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ABSTRACT

We present a hierarchical multi-label classification (HMC) system for medical image annotation. HMC
is a variant of classification where an instance may belong to multiple classes at the same time and
these classes/labels are organized in a hierarchy. Our approach to HMC exploits the annotation
hierarchy by building a single predictive clustering tree (PCT) that can simultaneously predict all
annotations of an image. Hence, PCTs are very efficient: a single classifier is valid for the hierarchical
semantics as a whole, as compared to other approaches that produce many classifiers, each valid just
for one given class. To improve performance, we construct ensembles of PCTs. We evaluate our system
on the IRMA database that consists of X-ray images. We investigate its performance under a variety of
conditions. To begin with, we consider two ensemble approaches, bagging and random forests. Next,
we use several state-of-the-art feature extraction approaches and combinations thereof. Finally, we
employ two types of feature fusion, i.e., low and high level fusion. The experiments show that our
system outperforms the best-performing approach from the literature (a collection of SVMs, each
predicting one label at the lowest level of the hierarchy), both in terms of error and efficiency. This
holds across a range of descriptors and descriptor combinations, regardless of the type of feature fusion
used. To stress the generality of the proposed approach, we have also applied it for automatic
annotation of a large number of consumer photos with multiple annotations organized in semantic
hierarchy. The obtained results show that this approach is general and easily applicable in different

domains, offering state-of-the-art performance.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Digital imaging in medicine is in constant growth due to the
increasing availability of imaging equipment in hospitals. Aver-
age-sized radiology departments now produce several tera-bytes
of data annually. This prompts for efficient systems for image
annotation, storage, retrieval and mining. Typically, medical
image databases are accessed via textual information through
the standard picture archiving and communication system (PACS)
[1,2]. PACS integrates imaging modalities and interfaces with
hospital and departmental information systems to manage
storage and distribution of images to medical personnel, research-
ers, clinics, and imaging centers. An important requirement of
PACS is the provision of an efficient search function to access the
required images.
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An universal format for PACS image storage and retrieval is
the digital imaging and communications in medicine (DICOM)
standard [3]. DICOM is a well-known standard for handling,
storing, printing, and transmitting information in medical ima-
ging. The DICOM header contains tags to decode the body part
examined, the patient position and the acquisition modality.
Some of the tags are automatically set by the digital system
according to the imaging protocol used to capture the pixel data.
Other part of the tags are set manually by the physicians or
radiologists during the routine documentation. This procedure
cannot always be considered very reliable, since frequently some
entries are either missing, false, or do not describe the anatomic
region precisely [4]. Furthermore, manual annotation of images is
an expensive and time-consuming procedure, especially given the
large and constantly growing databases of medical images. Thus,
completely automated categorization in terms of DICOM tags is
currently not possible, but is highly desirable.

Automatic image annotation or image classification is an impor-
tant step in image retrieval. In the medical domain, using information
directly extracted from images to annotate/categorize them will
improve the quality of image annotation in particular, and more
generally the quality of patient care. Properly classified medical image
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data can help medical professionals in fast and effective access to data
in their teaching, research, training, and diagnostic problems. The
results of the classification step can also be used for multilingual
image annotation as well as for DICOM header correction [5].

Automatic image annotation can be used for retrospective
annotation (pre DICOM). It can also be used as help for human
annotators (i.e., radiologists), where the annotations that are sug-
gested by the system are corrected/verified/confirmed by the human
annotator. The limits of performance of an automated annotation
system that learns from example images annotated by humans, is
the rate/probability of operator error/agreement of annotators.

Automatic image annotation uses a computer system which
automatically assigns metadata in the form of captions or
keywords to a digital image. Typically, image analysis first
extracts feature vectors. Then, together with the training annota-
tions, they are used by a machine learning algorithm to learn to
automatically assign annotations. The performance of the com-
puter system largely depends on the availability of strongly
representative visual features, able to characterize different visual
properties of the images, and the use of effective algorithms for
training classifiers for automatic image annotation.

A single image may contain different meanings organized in
hierarchical semantics: hence, hierarchical multi-label classifica-
tion (HMC) is strongly recommended for obtaining multi-label
annotations. The task of multi-label classification is to assign
multiple labels to each image. The assigned labels are a subset of a
previously defined set or hierarchy of labels. HMC is used in
various domains [6], such as text classification, scene and video
classification, medical imaging and biological applications. One of
the main issues involved in multi-label classification is the
importance of detecting and incorporating the connections
between the labels into the process of assigning multiple labels.
A second and related issue is the additional complexity involved
in learning multi-label classifiers, as compared to learning single-
label classifiers.

In this paper, we present a HMC system for medical image
annotation. This system consists of the two standard parts of
image annotation systems, i.e., processing (feature extraction)
and classification of images. The image processing part uses state-
of-the-art approaches to convert an image to a set of numerical
features extracted directly from the pixel values. The image
classification part, which labels and groups the images, contains
the main novelty of our approach: The labels can be organized in
a hierarchy and an image can be labeled with more than one label
(an image can belong to more than one group).

First, we generate four different types of descriptors suitable
for X-ray medical images: raw pixel representation (RPR) [7],
local binary patterns (LBP) [8], edge histogram descriptors (EHD)
[9], and scale-invariant feature transform (SIFT) [10]. The features
are generated using the medical X-ray images from the Image-
CLEF2009 medical image annotation task [5]. Next, we use these
features together with the annotations to train the classifiers. In
particular, we use ensembles (bags and random forests) of PCTs
for HMC and SVMs for single-label classification, the most widely
used classifier in the area of image annotation. At the end, we
assess the predictive performance of the classifiers using the
hierarchical error measure (HEM) from ImageCLEF [5] and overall
recognition rate (RR), commonly used for assessing the predictive
performance over the database we use.

The main question that we address in our research is whether
exploiting the semantic knowledge about the inter-class relation-
ships among the image labels (organized in a hierarchical struc-
ture) can improve the predictive performance of a system for
automatic image annotation. To this end, we compare the
predictive performance of the ensembles of PCTs for HMC (that
predict all labels simultaneously) to that of SVMs (each of them

predicting a single label). We do this across all feature extraction
techniques, thus evaluating the different feature extraction tech-
niques and their use in HMC of medical X-ray images. Moreover,
we investigate whether (and which type of) combination of
feature extraction techniques yields better predictive perfor-
mance. We consider low level (LL) and high level (HL) feature
fusion/combination schemes [7].

To emphasize the generality of our approach, we have also
tested it on the database of general images from the ImageCLE-
F@ICPR 2010 photo annotation task [11]. The images in this
database are annotated with 53 visual concepts organized in a
classification scheme with hierarchical structure, which we used
to build ensembles of PCTs for HMC as classifiers. The 53 concepts
include abstract categories (like partylife), the time of day (like
day or night), persons (like no person visible, small or big group)
and quality (like blurred or underexposed). A complete overview
of the task is given by Nowak [11].

The remainder of the paper is organized as follows. In Section 2,
we give an overview of related work. Section 3 introduces predictive
clustering trees and their use for HMC. Section 4 describes the
techniques for feature extraction from images. In Section 5, we
explain the experimental setup for annotating medical images. The
obtained results and a discussion thereof are given in Section 6.
Section 7 describes the experiments in annotation of general images,
as well as their results. Section 8 concludes the paper and points out
some directions for further work.

2. Related work

In this section, we present some classification methods that
are or can be used for image annotation. We begin by presenting
the methods that are most widely used by the image annotation
community. We then present some recent machine learning
methods that can be used for hierarchical image annotation and
discuss their relation to the method we propose.

Regardless of the number of visual concepts that have to be
learned and their mutual connections, most of the present
systems for annotation of general images (and medical images
in particular) learn a separate model for each visual concept
(label), i.e., they treat the classes as completely separate and
independent (both visually and semantically). This means that
multi-label classification problems are transformed into several
binary classification problems. For example, the methods with
high predictive performance at recent challenges/competitions in
detection and annotation tasks (such as the PASCAL visual object
classes challenge [12], the ImageCLEF medical image annotation
task [13,5] and the ImageCLEF visual concept detection and
annotation task [14]) perform multi-label classification by build-
ing binary classifiers for each label. The instances associated with
particular label are in one class and the rest are in another class.
For solving the binary classification problems, is common to use a
SVM with a x? kernel [15]. This means that the increase of the
number of labels used for annotation will linearly increase the
complexity of such an approach.

To deal with a large number of labels/classes, many approaches
combine binary classifiers using class hierarchies [16,17]. This
results in a logarithmic increase of complexity as the number of
labels increases. The class hierarchies can be automatically con-
structed through analysis of visual similarities: this can proceed top-
down by recursive partitioning of the set of classes [18] or bottom-
up by agglomerative clustering [19]. The hierarchies could also be
found by exhaustive search or random sampling followed by cross-
validation [20].

An alternative method for automatic construction of hierar-
chies is to query an external semantic network with class labels
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[17]. Since semantic networks model concepts and relations
between them, a subgraph in the form of a hierarchy can be
easily extracted. Such an approach allows to incorporate prior
knowledge about object identity into the visual recognition
system. Our approach to automatic image annotation is based
on this idea. We exploit the semantic knowledge about the inter-
class relationships among the image labels organized in a hier-
archical structure. We build one classifier that can simultaneously
predict all annotations of an image, instead of building one binary
classifier for each node in the hierarchy.

Another popular approach to image annotation is TagProp [21].
TagProp is a discriminatively trained nearest neighbor model. Tags
of test images are predicted using a weighted nearest-neighbor
model to exploit labeled training images. Neighbor weights are
based on neighbor rank or distance. TagProp allows the integration
of metric learning by directly maximizing the log-likelihood of the
tag predictions in the training set. However, in a recent study,
Mensink et al. [22] showed that per-label-trained linear SVM
classifiers outperform TagProp.

So far, we presented the most widely used methods for image
annotation and concluded that SVMs with a y? kernel trained per
label are the preferred method by the image annotation commu-
nity. In the remainder of this section, we discuss recent machine
learning methods that can be used in the context of hierarchical
image annotation: SVMs for structured prediction, PCTs, ensem-
bles of PCTs and ensembles of SVMs. To begin with, SVMs for
predicting structured outputs can be considered as classifiers
for hierarchical image annotation. Unfortunately, the most
well-known system for predicting structured outputs based on
SVMs, SVMstruct [23], does not offer facilities for HMC. Those that
do are very recent [24], have high computational complexity and
are not used by the image annotation community.

We can also apply PCTs for HMC to the task of hierarchical
image annotation. Vens et al. [25] describe in detail PCTs that are
able to perform hierarchical multi-label classification and perform
extensive experimental evaluation on functional genomics data-
sets. They show that PCTs for HMC achieve very good predictive
performance and are very efficient.

Ensemble methods are a popular approach that generates a set
of classifiers (called base classifiers) and combine their predic-
tions into a single prediction [26]. Many practical and theoretical
studies show that ensembles achieve high predictive performance
and lift the predictive performance of a single classifier [27,28].
This is especially true for base classifiers that are unstable, i.e.,can
change drastically due to small changes in the training data:
Decision trees are typical example of unstable classifiers. Having
this in mind, we extend the PCT framework in the context of
ensemble learning, i.e., we construct ensembles of PCTs for HMC.
We apply this approach to hierarchical image annotation: The
ensembles of PCTs for HMC achieve better predictive performance
than a single PCT and can be constructed efficiently.

Given that SVMs are the most widely used machine learning
approach to image annotation, and that ensembles improve the
performance of individual classifiers, one might also consider
ensembles of SVMs. However, SVMs are relatively stable classi-
fiers and less likely to benefit from an ensemble extension.
Consequently, there is much less community consensus on
whether and how ensembles of SVMs should be constructed (as
compared to ensembles of decision trees). Evgeniou et al. [29]
performed theoretical and empirical evaluation of ensembles
from SVMs. The main finding in their study is that a single SVM
classifier with tuned parameters performs similar to an ensemble
of SVM classifiers. On the other hand, Valentini and Dietterich
[30] and Wang et al. [31] show that ensembles of SVMs do lift the
predictive performance of a single SVM. They also discuss prac-
tical issues in constructing such an ensemble and obtaining a

prediction for unseen instance. A recent study by Ting and Zhu [32]
proposed a boosting algorithm that uses a hybrid between decision
trees and SVMs as base classifier. Their findings reveal that such an
ensemble has better predictive performance than a single SVM and
it is efficient. However, all these studies were performed in the
context of binary or multi-class classification and their extension for
the task of HMC is not straightforward. The base classifiers would
need to be either SVMs for HMC or collections of SVMs as discussed
above. In addition, ensembles of SVMs are not in widespread use in
the image annotation community.

3. Ensembles of PCTs for HMC

This section presents our approach for building ensembles of
PCTs. We first present the task of HMC. Next, we describe the
predictive clustering trees and their instantiation for the task of
HMC. Finally, we present ensembles of PCTs for HMC and
methods for building them.

The development of this approach is motivated by the fact that
ensembles lift the predictive performance of a single predictive
model. This is well known in the case when the single predictive
model is a classification or a regression tree. However, it is not
obvious that the lift carries over to PCTs for HMC. When the base
classifiers are decision trees, Bauer and Kohavi [33] conclude that
the increase in performance is related to the trees being
unpruned, i.e., overfitting. On the other hand, Blockeel et al. [34]
state that PCTs for HMC overfit less as compared to individual
trees for each class in the hierarchy. Having in mind these two
conflicting influences, it is not obvious whether an ensemble of
PCTs will significantly increase the predictive performance of a
single PCT. Hence, this is an interesting issue to investigate. A
further motivation for our study is provided by the fact that PCTs
for HMC (and potentially ensembles thereof) are efficient to
construct and perform well, yet their use in the context of
hierarchical image annotation has so far not been investigated.

3.1. The task of HMC

Hierarchical multi-label classification is a variant of classifica-
tion where (1) a single example may belong to multiple classes at
the same time and (2) the possible classes are organized in a
hierarchy. An example that belongs to some class ¢ automatically
belongs to all super-classes of c: This is called the hierarchical
constraint. Problems of this kind can be found in many domains
including text classification, functional genomics, and object/
scene classification. For a more detailed overview of the possible
application areas we refer the reader to Silla and Freitas [6].

In medical image classification, the application domain on
which we focus, an important problem is the development of an
automatic image annotation system, which can specify the image
modality, body orientation, body region, or the biological system
examined. In this domain, the predefined set of labels might be
organized in a semantic hierarchy, such as the one shown in
Fig. 1. Each image is represented with: (1) a set of descriptors
(in this example, the descriptors are histograms of five types of
edges encountered in the image) and (2) a set of labels/annota-
tions. A single image can be annotated with multiple labels at
different levels of the predefined hierarchy.

For example, the image in the second row of the table in Fig. 1
has two labels, middle abdomen and renal pelvis, listed explicitly.
Note that this image is also implicitly labeled with the labels:
anatomy, abdomen, kidney, uropoietic and bio-system. These labels
are all ancestors of the explicitly listed labels in the given hierarchy.

The data, as presented in the table in the left-hand side of
Fig. 1, constitute a dataset for HMC. This set can be used by a
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features/descriptors

| [—[7[>]¢8

image annotations/labels

cervical spine@
musculoskeletal system

“ 48 | 24 | 59 | 66 | 37

- 36 | 25 | 53 | 45| 15

middle abdomen@renal pelvis

lumbar spine@
musculoskeletal system

I 35|25 |56 |52|19

2439

anatomy bio-system
abdomen spine uropoietic -+ musculosceletal
upper middle  lumbar cervical kidney ureter
abdomen  abdomen spine spline
middle upper axis
right quadrant lumbar spine parenchyma  renal

pelvis

Fig. 1. An example task of HMC in a medical domain. The table (on the left-hand side) contains a set of images with their visual descriptors and annotations.
The annotations are part of the IRMA [35] hierarchical classification scheme (of which a small part is shown on the right hand side).

yes

yes no

lumbar spine 0.84
upper lumbar spine 0.62
ureter 0.51

cervical spine 0.81
musculosceletal 0.75
middle abdomen 0.72

no
S >29
yes no
yes no
renal pelvis 0.87

parenchyma 0.80
axis 0.74

Fig. 2. An example of a predictive clustering tree constructed using the descriptors from Fig. 1. The internal nodes contain tests on the descriptors, while the leafs store the

probabilities that an image is annotated with a given label from the hierarchy.

machine learning algorithm to train a classifier for HMC. For
images in the testing set only the descriptors are given and no a
priori annotations.

3.2. Predictive clustering trees

Predictive clustering trees (PCTs) [36]' generalize decision trees
[37] and can be used for a variety of learning tasks including different
types of prediction and clustering. The PCT framework views a
decision tree as a hierarchy of clusters: the top-node of a PCT
corresponds to one cluster containing all data which is recursively
partitioned into smaller clusters while moving down the tree. The
leaves represent the clusters at the lowest level of the hierarchy and
each leaf is labeled with its cluster’s prototype (prediction). Note that
the hierarchical structure of the PCT (Fig. 2) does not necessarily
reflect the hierarchical structure of the annotations (Fig. 1).

PCTs are built with a greedy recursive top-down induction (TDI)
algorithm, similar to that of C4.5 [38] or CART [37]. The learning
algorithm starts by selecting a test for the root node. Based on this
test, the training set is partitioned into subsets according to the test
outcome. This is recursively repeated to construct the subtrees.
The partitioning process stops when a stopping criterion is satisfied
(e.g., the number of records in the induced subsets is smaller than
some predefined value; the length of the path from the root to the
current subset exceeds some predefined value, etc.). In that case, the
prototype is calculated and stored in a leaf.

One of the most important steps in the TDI algorithm is the
test selection procedure. For each node, a test is selected by using

1 The PCT framework is implemented in the CLUS system, which is available at
http://www.cs.kuleuven.be/ ~dtai/clus.

a heuristic function computed on the training examples. The goal
of the heuristic is to guide the algorithm towards small trees with
good predictive performance. The heuristic used in this algorithm
for selecting the attribute tests in the internal nodes is the
reduction in variance caused by partitioning the instances, where
the variance Var(S) is defined by Eq. (1). Maximizing the variance
reduction maximizes cluster homogeneity and improves predic-
tive performance.

The main difference between the algorithm for learning PCTs
and an algorithm for learning decision trees (such as C4.5 [38] and
CART [37]) is that the former considers the variance function and
the prototype function (that computes a label for each leaf) as
parameters that can be instantiated for a given learning task. So
far, the PCTs have been instantiated for the following tasks:
multiple targets prediction [39,40], prediction of time-series
[41] and hierarchical-multi label classification [25]. In this article,
we focus on the last of these tasks.

3.3. PCTs for hierarchical multi-label classification

To apply PCTs to the task of HMC, the example labels are
represented as vectors with Boolean components. Components in
the vector correspond to labels in the hierarchy traversed in a
depth-first manner. The ith component of the vector is 1 if the
example belongs to class ¢; and O otherwise. If v; = 1, then
v; = 1 for all vy's on the path from the root to v;.

The variance of a set of examples (S) is defined as the average
squared distance between each example’s label v; and the mean
label v of the set, i.e.,

Sid(vi,v)?

var(s) = == ¢

M
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The higher levels of the hierarchy are more important: an error
at the upper levels costs more than an error at the lower levels.
Considering this, a weighted Euclidean distance is used:

d(vy,v2) = /ZW(Ci)(Vl,i*VZ,i)z )

where vy; is the 'th component of the class vector v, of an
instance x,, and w(c;) are the class weights. The class weights
decrease with the depth of the class in the hierarchy,
w(c;) =W - W(cj), where ¢; is the parent of c;. Each leaf in the tree
stores the mean v of the vectors of the examples that are sorted
into that leaf (Fig. 2). Each component of v is the proportion of
examples V; in the leaf that belong to class c;. An example arriving
in the leaf can be predicted to belong to class c; if V; is above some
threshold t;. The threshold can be chosen by a domain expert.
The PCTs are also extended for predicting hierarchies
organized as directed acyclic graphs (DAGs). In this case, the
depth of a class is not unique as classes do not have single path
from the hierarchy’s root. To resolve this issue, Vens et al. [25]
suggest four aggregation schemes of the possible paths from the
top-node to a given class: average, maximum, minimum and sum.
After an extensive experimental evaluation, they recommend to
use the average as aggregation function. For a detailed description
of PCTs for HMC we refer the reader to Vens et al. [25]. Next, we
explain how PCTs are used in the context of an ensemble
classifier, in order to further improve the performance of PCTs.

3.4. Ensemble methods

An ensemble is a set of (base) classifiers. A new example is
classified by the ensemble by combining the predictions of the
member classifiers. The predictions can be combined by taking
the average (for regression tasks), the majority vote (for classifi-
cation tasks) [42,43], or more complex combinations.

We use PCTs for HMC as base classifiers. Averaging is applied
to combine the predictions of the different trees: the leafs
prototype is the proportion of examples of different classes that
belong to it. Just like for the base classifiers, a threshold should be
specified to make a prediction.

We consider two ensemble learning techniques that have
primarily been used in the context of decision trees: bagging
and random forests. Bagging [42] constructs the different classi-
fiers by making bootstrap replicates of the training set and using
each of these replicates to construct one classifier. Each bootstrap
sample is obtained by randomly sampling training instances, with
replacement, from the original training set, until a number of

512x446

instances is obtained equal to the size of the training set. Bagging
is applicable to any type of learning algorithm.

A random forest [43] is an ensemble of trees, obtained both by
bootstrap sampling, and by randomly changing the feature set
during learning. More precisely, at each node in the decision tree,
a random subset of the input attributes is taken, and the best
feature is selected from this subset (instead of the set of all
attributes). The number of attributes that are retained is given by
a function f of the total number of input attributes x (e.g.,
f)=xfx) =xf(x)=log,x]+1, ...). By setting flx)=x, we
obtain the bagging procedure.

4. Feature extraction from images

Collections of medical images can contain various images obtained
using different imaging techniques. Different feature extraction
techniques are able to capture different aspects of an image
(e.g., texture, shapes, color distribution, etc.). In this study, we focus
on X-ray images, hence, we use texture (LBP and EHD) and local
(SIFT) features as most promising for describing X-ray images [5,44].

Texture is especially important, because it is difficult to
classify medical images using shape or gray level information.
Effective representation of texture is needed to distinguish
between images with equal modality and layout. Local image
characteristics are fundamental for image interpretation: while
global features retain information on the whole image, the local
features capture the details. They are thus more discriminative
concerning the problem of inter and intra-class variability, an
open challenge in automatic annotation of medical images [7].

4.1. Raw pixel representation

The most straightforward approach to image classification is
the direct use of the image pixel values as features. The images
are scaled to a common size and represented by a feature vector
that contains image pixel values. It has been shown that for
classification and retrieval of medical radiographs, this method
serves as a reasonable baseline [45]. We used a 32x32
down-sampled representation of the images as recommended
by Tommasi et al. [7]. The obtained 1024 pixel values were then
used as input features. Fig. 3 shows how we built the raw pixel
representation for each image.

4.2. Local binary patterns

Local binary patterns (LBP) are one of the best representations
of texture content in images [8]. They are invariant to monotonic

100 200 300 400

500 600

700 800 900 1000

Fig. 3. Down-sampling for raw pixel representation.



I. Dimitrovski et al. / Pattern Recognition 44 (2011) 2436-2449

changes in gray-scale images and fast to compute. Furthermore,
they are able to detect different micro patterns, such as edges,
points and constant areas.

The basic idea behind the LBP approach is to use the informa-
tion about the texture from a local neighborhood. First, we define
the radius R of the local neighborhood under consideration. The
LBP operator then builds a binary code that describes the local
texture pattern in the neighborhood set of P pixels. The binary
code is obtained by applying the gray value of the neighborhood
center as a threshold. The binary code is then converted to a
decimal number which represents the LBP code. Formally, given a
pixel at position (X, y.) the resulting LBP code can be expressed as
follows:

P-1

LPBpgy(Xcye) = Slin—ic)2" 3)
n=0

where n ranges over the P neighbors of the central pixel (x, y.), ic
and i, are the gray-level values of the central pixel and the
neighbor pixel, and S(x) is defined as

1 ifx>0 (a)
SX®)=130 otherwise (b) @

The image is traversed with the LBP operator pixel by pixel and
the outputs are accumulated into a discrete histogram. However,
not all LBP codes are informative. Certain LBP codes capture
fundamental properties of the texture and are called uniform
patterns because they constitute the vast majority, sometimes
over 90%, of all patterns present in the observed textures [8].
These patterns have one thing in common, namely, a uniform
circular structure that contains very few spatial transitions. They
function as templates for micro-structures such as bright spot, flat
area or dark spot.

In our experiments, we used the patterns LBP4%, where the
superscript u2 reflects the use of uniform patterns that have a U
value of at most 2 on a neighborhood of size 8 and radius 1. The U
value is the number of spatial transitions (bitwise 0/1 changes) in
the pattern. The non-uniform patterns (patterns that have U value
larger than 2) are grouped under one bin in the resulting
histogram. With the LBP43 operator, the number of bins in the
histogram is reduced from 256 to 59 (58 bins for uniform patterns
and one bin for non-uniform/noisy patterns).

To spatially enhance the descriptors and improve the perfor-
mance, it has been suggested to repeatedly sample predefined
sub-regions of an image (e.g., 1 x1,2x2,4x4o0r1 x3)[46]. The
different resolutions are then aggregated into a spatial pyramid

15000 : :
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which allows for region-specific weighting. Following these
approaches, we divide the images into 4 x 4 non-overlapping
sub-images (blocks) and concatenate the LBP histograms
extracted for each sub-image into a single, spatially enhanced
feature histogram. This approach aims at obtaining a more local
description of the images. Fig. 4 shows how we build the LBP
histogram with 944 bins in total for each image (16 blocks with
59 bins each).

4.3. Edge histogram descriptors

Edge detection is a fundamental problem of computer vision
and has been widely investigated [47]. The goal of edge detection
is to mark the points in a digital image at which the luminous
intensity changes sharply. An edge representation of an image
drastically reduces the amount of data to be processed, yet it
retains important information about the shapes of objects in the
scene. Edges in images constitute important features to represent
their content.

The edge histogram in the image space represents the
frequency and the directionality of the brightness changes in
the image. To represent it, the MPEG-7 standard defines the edge
histogram descriptor (EHD) [9]. The edge histogram descriptor
basically represents the distribution of five types of edges
(vertical, horizontal, two types of diagonal and non-directional
edges; see Fig. 2). We divide the image space into 4 x 4 non-
overlapping blocks, yielding 16 equal-sized sub-images and count
the edges on each one of them (as shown in Fig. 5).

To characterize the sub-images, a histogram of edge distribu-
tion for each sub-image is generated. Edges in the sub-images are
categorized into five types: vertical, horizontal, 45-degree
diagonal, 135-degree diagonal and non-directional edges, as
presented in Fig. 5. The histogram for each sub-image represents
the relative frequency of occurrence of the five types of edges in
the corresponding sub-image and thus contains five bins.

Since there are 16 sub-images in the image and 5 types of
edges, a total of 80 histogram bins are required. Note that each of
the 80 histogram bins has its own semantics in terms of location
and edge type. In our experiments, the edge detection is
performed using the Canny edge detection algorithm [48].

4.4. SIFT descriptors
We employ the bag of features approach commonly used in

many state of the art approaches in image classification [49]. The
basic idea of this approach is to sample a set of local image
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Fig. 4. The image is divided into 4 x 4 non-overlapping sub-images from which LBP histograms are extracted and concatenated into a single, spatially enhanced histogram.
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Fig. 5. The image is divided into 4 x 4 non-overlapping sub-images. For each sub-image, five types of edge bins are calculated and concatenated into a single, spatially

enhanced histogram.

Fig. 6. Three different spatial pyramids are used in our experiments: (a) 1 x 1, (b) 2 x 2 and (c) 1 x 3. The spatial pyramid constructs feature vectors for each of the specific

part of the image.

patches using some method (densely, randomly or using a key-
point detector) and calculate a visual descriptor on each patch
(SIFT descriptor, normalized pixel values). The resulting distribu-
tion of descriptors is then quantified against a pre-specified visual
codebook which converts it to a histogram. The main issues that
need to be considered when applying this approach are: sampling
of the patches, selection of the visual patch descriptor and
building the visual codebook.

We use dense sampling of the patches, which samples an
image grid in a uniform fashion using a fixed pixel interval
between patches. We use an interval distance of 6 pixels and
sample at multiple scales (6 =1.2 and ¢ =2.0). Due to the low
contrast of the radiographs, it would be difficult to use any
detector for points of interest. Also, it has been pointed by Zhang
et al. [49], that a dense sampling is always superior to any
strategy based on detectors for points of interest. We calculate a
SIFT descriptor [10] for each image patch.

The crucial aspects of a codebook representation are the codebook
construction and assignment. An extensive comparison of codebook
representation variables is given by van Gemert et al. [50]. We
employ k-means clustering (as implemented in the R environment)
[51] on 400 000 randomly chosen descriptors from the set of images
available for training. k-means partitions the visual feature space by
minimizing the variance between a predefined number of k clusters.

Here, we set k to 500 and thus define a codebook with 500
codewords [7].

Dense sampling gives an equal weight to all key-points,
irrespective of their spatial location in the image. To overcome
this limitation, we follow the spatial pyramid approach which we
applied for the LBP descriptor. For this descriptor, we used a
spatial pyramid of 1x1, 2x2, and 1 x 3 regions. Since every
region is an image in itself, the spatial pyramid can easily be used
in combination with dense sampling. The resulting vector with
4000 bins ((1x1 + 2x2 + 1x3)x500) was obtained by
concatenation of the eight histograms. Fig. 6 shows an example
of the histograms extracted from an image for the spatial
pyramids of 1 x1,2x2 and 1 x 3.

4.5. Feature fusion schemes

Different visual features bringing different information about
the visual content of the images clearly outperform single feature
approaches [5,7]. Following these findings, we combine the
different visual features described above. We investigate two
different feature fusion schemes: low level (LL) and high level
(HL). These fusion schemes are depicted in Fig. 7.

For the low level feature fusion scheme, the descriptors are
concatenated in a single feature vector and a classifier is trained
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on the joint feature vector. The high level fusion scheme averages
the predictions from the individual classifiers trained on the
separate descriptors.

5. Experimental setup

In this section, we present the experimental setup we used to
evaluate the proposed system and compare it to other
approaches. First, we present the databases of images that we
use. Next, we describe the evaluation metrics we use to assess the
predictive performance of the classifiers. We then state the
experimental questions that we investigate in this study. We
specify the parameter instantiations for the algorithms and the
design of the experiments.

5.1. IRMA database

We evaluated our system by applying it to the database for the
ImageCLEF2009 medical image annotations task [5]. This data-
base is provided by the IRMA group from the University Hospital
of Aachen, Germany [35]. The database contains 12 677 fully
annotated radiographs, taken randomly from medical routine,
which should be used to train a classifier. The dataset contains
two parts: ImageCLEF2007 (12 339 training and 1353 testing
images) and ImageCLEF2008 (12 667 training and 1733 testing
images). These datasets present a difficult classification problem.
First, the classes in the training set are extremely imbalanced
(e.g., there are classes with less than 10 images and classes with
more than 2000 images). Second, the distribution of the classes in
the training set is different from the one on the testing set.

The images are labeled according to the four annotation label
sets [5]. We used the ImageCLEF2007 label set with 116 IRMA
codes and the ImageCLEF2008 label set with 193 IRMA codes,
both with a hierarchical nature of the coding scheme [35]. The
goal is to correctly annotate 1353 (for 2007) and 1733 (for 2008)
images that are provided without labels, using the different
respective annotation label sets in turn.

The IRMA coding scheme consists of four axes with three to four
positions, each position taking a value from the set 0,..., 9, a,..., Z,
where ‘0’ denotes ‘unspecified’ and determines the end of a path
along an axis. The four axes are: technical axis (T, image modality),
directional axis (D, body orientation), anatomical axis (A, body region
examined) and biological axis (B, biological system examined). This
allows a short and unambiguous notation (IRMA: TTTT-DDD-AAA-
BBB), where T, D, A, and B denotes a coding or sub-coding digit of the
respective axis. A small part of the IRMA coding hierarchy is
presented in Fig. 1. Fig. 8 gives two examples of unambiguous image
classification using the IRMA code.

Fig. 8. IRMA-coded chest and abdomen radiograph. For instance, the code for the
biological axis (512) on the sub-figure (b) is translated as follows: 5 is for
uropoietic system, 51 is for uropoietic system, kidney and 512 is uropoietic
system, kidney, renal pelvis. The renal pelvis is an element of the kidney, which in
turn is an element of the uropoietic system.

The IRMA code is hierarchical in its nature and it allows us to
exploit the hierarchy of the code. This means that we can
construct an automatic image annotation system based on pre-
dictive clustering trees for HMC.

5.2. Evaluation metrics

In this study, we use two evaluation metrics: the ImageCLEF
hierarchical evaluation measure [5] and overall recognition rate.
The ImageCLEF hierarchical evaluation measure takes into
account the depth and the difficulty of the predictive problem
(‘branching factor’) at which an error has occurred (Eq. (5)). It can
be calculated using the following formula:
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where [ is the depth of the hierarchy, b; is the number of possible
labels at the error (‘branching factor’) and i is the depth at which
the error occurred. This measure allows the classifier not to
predict the complete code/annotation, that is, the classifier can
predict the first two nodes of the code (level of the hierarchy) and
then say ‘don’t know’ (encoded by *) for the next node/level. The
ImageCLEF evaluation measure can range from O to the number of
testing images. If this measure is closer to 0, then the classifier is
more accurate.

The overall recognition rate is a very common and widely used
evaluation measure. It is the fraction of the test images whose
complete IRMA code was predicted correctly.

5.3. Experimental questions
The goal of this study is to answer the following questions:

1. Does the use of the hierarchy (in ensembles of PCTs) improve
the predictive performance over flat classification (SVMs)?
2. How is the relative performance of the two techniques affected
by the:
(a) Use of PCT ensembles versus single PCTs in the domain of
image annotation?
(b) Different ensemble methods: bagging or random forests?
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(c) Different feature extraction techniques for medical X-ray
images?
(d) Schemes for fusion of the descriptors from the feature
extraction techniques?
3. Is the proposed system with ensembles of PCTs for HMC
scalable and efficient?

For the first three questions (1, 2a and 2b), we evaluate the
performance of PCTs for HMC and ensembles (bagging and
random forest) of PCTs. After that, we compare the best method
for HMC with SVMs. It has been shown [25] that exploiting the
structure of the hierarchy in tree classifiers yields better
predictive performance in the domain of functional genomics.
Here, we compare the performance of the ensemble classifiers
with SVMs for flat classification—the most widely used classifiers
for medical image annotation [7].

To check which feature extraction technique is most suitable
for medical X-ray images (question 2c), we compare the perfor-
mance of the classifiers on each type of visual descriptors. For this
purpose, we discuss only the results from the separate runs of the
descriptors (first four rows from Tables 1 and 2).

The various feature extraction techniques capture different
aspects of an image. We also investigate whether the combination
of feature extraction techniques can increase the predictive
performance (question 2d). The results from the fusion schemes
are presented in the last 10 rows in Tables 1 and 2.

We compare the execution times of the different classifiers to
assess the efficiency and scalability of the system (question 3).
We measure the time needed to train the classifiers; for SVMs this
includes also the time needed to optimize the parameters.

5.4. Experimental design

In this section, we describe the experimental setup that we
used. First, we describe an adaptation of the hierarchy of the
IRMA code and then the parameter instantiations of the learning
algorithms. Note that we stated the parameters for the feature
extraction techniques while explaining them (see Section 4).

The IRMA coding scheme was proposed by Lehmann et al. in
[35]: It consists of four axes which are strictly hierarchical (tree-
shaped hierarchies). The literature [5,35] suggests that these four
axes are independent. We conducted a series of experiments
predicting the four axes simultaneously (combined in a single
hierarchy) and separately. The predictive performance when
using all four axes simultaneously was higher as compared to
using each axis separately. This leads us to believe that these axes
are not-independent. In a separate study, Tommasi et al. [7] come
to a similar conclusion. To address this issue, we adapted the
IRMA coding hierarchy as follows.

We take the code of the first position for the biological axis and
add it in front of the codes for the anatomical and directional
axes. The inclusion of the biological code in the first level in the
hierarchy helps us to initially filter the images resulting in large
visual differences in the first level of the hierarchy. In the context
of the axis A, the first level of axis B is necessary because the
examined body region insufficiently describes the content and
structure of the images. For example, fluoroscopy of the abdom-
inal region may access the vascular or the gastrointestinal system
depending on the way the contrast agent is administered, which
results in different image textures. For the directional axis, this is
even more obvious. For instance, an image of a chest and an
image of a hand can have the same directional code, but are
visually very different.

The hierarchy of the IRMA code was adapted in order to
increase the inter-class variability and decrease the intra-class
variability of the images. Fig. 9 shows the adapted hierarchy of
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Fig. 9. The adapted hierarchy of the classes in the IRMA code.

classes that we use in the experiments. Note that this hierarchy
was only used to train the classifier. The evaluation was per-
formed by using the original IRMA hierarchy.

In the following, we state the parameter instantiations that we
used to train the classifiers: PCTs, ensembles and SVMs. The
algorithm for learning PCTs requires as input the weight of the
depth in the hierarchy. We set wg to 0.75 to force the algorithm to
make better predictions on the upper levels of the hierarchy. Also,
we performed F-test pruning to prevent over-fitting of the
trees [25].

We trained ensembles of 100 un-pruned trees (PCTs). For the
base PCTs, we used the same weight (0.75) used to train the single
PCTs. The size of the feature subset that is retained at each node,
when training a random forest, was set to 10% of the number of
descriptive attributes. Remember that the output of the classifier
is a probability that a given example is annotated with a given
label. If the probability is higher than a given threshold (obtained
during the training of the classifier), then the example is anno-
tated with the given label. Since the hierarchical evaluation
measure allows the classifier to predict a portion of the code,
different thresholds for the different levels of the hierarchy were
selected. If a probability for a given code was lower than the
threshold, then for this code and its sub-codes the classifier
predicts ‘don’t know’.

For training the SVMs, we used a custom developed applica-
tion. This application uses the LibSVM library [52]. We apply the
One-against-All (OvA) approach to solve the partial binary classi-
fication problems. Each of the SVMs was trained with a y? kernel.
We optimize the cost parameter C of the SVMs using an auto-
mated parameter search procedure. For the parameter optimiza-
tion, we separate 20% of the training set and use it as validation
set. After finding the optimal C value, the SVM was finally trained
on the whole set of training images.

For the evaluation of the SVMs using the hierarchical error
measure, we applied confidence based opinion fusion [7]. Let us
assume that there are N classes. Then, using the OvA approach, N
SVMs are trained—each separating a single class from all remain-
ing ones. The decision is based on the distances of the test sample
to the N hyperplanes. The prediction then corresponds to the
hyperplane for which the distance is largest. The confidence based
opinion fusion, however, takes into account the difference of the
predictions with the two largest distances reported from the
SVMs classifiers. This difference is computed only if their
distances differ less than a threshold value (obtained during
training using the validation dataset). In that case, the final
prediction will contain ‘don’t know’ starting from the position
where the two underlying predictions begin to differ. For exam-
ple, if the two predictions for the anatomical axis are 411 and 421
then the final prediction will be 4** This approach improves the



I. Dimitrovski et al. / Pattern Recognition 44 (2011) 2436-2449

hierarchical error measure for the SVMs classifier by 10-20 points
depending on the used descriptors.

6. Results and discussion

Tables 1 and 2 present the results obtained using the experi-
mental setup described in Section 5 in terms of the hierarchical
evaluation measure (HEM) and overall recognition rate (RR)
respectively. In the discussion of the results, we first compare
the performance of single PCTs and ensembles of PCTs. We then
compare the performance of the best ensemble method (random
forests) and SVMs. We focus on the first evaluation measure HEM
(Table 1), since the two show similar behavior; the conclusions
for HEM are also valid for RR.

The results clearly show that ensemble methods outperform
single PCTs on all datasets: random forests are significantly better
(according to the non-parametric Wilcoxon test for statistical
significance) than single PCTs (p <4 x 107%) and bagging is better
than single PCTs (p <4 x 107%). A comparison between the two

Table 1
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ensemble methods shows that random forests outperforms bagging
and that the difference is statistically significant (p <1 x 10™%).

While extremely efficient, individual PCTs have the drawback
of only using a small number of the available features, which
results in low predictive performance. The PCTs trade predictive
performance for interpretability. However, in the domains where
interpretability of the model is a necessity, PCTs are the models
that should be considered.

We next compare the performance of random forests to the
performance of SVMs. On all datasets, random forests perform
better than SVMs; the difference on average is ~ 17 points for the
ImageCLEF2007 and ~ 20 points for ImageCLEF2008 datasets
(note that a point in the HEM roughly corresponds to one
completely misclassified image). The difference in performance
is statistically significant (with p <4 x 107%). This shows that
exploiting the structure of the hierarchy does help in improving
the predictive performance.

We then analyze the results for the individual feature extrac-
tion algorithms (top 4 rows from Tables 1 and 2). We can note the
high predictive performance of the SIFT histogram: it is most

Predictive performance of the models learned from descriptors produced by different feature extraction algorithms and their combinations. The best results are shown in
boldface. Performance is given in terms of the ImageCLEF hierarchical evaluation measure HEM, where smaller values mean better performance. The low level fusion
results are in rows that end with ‘LL’ and high level fusion results are in rows that end with ‘HH'.

Hierarchical error measure

ImageCLEF2007 ImageCLEF2008

SVM RF Bag PCT SVM RF Bag PCT
SIFT 75.00 58.90 59.78 180.00 179.88 161.67 161.47 320.90
LBP 124.44 95.71 95.71 210.40 257.92 209.47 208.97 360.00
EHD 127.41 105.12 105.12 222.39 265.95 249.44 249.74 380.12
32x32 202.94 195.78 200.12 310.90 376.93 361.21 361.31 530.11
LBP+EHD_LL 99.48 85.56 86.80 200.12 221.96 190.12 190.22 347.89
LBP+SIFT_LL 72.71 52.89 53.22 178.29 175.65 157.38 157.48 317.12
EHD+SIFT_LL 72.37 56.11 57.11 179.12 170.97 159.30 159.33 318.87
LBP+EHD +SIFT_LL 70.45 51.90 52.33 177.23 170.87 153.21 153.41 317.00
LBP+EHD+SIFT+32 x 32_LL 69.46 52.23 53.00 178.12 169.11 154.23 154.63 318.50
LBP-+EHD_HL 100.37 87.90 89.21 201.30 223.73 195.96 196.06 347.90
LBP+SIFT_HL 73.72 54.21 54.56 178.90 177.12 159.73 160.03 318.00
EHD -+ SIFT_HL 72.70 59.12 61.71 179.50 174.44 161.85 162.05 318.80
LBP + EHD +SIFT_HL 71.58 52.54 53.00 177.90 174.18 156.21 156.31 317.90
LBP-+EHD+SIFT+32 x 32_HL 70.46 53.90 54.50 178.58 173.28 156.50 156.70 318.30

Table 2

Predictive performance of the models learned from descriptors produced by different feature extraction algorithms and their combinations. The best results are shown in
boldface. Performance is given in terms of the overall recognition rate evaluation measure, where larger values mean better performance. The low level fusion results are in

rows that end with ‘LL’ and high level fusion results are in rows that end with ‘HH".

Overall recognition rate

ImageCLEF2007 ImageCLEF2008

SVM RF Bag PCT SVM RF Bag PCT
SIFT 77.31 79.37 79.08 63.04 62.44 64.91 64.80 52.04
LBP 70.36 75.24 75.24 56.02 56.26 60.99 60.70 47.02
EHD 68.37 72.28 72.21 55.06 54.53 54.99 54.81 45.00
32x32 57.35 58.01 57.64 45.97 45.47 45.52 45.47 36.98
LBP+EHD_LL 75.09 76.97 75.75 58.98 60.53 61.51 61.39 48.99
LBP+SIFT_LL 77.90 81.00 80.93 64.52 62.26 65.49 65.43 53.49
EHD -+ SIFT_LL 78.20 79.97 79.82 64.00 63.19 64.97 64.80 52.97
LBP+EHD +SIFT_LL 78.42 81.96 81.67 64.89 63.30 65.95 65.83 53.72
LBP+EHD+SIFT+ 32 x 32_LL 78.49 81.22 81.00 64.30 63.53 65.78 65.55 52.97
LBP +EHD_HL 74.87 76.01 76.64 58.38 60.13 61.45 61.39 48.87
LBP+SIFT_HL 77.46 79.97 79.97 64.22 62.26 65.32 65.14 53.49
EHD +SIFT_HL 77.90 79.00 78.86 63.93 62.44 64.80 64.62 52.79
LBP+EHD +SIFT_HL 78.05 81.00 80.93 64.59 62.78 65.78 65.72 53.66
LBP+EHD +SIFT+ 32 x 32_HL 78.42 80.70 80.56 64.37 63.13 65.60 65.49 52.97
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Table 3
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Running times of the algorithms: time needed to construct the classifier and time needed to produce an annotation for an unseen image.

ImageCLEF 2007

ImageCLEF 2008

SVM RF Bag PCTs SVM RF Bag PCTs
Training time (s) EHD 2820.873 92.668 566.880 4.667 3113.320 115.129 716.606 5.446
LBP 4323.681 1909.510 21684.124 127.889 4406.340 2631.485 28612.105 158.955
32x32 4745.630 1909.427 21458.823 110.436 5467.686 2614.089 28410495 151.317
SIFT 12451.760 2886.417 31611.480 227.709 13219.039 3717.713  40567.323  248.920
LBP+EHD_LL 4824.592  2315.010 21629.071 231.516 4480.761  3012.840 28106.304 254.442
LBP+SIFT_LL 14871.131 5095.170 55476.671 502.794 15788.345 6508.022 70057.262  487.347
EHD +SIFT_LL 12656.792 3299330 36001.937 337.784 13430.779 4165.986 45921.571 393.629
LBP+EHD +SIFT_LL 15076.162  5094.305 55724.765 504.575 16006.638 6460.307 70462.933 500.873
LBP+EHD +SIFT+32 x32_LL  17700.564 6936.030 73786.231 591.772 18800.790 9128.094 95792.121 679.572
Testing time per image (s) EHD 0.016 0.002 0.003 0.001 0.019 0.004 0.003 0.001
LBP 0.172 0.002 0.003 0.001 0.179 0.003 0.003 0.001
32x32 0.189 0.002 0.003 0.001 0.192 0.002 0.002 0.001
SIFT 0.551 0.002 0.003 0.001 0.591 0.003 0.004 0.001
LBP+EHD_LL 0.175 0.003 0.002 0.001 0.176 0.002 0.003 0.001
LBP+SIFT_LL 0.569 0.002 0.002 0.001 0.565 0.003 0.003 0.001
EHD +SIFT_LL 0.552 0.002 0.003 0.001 0.552 0.003 0.003 0.001
LBP+EHD +SIFT_LL 0.570 0.002 0.002 0.001 0.569 0.002 0.002 0.001
LBP+EHD+SIFT+32 x 32_LL 0.600 0.002 0.002 0.002 0.590 0.003 0.003 0.002

capable of capturing the hierarchical structure of the X-ray
images. The other feature extraction algorithms follow after and
are ordered by performance as follows: LBP, then EHD and the
simplest descriptor RPR, which has the worst performance. The
difference in performance of the SIFT histogram to the LBP
operator is very noticeable and larger when SVMs are used as
classifiers as compared to random forests and bagging. In this
case, considering the results for hierarchical evaluation measure,
LBP is worse than SIFT by ~50 on ImageCLEF2007 and by ~80
points on ImageCLEF2008. This difference is smaller when
random forests are used as classifiers: LBP is worse than SIFT by
~40 on ImageCLEF2007 and by ~50 points on ImageCLEF2008.
Furthermore, random forests are better than SVMs, both in
combination with LBP operators, by ~30 points on the Image-
CLEF2007 dataset and by ~50 points on ImageCLEF2008. Thus,
the LBP descriptors capture information that is more easily
utilized by the random forests than by the SVMs.

The experimental results show that the features that describe
the image content in a local manner (i.e., SIFT descriptors)
outperform the ones that provide global descriptions. The local
features capture the details in an image, while the global features
are able to retain information on the whole image as a source of
context. Furthermore, the SIFT descriptor is robust to noise,
illumination, scale, translation and rotation changes. Hence, it
can better resolve the inter and intra-class variability, thus it can
offer better information to the classifier. We can conclude that the
local features are generally more informative than global features
for the medical image annotation task at hand.

We also compare the results of the experiments conducted
with different feature fusion schemes. Inclusion of more than one
type of features in the classification process contributes to better
representation of the hierarchical nature of the images and helps
to further improve the predictive performance. Low level fusion
(concatenation) yields slightly better predictive performance than
high level fusion. This is valid for all algorithms used in this study.

The classifiers on the fused feature sets use more information
about the different aspects of an image that are captured by the
different descriptors. Namely, they can consider combinations of
features from different descriptors. This additional information is
orthogonal and helps the classifiers to produce better annotations.
Moreover, the ensembles of trees, such as random forests, can
effectively exploit the information provided by the large number of

features. Thus, low level fusion yields better performance than high
level fusion.

The best results are achieved by using random forests on the
concatenated SIFT, LBP and EHD descriptors (boldface in Tables 1
and 2). This holds for both datasets, ImageCLEF2007 and Image-
CLEF2008. The best results for overall recognition rate (81.96) are
close to the error rate for the DICOM header. Namely, Guld et al. [4]
reported 15.5% disagreement between the data for the DICOM header
and the radiologists’ reference categorization. Moreover, our best
results are better than the best results reported so far on this
database [5]. Our score of 153.2 for ImageCLEF2008 is by 16.3 points
better than the best result, and the score of 51.9 for ImageCLEF2007 is
by 12.4 points better than the best result.

From the results, we can also notice the worse performance of
all algorithms on the ImageCLEF2008 dataset, as compared to the
ImageCLEF2007 dataset. This is mainly due to the larger hierarchy
of the ImageCLEF2008 dataset (195 nodes as compared to 140
nodes for the ImageCLEF2007 dataset). In addition, the difference
of the distribution of images in the training and the testing set is
bigger for ImageCLEF2008 than for ImageCLEF2007.

Additionally, we assess the efficiency of the algorithms by
measuring the time needed to learn the classifier and time needed
to produce an annotation for an unseen image. The running times
for the algorithms are presented in Table 3. The random forests
are the fastest method; they are ~ 10 times faster than bagging
and ~ 5.5 times than the SVMs (including the optimization of the
SVM parameters). Recall that the random forests are ensembles of
PCTs that predict the complete hierarchy (a single model), while
the SVMs construct a classifier for each node of the hierarchy
separately. Hence, the increase of the hierarchy will significantly
increase the training time of SVMs (additional classifiers should
be trained), while the training time for random forests will
increase only slightly. The efficiency of the random forests of
PCTs is even more prominent when producing annotations for
unseen images. The random forests in this case are ~ 165 times
faster than the SVMs. In this respect, bagging performs compar-
ably to random forests. This is due to the fact that passing through
the tree has logarithmic complexity with respect to the number of
leafs in the tree. Since random forests and bagging produce trees
with similar sizes, these times will be similar. All in all, random
forests of PCTs significantly outperform SVMs as compared by
their training and testing times.
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Fig. 10. A fragment of the hierarchy for image annotation. The annotations are part of the hierarchical classification scheme for the ICPR 2010 photo annotation task

(right). The table contains a set of images with their annotations (left).

7. Experiments on photo annotation

To show the generality of the proposed system, we perform
experiments on annotation of general images. In this section, we
first present the experimental setup that we used (the data,
evaluation metrics and the experimental design). We then present
the results and compare them to those of state-of-the-art
approaches used in image annotation.

7.1. Experimental setup

This set of experiments was performed using the database
from the ImageCLEF@ICPR photo annotation task [53]. The data-
base consists of 5000 train, 3000 validation, and 10 000 test
images annotated with 53 visual concepts organized in a small
hierarchy with tree structure (see Fig. 10 for an example). The
average number of annotations per image is 8.68 (including both
leaf and internal nodes from the hierarchy). The visual concepts
also contain abstract categories like Family/Friends, Partylife,
Quality (blurred, underexposed, etc.) thus making the annota-
tion/classification task very challenging.

The measures that we used to evaluate the performance of the
algorithms on the medical X-ray images are specific for the
problem of annotation of medical images using the IRMA coding
scheme.? Here, we use the most widely used evaluation measure
in the area of ‘general photo annotation’/‘visual concept detec-
tion’: mean average precision (MAP) [12]. For a given target visual
concept, the average precision can be calculated as the area under
the precision-recall curve for that target. Hence, it combines both
precision and recall into a single performance value. The average
precision is calculated for each visual concept separately and the
obtained values are then averaged to obtain the mean average
precision. Because the true labels of the test images from the
ImageCLEF@ICPR 2010 database are not publicly available, we
report the MAP value obtained on the validation dataset.

For the images from this database, we use SIFT features, which
were the best performing features in previous experiments (also
SIFT features are typically used in this type of problem [14]). The
SIFT features for this set of experiments were constructed using a
visual codebook with 4000 instead of 500 words (see Section 4.4).
This modification was made because most of the state-of-the-art
approaches for image classification of general photos use a visual
codebook with 4000 words [14,12]. In the previous experiments,
random forests were the best performing method, so again we
train random forests with 100 un-pruned PCTs for HMC. For the

2 Note that the hierarchical error measure allows the algorithm to say ‘don’t
know’ for some classes, since the maximum number of labels per image with the
IRMA coding scheme is known. In the case of general images, an image can be
annotated with zero or |C| classes. Also, for the overall recognition rate, for the
case of IRMA coding scheme, the number of possible combinations of labels is
limited, while in the case of general images, this number is 2'°'. This makes overall
recognition rate not suitable for measuring the predictive performance of
algorithms in annotating general images.

Table 4
Results of the photo annotation experiments evaluated using mean average
precision (larger values of MAP mean better performance).

MAP Train time Test time per image
RF 0.450 9113.516 0.002
SVM 0.428 11821.227 1.078

base PCTs, we used the same weight (0.75) and the size of the
feature subset that is retained at each node was set to 10% of the
number of descriptive attributes (same as in the experiments
from the Section 5).

To train the SVMs, we use the LibSVM implementation with
probabilistic outputs [54]. To solve the multiple classification
problems, we employ again the One-against-All approach. For each
visual concept, we build a binary classifier where instances
associated with that visual concept are in one class (positive)
and the rest are in another class (negative). To handle the
imbalance in the number of positive versus negative training
examples, we fix the weights of the positive and negative classes.
The weight of the positive class is set to (#pos+neg)/#pos and the
weight of the negative class is set to (#pos+neg)/#neg, with #pos
the number of positive instances in the train set and #neg the
number of negative instances [15]. As in the previous experi-
ments, we optimize the value of the cost parameter C of the SVMs.

7.2. Results and discussion

The results from the photo annotation experiments are shown
in Table 4. The table also contains the total training time and
testing time per image for both SVMs and random forests of PCTs
for HMC. From the presented results we can note that the random
forests of PCTs for HMC outperform the SVMs both in terms of
predictive performance and efficiency. The latter holds especially
for the time needed to produce an annotation for a given test
image: our approach is more than 500 times faster than the SVMs.

Following the results from the study performed by Mensink
et al. [22], this means that our system also outperforms the
TagProp [21] approach for image annotation. The results
show that our system offers better predictive performance and
efficiency than systems that are most widely used for annotation
of images. All in all, the proposed system has high predictive
performance and efficiency, is general and is easily applicable to
other domains.

8. Conclusions

Hierarchical multi-label classification (HMC) problems are
encountered increasingly often in image annotation. However,
flat classification machine learning approaches are predominantly
applied in this area. In this paper, we propose to exploit the
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annotation hierarchy in image annotation by using ensembles of
trees for HMC. Our approach to HMC exploits the annotation
hierarchy by building a single classifier that simultaneously
predicts all labels in the hierarchy. A substantial performance
improvement is achieved by building ensembles of HMC trees,
such as random forests.

We apply our approach to two benchmark tasks of hierarchical
annotation of medical (X-ray) images and an additional task of
photo annotation (i.e., visual concept detection). We compare it to
a collection of SVMs (trained with a x? kernel), each predicting
one label at the lowest level of the hierarchy, the best-performing
and the most-frequently used approach to (hierarchical) image
annotation. Our approach achieves better results than the
competition on all of these: For the two medical image datasets,
these are the best results reported in the literature so far. Our
approach has superior performance, both in terms of accuracy/
error and especially in terms of efficiency.

We explore the relative performance of ensembles of trees for
HMC and collections of SVMs under a variety of conditions. Along
one dimension, we consider three different datasets. Along
another dimension, we consider two ensemble approaches,
bagging and random forests. Furthermore, we consider several
state-of-the-art feature extraction approaches and combinations
thereof. Finally, we consider two types of feature fusion, i.e., low
and high level fusion.

Ensembles of trees for HMC perform consistently better than
SVMs over the whole range of conditions explored above. The two
ensemble approaches perform better than SVM collections on all
three tasks, with random forests being more efficient than bagging
(and the most efficient overall). The relative performance holds for
different image representations (we consider raw pixel representa-
tion, local binary patterns, edge histogram descriptors and SIFT
histograms), as well as combinations thereof: The SIFT histograms
are the best individual descriptors. Moreover, combinations of
different descriptors yield better predictive performance than the
individual descriptors. The relative performance also holds for both
low level and high level fusion of the image descriptors, the former
yielding slightly better performance. We can thus conclude that for
the task of hierarchical image annotation, ensembles of trees for
HMC are a superior alternative to using collections of SVMs, which
are most-commonly applied in this context.

We expect it is possible to further improve the predictive
performance of our system. We could try to adapt our tree-
learning approach to tackle the shift in distribution of images
between the training and the testing set. Better performance may
also be obtained by including high level feature extraction
algorithms able to give more understandable and compact repre-
sentation of the visual content of the images (segmented objects
with relations among them).

Let us conclude by emphasizing the scalability of our
approach. Decision trees are one of the most efficient machine
learning approaches and can handle large numbers of examples.
The ensemble approach of random forests scales very well for
large numbers of features. Finally, trees for HMC scale very well as
the complexity of the annotation hierarchy increases, being able
to handle very large hierarchies organized as trees or directed
acyclic graphs. Combining these, our approach is scalable along all
three dimensions.
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