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A key factor in tracing communities over time is to be able to consistently detect

the communities in one single time period. If one would use Louvain [1] for tracing

communities over time, one would not be able to disentangle differences arising by the

change in the community structure from the volatility of Louvain runs. In this paper,

we present a continuation of the work, aiming to answer why Ensemble Louvain [2] is

more suitable for tracking community evolution than the standard widely-used Louvain.

Ensemble Louvain [2], is a simple approach which begins by running the Louvain

several times (hundred by default). Then, it builds a meta-network where a pair of nodes

is connected if their total co-membership across all runs is above a given threshold (90%

by default). This process forms disjoint sets of connected components in the meta-

network. These sets represent our final communities. Compared to Louvain, Ensemble

Louvain drastically improves stability and reproducibility of results.

Fig. 1. Tracking community evolution — Louvain vs. Ensemble Louvain. Comparison results

of the community evolution process using the two algorithms. The x-axis shows the timeline of

weekly increments for which the six-month retweet networks are created. The y-axis shows the F1

similarity score between two adjacent partitions. A lower F1 value suggests that the community

structure changed more, while higher F1 means that it stayed more similar. An F1 score of 1.00

means that there is no change in the network in terms of its community structure.



Community evolution is the intersection of temporal analysis and community dis-

covery. Here, one tries to detect change in the collective behavior of groups. The prob-

lem of community evolution opens many challenges as both “parent” disciplines require

different environments in order to be applicable. Temporal analysis assumes atomic

granularity of events in the (dynamic) networks, while community detection requires

aggregated (static) networks.

In consequence, although there is a plethora of community detection approaches

(with all their advantages and drawbacks), most of the methods suffer from the com-

mon issue of unstable results (partitions) [4] [5]. This instability is due to the fact that

most community detection algorithms are based on a greedy optimization of partitions

on some metric (such as modularity), making them prone to produce different results

each run, as they get stuck in local maxima. Accordingly, it becomes problematic in

community evolution, since one cannot be sure if a change happened in the community

structure, or it is a random false event caused simply by the instability of the method.

Techniques which tackle the instability issue in dynamic community detection are

referred to as temporal smoothing. Adopting a specific smoothing strategy can lead to

computational constraints, but it is a crucial step if one aims for finer results [3]. This is

where Ensemble Louvain comes into play, applying temporal smoothing by bootstrap-

ping, significantly stabilizing the results, and with that, removing large portion of the

signal noise in the tracking of community evolution. Using ensembles as a smoothing

strategy was mentioned as a prospect in the past as well [6] [7], yet without further

quantitative experimental analysis of it being used. Here, we compare Ensemble Lou-

vain with the standard Louvain and explore the impact of using the first.

As a continuation of our work [2], we apply the community evolution analysis on

the Slovenian Twitter data from January 2018 to December 2020. We create retweet

networks out of 24-week data, with a sliding window of one week, resulting in 133 net-

works, with 01.01.2018-18.06.2018 (week 0) being the first, and 13.07.2020-28.12.2020

(week 132) the last network in the sequence. Additionally, each network is created with

exponential decay on the edge weights (from latest to oldest retweets), so that we pre-

vent detecting “changes” due to lost structure patterns of the trailing data. With that, we

instead emphasize the actual community behaviour shifts due to new events.

To detect community structure changes, we compare the similarity of two adjacent

partitions (e.g., the week 0 with the week 1 network community partition). We calculate

the similarity using the F1 metric defined in our previous work [2], which is a node-wise

alternative to the common NMI and ARI scores, but works with non-identical sets as

well. To compare Ensemble Louvain to the standard Louvain, we apply the described

procedure ten times for the whole timeline, for both algorithms. A graphical represen-

tation of the results is shown in Fig. 1, while the statistics regarding the comparison

between Louvain and Ensemble Louvain are presented in Table 1.

Fig. 1 shows that the Ensemble Louvain produces less noise (more stable results)

when comparing the outputs of the ten different experiments. In terms of numbers, the

average and total standard deviation (noise) of F1 is five-fold lower for Ensemble Lou-

vain. In practice, this means that the randomness of the process is no longer a strong

factor which influences the community evolution analysis, ensuring one that the ob-

served changes in the partitions are actually data-driven events.
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Algorithm Avg. F1 std. Avg. F1 mean Avg. F1 coeff. of var.

Louvain 0.024 ± 0.001 0.812 ± 0.007 0.051

Ens. Louvain 0.006 ± 0.001 0.847 ± 0.005 0.036

Table 1. Statistics of the results visualized in Fig. 1. The “average F1 std.” shows the average

y-axis standard deviation for the ten experiments across the whole timeline. Lower deviation

allows better interpretability of the community evolution. The “average F1 mean” is the average

y-axis value, considering the darker line (mean of ten experiments). Higher F1 suggests generally

more similar (less volatile) partitions through the y-axis. Finally, the “average F1 coefficient of

variation”, shows the average volatility of the ten experiments across the x-axis.

We also observe a generally higher F1 score throughout the whole timeline for the

Ensemble Louvain. This means that, according to the Ensemble Louvain outputs, the

adjacent partition differences are significantly lower compared to when analyzed using

Louvain. In other words, the evolution is less volatile. This is also confirmed by the

calculated coefficient of variation. One of the effects of using Ensemble Louvain is,

that if a node does not firmly belong to one particular group (i.e., shifts membership in

the single Louvain runs), it will be left out as an “outsider”, not affiliating with any of

the communities. Most of these nodes do not change their behaviour rapidly, so they

usually maintain their non-affiliation, increasing the general F1 score of the adjacent

networks. Additionally, having these unstable nodes out of the large communities, the

similarity between these communities becomes even higher, ending with a consistently

higher score compared to the standard Louvain. Finally, tracking community evolution

benefits from these behaviours, as the noisy variables are removed from the process of

detecting change, making Ensemble Louvain preferred over the standard Louvain.
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