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The most common approach for evaluating and comparing community detection
algorithms is to use networks with a priori known community structure. In the ab-
sence of real-world networks with known community structure, artificially generated
networks are used. The Lancichinetti-Fortunato-Radicchi (LFR) benchmark [13] is the
most widely accepted algorithm for generating artificial networks that resemble real-
world networks. A common comparison setting, used for example in [18, 3, 14, 16, 17],
is to vary only the LFR mixing parameter µ , which corresponds to partition difficulty
(a higher µ means a higher percentage of edges going out of communities, making
it harder to find the true communities). The community detection algorithms are then
compared on different network sizes (LFR parameter n). In this setting, the diversity of
LFR networks is limited. We argue that the performance of community detection algo-
rithms may vary depending on other network properties, i.e., some algorithms perform
better on one set of LFR parameters and other algorithms perform better on others.
Consequently, conclusions based on only one set of LFR parameters can be misleading.

We propose the unconstrained LFR to perform a more comprehensive benchmark-
ing of community detection algorithms while avoiding the shortcomings of the standard
LFR benchmarking. The approach consists of two steps: generating diverse LFR net-
works and then benchmarking by applying the Friedman test and the post-hoc
Nemenyi test. In this way, the full diversity of the LFR network space can be explored
and the potential bias from a single set of LFR parameters is avoided.

Network creation. For the network creation part, we randomly generate values for the
following parameters: n—number of nodes in the network (from nmin to nmax nodes);
τ1—power law exponent for the degree distribution of the network (from τ1min to τ1max);
τ2—power law exponent for the community size distribution in the network (from τ2min
to τ2max); µ—fraction of inter-community edges of each node (from µmin to µmax);
dmax—maximum degree allowed for a node (from

√
n to n/2); davg—average degree

of nodes (from davg,min to davg,max); (cmin,cmax)—minimum and maximum size of a
community (1 < cmin and dmax < cmax; cmin ∈ [1,

√
n] and cmax ∈ [dmax,n/2]). If the

combination of parameters fails to generate a valid network, the process is repeated
until a valid combination is found.

Benchmarking. Once the network creation part is complete, we measure the per-
formance and stability of the community detection algorithms, with three measures:
Normalized Mutual Information (NMI) [11], Adjusted Rand Index (ARI) [10], and the
BCubed F1 score [1, 5]. We then compare the scores by the Friedman-Nemenyi test [7,
15, 4]. We use the Friedman-Nemenyi combination to compare several algorithms si-
multaneously on many different networks whose performances by NMI, ARI, and F1 are
not normally distributed. The result is visualized by critical difference diagrams.
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Fig. 1. Unconstrained LFR benchmark. We compare four algorithms on 500 unconstrained
LFR benchmark networks, applying the Friedman-Nemenyi significance test. The left-hand side
shows the stability results, and the right-hand side the matching to ground truth results. Each
individual chart shows the ranks of the four algorithms as estimated by one of the evaluation
measures (NMI, ARI, and F1). CD denotes the critical difference, and the black bars connect
ranks of procedures that are not significantly different at the 5% level.

Pilot study. As a pilot study, we apply the Unconstrained Friedman-Nemenyi LFR
benchmark on four community detection algorithms: Louvain [2], Ensemble Louvain [6],
Ensembles for Clustering Graphs (ECG) [17] and Consensus Clustering [12]. The last
three algorithms use different ensemble techniques of combining multiple partitions to
find a more stable and accurate partition than Louvain.

We generate 500 (N = 500) unconstrained LFR networks using the NetworkX [8]
library with the following parameter settings:

– Number of nodes range, n ∈ [100,12500],
– Power law exponent for the degree distribution range, τ1 ∈ [1.1,3.0],
– Power law exponent for the community size distribution range, τ2 ∈ [1.05,τ1],
– Fraction of inter-community edges of each node range, µmin ∈ [0.05,0.70],
– Maximum node degree range, dmax ∈ [

√
n,n/2],

– Average node degree range, davg ∈ [3,25],
– Maximum community size, cmax ∈ [dmax +1,n/2],
– Minimum community size, cmin ∈ [2,

√
n].

Note that this range of parameters is only a recommendation based on preliminary ex-
periments. It is chosen so as to most likely yield a viable combination for a network to
be generated, while preserving different network and community structures.

We apply the community detection algorithms ten times on the 500 LFR networks
and calculate the NMI, ARI and F1 measures on their partitions. For stability, we calcu-
late the partition similarity between pairs of the multiple runs of the same algorithm. For
performance, we compare the ten runs of each algorithm to the LFR ground truth. The
scores are the input to the Friedman-Nemenyi combined test using the Autorank library



in Python [9], where we generate rankings of the four algorithms, separately for stability
and performance. The final results of this pilot study are presented in Figure 1. A clear
distinction in stability and performance can be observed between the algorithms when
their ranks differ more than the critical distance (CD). Hence, the suggested benchmark
introduces a methodological upgrade and also improves interpretability of the results.
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