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Abstract

Habitat modelling studies the influence of abiotic factors on the abundance of a given taxonomic group of
organisms. In this work, we investigate the effect of environmental conditions on communities of organisms
in three different ecosystems. Namely, we consider the diatom community in Lake Prespa, Macedonia, the
Collembola community in the soils of Denmark and 14 organisms living in Slovenian rivers. The data for
these case studies consist of physical and chemical properties of the environment as well as the relative
abundances or presence of the organisms under investigation.

The multi-species data are analyzed by constructing habitat models for each species separately (single-
target decision trees) or by constructing a single habitat model for all the species (multi-target predictive
clustering trees). Typically, habitat models are constructed for each species individually and thus do not
exploit the interactions between/among species. While approaches for building a single habitat model of a
group of organisms exist, they typically construct models that are not readily interpretable and, thus, are
seldom used by the research community. In this work, we explore in detail the construction of interpretable
models of both types. Furthermore, we construct ensembles of decision trees and ensembles of predictive
clustering trees to increase the predictive performance of the models.

The key outcomes of the interpretation and discussion of the obtained models for each case study are
as follows. First, we show that multi-target predictive clustering trees are a very useful method for the
analysis of multi-species data and that they are more efficient and produce more concise models than single-
target decision trees. The obtained multi-target habitat models are readily interpretable and identify the
environmental conditions that influence the composition and structure of a given community of organisms.
Second, we conclude that the temperature and magnesium are the most important factors influencing the
complete diatom community in Lake Prespa, while the nitrates and the temperature influence more the most
abundant species. Third, the biological oxygen demand is the most influential factor for the abundance of
river dwelling species, while the river community structure is mostly influenced by the NO2 concentration.
Finally, the structure of the community of soil microarthropods is mostly influenced by the soil type and
the crop history.
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1. Introduction

Ecology is frequently defined as the study of the distributions and abundances of organisms across
space and time and their interactions with the environment (Begon et al., 2006). The distribution can
be considered along the spatial dimension(s) and/or the temporal dimension. Within ecology, the topic
of ecological modeling (Jørgensen and Bendoricchio, 2001) is rapidly gaining importance and attention.
Ecological modeling is concerned with the development of models of the relationships among members of
living communities and between those communities and their abiotic environment. These models can then
be used to better understand the domain at hand or to predict the behavior of the studied communities
and thus support decision making for environmental management. Typical modeling topics are population
dynamics of several interacting species (temporal dimension) and habitat modelling for a given species
(spatial dimension). We further focus on the latter, but consider a set (community) of species rather than
a single one.

Habitat modelling focuses on the spatial aspects of the distribution and abundance of plants and animals.
It studies the relationships between some environmental variables and the presence/abundance of plants and
animals. This is typically done under the implicit assumption that both are observed at a single point in
time for a given spatial unit.

The input to a habitat model (Džeroski, 2009, 2001) is a set of environmental characteristics for a given
spatial unit of analysis. These environmental characteristics (i.e. environmental variables) may be of three
different types. The first type concerns abiotic properties of the environment, e.g., physical and chemical
characteristic thereof. The second type concerns some biological aspects of the environment, which may be
considered as an external impact on the group of organisms under study. Finally, the variables of the third
type are related to human activities and their impacts on the environment.

The output of a habitat model is a target property of the given (taxonomic) group of organisms. Note
that the type of environmental variables, as well as the size of the spatial unit, can vary considerably,
depending on the context, and so can the target property of the population (even though to a lesser extent).
If we take the abundance or density of the population as indicators of the suitability of the environment for
the group of organisms studied, we talk about habitat models: the output of these models can be interpreted
as a degree of suitability. The abundance of the population can be measured in terms of the number of
individuals or their total size (e.g., the dry biomass of a certain species of algae). An example dataset for
habitat modelling is illustrated in Figure 1.
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Figure 1: An example data table for habitat modelling of bioindicator organisms for river water quality (Džeroski et al., 2000).
The descriptive variables are chemical parameters of water samples, while the target variables are the presence/absence of the
14 bioindicator organisms.

Machine learning (and in particular predictive modeling) is increasingly often used to automate the
construction of ecological models (Džeroski, 2001). There is a plethora of environmental studies that utilize
different statistical and machine learning techniques to perform habitat modelling. The main techniques used
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in this context are generalized linear models, generalized additive models, classification and regression trees,
tree ensembles (random forests, bagging and boosting), fuzzy models, artificial neural networks (ANNs),
support vector machines (SVMs) and genetic algorithms. Depending of the context of the study, different
methods should be preferred. If the goal is to produce maps of the habitat suitability then the methods with
best predictive performance should be preferred (such as, ensembles and SVMs). On the other hand, if the
goal is to obtain further understanding concerning the eco-system under consideration then the interpretable
methods with satisfactory predictive performance should be preferred (such as, classification and regression
trees/rules). For further details we refer the reader to the work of Elith et al. (2006), Araújo and New
(2007), Kampichler et al. (2010), Pino-Mej́ıas et al. (2010), Oppel et al. (2012), Drew et al. (2011), Franklin
(2009) and Scott et al. (2002).

In the most general case of habitat modelling, we are interested in the relation between the environ-
mental variables and the structure of the population (absolute and relative abundances of the organisms
in the group studied) at the spatial unit of analysis. One approach to solving this task is to build habi-
tat models for each of the species in the group, then aggregate the outputs of these models to determine
the structure of the population. An alternative approach is to build a model that simultaneously predicts
the presence/abundance of all organisms in the group. Habitat modelling studies typically focus on the
former approach, i.e., habitat modelling for individual species. While there exist methods that take the
latter approach, i.e., directly exploit the multi-species data (such as multivariate adaptive regression splines
(Friedman, 1991), ANNs or clustering (Lek et al., 2005)), these are seldom applied by the modelling com-
munity. The most prominent reason for this is probably the lack of interpretability of the models produced
by the aforementioned methods.

Considering all this, the main focus of the work presented here is to investigate in more detail the later
approach: predicting the presence of all organisms from a group, i.e., community modelling. Our main
hypothesis is that we can produce readily interpretable models of the community structure (i.e., models
valid for the whole community) and thus increase the insight into the observed eco-system. To this end, we
propose to use predictive clustering trees (Blockeel, 1998), and in particular their instantiation for predicting
multiple targets (called multi-target predictive clustering trees) for modelling the community structure. We
then compare this approach to standard single-target decision trees (Breiman et al., 1984). Our approach has
several advantages over constructing a model for each species separately and then aggregating/combining
their outputs. To begin with, it exploits the relations and interactions that may exist between the species
from the group. Next, the considered models are smaller and faster to learn. Furthermore, from a clustering
point of view, the PCTs are unique in the sense that they provide cluster descriptions while constructing
the clusters. Finally, it is easier to interpret a single multi-target predictive clustering tree (PCT) than set
of single-target decision trees (DTs).

To further increase the predictive performance of the PCTs, we construct ensembles. Ensembles are
sets of predictive models, called base predictive models. The predictions of the base predictive models
are combined by some combination scheme (such as voting or averaging) to obtain the overall prediction.
There are many theoretical and empirical studies that show that ensembles lift the predictive performance
of the base predictive models and offer high predictive performance (Seni and Elder, 2010; Kuncheva, 2004;
Džeroski et al., 2009).

We explore the potential and demonstrate the advantages of using predictive clustering trees and ensem-
bles thereof for community structure modelling on three case studies. First, we model the diatom community
in Lake Prespa, Macedonia (Kocev et al., 2010). Then, we model the community structure of organisms
living in Slovenian rivers (Blockeel et al., 1999; Džeroski et al., 2000). Finally, we model the community of
Collembola species living in the soil of experimental farming systems in Denmark (Demšar et al., 2006).

The remainder of this paper is organized as follows. In Section 2, we describe the methodology for
community structure modelling with single- and multi-target trees and ensembles thereof. In Section 3,
we present the datasets, the experimental design and results. Next, we discuss the habitat models for the
communities of organisms living in a lake, a river and in the soil in Section 4. Finally, Section 5 concludes.
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2. Methodology

In this section, we present the machine learning methodology used to obtain the habitat models. We
first describe predictive clustering trees for multi-target classification and regression and how to learn them.
We then present the used ensemble methods.

2.1. Predictive clustering trees

Predictive clustering trees (PCTs) (Blockeel, 1998) are a generalization of decision trees (Breiman et al.,
1984) and can be used for a variety of learning tasks, such as multi-target prediction, time-series prediction
and (hierarchical) multi-label classification. The PCT framework views a decision tree as a hierarchy of
clusters: the top-node of a PCT corresponds to one cluster (group) containing all data, which is recursively
partitioned into smaller clusters while moving down the tree. The leaves represent the clusters at the lowest
level of the hierarchy and each leaf is labeled with its clusters prototype (prediction). PCTs can be learned
by the system CLUS available at http://clus.sourceforge.net.

PCTs are built with a greedy recursive top-down induction algorithm, similar to that of CART (Breiman
et al., 1984). The learning algorithm starts by selecting a test for the root node by using a heuristic function
computed on the training examples. The goal of the heuristic is to guide the algorithm towards small trees
with good predictive performance. Based on the selected test, the training set is partitioned into subsets
according to the test outcome. This is recursively repeated to construct the subtrees. The partitioning
process stops when a stopping criterion is satisfied. In that case, the prototype (i.e., the prediction) is
calculated and stored in a leaf.

The different stopping criteria can be used to deal with noise and other types of imperfection in the data.
This is also know as tree pruning. Three types of pruning of PCTs are implemented: maximal depth, minimal
instances in a leaf and F-test pruning. The maximal depth algorithm takes as input a user defined integer
value that specifies the maximally allowed depth for the leaves in the tree. The minimal instances in a leaf
algorithm also takes as input a user defined integer value that specifies the minimal number of instances
that each leaf of the tree must contain. Finally, the F-test pruning algorithm checks whether the addition
of a split at a given leaf of the tree significantly reduces the intra-cluster variance for the examples in that
leaf: The significance level is specified by the user. These pruning algorithms increase the interpretability
of PCTs, while maintaining (or increasing) their predictive performance.

The main difference between the algorithm for learning PCTs and a standard decision tree learner is
that the former considers the variance function and the prototype function, that computes a prediction for
each leaf, as parameters that can be instantiated for a given learning task. For further information, we refer
the reader to (Kocev et al., 2013). In this paper, we use PCTs instantiated for the first of these tasks, i.e.,
PCTs for multi-target classification and PCTs for multi-target regression.

Examples of PCTs for multi-target classification are shown in Figures 5, 12, 9 and 11. The variance
function for the PCTs for multi-target classification is computed as the sum of the Gini indices of the target
variables, i.e., Var(E) =

∑T
i=1 Gini(E ,Yi). The prototype function returns a vector of probabilities that

an instance belongs to a given class for each target variable. Using these probabilities, the most probable
(majority) class for each target attribute can be calculated.

Examples of PCTs for multi-target regression are shown in Figures 7, 8, 10 and 6. The variance and
prototype functions for PCTs for multi-target regression are instantiated as follows. The variance is calcu-
lated as the sum of the variances of the target variables, i.e., Var(E) =

∑T
i=1 V ar(Yi). The variances of the

targets are normalized, so each target contributes equally to the overall variance. The prototype function
(calculated at each leaf) returns as a prediction the tuple with the mean values of the target variables,
calculated by using the training instances that belong to the given leaf.

2.2. Ensemble methods

An ensemble is a set of predictive models (called base predictive models). The prediction of an ensemble
for a new instance is obtained by combining the predictions of all base predictive models from the ensemble.
The predictions from the models can be combined by taking the average (for regression tasks) and the
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Figure 2: An illustration of the ensemble learning method of bagging. From the training set of examples E, n bootstrap
replicates are created (E1, E2 . . .En). Predictive models are then constructed (using a tree construction algorithm) on each of
the n replicates. The predictions of the base predictive models (L1, L2 . . .Ln) are combined by a voting (or averaging) scheme
into a final prediction L of the ensemble.

majority or probability distribution vote (for classification tasks) (Bauer and Kohavi, 1999; Breiman, 1996),
or by taking more complex aggregation schemes (Kuncheva, 2004).

In this article, we consider ensembles of PCTs for multi-target prediction (Kocev et al., 2007; Kocev,
2011). The PCTs in the ensembles are constructed by using the bagging and random forests methods that
are often used in the context of decision trees. We have adapted these methods for use in PCTs. The
bagging ensemble learning method is illustrated in Figure 2. For the random forests method, the PCT
algorithm for multi-target prediction needed changes: A randomized version of the selection of attributes
was implemented, which replaced the standard selection of attributes. To obtain a prediction from an
ensemble for multi-target prediction, we accordingly extend the voting schemes. For the task of multi-target
regression, as a prediction of the ensemble, we take the averages per target of the predictions of the base
predictive models. We obtain the ensemble multi-target predictions for the multi-target classification using
probability distribution voting (as suggested in (Bauer and Kohavi, 1999)) per target.

Bagging (Breiman, 1996) is an ensemble method that constructs the different classifiers by making
bootstrap replicates of the training set and using each of these replicates to construct a predictive model.
Each bootstrap sample is obtained by randomly sampling training instances, with replacement, from the
original training set, until an equal number of instances as in the training set is obtained. Breiman (1996)
showed that bagging can give substantial gains in predictive performance, when applied to an unstable
learner (i.e., a learner for which small changes in the training set result in large changes in the learned
model and its predictions), such as classification and regression tree learners.

A random forest (Breiman, 2001) is an ensemble of trees, where diversity among the predictors is ob-
tained by both using bootstrap replicates as in bagging, and by dynamically changing the set of descriptive
attributes during learning. More precisely, at each node in the decision trees, a random subset of the de-
scriptive attributes is taken, and the best attribute is selected from this subset. The number of attributes
that are retained is given by a function f of the total number of descriptive attributes D (e.g., f(D) = 1,
f(D) = b

√
D+1c, f(D) = blog2(D)+1c . . . ) (Breiman, 2001). By setting f(D) = D, we obtain the bagging

procedure.
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3. Experimental results

In this section, we present the results of the use of the proposed methodology for modelling the com-
munities of organisms that live in three complex ecosystems: a lake, a river and the soil. First, we present
the data that describe the respective ecosystems. We then give the experimental design that was used to
construct the habitat models. Finally, we discuss the predictive performance of the obtained habitat models.

3.1. Data overview

We used datasets from three separate studies that constructed habitat models for the following commu-
nities: lake diatoms (Kocev et al., 2010), river water organisms (Blockeel et al., 1999; Džeroski et al., 2000),
and soil microarthropods (Demšar et al., 2006). Table 1 summarizes the properties of all seven considered
variants of the three datasets. In the remainder, we describe the data concerning these communities.

Table 1: Short summary information on the datasets. For each dataset, the type of the targets, number of targets (T ), number
of samples (N), and the number of discrete and continuous descriptive attributes (D/C) are given.

Case study Dataset Target Type T N D/C
Lake Prespa DiatomsAll continuous 111 218 0/18
Lake Prespa DiatomsTop10 continuous 10 218 0/18
Lake Prespa DiatomsAll-nom discrete 111 218 0/18
Lake Prespa DiatomsTop10-nom discrete 10 218 0/18
Slovene Rivers WaterQuality continuous 14 1060 0/16
Slovene Rivers WaterQuality-nom discrete 14 1060 0/16
Danish soil SoilQuality-nom discrete 39 1944 41/7

3.1.1. Diatom communities from lake Prespa

Lake Prespa is located at the border intersection of Macedonia, Albania and Greece. Monitoring of the
state of Lake Prespa was performed during one and a half year period (from March 2005 to September
2006). Samples for analysis were taken from the surface water of the lake at 14 locations. The lake sampling
locations are distributed in the three countries as follows: 8 in Macedonia, 3 in Albania and 3 in Greece.
The selected sampling locations are representative for determining the eutrophication impact (Krstić, 2005).

A total of 218 water samples from the lake were collected. On these water samples, both physico-
chemical and biological analyses were performed. The physico-chemical properties of the samples provided
the environmental variables for the habitat models, while the biological samples provided information on
the relative abundance of the studied diatoms. The following physico-chemical properties of the water
samples were measured: temperature, dissolved oxygen, Secchi depth, conductivity, alkalinity (pH), nitrogen
compounds (NO2, NO3, NH4, organic and total nitrogen), sulphur oxide ions SO4, phosphorus P , sodium
(Na), potassium (K), magnesium (Mg), copper (Cu), manganese (Mn) and zinc (Zn).

The biological variables were the relative abundances of 111 different diatom species (given in Table 2).
Diatom cells were collected with a planktonic net or as attached growth on submerged objects (plants, rocks
or sand, and mud). The sample is examined with a microscope, and the diatom taxa and abundance in the
samples are obtained by counting 200 cells per sample. The relative abundance of a given species is then
the respective percent of the total diatom count per sampling site.

We analyze four variants of the dataset. The first variant includes the relative abundances of all diatom
species (multi-target regression, DiatomsAll). The second variant contains the presence of all diatom species
(multi-target classification, DiatomsAll-nom). The third variant includes the relative abundances of the top
10 diatom species (the ones with highest average abundance across all samples, i.e., multi-target regres-
sion, DiatomsTop10). The fourth variant contains the presence of the top 10 diatom species (multi-target
classification, DiatomsTop10-nom). More details about the data are given in (Kocev et al., 2010).
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Table 2: List of all diatom species encountered in the measurements for Lake Prespa, Macedonia. The species in italics are the
top 10 most abundant species across all samples.

3.1.2. Water organisms from Slovenian rivers

The data for this case study come from the Hydro-meteorological Institute of Slovenia (now Environ-
mental Agency of Slovenia) that performs water quality monitoring for Slovenian rivers and maintains a
database of water quality samples. The data provided cover a six year period of monitoring, starting from
1990 until 1995. Biological samples were taken twice a year, once in summer and once in winter, while
physical and chemical samples were taken several times a year for each sampling site.

In total, there are 1061 samples, each described with its physico-chemical and biological properties. The
physico-chemical properties of the samples include the measured values of 16 parameters: biological oxygen
demand (BOD), electrical conductivity, chemical oxygen demand (K2Cr2O7 and KMnO4), concentrations
of Cl, CO2, NH4, PO4, SiO2, NO2, NO3 and dissolved oxygen (O2), alkalinity (pH), oxygen saturation,
water temperature, and total hardness. The considered organisms include 14 species, 7 animal and 7
plant species, selected as strong bioindicators of water quality. The animal species include Erpobdella
octoculata, Gammarus fossarum, Baetis rhodani, Hydropsyche species, Rhyacophila species, Simulium species
and Tubifex species, while the plant species include Cladophora species, Gongrosira incrustans, Oedogonium
species, Stigeoclonium tenue, Melosira varians, Nitzschia palea and Audouinella chalybea.

Each sample was examined and the density/frequency of the occurrence of each species was recorded by an
expert biologist. In particular, this frequency is recorded at three different qualitative levels, where 1 means
that the species occurs incidentally, 3 frequently, and 5 abundantly (multi-target regression, WaterQuality).
Furthermore, we create one more variant of the dataset, where the presence of each species is recorded (1
if there are some organisms of a given species present in a given sample and 0 otherwise, i.e., multi-target
classification, WaterQuality-nom). More details about the data are given in (Blockeel et al., 1999) and
(Džeroski et al., 2000).

3.1.3. Soil microarthropods from Danish farms

The data used in this study describes four experimental farming systems (observed during the period
1989-1993) and a number of organic farms in Denmark (observed during the period 2002-2003). Soil samples
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were collected within a 20m× 20m area of the field, with a distance of 5m between the individual samples.
Sampling was performed in the upper 5.5 cm soil layer and the sampling containers measured 6 cm in
diameter. Sampling was done using a split soil corer and extraction was performed using a MacFadyen high
gradient heat extractor.

The data concerns the Collembola species community in the soil samples. These species can be used as
indicators of the soil quality (in particular soil dessication) and some are considered as pests for the plants.
Also, they are one of the main biological factors responsible for the control of the soil microorganisms (Ponge,
1991).

Table 3: List of Collembola species in the soil samples from Denmark.

The dataset contains 1944 samples, where each sample is described by 48 field properties and the presence
of 39 Collembola species (given in Table 3). The field properties mainly include agricultural measures, such
as crops planted, packing, tillage, fertilizer and pesticide use, etc. For several of the properties, a history of
3 years is also recorded, i.e., there is an attribute for the year in which the sample was collected, one for the
past year, and one for 2 and 3 years ago. The data about the Collembola species contain information whether
a species is present or absent in a sample (multi-target classification, SoilQuality-nom). More details about
the data are given in (Demšar et al., 2006).

3.2. Experimental design

We have constructed two types of habitat models: multi-target and single-target models. The multi-
target models are valid for the complete community, while the single-target models are valid for a single
species from the community. We then analyzed the data along the lines of two scenarios.

The first (knowledge discovery) scenario focuses on the knowledge discovery process where the goal is
to obtain better understanding about the conditions that govern the presence and abundance of the species
in a given community. To this end, we constructed multi-target PCTs and single-target DTs. The second
(predictive power) scenario is more focused on obtaining state-of-the-art predictive performance and thus
obtaining models that are more reliable. In this context, we constructed ensembles of multi-target PCTs
and ensembles of single-target DTs.

In the following, we first give the parameter instantiations used by the algorithms for the two scenarios.
We then give a brief summary information on the datasets used in this study and present the evaluation
measures used to assess the predictive performance and the efficiency of the models. Finally, we review the
procedure for statistical evaluation of the experimental results.

3.2.1. Parameter instantiation

In the ‘knowledge discovery’ scenario, the trees were pruned using three pruning algorithms: maximal
depth, minimal instances in a leaf and F-test pruning. In this study, we set the value for maximal depth to
3 (this means that trees with up to 15 nodes can be constructed), the trees have a minimum of 16 instances
in each leaf, and the splits in the trees reduce the intra-cluster variance statistically significantly at the 0.05
level. We would like to note that we did not employ F-test pruning on the DiatomsAll and DiatomsAll-nom
datasets, because they have a large number of species and a small number of samples. The usage of this
type of pruning for these two datasets showed to be very restrictive, yielding trees that were inappropriately
small for the problems at hand.
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In the ‘predictive power’ scenario, we constructed ensembles by using the two approaches of bagging and
random forests. Ensembles of multi-target PCTs were constructed for each dataset and were valid for the
complete community. Ensembles of DTs were constructed for each dataset and for each species separately.

In both cases, the base predictive models (PCTs and DTs) were unpruned (as suggested in (Bauer and
Kohavi, 1999)). The ensembles consist of 100 base predictive models. The random forests require also that
the user specifies the size of the attribute subset that is considered at each node in the tree-construction.
In this study, we set this value to f(D) = blog2(D) + 1c, where D is the number of attributes, as suggested
in (Breiman, 2001).

3.2.2. Predictive performance measures

Empirical evaluation is the most widely used approach for assessing the performance of machine learning
algorithms. The performance of a machine learning algorithm is assessed using some evaluation measure.
We first describe the evaluation measures for multi-target regression, then for multi-target classification. At
the end, we present the measures used to assess the efficiency and the complexity of the proposed methods.

For the task of predicting multiple continuous targets (regression), we employed three well known mea-
sures: the correlation coefficient (CC), root mean squared error (RMSE) and relative root mean squared
error (RRMSE). For each of these measures, we performed tests of statistical significance. We present here
only the results in terms of RRMSE, but the same conclusions hold for the other two measures (for which
results are given in the Supplementary information).

We used five evaluation measures for classification: accuracy, precision, recall, F-score, the Matthews
correlation coefficient and balanced accuracy (also known as Area Under the Curve) (Sokolova and Lapalme,
2009). Since we are interested in correctly predicting both the presence and the absence of a given species, we
aggregate the values from the confusion matrix. We use two averaging approaches to adapt these measures
for multi-class problems: micro and macro averaging. We give more details on these evaluation measure in
the Supplementary information.

Finally, we compare the algorithms by measuring their efficiency in terms of time consumption and size
of the models. We measure the processor time needed to construct the models: in the case of predicting the
individual species separately, we sum the times needed to construct the separate models. In a similar way,
we calculate the sizes of the models as the total number of nodes (internal nodes and leafs) of the single
multi-target tree and all single-target trees taken together.

3.2.3. Statistical evaluation

We estimated the predictive performance of the methods by using 10-fold cross-validation. This eval-
uation procedure starts by splitting the complete dataset into 10 disjoint parts. Next, a predictive model
is constructed using nine of these parts of the dataset and the performance of this model is tested on the
tenth part. This is repeated 10 times. The performance on unseen cases of the model learned from the
entire dataset is then estimated by aggregating the performance results from the 10 runs. In addition to the
testing performance on unseen cases (estimated by 10-fold cross-validation), we also present the performance
of the methods on the complete dataset to assess the descriptive power of the methods. We then compare
the performance measures for different methods by using tests for statistical significance.

We adopt the recommendations by Demšar (2006) for the statistical evaluation of the results. We use the
non-parametric Friedman test (Friedman, 1940) for statistical significance with the correction from Iman and
Davenport (1980). Afterwards, to check where the statistically significant differences appear (between which
methods), we use the Nemenyi post-hoc test (Nemenyi, 1963). We present the result from the Nemenyi post
hoc test with an average ranks diagram as suggested by Demšar (2006). Example average ranks diagrams
can be seen in Figures 3 and 4. The ranks are depicted on the axis, in such a manner that the best ranking
algorithms are at the right-most side of the diagram. The algorithms that do not differ significantly (in
performance) are connected with a line.

We have performed two statistical analyses. The first considers all target variables from all datasets
together for the assessment of the statistical significance: The results are shown in Figures 3 and 4, for
the RRMSE and micro averaged balanced accuracy, respectively. For the remaining evaluation measures
the results are given in the Supplementary information. The second statistical analysis considers the target
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variables for each dataset separately. The results of this analysis for all evaluation measures are given in the
Supplementary information.

3.3. Performance of the proposed habitat modelling methodology

In this section, we show the results for both predictive and descriptive performance of the obtained mod-
els. We first present the results from the modelling of the species abundance (multi-target regression task).
We then discuss the results from the modelling of the species presence/absence (multi-target classification).
Finally, we summarize the results for the performance and efficiency of the proposed methods.

3.3.1. Modelling the abundance of species

Figure 3 shows the average rank diagrams for the methods used for modelling of the species abundance
(i.e., multi-target regression) as evaluated by using the RRMSE measure. The average rank diagram for the
evaluation on the training set (descriptive power) shows that the single-target models achieve statistically
significantly better average ranks (i.e., better performance) than the multi-target models. However, when
the evaluation is performed on unseen data by using 10-fold cross-validation (predictive power) the multi-
target models have statistically significantly better average ranks. This means that the single-target models
tend to overfit the data at hand and do not capture the more general dependencies that may exist between
the observed environmental variables and the organisms. In other words, the single-target models capture
specific knowledge from the data, while the multi-target models capture more general relations present in
the observed ecosystems. Similar conclusions can be made if we look at the results for the RMSE and
correlation coefficient measures, which are given in the Supplementary information.
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RFPCTDT
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BagDT

Critical Distance = 0.648974

(a) Train (b) Cross-validation

Figure 3: The average rank diagrams for the RRMSE evaluation measure on the datasets that contain information about the
species abundance. The ‘Train’ performance is obtained from the complete training set, while the ‘Cross-validation’ gives the
performance assessed using 10-fold cross-validation.

Table 4: Efficiency of the proposed methods for modelling the abundance of the species. The time needed to construct the
models is given in seconds. For the single-target models, the time shown is the total time needed to construct the models for
all targets. The size of the habitat models is calculated as follows. For the multi-target PCTs, it is the total number of nodes
(internal nodes and leaves). For the single-target DTs, the size of the models is the sum of all nodes in the trees for all targets.
The model sizes for the ensembles is the total number of nodes in all models in the ensemble.

PCT DT BagPCT BagDT RFPCT RFDT

T
im

e DiatomsAll 0.06 0.42 14.89 43.59 3.97 17.43
DiatomsTop10 0.01 0.07 2.35 7.22 1.06 4.08
WaterQuality 0.05 0.25 12.86 41.15 4.64 23.65

S
iz

e DiatomsAll 13 971 15402 420616 15450 476804
DiatomsTop10 11 118 15120 107052 15448 117110
WaterQuality 9 150 82842 451822 83036 524486
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Next, let us compare the multi-target and single-target models by their efficiency as measured by the
time needed to construct the models and the size of the obtained models. The results are given in Table 4.
To begin with, the (multi-target) PCTs are ∼ 6.3 times faster to construct and have ∼ 34 times smaller
models than the (single-target) decision trees. Next, the multi-target ensembles are more efficient than the
single-target ensembles. Namely, multi-target bagging is ∼ 3.1 times faster and has ∼ 13.3 times smaller
models than single-target bagging. Similarly, multi-target random forests are ∼ 4.4 times faster and have
∼ 14.9 times smaller models than single-target random forests. All in all, the multi-target models are
far superior to the single-target models when compared by their efficiency. Moreover, if we consider the
interpretability, it is much easier to interpret a single model with 9 nodes, for example, than 14 models with
total of 150 nodes (as learned for the WaterQuality dataset).

3.3.2. Modelling the presence/absence of species

We evaluated the predictive performance of the methods used for modelling of the species presence/absence
(i.e., multi-target classification) by using the measures mentioned in Section 3.2.2. For simplicity, in Fig-
ure 4, we present the average ranks for the methods used for modelling of the species presence/absence as
evaluated by their micro balanced accuracy, since this measure is able to avoid inflated performance esti-
mates in datasets with imbalanced classes (Brodersen et al., 2010). The balanced accuracy is actually the
mean of sensitivity and specificity. We provide the evaluation using the other measures in the Supplementary
information of this manuscript. For the modelling of the presence/absence of species, the average ranks show
that the single-target models achieve better performance when evaluated on the training set (descriptive
power), while the multi-target models have better performance when evaluated by 10-fold cross-validation
(predictive power). This means that when it comes to capturing more general knowledge and relationships
that may exist between the environmental conditions and the structure of a given community of species, the
multi-target models should be preferred.
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(a) Train (b) Cross-validation

Figure 4: The average rank diagrams for the micro balanced accuracy evaluation measure on the datasets that contain infor-
mation about the species presence/absence. The ‘Train’ performance is obtained from the complete training set, while the
‘Cross-validation’ gives the performance assessed using 10-fold cross-validation.

We further compare the multi-target and single-target models by their efficiency as measured by the
time needed to construct the models and the size of the obtained models. The results are given in Table 5.
First, the PCTs are ∼ 5.9 times faster to construct and have ∼ 18.5 times smaller models than the decision
trees. Next, the multi-target ensembles are more efficient than the single-target ensembles. Namely, multi-
target bagging is ∼ 2 times faster and has ∼ 7.1 times smaller models than single-target bagging. Similarly,
multi-target random forests are ∼ 3.6 times faster and have ∼ 8.6 times smaller models than single-target
random forests. In sum, the multi-target models are much more efficient than the single-target models.

3.3.3. Summary of the results

A quick inspection of the results shows that the prediction problem is very difficult: the predictive
performance is low. We first constructed the PCTs (multi-target models) and DTs (single-target models) and
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Table 5: Efficiency of the proposed methods for modelling the presence/absence of the species. The time needed to construct
the models is given in seconds. For the single-target models, the time shown is the total time needed to construct the models
for all targets. The size of the habitat models is calculated as follows. For the multi-target PCTs, it is the total number of
nodes (internal nodes and leaves). For the single-target DTs, the size of the models is the sum of all nodes in the trees for all
targets. The model sizes for the ensembles is the total number of nodes in all models in the ensemble.

PCT DT BagPCT BagDT RFPCT RFDT

T
im

e

DiatomsAll-nom 0.07 0.40 23.46 38.57 4.66 15.41
DiatomsTop10-nom 0.02 0.09 2.87 5.77 1.06 3.11
SoilQuality-nom 0.10 0.76 46.09 80.55 4.07 19.73
WaterQuality-nom 0.04 0.25 14.03 38.88 5.43 19.03

S
iz

e

DiatomsAll-nom 13 371 15206 261988 15372 305552
DiatomsTop10-nom 7 76 13450 37430 14064 45578
SoilQuality-nom 11 239 51640 249090 35196 252934
WaterQuality-nom 9 116 81244 288080 81802 335656

assessed their predictive performance. The poor predictive performance motivated us to further investigate
the limits of predictive performance on the data at hand. To this end, we employed ensembles (bagging
and random forests) of both PCTs (Kocev et al., 2013) and decision trees (Breiman, 1996, 2001). It is well
known that ensemble methods perform better than individual trees and are amongst the top performing
methods for predictive modelling Breiman (2001). The results in our study show that the ensembles do lift
the predictive performance, both for PCTs and DTs as base models.

However, the predictive performance of the ensembles, as estimated by 10-fold cross-validation, is still
quite low (i.e., the correlation coefficients are all smaller than 0.5). This leads us to the conclusion that
the low predictive performance of the PCTs and DTs is not due to the modelling algorithm, but to the
limited data quality and quantity. The datasets at hand aim at describing very complex eco-systems with
a limited number of attributes and samples. These datasets are small in terms of the number of samples
and the number of environmental conditions considered. Thus, they do not consider important factors that
surely influence the outcome. Increase of the predictive performance of the models can be expected once
measurements of a wider range of attributes are performed at additional sampling locations. We confirmed
this also by estimating the variable importance using the random forests mechanism (Breiman, 2001). We
used the extension of the method for estimating variable importance for the task of multi-target prediction,
proposed by Kocev (2011). The results (presented in the Supplementary information) show that the values
for the variable importances are quite small and that the values for all of the variables are close to each
other. We hypothesize that this is due to fact that a wider range of attributes is needed to describe these
complex eco-systems.

A comparison of the performance of single-target DTs and multi-target PCTs shows that single-target
DTs perform better on the training data. But, on unseen data, the PCTs have better performance (as
assessed by cross-validation). This means that the single-target DTs tend to over-fit the training data. This
can be observed by a quick inspection of the trees constructed for each fold from the 10-fold cross-validation.
Namely, the structure and the variables in the nodes of the multi-target PCTs across the ten folds are quite
similar to each other and to the tree constructed on the whole training set. On the other hand, the structure
and the variables in the nodes of the single-target DTs vary more across the ten folds. This is because the
multi-target PCTs are able to capture the more general knowledge that is present in the data, while the
single-target DTs capture knowledge specific for the individual species. The over-fitting issue is also reflected
in the sizes of the models: the multi-target models describe the eco-system with trees of 7 to 13 nodes, while
the single-target models need 76 to 971 nodes. Moreover, for the domains DiatomsTop10, DiatomsTop10-
nom and Water quality, the multi-target PCTs are smaller than the average size of the single-target DTs.
For example, the multi-target PCT for DiatomsTop10 has 11 nodes, while the 10 single-target DTs have 118
nodes in total or 11.8 nodes on average. This shows that the multi-target PCTs are much easier to interpret
than the multiple single-target DTs. Furthermore, the multi-target PCTs consider the interactions between
the different target species, while the single-target DTs are focused on a single species, thus making overall
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conclusions for the complete community structure is difficult.
The multi-target PCTs and single-target DTs are a reasonable choice for habitat models. They are

very easy to interpret, with reasonable size and predictive performance. Moreover, the multi-target PCTs
capture the interactions that might exist between the different species and try to explain them. Also, they
offer overall predictions for the structure of the complete community that is being modelled.

The ensembles trade-off interpretability for predictive performance and thus offer state-of-the-art predic-
tive performance. The multi-target ensembles have slightly better predictive performance than the single-
target ensembles on the datasets at hand, while being much more efficient. All in all, multi-target PCTs
and single-target DTs can be used if the goal is to discover some novel knowledge about the underlying
eco-system. The ensembles, on the other hand, can be used when high predictive performance is required.

4. Discussion of the habitat models

In this section, we present and discuss the habitat models obtained from the three case studies: modelling
the diatom community in Lake Prespa, Macedonia, modelling plant and animal organisms in rivers in
Slovenia, and modelling Collembola species in soil samples from Denmark.

4.1. Habitat models for diatom communities

We constructed two types of habitat models for this case study. The first type of habitat models are
the regression models, which aim at predicting the relative abundances of the species. The second type of
habitat models are the classification models, which predict the presence of the species in a given sample.
In other words, the latter type of habitat models will answer the question which species are present in the
given sample, while the former type of habitat models answers how abundant (relatively) the species is in
the given sample. Furthermore, we construct habitat models that predict the complete diatom community
(single habitat model for all diatom species) and habitat models that are valid just for a single species.
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Figure 5: The habitat model for all diatoms with discrete target variables. A complete list of all diatom species in the data is
given in Table 2.

We begin by discussing the habitat model for the complete diatom community (Figure 5) that predicts
the presence of all species. Then, we present the habitat model for the relative abundances of the top 10
species (Figure 7). Finally, we give the habitat models for each (of the top 10 populated) diatom species
separately (Figure 8). We also present the habitat models for the relative abundances of all diatom species
and the presence of the top 10 species in the Appendix (Figures 6 and 9, respectively).
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Figure 6: The habitat model for all diatoms with continuous target variables.

The habitat model for the complete diatom community is shown in Figure 5. This model describes the
environmental conditions that influence and shape the diatom communities encountered in Lake Prespa.
More specifically, it describes the conditions for encountering 6 types of diatom communities and the envi-
ronmental conditions that limit or favor the presence of all diatom species examined here. We can note that
most important factors for the diatom community structure are the temperature and the metals. Higher
temperatures result in more diverse diatom communities consisting of a larger number of different diatom
species. The metallic ions (potassium, magnesium and sodium) are a crucial part of the enzymes that play
an important role in the life of diatoms. Similar findings have been found by Gold et al. (2002): metallic
pollution (in particular, cadmium and zinc) affected and changed the diatom community.

The most diverse diatom community (with most diatom species) is encountered at higher temperatures,
lower concentrations of sodium and higher concentrations of potassium (the third leaf in the tree, counting
from left to right). The most harsh conditions that are unsuitable for most diatom species are low tem-
peratures, low concentrations of magnesium and high concentrations of nitrates (the sixth leaf in the tree,
counting from left to right). The same factors also influence the relative abundances of all diatom species
(see Figure 6).
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Figure 7: The habitat model for the top 10 diatoms with continuous target variables.

Figure 7 depicts the habitat model for the top 10 most abundant diatoms in the lake samples. It defines
the environmental conditions that favor or limit the abundance of the most abundant diatom species,
i.e., explains the relations that dominant diatoms have with the physico-chemical properties according to
their trophic preference. This model identifies the temperature and the nutrients (presented through the
concentrations of nitrates and nitrites) as the most influential factors. Higher temperatures lead to larger
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abundances of the diatoms: a comparison of the diatom abundances in the second and the third leaf of
the tree reveals that lower temperatures (accompanied with a low concentration of nitrites and a high
concentration of nitrates) lead to reduction of the abundance of the top 10 diatom species. Nitrates, as one
of the basic external nutrients for the diatoms and a chemical indicator of higher trophic levels, influence
positively the relative abundances of the diatoms given the higher temperatures (see the second, third and
fourth leaf of the tree).

Note the difference in the most important factors for predicting the structure of the entire community
(Figures 5 and 6) versus the top 10 diatom species (Figures 9 and 7). For the top 10 diatom species, the
nutrients (NO3 concentrations) are most important. For the structure of the entire community, however,
metal ions play a key role. While the nutrients are components of proteins, metals such as potassium and
magnesium are parts of (co)-enzymes that also play an important role in cellular processes.

We further discuss the habitat models for the two most abundant diatom species (shown in Figure 8):
Cyclotella ocellata and Cavinula scutetelloides. The most abundant diatom species, Cyclotella ocellata, is
mostly influenced by the nitrogen compounds (NO3 and NH4), the temperature and the conductivity of the
water and the potassium concentration. The concentration of nitrates (i.e., nutrients) influences positively
the abundance: the leafs of the tree with higher nitrate concentration (the first three leafs) contain samples
with higher abundances of Cyclotella ocellata than the leafs on the right-hand side of the tree.

The habitat model for Cavinula scutetelloides shows that the temperature, nitrates and metal concen-
trations are most influential for this diatom species. Higher temperatures favor this specific diatom species,
while optimal concentration of magnesium (between 6.13 and 9.44 µg/dm3) are needed for the highest abun-
dance. This habitat model also reveals the limiting role of manganese and copper for this species: the higher
values of these metals at lower temperatures reduce the abundance of the species.

The habitat models per species shown in Figure 8 do offer interesting insights about the specific species.
However, it is very difficult to draw conclusions that concern the diatom community as a whole. This
problem is even more emphasized if the community consists of many different species, as is the case here.
Namely, constructing a habitat model for each of the 111 species from this case study, and, moreover,
interpreting these models is a very labor intensive task. Furthermore, combining all the 111 separate
habitat models into general conclusions concerning the complete community is not feasible. On the other
hand, the multi-target PCTs offer general conclusions about the relations between the environmental factors
and community structure by using a single model. Hence, they provide unified knowledge about the complete
diatom community.

4.2. Habitat models for river organisms

We constructed two habitat models for the community structure, i.e., the 7 plants and 7 animals in water
samples from Slovenian rivers. The first concerns the relative abundances of the 14 species (regression model
with multiple continuous target variables shown in Figure 10), while the second concerns the presence of
the species (classification model with multiple discrete target variables shown in Figure 11).

In this section, we focus on the habitat model that predicts the (relative) abundances of the 14 species
(Figure 10). This model identifies the biological oxygen demand, the concentration of carbon dioxide CO2

and the concentration of chlorine Cl as the most important environmental factors influencing the structure
of the community. The higher values for BOD (higher than 0.66) favors the plant species. Namely, the
plant species Nitzschia palea is most abundant when the content of BOD is highest (the first and the second
leaf from the tree), while it is encountered rarely at the lower content of BOD (the last three leaves of the
tree). The lowest abundance of all species (the right-most leaf of the tree) is encountered with low content
of BOD, absence of CO2 and low chlorine concentrations (smaller than 0.20 mg/l).

A brief inspection of the habitat model for the presence of the 14 species (Figure 11) shows that the most
important factors influencing the structure of the community are the concentrations of nitrites NO3, i.e.,
nutrients, potassium dichromate (K2Cr2O7), which measures the chemical oxygen demand, chlorine (Cl)
and carbon dioxide (CO2). The habitat model for the presence of the species, however, does not identify
BOD content as an important factor for the community structure. The cleanest waters (rightmost leaf),
which lack nutrients, support Rhyacophila species, an indicator of unpolluted waters. The most polluted
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yes no

NH4 > 0.19

yes no

3.94 1.72

Ptotal > 5.34

yes no

0.25 1.98

Ptotal > 5.34

yes no

Mg > 5.22

yes no

5 9.58

Cu > 2.87

yes no

1.94 4.31

Staurosirella pin.

Ptotal > 10.52

yes no

K > 2.27

yes no

2.12 Norg > 1.07

yes no

0.40 1.16

Mg > 5.22

yes no

Na > 5.76

yes no

0.63 2.19

K > 1.36

yes no

6.29 2.57

Staurosirella pin.

Figure 8: Individual habitat models for each of the top 10 diatom species in Lake Prespa.

waters (leftmost leaf) allow only for the most pollution-resistant organisms (Nitzschia palea and Tubifex
species). Moderate clean/polluted waters support larger, more diverse communities.
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NO3 > 2.65

yes no

Na > 238

yes no

Temperature > 17.5

yes no

none Cyclotella jur. Amphora ped. Amphora ped.
Cyclotella oc.
Cavinula scu.
Diploneis mau.
Navicula rot.
Navicula subr.

Cyclotella jur.
Cyclotella oc.
Cavinula scu.
Diploneis mau.
Navicula pre.
Navicula rot.
Navicula subr.

Cyclotella jur.
Cyclotella oc.
Cavinula scu.
Navicula subr.

Staurosirella pin.

Figure 9: The habitat model for top 10 diatoms with discrete target variables.

BOD > 0.20

yes no

BOD > 0.66

yes no

Nitzschia pal. 2.74 Nitzschia pal. 1.97

CO2 > 0.0

yes no

Cl > 0.20

yes no

Gammarus fo. 3.24

Gammarus fo. 1.50 Rhyacophila sp. 0.95

Tubifex sp. 2.55
Stigeoclonium ten. 1.36
Gongrosira inc. 1.01
Erpobdella oc. 0.73
Cladophora sp. 0.65
Gammarus fo. 0.47
Melosira var. 0.45
Oedogonium sp. 0.36
Audouinella ch. 0.33
Simulium sp. 0.30

Hydropsyche sp. 0.28
Baetis rh. 0.20

Rhyacophila sp. 0.03

Gammarus fo. 1.67
Cladophora sp. 1.20
Hydropsyche sp. 1.13

Tubifex sp. 1.02
Erpobdella oc. 0.94
Gongrosira inc. 0.88
Simulium sp. 0.70
Baetis rh. 0.67

Oedogonium sp. 0.61
Melosira var. 0.61

Stigeoclonium ten. 0.49
Audouinella ch. 0.27
Rhyacophila sp. 0.24

Baetis rh. 1.41
Melosira var. 1.29
Audouinella ch. 0.82
Simulium sp. 0.80

Rhyacophila sp. 0.75
Cladophora sp. 0.70
Gongrosira inc. 0.50
Hydropsyche sp. 0.45
Nitzschia pal. 0.43
Oedogonium sp. 0.30
Tubifex sp. 0.29

Erpobdella oc. 0.22
Stigeoclonium ten. 0.12

Baetis rh. 1.28
Cladophora sp. 1.21
Hydropsyche sp. 1.21
Nitzschia pal. 1.14
Simulium sp. 1.07
Gongrosira inc. 0.85
Melosira var. 0.78
Rhyacophila sp. 0.52
Erpobdella oc. 0.48
Oedogonium sp. 0.40
Tubifex sp. 0.38

Audouinella ch. 0.36
Stigeoclonium ten. 0.25

Hydropsyche sp. 0.88
Simulium sp. 0.77
Baetis rh. 0.76

Gammarus fo. 0.63
Cladophora sp. 0.53
Gongrosira inc. 0.40
Oedogonium sp. 0.37
Nitzschia pal. 0.36
Melosira var. 0.26
Audouinella ch. 0.11
Erpobdella oc. 0.10
Tubifex sp. 0.08

Stigeoclonium ten. 0.01

Figure 10: The habitat model for communities in Slovenian rivers.

NO2 > 0.12

yes no

K2Cr2O7 > 0.86

yes no

Nitzschia pal. Melosira var.

Cl > 0.22

yes no

CO2 > 0.0

yes no

Rhyacophila sp.

Melosira var. Cladophora sp.

Tubifex sp. Nitzschia pal.
Gammarus fo.
Hydropsyche sp.

Audouinella ch.
Gammarus fo.

Baetis rh.
Rhyacophila sp.

Melosira var.
Gammarus fo.
Hydropsyche sp.

Figure 11: The habitat model for communities in Slovenian rivers described with discrete target variables.

4.3. Habitat models for soil microarthropods

We constructed a habitat model for all 39 Collembola species that predicts the presence of a given group
of species under given environmental conditions. The habitat model is depicted in Figure 12. The habitat
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model of the Collembola community identifies the type of the soil as the most important environmental
factor. Namely, it differentiates the communities that develop in clay (soils with JB index between 5 and
9) and other types of soil.

Other than the soil type, the type of crop, the one currently on the field and the crop types from the
previous years are most important. This means that certain types of crop contribute to the increase of
the population of some Collembola species and other types of crop to the decrease of the population. In
particular, if the soil type is clay and the crop three years ago (the first and second leaf in the tree) was
winter barley, clover-grass, fallow, grass, spring barley or winter wheat, then Collembola species Isotoma
notabilis, Mesaphorura species and Smint species are present. Otherwise, there is a much larger community
of Collembola species shown in the second leaf of the tree.

Soil JB index in {5, 6, 7, 8, 9}

yes no

Crop− 3 in {ba, clgr, fa, gr, sba, wh}

yes no

Isotoma not. Entomobrya sp.

Crop− 3 in {ba− pe, lu, po, ry − clgr, sba− clgr}

yes no

Crop − 1 in {po}

yes no

Brachystomelle par. Isotoma tig.

Crop in {clgr, fa− clgr, wh− clgr, gr, oa− gr}

yes no

Brachystomelle par. Folsomiafim.

Mesaphorura sp.
Smint sp.

Folsomia quad.
Isotoma ang.
Isotoma not.

Lepidocyrtus cya.
Mesaphorura sp.

Neelus min.
Protaphorura sp.
Pseudosinella alba

Folsomia fim.
Isotoma tig.

Isotomodes pro.
Mesaphorura sp.

Smint sp.
Willemia sp.

Mesaphorura sp.
Smint sp.

Folsomia fim.
Isotoma ang.

Isotomodes not.
Isotomuruspal. sp.
Mesaphorura sp.

Smint sp.

Isotoma ang.
Isotoma nob.

Mesaphorura sp.
Sminthurinus au.

Figure 12: The habitat model for soil - modelling Collembola species (discrete target variables). A complete list of all Collembola
species used in this case study is given in Table 3, while a list of abbreviations and crop types is given in Table 6.

Table 6: List of abbreviations for the crop types of the soil samples from Denmark.

4.4. Improvements over the analyses from the original studies

We improve upon the studies where the data and initial results from their analyses were first published
along several directions. In the first study of the diatom communities, Kocev et al. (2010) construct models
for the diatom abundances (multi-target regression), while here we additionally construct models for the
presence/absence data (i.e., the community structure, multi-target classification). Moreover, in the current
study, we apply additional pruning algorithms that yield more stable trees. Next, in the previous studies of
the river communities, Džeroski et al. (2000) and Blockeel et al. (1999) use the abundance information to
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infer the values of the chemical parameters of the water, i.e., the presence/absence and the abundance of the
species was used as an indicator of the water quality. Here we learn predictive models in the other direction,
i.e., we construct habitat models for the communities of river organisms (both multi-target regression and
multi-target classification). Finally, in the first study of the communities of soil microarthropods, Demšar
et al. (2006) construct models for the overall abundance of the species and the biodiversity of the community.
Here we focus on predicting the presence/absence of all species and model the community structure itself
(multi-target classification).

5. Conclusions

In this paper, we presented a novel type of habitat models that are based on predictive clustering trees.
In particular, we show how trees that are able to predict multiple target variables simultaneously can
be successfully used for modelling community structure. Different groups of species that live in different
ecosystems can be modelled in this fashion.

While the constructed habitat models do not exhibit as high predictive performance as one would expect,
this is not a limitation of the methodology itself (since it is known that ensembles of predictive clustering trees
achieve state-of-the-art predictive performance), but rather a consequence of the difficulty of the problem
addressed. The modelling problem at hand is very difficult, because the ecosystems under consideration
are complex and the data available are of limited quantity and quality. For obtaining models with better
predictive performance, more measurements are necessary. These measurements should include additional
sampling locations, a longer period of observation, and a wider range of measured environmental variables.

To model community structure one would traditionally construct a separate habitat model for each
species. This approach results in many single-target habitat models that are related to the same ecosystem.
Although these models do offer insight into the environmental conditions influencing the abundance of
individual species, they do not convey information about the conditions influencing the structure of the
community. Moreover, these models do not exploit the interactions that exist between the different species.
Our experiments have shown that these models capture only specific knowledge and tend to overfit the
training data at hand.

The constructed multi-target habitat models have high expressive power. They exploit the relations
between the different species to build a more representative and comprehensible habitat model. Furthermore,
the multi-target habitat models can be readily interpreted by a domain expert. They offer insight into the
community structures encountered within the different ecosystems under different environmental conditions.
These models can be used, for example, to develop a decision support system to control the abundance of
pests and harmful species without disrupting the complete community, e.g., decreasing the abundance of
some beneficial species.

We have illustrated the use of multi-target predictive clustering trees in three case studies: modelling
the diatom community in Lake Prespa, modelling bioindicator species in Slovenian rivers and modelling the
Collembola community in Danish soils. For each of these case studies, we have constructed several habitat
models and provided discussion concerning the models. Besides showing the environmental preferences of
the individual species, each of the constructed models offers knowledge about the structure of the community
of organisms encountered in the given ecosystem: it shows the environmental preferences of the species.

The presented methodology can be further employed in the context of using the species as bioindicators
to determine the level of environmental pollution/quality of a given ecosystem. Namely, one can use the
abundance of the species to predict the environmental conditions in the ecosystem. These environmental
conditions can reflect the level of pollution in the water or in the soil, i.e., model the quality of the water
or the soil. Moreover, this approach can be integrated with a system for automatic taxa identification
from images (such as the one presented by Dimitrovski et al. (2012)) and a decision support system for
preventing water or soil pollution. Such an integrated system could facilitate fast, efficient and automated
environmental quality control.
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Ljubljana, Slovenia.
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