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a b s t r a c t

An important consideration in conservation and biodiversity planning is an appreciation of the condition
or integrity of ecosystems. In this study, we have applied various machine learning methods to the problem
of predicting the condition or quality of the remnant indigenous vegetation across an extensive area of
south-eastern Australia—the state of Victoria. The field data were obtained using the ‘habitat hectares’
approach. This rapid assessment technique produces multiple scores that describe the condition of various
attributes of the vegetation at a given site. Multiple sites were assessed and subsequently circumscribed
with GIS and remote-sensed data.

We explore and compare two approaches for modelling this type of data: to learn a model for each score
separately (single-target approach, a regression tree), or to learn one model for all scores simultaneously
(multi-target approach, a multi-target regression tree). In order to lift the predictive performance, we also
employ ensembles (bagging and random forests) of regression trees and multi-target regression trees.
Our results demonstrate the advantages of a multi-target over a single-target modelling approach. While
there is no statistically significant difference between the multi-target and single-target models in terms

of model performance, the multi-target models are smaller and faster to learn than the single-target ones.
Ensembles of multi-target models, also, improve the spatial prediction of condition.

The usefulness of models of vegetation condition is twofold. First, they provide an enhanced knowledge
and understanding of the condition of different indigenous vegetation types, and identify possible bio-
physical and landscape attributes that may contribute to vegetation decline. Second, these models may
be used to map the condition of indigenous vegetation, in support of biodiversity planning, management

.
and investment decisions

. Introduction

Governments and other agencies worldwide are increasingly
equired to demonstrate their compliance with the policies and
egislation relevant to the protection and management of remnant
ndigenous vegetation (Parkes and Lyon, 2006). To this end, govern-

ent agencies are seeking to extend the requisite knowledge base

nd representation of vegetation beyond just ‘extent’ and ‘type’, to
ncorporate the notion of ‘condition’ or ‘quality’. The concept of veg-
tation condition is typically idiosyncratic and/or context-specific.
or example, the performance or quality of native vegetation could
e evaluated in terms of its capacity to deliver services such as
nergy storage (including carbon sequestration), nutrient cycling,
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landscape stability, fodder production for domestic stock or habitat
for species. A key challenge has been to develop metrics that facil-
itate comparisons of condition both within and between disparate
ecosystem types. Recent attempts have been made to clarify these
concepts (Andreasen et al., 2001; Gibbons et al., 2006), and develop
general and widely applicable metrics and indices for assessing
vegetation or ecosystem condition from a biodiversity perspective
(Parkes et al., 2003; Scholes and Biggs, 2005; Oliver, 2004; Eyre et
al., 2006; Gibbons et al., 2009).

With an increasing emphasis on landscape scale planning for
biodiversity investment (Margules and Pressey, 2000; Rouget et al.,
2006; Knight et al., 2006; Moilanen, 2007) and widespread access
to Geographic Information Systems (GIS) and associated data and
software, the production of maps or spatially explicit models of

landscape indices, species distributions and other ecological phe-
nomena has become commonplace (see Li and Wu, 2004; Guisan
and Thuiller, 2005). The apparent utility of compound indices, such
as vegetation condition or ecosystem integrity presents a generic
problem for the land management agencies which employ them:
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an we usefully predict such attributes from site data across exten-
ive geographic regions, from a vector of covariate remote sensed
nd ancillary environmental data?

The focus of this study is to take data from site assessments
mploying a multi-component index of vegetation condition and
ttempt to fit a generalized view of this index over an exten-
ive area—in this case the State of Victoria, Australia, an area of
ome 227,000 km2. So, the problem that we are addressing is how
o predict multiple target variables (responses) from a vector of
cological/remote-sensed data. We employed two modelling sce-
arios: (1) learn a model for each component of the overall index
eparately and (2) learn a model for all component scores simul-
aneously. For the first scenario, we applied regression trees (RTs)
Breiman et al., 1984) and ensembles of RTs (Breiman, 1996, 2001) to
he problem, while for the second, we applied multi-target regres-
ion trees (MTRTs) (Struyf and Džeroski, 2006) and ensembles of
TRTs (Kocev et al., 2007).
Regression trees are decision trees that predict the value of a

ingle numeric target variable. The multi-target regression trees
re a generalization of RTs. They are able to predict the value of
ultiple numeric target variables. Their main advantages (over

uilding a separate model for each target attribute) are: (1) a multi-
arget model is smaller than the total size of the individual models
or all target attributes and (2) a multi-target model explains
ependencies between different target attributes (Blockeel et al.,
998; Struyf and Džeroski, 2006). We selected regression trees and
ulti-target regression trees because they are easy to understand

nd interpret and yet offer satisfactory predictive power.
To obtain models that have improved predictive performance

e used ensembles. Ensemble learning combines the predictions
f multiple models and lifts the predictive performance of their base
lassifiers, both in the single-target (Breiman, 1996) and the multi-
arget setting (Kocev et al., 2007). We focus on the two most widely
sed ensemble learning methods that use tree models as base
lassifiers: bagging (Breiman, 1996) and random forests (Breiman,
001).

We perform the analysis using two scenarios: (1) we learn
runed tree models (smaller tree models) to obtain some knowl-
dge and understanding about the condition of the indigenous
egetation and (2) we learn ensembles of trees opting for better
redictive performance that will yield more precise and reliable
aps of the vegetation condition.
The development of predictive models of condition for rem-

ant indigenous vegetation may assist in identifying the relative
mportance of associated biophysical and landscape attributes in
xplaining observed condition states, across vegetation types and
andscape scales. In addition, spatially explicit models of condition,
ould, when used in conjunction with other data, inform natural
esource investment decisions, statutory protection and reserve
esign, while providing a basis for new forms of environmental
ccounting and potentially monitoring landscape change.

The remainder of this paper is organized as follows: In Section 2,
e describe our modelling methodology, and in Section 3 the data.

he experimental setup for data analysis is presented in Section 4.
n Section 5, we present, discuss and compare the models that we
btained. Finally, we outline our conclusions in Section 6.

. Machine learning methodology

.1. Regression trees
Regression trees are decision trees that predict the value of a
umeric target variable (Breiman et al., 1984). Regression trees are
ierarchical structures, where the internal nodes contain tests on
he input attributes. Each branch of an internal test corresponds to
ing 220 (2009) 1159–1168

an outcome of the test, and the prediction for the value of the target
attribute is stored in a leaf. Each leaf of a regression tree contains
a constant value as a prediction for the target variable (regression
trees represent piece-wise constant functions).

To obtain the prediction for a new data record, the record is
sorted down the tree, starting from the root (the top-most node
of the tree). For each internal node that is encountered on the
path, the test that is stored in the node is applied. Depending
on the outcome of the test, the path continues along the cor-
responding branch (to the corresponding subtree). The resulting
prediction of the tree is taken from the leaf at the end of the
path. The tests in the internal nodes can have more than two
outcomes (this is usually the case when the test is on discrete-
valued attributes where a separate branch/subtree is created for
each value). Typically each test has two outcomes: the test has suc-
ceeded or the test has failed. The trees in this case are also called
binary trees.

2.2. Multi-target regression trees

Multi-target regression trees (Blockeel et al., 1998; Struyf and
Džeroski, 2006) generalize regression trees to the prediction of
several numeric target attributes simultaneously. The leaves of a
multi-target regression tree store a vector, instead of storing a sin-
gle numeric value. Each component of this vector is a prediction for
one of the target attributes. An example of a multi-target regression
tree is shown in Fig. 3.

A multi-target regression tree (of which a regression tree is
the special case with a single response variable) is usually con-
structed with a recursive partitioning algorithm from a training
set of records. The algorithm is known as Top-Down Induction of
Decision Trees (TDIDT). The records include measured values of the
descriptive and the target attributes. The tests in the internal nodes
of the tree refer to the descriptive, while the predicted values in the
leaves refer to the target attributes.

The TDIDT algorithm starts by selecting a test for the root
node. Based on this test the training set is partitioned into sub-
sets according to the test outcome. In the case of binary trees, the
training set is split into two subsets: one containing the records for
which the test succeeds (typically the left subtree) and the other
contains the records for which the test fails (typically the right
subtree). This procedure is recursively repeated to construct the
subtrees.

The partitioning process stops when a stopping criterion is sat-
isfied (e.g., the number of records in the induced subsets is smaller
than some predefined value; the length of the path from the root
to the current subset exceeds some predefined value, etc.). In that
case, the prediction vector is calculated and stored in a leaf. The
components of the prediction vector are the mean values of the
target attributes calculated over the records that are sorted into the
leaf.

One of the most important steps in the tree induction algorithm
is the test selection procedure. For each node a test is selected by
using a heuristic function computed on the training data. The goal
of the heuristic is to guide the algorithm towards smaller trees with
good predictive performance.

In this paper, we use the CLUS (Blockeel and Struyf, 2002) sys-
tem for constructing (multi-target) regression trees (the system
is available at http://www.cs.kuleuven.be/∼dtai/clus/). The heuris-
tic used for selecting the attribute tests (that define the internal
nodes) in this algorithm is the intra-cluster variance summed over

the subsets induced by the test. Intra-cluster variance is defined as
N · ∑T

t=1Var[yt] with N the number of examples in the cluster, T
the number of target variables, and Var[yt] the variance of target
variable yt in the cluster. The variance function is standardized so
that the relative contribution of the different targets to the heuris-

http://www.cs.kuleuven.be/~dtai/clus/
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Table A2 in Appendix.
The Large trees score represents the number of large trees (both

living and dead) that are present at the measuring site (compared
to the ‘benchmark’ archetype). The Tree Canopy score assesses the
D. Kocev et al. / Ecological M

ic score is equal. Lower intra-subset variance results in predictions
hat are more accurate.

The multi-target regression trees are an instantiation of the pre-
ictive clustering trees (PCTs) framework proposed in (Blockeel et
l., 1998). In the PCTs framework, a tree is viewed as a hierarchy of
lusters: the top node corresponds to one cluster containing all data,
hich is recursively partitioned into smaller clusters while moving
own the tree. The PCTs can be instantiated for different tasks using
dequate variance and prototype functions. So far, PCTs have been
sed to handle multiple targets (Struyf and Džeroski, 2006), time
eries (Džeroski et al., 2007) and hierarchical multi-label classifica-
ion (Vens et al., 2008).

.3. Ensembles

An ensemble method constructs a set of predictive models
called an ensemble) (Dietterich, 2000). An ensemble gives a pre-
iction for a new data instance by combining the predictions of its
odels for that instance. For regression tasks, the predictions can

e combined by averaging the outputs of the models.
In order for an ensemble to be more accurate than any of its

ndividual members, the individual models need to be accurate
nd diverse (Hansen and Salamon, 1990). An accurate model is one
hat performs better than random guessing on new examples. A
et of models is diverse if the models make different errors on new
xamples. The diversity in an ensemble can be introduced in vari-
us ways: by manipulating the training set (changing the weight of
xamples or changing the weight of attributes) or by manipulating
he learning algorithm used to obtain the models.

Ensembles of MTRTs are sets of MTRTs, obtained by applying
he same TDIDT algorithm. A prediction of an ensemble of MTRTs
s obtained by averaging the predictions of its models. They are
ble to lift the predictive performance of a single MTRT (also in the
ase of a single target) (Breiman, 1996; Kocev et al., 2007). In this
ork, we use bagging and random forests, the two most widely
sed ensemble methods to produce ensembles of RTs and MTRTs.
n illustration of these two methods is presented in Fig. 2.

.3.1. Bagging
Bagging (Breiman, 1996) is an ensemble method that constructs

he different models in the ensemble by making bootstrap repli-
ates of the training set; these are used to construct individual
odels (Fig. 2). Each bootstrap sample is obtained by randomly

ampling training instances, with replacement, from the original
raining set. The bootstrap sample and the training set have the
ame number of instances. Bagging can yield substantial gains in
redictive performance, when applied to unstable learners (i.e., a

earner for which small changes in the training set can result in large
hanges in the predictions), such as classification and regression
ree learners (Breiman, 1996). The diversity in bagging comes from
he variation in the training sets used to construct the individual

odels in the ensemble.

.3.2. Random forests
A random forest (Breiman, 2001) is an ensemble of trees,

here the diversity of the trees is obtained from two sources:
1) by using bootstrap sampling and (2) by changing the fea-
ure set during learning (this is done by a randomized decision
ree algorithm, see Fig. 2). At each node in the decision tree, a
andom subset of the input features is taken and the best split

s selected from this subset. The size of the random subset is
iven by a function F of the number of descriptive attributes(

e.g., F = 1, F =
⌊√

M
⌋

, F =
⌊

log2 M
⌋

+ 1, F =
⌊

M/2
⌋

, . . .
)

. If
= M, then the random forests algorithm is equal to the bagging
lgorithm.
ing 220 (2009) 1159–1168 1161

3. Data description

In this study, we use field data acquired using the habitat
hectares approach (Parkes et al., 2003), a technique for the rapid
assessment of vegetation condition, developed primarily for biodi-
versity conservation planning. ‘Vegetation quality’ in the ‘habitat
hectares’ approach is defined as the degree to which the current
vegetation differs from a ‘benchmark’ that represents the average
characteristics of a mature and long-undisturbed stand of the same
plant community. Against the benchmark, the decline in quality can
be estimated for each vegetation type and dissimilar community
assemblages, such as rainforests and savannahs can be compared
by employing the same general index. This general approach has
become a standard method used to quantify the condition of habi-
tat within the state of Victoria (www.dse.vic.gov.au) and has been
emulated to some degree by other jurisdictions within Australia
(see Eyre et al., 2006; Gibbons et al., 2009).

The ‘habitat hectares’ score is the weighted sum of 7 site and 3
landscape scale metrics. The landscape components of the ‘habitat
hectares’ score can be readily rendered spatially within a GIS using
tools such as FRAGSTATS (McGarigal et al., 2002) and have not been
further considered in this study. The objective was to make spatially
explicit predictions of the 7 site scale components of the ‘habitat
hectares’ score (hereafter referred to as the ‘habitat hectares’ site
score or HHSS).

Employing the ‘habitat hectares’ approach, 16,967 ‘homoge-
nous’ sites were sampled within the State of Victoria, Australia
(see Fig. 1) between the years 2001 and 2005. Each sampling
point is described by 40 independent (or feature) variables (GIS
and remote-sensed data with a pixel resolution of 30 m × 30 m)
and 7 dependent (or target) variables (the HHSS). The HHSS
is a numeric variable composed as a weighted average of the
following components: Large Trees; Tree (canopy) Cover; Under-
storey (non-tree) Strata; Lack of Weeds; Recruitment; Organic Litter;
and, Logs. Apart from Lack of Weeds, each component score was
calculated comparing the current status of the vegetation with
a benchmark. For a basic statistic of the target attributes see
Fig. 1. Map of Australia with latitude and longitude shown. The State of Victoria in
the south east of mainland Australia (our study area) is shaded.

http://www.dse.vic.gov.au/
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Fig. 2. A generic algorithm for learning ensembles of decision trees. Bagging uses a standard decision tree algorithm, while random forests use a randomized decision tree
algorithm.
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Fig. 3. Pruned multi-target regression tree (the ta

rojective foliage cover of canopy trees in the stand, while the
nderstorey score assesses the abundance and diversity of vari-
us shrubs and forb/herb strata of a community. The understorey
ssessment includes only indigenous plant species. The Lack of
eeds score is calculated from the cover of non-indigenous weed

pecies.
The Recruitment score provides an indication of the level of

egeneration of woody plant species and could be seen as a sur-
ogate measure of the long-term viability of the site’s structural
haracteristics. Litter represents both fine and coarse plant debris
ess than 10 cm diameter, while Logs represent the fallen timber
r branches of trees that are substantially detached from the par-
nt tree. An unabridged description of the ‘habitat hectares’ scores
nd methods can be found in (Parkes et al., 2003, 2004) and at
ww.dse.vic.gov.au.

The 40 independent variables include 39 continuous variables

nd one categorical variable (see Appendix Table A1). The cate-
orical variable LandCover surface was derived from Landsat 7 TM
pectral data. Classes were obtained by applying a k-means clus-
ering procedure to a stack of median values for all Landsat 7 TM
pectral bands and the Normalised Difference Vegetation Index (see
ttributes in the leaves are ordered as per Table 1).

Tucker, 1979) across the years spanning 1989–2005. The 50 classes
that emerged from the unsupervised classification were ‘lumped’
into 10 bins that were partially informed by a landuse model sim-
ilarly derived using an ANN process. This procedure allowed for
temporal states consequent of clearing, wildfire and forest har-
vesting to remain evident within broad landuse classes. The 10
categories approximate to the descriptions in Fig. 3.

4. Experimental setup for data analysis

From the description of the data, we can define a multi-target
regression problem, to be solved either by the single-target or
the multi-target regression approach. The goal is to predict mul-
tiple continuous targets (responses, outputs) from a vector of
descriptive (independent) variables. When applying the single-
target approach, we learn a regression tree (or an ensemble of

regression trees) for each target attribute separately (in our case,
this means that we will have seven models or ensembles). With the
multi-target approach we learn a multi-target regression tree (or
ensemble of multi-target regression trees) for all target attributes
(meaning that the output is a single model or ensemble).

http://www.dse.vic.gov.au/
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than 0.31 of the subject pixel supporting tree cover. Given that three
of the sub-components of the HHSS depend directly on the presence
of tree cover (Large tree score, Canopy cover score and Logs score), its
central role in partitioning the data is logical.

Table 1
Comparison of the performance of the pruned multi-target regression tree for all
scores with the regression trees for each score (MTRT—multi-target regression tree,
RT—regression tree).

Target Correlation RMSE

MTRT RT MTRT RT

Large tree score 0.52 ± 0.02 0.53 ± 0.02 2.88 ± 0.06 2.86 ± 0.06
Tree canopy score 0.68 ± 0.02 0.68 ± 0.01 1.63 ± 0.04 1.64 ± 0.03
D. Kocev et al. / Ecological M

We define two experimental scenarios. In the first scenario, the
urpose of the modelling is to learn about the condition of the

ndigenous vegetation, and the relative importance of different bio-
hysical and landscape attributes for that condition. We focus on

nterpretability to obtain such knowledge: the models need to have
easonable size and predictive power. We prune our models by set-
ing the minimal number of instances in a leaf to 2048 (for both
he single-target and multi-target approach). We varied this prun-
ng parameter starting from 4 up till 4096 (taking numbers that are
ower of 2). We selected 2048, because it offered the best trade-off
etween the size and the performance of the model.

In the second scenario, we are not interested in the size of
he models, but in their predictive power. To improve predictive
erformance, we use ensembles of unpruned single- and multi-
arget regression trees. We constructed ensembles consisting of
00 unpruned trees as recommended in (Bauer and Kohavi, 1999;
reiman, 1996, 2001). To combine the predictions of the trees we
veraged the predictions from each tree. The size of the feature
ubsets for the random forests (F) was set to F =

⌊
log2 M

⌋
+ 1 as

uggested in (Breiman, 2001).
The learned models, from both scenarios, were then used to

erive maps of remnant indigenous vegetation condition. Com-
ined with other data, these maps will contribute to investment
ecisions in natural resource management, statutory protection
nd reserve design.

We compare the single-target and multi-target regression trees
nd ensembles. For baseline comparison, we use linear regression
as implemented in the WEKA system, Witten and Frank, 2005).

e compared the methods in terms of their predictive perfor-
ance (correlation coefficient between predictions and observed

alues, and root mean squared error—RMSE), time efficiency and
odel size. To estimate the predictive performance of the mod-

ls on unseen data, we employed 10 times 10-fold cross-validation,
hus we present the performance results with respective confidence
ntervals.

To assess whether the differences in performance are sta-
istically significant, we employed the corrected Friedman test
Friedman, 1940) and the post hoc Nemenyi test (Nemenyi, 1963)
s recommended by Demšar (2006). The Friedman test is a
on-parametric test for multiple hypotheses testing. It ranks the
lgorithms according to their performance for each dataset sepa-
ately, thus the best performing algorithm gets the rank of 1, second
est the rank of 2. . ., and in case of ties it assigns average ranks (see
ables A2 and A3 in Appendix). Then, the Friedman test compares
he average ranks of the algorithms and calculates the Friedman
tatistic �2

F , distributed according to the �2
F distribution with k − 1

egrees of freedom (k being the number of algorithms). Iman and
avenport (1980) show that the Friedman statistic is undesirably
onservative and derive a corrected F-statistic that is distributed
ccording to the F-distribution with k − 1 and (k − 1) × (N − 1)
egrees of freedom (k being the number of algorithms and N being
he number of datasets).

If there is a statistically significant difference in the performance,
han we can proceed with a post hoc test. The Nemenyi test is
sed to compare all the classifiers to each other. In this procedure,
he performance of two classifiers is significantly different if their
verage ranks differ more than some critical distance. The critical
istance depends on the number of algorithms, number of datasets
nd critical value (for a given significance level) that is based on the
tudentized range statistic and can be found in statistical textbooks.

We present the result from the Nemenyi post hoc test with an

verage ranks diagram as suggested by Demšar (2006). An average
anks diagram can be seen in Fig. 6 (and Figure A1 in Appendix).
he ranks are depicted on the axis, in such a manner that the best
anking algorithms are at the right-most side of the diagram. The
lgorithms that do not differ significantly are connected with a line.
ing 220 (2009) 1159–1168 1163

5. Interpretation and evaluation of the vegetation
condition models

We followed the analysis scenarios, described in the previous
section and obtained two sets of models. The first set consists
of single models (single-target regression trees and multi-target
regression trees) and is concerned with the process of knowledge
extraction (the first scenario). The second set consists of ensembles
(of single-target and multi-target regression trees) and is concerned
with better predictive power (the second scenario). All models are
presented and discussed in the next subsections.

5.1. Models for knowledge extraction

In this sub-section, we present and discuss the models that were
obtained with the first scenario described in Section 4. This set of
models contains single-target regression trees for each target and
one multi-target regression tree for all targets. We compared the
performance of the models (Table 1), with both approaches yield-
ing models of comparable predictive performance. The difference
is in the interpretability and the time and size efficiency. The time
needed for learning the MTRT was 2.33 s, while learning all regres-
sion trees takes 13.77 s (a speed-up of factor 5.9). The speed can
be very important in real-time applications. Also, the MTRT is of
size 11 (total number of nodes), while all single-target regression
trees taken together have size 81 (a ratio of 7.4). These models are
depicted in Figs. 3 (MTRT) and 4 (single-target trees).

One of the most important differences between the two
approaches is in their interpretability. It is much easier to inter-
pret one tree that describes all target variables, than interpreting
each regression tree separately and trying to find some connec-
tion between the different models. The multi-target regression tree
gives us a more general overview of the knowledge that is hidden
in the data.

The pruned multi-target regression tree shown in Fig. 3 is read-
ily interpreted, grouping the data into six clusters. The clusters that
are in the right-hand side have (on average) a higher HHSS, indicat-
ing that such sites are likely to support indigenous vegetation close
to its benchmark state. An intuitively robust, if somewhat simpli-
fied overview of vegetation condition across the State of Victoria
is provided by a map generated from the multi-target solution and
applied to the spatial covariates (Fig. 5).

The key variable at the initial node of the tree is NativeTreeProb
which is the prediction of a Neural Network model (ANN) of the
probability of a lack of native tree cover for Victoria, informed by a
chronosequence of Landsat imagery from 1989 to 2005. A Native-
TreeProb > 0.31 is equivalent to a predicted probability of greater
Understorey score 0.70 ± 0.02 0.71 ± 0.02 5.11 ± 0.13 5.05 ± 0.13
Litter score 0.72 ± 0.02 0.69 ± 0.02 1.43 ± 0.03 1.47 ± 0.04
Logs score 0.70 ± 0.02 0.71 ± 0.02 1.48 ± 0.03 1.47 ± 0.03
Weeds score 0.75 ± 0.01 0.78 ± 0.01 4.04 ± 0.09 3.83 ± 0.10
Recruitment score 0.61 ± 0.02 0.62 ± 0.02 2.59 ± 0.07 2.57 ± 0.06
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Fig. 4. Regression trees for each Habitat Hectares site score. The sum of these attributes comprises the overall Habitat Hectares site score.
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ig. 5. Map of the condition of indigenous remnant vegetation in Victoria derived f
eatures (left-hand side figure). The dark bordered rectangular inset refers to the ar

Focusing on the ‘no’ branch of the tree (with the higher HHSS)
he next decision node pivots on the membership of data to the
andCover category 2. LandCover category 2 corresponds with dense
omparatively undisturbed forest cover and has the highest overall
ite score (of 50). All other LandCover categories proceed to the next
ode that partitions further, employing the variable TempRange.
empRange is one of many climate variables or features created
sing the ANUCLIM software package (see Houlder et al., 2000). This
ariable describes the annual range in temperature at a site by sub-
racting the climate model for the minimum temperature of coldest
eriod of the year from the maximum temperature of the warmest
eriod of the year. A TempRange of greater than 23.4 ◦C can be found

n the semi-arid North West of Victoria where plant growth rates
nd consequently recovery from perturbation is generally slow.

The left-hand side of the tree, where the probability of tree cover
s smaller than 0.31, is further partitioned by membership or oth-
rwise of the LandCover categories 1, 2, 6, 7, 8, and 9. Apart from
andCover category 2 (i.e., Dense Forest Cover) these land cover
ypes are all highly modified land use settings with correspond-
ngly low habitat hectare scores. The small areas with LandCover
ategory 2 that have a high probability of not finding tree cover (i.e.
reater than 0.31) are likely to be feature data errors carried over
rom the land use mapping employed.

All these categories when NativeTreeProb is greater than 0.31
re assigned moderate condition scores (mean 25) by the pruned
egression tree model. These are predominantly areas where tree
over is either absent, partially cleared or tree cover has been
emoved by recent wildfires. Fire scars are apparent in the North

est region of the map. The incidence of fire has not been explicitly
ddressed in this study, however, future modelling will investi-
ate the impact of fire on the HHSS and other condition indices
hrough the inclusion of mapped fire boundaries derived from satel-
ite imagery and historic cartographic sources.

The final node in the multi-target regression tree to be dis-
ussed here is regulated by the variable Grass1ha RegionStdDev.
his variable is derived from an ANN model of the probability of
ative grass cover for every pixel in Victoria, informed by afore-
entioned chronosequence of Landsat imagery. A neighborhood of
ha around each pixel was interrogated and the standard deviation
f the probability of indigenous grass cover across that area was

btained. Although speculative, this variable identifies spectrally
niform areas—regions that if they support treeless native vegeta-
ion could be relatively free of the degrading edge effects such as
eed invasion that may emanate from surrounding land uses. The

ariable may be interpreted as a surrogate for the core area concept
he application of the pruned multi-target regression tree model to the explanatory
resented at higher resolution in the right-hand side figure.

in landscape ecology (sensu Botequila Leitão et al., 2006) seen here
as a useful predictor of grassland vegetation condition in Victoria.

The regression trees for each target attribute are shown in Fig. 4.
If we compare Figs. 3 and 4, each of the components of the habitat
hectare site score use different features and sequences of features
to that of the tree that predicts the site score alone. This adds com-
plexity and removes ecological naivety from the model. As with the
single-target solution, we can closely examine the internal logic of
each regression tree for the component scores. Prima-facie, each of
the single-target regression trees is ecologically interpretable.

For example, if we just follow the positive or far left-hand side
of the tree predicting Weed Score, it initially partitions the data on
the basis of TreeProb1HaRegionMean: mean probability of detect-
ing no tree cover within a 1 ha area around the subject pixel. This
variable effectively divides the landscape into forests and treeless
areas or areas with only scattered trees. Following the positive or
left-hand side of the tree the data is further partitioned by the land
cover classes. Classes 2, 3, 4, 5, and 10—all of these classes are natu-
ral or semi-natural areas and we should expect these areas to have
a higher weed score (a high positive score reflects the absence of
weeds rather than weed infestation) relative to other thinly treed
areas. This is borne out by the regression tree. The final node is con-
trolled by NetRainfall. NetRainfall is a variable that is derived from
both mean monthly rainfall and mean evaporation rates. In essence
it reflects the amount of effective rainfall (rainfall less evaporation)
over an entire year. Once we have reached this node the model pre-
dicts that the drier and hotter a place is, the higher the weed score
(provided we have satisfied earlier criteria). This reflects the cur-
rent on-ground ecological reality in south-eastern Australia where
there have been few deliberate introductions of exotic plant species
into specialist habitat types, such as semi-arid regions, in compari-
son with temperate and sub-humid climatic regions that have been
favoured by human settlement and intensive agriculture.

A further advantage of the multi-target approach is that is can
reveal relationships between response variables. It is apparent
that Recruitment score and Understorey score are positively related
(see Fig. 4). The single-target regression trees of these scores are
structurally identical and both employ very similar explanatory
variables at similar junctures. Again, this is consistent with both
field observation and ecological theory: a diverse and structurally

intact understorey implies an adequate level of shrub and tree
regeneration. The reverse is also likely. Within defined ecosystem
types and states, a positive relationship between ecosystem func-
tion and structure is generally accepted by ecologists (Cortina et al.,
2006; Bradshaw, 1984). Overall, the most important variables influ-
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Table 2
Correlation coefficients of the obtained models (LR—linear regression, MTRT—multi-target regression tree, RT—regression tree, Bag—bagging, RF—random forests).

Target LR MTRT RT BagMTRT Bag RT RF MTRT RF RT

Large tree score 0.61 ± 0.02 0.63 ± 0.02 0.60 ± 0.02 0.69 ± 0.01 0.69 ± 0.02 0.69 ± 0.01 0.69 ± 0.01
Tree canopy score 0.76 ± 0.01 0.76 ± 0.01 0.74 ± 0.02 0.80 ± 0.01 0.81 ± 0.01 0.81 ± 0.01 0.81 ± 0.01
Understorey score 0.77 ± 0.02 0.78 ± 0.01 0.77 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01
Litter score 0.76 ± 0.01 0.77 ± 0.01 0.76 ± 0.01 0.81 ± 0.01 0.82 ± 0.01 0.82 ± 0.01 0.82 ± 0.01
Logs score 0.75 ± 0.01 0.76 ± 0.01 0.75 ± 0.02 0.80 ± 0.01 0.80 ± 0.01 0.80 ± 0.01 0.80 ± 0.01
Weeds score 0.82 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01
Recruitment score 0.67 ± 0.02 0.69 ± 0.02 0.67 ± 0.02 0.74 ± 0.02 0.74 ± 0.01 0.74 ± 0.01 0.75 ± 0.01

Table 3
Root mean squared error of the obtained models (LR—linear regression, MTRT—multi-target regression tree, RT—regression tree, Bag—bagging, RF—random forests).

Target LR MTRT RT BagMTRT Bag RT RF MTRT RF RT

Large tree score 2.66 ± 0.05 2.62 ± 0.05 2.72 ± 0.06 2.43 ± 0.05 2.44 ± 0.06 2.44 ± 0.05 2.43 ± 0.05
Tree canopy score 1.46 ± 0.03 1.45 ± 0.03 1.52 ± 0.04 1.33 ± 0.03 1.32 ± 0.03 1.32 ± 0.03 1.32 ± 0.03
Understorey score 4.59 ± 0.16 4.47 ± 0.13 4.58 ± 0.15 4.04 ± 0.12 4.04 ± 0.12 4.05 ± 0.11 4.03 ± 0.11
L
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itter score 1.34 ± 0.03 1.30 ± 0.03 1.34 ± 0.03
ogs score 1.37 ± 0.03 1.35 ± 0.03 1.39 ± 0.04
eeds score 3.48 ± 0.09 3.41 ± 0.09 3.49 ± 0.10

ecruitment score 2.41 ± 0.08 2.35 ± 0.07 2.43 ± 0.08

ncing all components of the HHSS are those immediately related to
the probability) of (indigenous and non-native) tree cover (such as
ativeTreeProb that appears in the root of the multi-target tree, and
reeProb1HaRegionMean, which appears in the roots of 5/7 single-
arget trees). It is interesting to note that this is the case also for the
ub-components that do not depend directly on the presence of
ree cover, e.g. Weeds Score. Following closely is LandCover (as mod-
lled from satellite images), with dense forest cover (category 2)
ielding high HHSS scores. Finally, climate plays an important role,
ith variables describing temperatures, rainfall and their variability

ppearing in most of the models.

.2. Models with superior predictive performance

This sub-section presents and discusses the models obtained
ith the second scenario (see Section 4). Here, we compare linear

egression, multi-target regression trees, regression trees, ensem-
les of multi-target regression trees and ensembles of regression
rees to investigate the possible improvements in prediction per-
ormance (Tables 2 and 3) and computational efficiency (Table 4)

hat can be achieved by ensemble methods.

We present the predictive performance of the obtained models
n terms of their correlation coefficient s and RMSEs. The results are
resented with the corresponding confidence intervals, to show the
tability of the used algorithms. Recall that 10 times 10-fold cross-

Fig. 6. Average ranks diagram for the applied algorithms (comparing by RMSE). Al
1.19 ± 0.03 1.18 ± 0.03 1.18 ± 0.03 1.18 ± 0.03
1.25 ± 0.03 1.26 ± 0.03 1.25 ± 0.03 1.25 ± 0.03
3.01 ± 0.08 3.01 ± 0.08 3.02 ± 0.08 3.01 ± 0.08
2.18 ± 0.07 2.18 ± 0.06 2.18 ± 0.06 2.18 ± 0.06

validation was used to estimate the performance on unseen data.
We can note that the confidence intervals are small. This is due to
the size of the dataset (16,967 samples).

To check whether the differences in performance are of statisti-
cal significance, we used the corrected Friedman test for multiple
hypothesis testing. To detect which algorithms perform signif-
icantly better or worse than the others we used the Nemenyi
post hoc test. The result of the corrected Friedman test is that
the difference in performance of these algorithms is statistically
significant with a p-value smaller than 0.01. The results of the
Nemenyi post hoc test for the RMSE comparison are presented in
Fig. 6 with an average ranks diagram. On the axis the algorithms
are plotted according to their average rank. The best performing
algorithm is random forests with single-target regression trees,
while the worst performing algorithm is the single-target regres-
sion tree. The critical distance is calculated for the significance level
of 0.05.

The Nemenyi test shows that the performance of the ensemble
methods (in terms of RMSE) is significantly better than the one of
individual trees. The ensembles from both MTRTs and RTs are not

significantly better than the single MTRT (at p = 0.05). However, the
ensembles of MTRTs (both bagging and random forests) and the
random forests of RTs are significantly better than linear regression
and single-target regression trees. The difference in performance
between MTRTs, RTs and linear regression is not statistically sig-

gorithms that do not differ significantly (p = 0.05) are connected with a line.
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Table 4
Comparison of the time and size efficiency of the algorithms (LR—linear regression, MTRT—multi-target regression tree, RT—regression tree, Bag—bagging, RF—random
forests).

LR MTRT RT Bag MTRT Bag RT RF MTRT RF RT

Time (s) 8.06 7.18 36.18 430.94 2053.50 87.69 385.38
Size 332 345 4729 10,639.94 35,145.02 10,907.66 43,030.76
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ig. 7. Map of the condition of indigenous remnant vegetation in Victoria derived
ordered rectangular inset refers to the area represented at higher resolution at the

ificant. Similar conclusions can be drawn if instead of the results
or RMSE we consider the results for the correlation coefficient
Figure A1 from Appendix).

In addition, we compared the approaches by their time and size
fficiency (Table 4). For the single-target scenarios (linear regres-
ion, regression trees, bagging of regression trees and random
orests of regression trees) the time efficiency is calculated as the
um of the times used to learn a model for each target separately.
he size of a linear regression model is the number of terms in the
quation. The size of a MTRT is calculated as the number of nodes
n the tree, while the size of a regression tree is the sum of the
umber of nodes in the trees over all targets. For bagging and ran-
om forests of multi-target regression trees, the size efficiency is
he sum of size of the trees in the ensemble, while for the bagging
nd random forests of regression trees the size is the sum of the
izes of the ensembles for each target.

When comparing ensemble methods, the speed-up ratio of
ulti-target over single-target tree models remains high (4.5 on

verage), while the size of the multi-target tree models is about 0.25
f the size of single-target tree models. Multi-target regression con-
istently delivers models that have equally good predictive power,
ut are smaller and faster to learn (and apply). Linear regression has
omparable time and size efficiency with multi-target regression
odels.
Overall, random forests of multi-target regression trees should

e preferred, given that they improve the predictive performance
nd stability of multi-target trees in general, and are not as compu-
ationally expensive as bagging.

The spatially explicit map produced by the MTRT random forest
nsemble, provides a subtle and accurate reflection of the condi-
ion of indigenous vegetation across the State of Victoria (Fig. 7). As
e can see in the detailed inset, the modelled condition is finely
esolved and nuanced, responding appropriately to local condi-
ions, land use and land tenure. Application of the models allows
or their further evaluation by experts familiar with local study
reas. Such an evaluation is an ongoing process—but preliminary
ssessment indicates that the random forest MTRT is a robust
the application of the random forests of MTRTs (left-hand side figure). The dark
-hand side figure.

model across a wide range of landscape, landuse and historical
contexts.

6. Conclusions

In this work, we model the condition of remnant indigenous
vegetation with machine learning techniques. The condition of the
vegetation is described by multiple (habitat hectares) scores that
reflect the structural and compositional attributes of a wide variety
of plant communities. To model the multiple scores, we used two
approaches: single-target and multi-target regression. With single-
target regression we learn a model for each score separately, while
with the multi-target regression we learn one model for all scores.
The results show the advantages of multi-target over single-target
regression: multi-target models have a smaller size and are faster to
learn and apply. Also, there is no statistically significant difference
in their predictive power.

We performed two sets of experiments. With the first set we
were interested in knowledge extraction, and with the other we
opted for models that have better predictive power. For knowledge
extraction, we used pruned regression trees and pruned multi-
target regression trees. The goal was to better understand the
resilience of some indigenous vegetation types and the relative
importance of biophysical and landscape attributes that influence
their condition. From the learned models, we can conclude that the
most important variables influencing all scores are those related to
tree cover. This holds also for scores that do not depend directly
on the presence of tree cover. Land cover is also of high impor-
tance, with dense forest cover yielding high scores. Finally, climate
(including the variability of weather conditions) also plays an
important role.

Predictive power and efficiency was an imperative for the selec-

tion of the preferred model from the second set of experiments.
In order to obtain models that have high predictive power we used
unpruned regression trees, ensembles of regression trees, unpruned
multi-target regression trees and ensembles of multi-target regres-
sion trees. Given the results of the statistical tests for the predictive
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ower, and the time and size efficiency, the random forests of multi-
arget regression trees should be preferred.

An important consideration of model utility is the spatial aspect
t which the models are to be used and the specific purpose for
hich the model has been developed. The development of both

ingle trees and ensembles of trees has highlighted the trade-off
n model selection between complexity and predictive power on
ne hand and interpretability on the other. The pruned single tree
ased solutions to the prediction problem are transparent and facil-

tate almost immediate interpretation and qualitative evaluation
y a range of users with varying degrees of understanding of the
nderlying learning algorithm. However, due to their simplicity, the
redictions of single (pruned) trees as rendered by mapping pro-
uce generalized surfaces apparently devoid of the heterogeneity
nd subtlety of the real world. This may be a useful outcome if the
bjective is to produce a simple model. Conversely, due to the high
redictive power, the ensemble models provide for the complexity
nd fine scale accuracy absent from the single trees, but are not
eadily interpretable to users.

It is apparent from this study that complex weighted metrics
uch as the habitat hectare index of vegetation condition can be
odelled across extensive areas with some predictive confidence,

sing easily obtained remotely acquired data and provided ade-
uate field data is collected. Such products can provide a ‘snapshot’
f the prevailing conditions and provide investment and decision
upport for natural resource managers.

We intend to extend out work in several directions. We hope
o use new features that summarise relevant past and prevailing
nvironmental disturbances and land uses, with a view to improv-
ng spatial models of vegetation condition, while realising some
iew of condition trajectory. In addition, we intend to develop spa-
ially explicit models of both the untransformed and unweighted
eld measures that inform each of the components of the HHSS
nd the benchmark or reference values for these measures. Finally,
e are interested in investigating the potential for implementing

ost-sensitive learning to reflect heightened regulatory, planning or
nvestment interest in particular geographic regions or particular
ndex value ranges.

ppendix A. Supplementary data

Supplementary data associated with this article can be found, in
he online version, at doi:10.1016/j.ecolmodel.2009.01.037.
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