine graph visualiza-

tion engine, the interpretation of the biological mechanisms

underlying differential gene expression can be facilitated.

In the given systems biology experiment, the task was to

analyse microarray data in order to distinguish between fast

and slowly growing cell lines. The aim of this study was to

characterise slowly growing cell lines, possibly explaining

the differences between the cases of fast and slowly grow-

ing cell lines through differential expression of gene sets,

responsible for cell growth.

Gene Set Description

1. SLOW-(vs-FAST) ← Proc(’DNA metabolic process’) &
INTERACT(Comp(’cyclin-dependent
protein kinase holoenzyme complex’))

2. SLOW-(vs-FAST) ← Proc(’DNA replication’) &
Comp(’nucleus’) &
INTERACT(Path(’Cell cycle’))

3. SLOW-(vs-FAST) ← . . .

TABLE III

TOP SEGS RULES FOUND IN THE CELL GROWTH EXPERIMENT.

Table III gives the top ranked rules resulting from the

SEGS search for enriched gene sets. Each rule describes a

corresponding set of over-expressed genes from the exper-

imental data. Figure 3 shows a part of the Biomine graph

which links genes of a selected subset of the enriched gene

set to the rest of the nodes in the Biomine graph.

Fig. 3. Biomine subgraph related to three genes from the enriched gene
set constructed by SEGS. Note that some information is disguised, due to
the restricted nature of the results of this study.

We believe that SEGS in combination with Biomine may

give a wet lab scientist additional hints on what to focus on

when comparing the expression data of cells. Additionally,

such an in-silico analysis can considerably lower the costs

of in-vitro experiments with which the researchers in the wet

lab are trying to get hints on new processes or phenomena

observed. This may be especially true for situations when just

knowing the final outcome one cannot explain the drug ef-

fect, organ function, or disesase satisfactory, since the gross,

yet important characteristics of the cells (organ function)

are hidden (do not affect visual morphology) or could not

be recognized soon enough. An initial predisposition for

this approach is wide accessibility and low costs of high

throughput microarray analyses which generate appropriate

data for in-silico analyses.
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