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ABSTRACT

Motivation: Kinetic rate in gene expression is a key measurement
of the stability of gene products and gives important information for
the reconstruction of genetic regulatory networks. Recent develop-
ments in experimental technologies have made it possible to measure
the numbers of transcripts and protein molecules in single cells.
Although estimation methods based on deterministic models have
been proposed aimed at evaluating kinetic rates from experimental
observations, these methods cannot tackle noise in gene expression
that may arise from discrete processes of gene expression, small
numbers of mMRNA transcript, fluctuations in the activity of transcrip-
tional factors and variability in the experimental environment.
Results: In this paper, we develop effective methods for estimating
kinetic rates in genetic regulatory networks. The simulated maximum
likelihood method is used to evaluate parameters in stochastic
models described by either stochastic differential equations or discrete
biochemical reactions. Different types of non-parametric density
functions are used to measure the transitional probability of experi-
mental observations. For stochastic models described by biochemical
reactions, we propose to use the simulated frequency distribution
to evaluate the transitional density based on the discrete nature of
stochastic simulations. The genetic optimization algorithm is used as
an efficient tool to search for optimal reaction rates. Numerical results
indicate that the proposed methods can give robust estimations of
kinetic rates with good accuracy.

Contact: tian@maths.ug.edu.au

1 INTRODUCTION

Gene expression is the process by which a gene’s DNA sequence is
converted into the structures and functions of a cell. This process
occurs in two important steps: transcription for making mRNA from
protein encoding genes and translation for the biosynthesis of pro-
tein from mRNA. Gene expression processes have been increas-
ingly studied in recent years from global perspectives in order to
understand their pathways, properties and behaviours as a system.
Progress in this research area will also be a key step towards the
inference of genetic regulatory networks, which is one of the major
challenges in systems biology during the postgenomic era (Akutsu,
et al., 2000; Crampin, et al., 2004; Blais and Dynlacht, 2005; Joyce
and Palsson, 2006). However, the bottleneck in the inference of

*To whom correspondence should be addressed.

regulatory networks is the lack of synthesis and decay rates in gene
expression that are very expensive to be determined by experiments
(Yang et al., 2003). In recent years, there have been significant
advances in high-throughout technologies to monitor the various
components of the mRNA and protein synthesis machineries. In
addition, the combination of specific probes and advanced optical
microscopy now allows observations of real-time production of
single transcripts and protein molecules in individual cells (Golding
et al., 2005; Yu et al., 2006). The availability of both massive
‘omics’ datasets and real-time molecular numbers has made it
possible to study the function and stability of gene products and
to reconstruct genetic regulatory networks at the genome scale
(Joyce and Palsson, 2006).

It has been widely accepted that gene expression is a noisy
business (McAdams and Arkin, 1999). Biological experiments
and theoretical analysis have indicated that noise plays a very
important role in gene expression, and different approaches have
been proposed to investigate the impact of noise on the dynamics of
regulatory networks (Arkin et al., 1998; Rao et al., 2002; Hasty
et al., 2000; Tian and Burrage, 2004a; Puchalka and Kierzek, 2004;
Mao and Resat, 2004; Kaern, et al., 2005; Tian and Burrage, 2006).
Stochasticity in gene expression may result from small numbers of
gene products, intermittent gene activity, and variability of tran-
scriptional factor activities. With a limited number of promoter
sites, the activation of gene expression is a discrete process, that
switches randomly between the OFF states to the ON states. The
copy numbers of mRNA are usually less than 10 per cell and these
small numbers can lead to fluctuations in protein concentrations
because of the unfrequent events in gene translation (Hasty
et al., 2002; Golding et al., 2005). In addition to intrinsic noise,
which is derived from uncertainty in biochemical reactions, extrin-
sic noise arising from environmental variability also has significant
influence on the dynamics of the whole system.

A number of mathematical models have been proposed for
studying gene expression processes and the stability of gene prod-
ucts (Hargrove and Schmidt, 1989; Yang er al., 2003; Cao and
Parker, 2003). Recently, Bhasi et al. (2005) have developed a
method aimed at estimating the synthesis and degradation rates
of gene products based on high-throughout ‘omics’ datasets.
Based on deterministic models described by ordinary differential
equations (ODEs), this method can be used to analyze gene expres-
sion data averaged from a population of cells. In fact this method is
one of the approaches to estimating parameters in mathematical
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models of biological pathways (Moles et al., 2003; Gadkar et al.,
2005; Sugimoto et al., 2005; Kell, 2006), which remains a chal-
lenging problem and a bottleneck in the development of mathemati-
cal models (Gadkar et al., 2005). Furthermore, it is more
challenging to evaluate kinetic rates in stochastic models that
can generate different trajectories from the same parameters.
Although the simulated maximum likelihood (SML) methods
have been used to estimate parameters in stochastic differential
equations (SDEs) for financial market models for which a large
amount of information can be collected and very small time inter-
vals can be used in parameter estimation (Hurn and Lindsay, 1999;
Alcock and Burrage, 2004), the performance of these methods when
they are applied to biological systems with sparse quantitative
information, and especially when they are applied to systems
described by discrete molecular numbers rather than continuous
protein concentrations, is open to debate. Although an approach
has been proposed most recently for estimating parameters in stoch-
astic models of biological systems (Reinker er al., 2006), this
method is based on the analytic evaluation of transitional proba-
bilities and thus it may not be appropriate to apply this method to
biological systems in which the time intervals of the time series
datasets are not small.

In this paper, we propose to use the SML method to estimate
kinetic rates in gene expression processes that are described
by either SDEs or discrete biochemical reactions. The joint transi-
tional density is used to measure the fitness of stochastic simulations
to gene expression profiles. For stochastic models with small
numbers of molecular species, we propose to use the simulated
frequency distribution to evaluate the transitional density based
on the discrete nature of stochastic simulations.

2 METHODS

The start point of our discussion is the widely used deterministic model
represented by ODEs

dx; _ _ .
o —fi®) —&i®), i=1....N, (1)
t
where X = (¥1,...,Xy) and the X; represent the concentrations of gene

products and regulatory proteins in the regulatory network. Functions
f:(X) and g;(X) represent the increase and decrease processes of molecule
Xx; in gene expression. This deterministic model is valid if molecular
numbers in the system are large. When molecular numbers of gene products
are not large, stochastic models based on biochemical reactions have
been used to describe the processes in gene expression (Thattai and van
Oudenaarden, 2001; Swain et al., 2002). Recently, a general modelling
approach has been proposed for the development of stochastic models
based on macroscopic reactions (Tian and Burrage, 2006). In this approach
the increase and decrease processes in model (1) are replaced by Poisson
random variables, given by

xi(t+7) = x(t) + P[fi(x)7] = Plgi(x)7], (2)

where X = (x,...,xy) and the x; are molecular numbers. If the processes
in Equation (2) contain a number of macroscopic reactions, e.g. fi(x) =
fir(X) +- -+ fu(x) with fi(x) > 0, the Poisson random variable P[f;(x)7]
can be replaced by P[f;; (x)7] + - + P[fy(x)7].

If molecular numbers in the system are relatively large, stochastic models
in the form of SDEs can be developed by means of the Langevin approach
(Gillespie, 2001), given by

dx; = [f:(x) = g;(X))dt + /f:(x)dWi (1) + 1/ & (x)dWi (1), (3)

where the W(s) are the Wiener process. In this paper, SDEs (3) are
simulated by the Euler method with a small stepsize. High order and implicit
methods can also be used to improve the accuracy and stability properties of
numerical simulations (Burrage et al., 2004a).

It should be noticed that stochastic models can give better descriptions
of gene expression than deterministic models if certain species in the system
have small molecular numbers. Especially, the stochastic simulation algo-
rithm (SSA) is a statistically exact method for simulating biochemical reac-
tion systems (Gillespie, 1977). Compared with the SSA, the simulation time
of SDE models is smaller but SDE models can give good approximation
of the system dynamics only when molecular numbers in the system are
relatively large. Furthermore, stochastic components in the SDE model (3)
are negligible if all molecular numbers in the system are large, then the
solution of deterministic model (1) gives the averaged behaviour of
stochastic simulations with good accuracy. In this case, the advantage of
deterministic models is the computational efficiency because a large com-
putational time is usually required for stochastic simulation.

Parameter estimation in deterministic models can be achieved by the best
fit of numerical simulations to experimental observations. Recently, Bhasi
et al. (2005) have developed a program SPLINDID for estimating transcrip-
tional rates and gene regulatory parameters. Based on the deterministic
model with functional transcriptional rates described by spline functions,
this method can estimate degradation rates with very good accuracy when
the half-life of gene products is of the order of hours. However, it is not
appropriate to use this program if the molecular numbers of gene products
are not large. Instead, we should use methods based on stochastic models,
such as the SML method (Hurn and Lindsay, 1999). Based on a sequence of
N + 1 observations {x, Xy, ..., Xy} at time points {fy,?,...,ty}, we define
the joint transitional density or likelihood function of these observations as

zz

Fol(tox0) 6] | | f1(tixi) | (ti-1sXiz1)s - - -, (f0,%0); 6], 4)

i=1

where 6 = (6, . .., 0,) are the undetermined parameters in model (2) or (3),
fol-1is the density of the initial state, and f(#;, X;) | (t;i—1,Xi-1)s - - - » (fo, X0); 0]
is the transitional density starting from (#;,_;, X;_;) and evolving to (¢, X;).
When gene expression is described by the stochastic model (2) or (3), the
stochastic process x is Markov (Gillespie, 2001), and the transitional density
can be simplified as

Fltxi) | (G Xion)s - (f0,%0); 0] = f(txi) | (-1, xi-1)560). - (5)

An equivalent form of the maximum of the joint transitional density (4) is
the minimum of the negative log-likelihood function, given by

L(0) = —log (fo(t0, %0) | 0]) — Z log f[(ti, xi) | (tie1, xi-1): 6] (6)

Because the closed-form expression of the transitional density (5) is usually
unavailable, we use a non-parametric kernel density function

M X — vy,
fM[(t,xH(li—lyxifl)?e}:ﬁ ZK( Byl) 7

to evaluate the transitional density based on the M realizations yy,...,yuy
of x; at ¢; given the initial condition (#;_;, X;_;). Here B is the kernel band-
width and K(-) is a non-negative kernel function enclosing unit probability
mass. In the case of SDE models with a single variable, the normal kernel
is widely used and the bandwidth can be chosen as B = 0.9 oM™ where
o is the sample standard deviation of the M realizations (Hurn and Lindsay,
1999). For SDE models with multiple variables, we can either assume the
independence of random variables or use the theory of multivariate density
estimation (Scott, 1992). Note that the same increments of the Wiener
process should be used in numerical simulations with different values of
parameter ¢. Finally the optimal value of parameter 6 can be estimated by
minimizing the log-likelihood function (6) over §. Thus we can derive the
first SML method for estimating kinetic rates when gene expression is
modelled by SDEs.
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Method 1
(1) Inputthe system states {Xq, Xy, . . . , Xy} and time points {7, t1, . .., ty}.
(2) Take x;_; attime #;_; (i = 1,...,N) as the starting value and use a

numerical method to generate M realizations yy, ...,y of X at f;. A
random seed is specified for generating samples of the Gaussian
random variables.

(3) Use the non-parametric density (7) with the normal kernel or multi-
variate density functions to evaluate the transitional density (5).

(4) Steps 2 and 3 are repeated for each time point #y,...,ty_;, and
results are used to construct the log-likelihood function (6).

(5) Search the optimal kinetic rates by a genetic optimization algorithm
based on the minimum of L(f) in (6).

Although the normal kernel has been used successfully in estimating
parameters in SDEs that have continuous solutions, it is not appropriate
to use this kernel function to measure the transitional probability for systems
described by discrete biochemical reactions. Consider the following example
for the transcription of a single gene

DNA % DNA + mRNA
o ®)
mRNA -2 ().

Figure 1 gives the evaluated density functions (7) with the normal
kernel based on 1000 and 5000 realizations at ¢; = 3, respectively. Because
of small molecular numbers, there is a significant difference between the
values of density functions at integer points and those at other points in
Figure 1A and B, and these values also depend on the numbers of realiza-
tions. Because integer molecular numbers are observed in discrete stochastic
simulations, we are interested in the values of density functions only at
integer points that do not satisfy the property of the unit probability
mass, namely

00

> Fulltn )| (o, x0); 0] > 1. )

j=0

When molecular numbers are relatively large, the simulated density function
in Figure 1C obtained from 1000 realizations is close to that derived from
5000 realizations in Figure 1D. However, we can still observe fluctuations in
the density function values in Figure 1D.

Based on the discrete nature of biochemical reactions and low molecular
numbers in gene transcription, we propose to use the frequency distribution
of simulated molecular numbers to evaluate the transitional density (5). For
systems with one single variable, after generating M realizations y;, ...,y
of x; at t;, the frequency distribution is evaluated by

1 XM
Fix(t;) =m] =— 1—686(m—y; 10
[x(zi) = m] M;[ (m = y;)] (10)

with m = 0, 1,.... Here
a(mfyj):{(l’ "o (11)

This frequency distribution satisfies the property of the unit probability mass
at integer points, namely

iF[x(t;) =m] = 1. (12)
m=0

For systems with species of both small and large molecular numbers, it may
be difficult for simulations to match the experimental data with large
molecular numbers in a finite number of simulations. Similar to the weighted
distance measure in deterministic models (Moles, et al., 2003; Sugimoto
et al., 2005), we can define the weighted frequency distribution in which the
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Fig. 1. Values of the non-parametric density functions of system (8) calcu-
lated from the normal kernel (solid-line and diamond) and simulated fre-
quency distribution (star). (A and B) function values are based on 1000 and
5000 simulations, respectively, with kinetic rates r; = 0.6, k; = 0.3466 and
initial mMRNA number xy = 0 at 7o, = 0; (C and D) function values are based on
1000 and 5000 simulations, respectively, with kinetic rates r; = 0.6, k; =
3.466 x 10~* and initial mMRNA number x, = 4000 at o = 0.

function 8(x) is defined by

0 wj|m—y|<1
aw(m_yj):{] wylm=yl<t, (13)

where w;; = 1/(x; &). This weighted frequency distribution is the frequency
distribution (11) if w; = 1. In addition, these two types of frequency
distributions are consistent for variables with small molecular numbers.
For example, if & = 0.05, the two frequency distributions (11) and (13)
are the same if x; < 20. Thus, the weighted frequency distribution is a good
approximation of the transitional density for systems with both small and
large molecular numbers.

Figure 1 also gives the frequency distributions of the mRNA number
based on 1000 and 5000 realizations. Frequency distributions obtained
by 1000 realizations in Figure 1A and C are very close to those from
5000 realizations in Figure 1B and D, respectively. The frequency distri-
bution gives more stable estimations of the transitional density than the
normal kernel density function. If molecular numbers are relatively large,
frequency distributions in Figure 1C and D are close to the transitional
density based on the normal kernel. Thus the frequency distribution gives
better approximation of the transitional density (7) and we propose the
second SML method for estimating kinetic rates in gene expression.

Method 2

(1) Input the system states {xq, X1, . . . , Xy} and time points {f, t1, . . ., ty}-
(2) Take x,;_; at time #; (i = 1,...,N) as the starting value, and use a
stochastic simulation method to generate M realizations yy,...,yu

of x(#) at t;. A random seed is specified for generating samples of
the uniform random variable.

(3) Use the frequency distribution (10) or (13) to estimate the transitional
density (7).

(4) Steps 2 and 3 are repeated for each time point #, . . ., ty_;, and results
are used to construct the log-likelihood function (6).

(5) Search the optimal kinetic rates by a genetic optimisation algorithm
based on the minimum of L(0) in (6).
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Fig. 2. Generated mRNA numbers from the first test system (8) in 60 min. (A)
Three sets of time-series data with less zero molecular numbers (diamond: set
1, star: set 2, triangle: set 3); (B) Three sets of time-series data with more zero
molecular numbers (diamond: set 4, star: set 5, triangle: set 6).

Although the global search is a feasible approach for systems with a limited
number of undetermined parameters, in general sophisticated searching
methods should be used for estimating the optimal reaction rates. In
this paper, a genetic algorithm is used as the search method that is especially
helpful for finding kinetic rates when the search space is associated with
a complex error landscape. We used a MATLAB toolbox developed by
Chipperfield et al. (1994), and developed programs in C++ that are
external programs of the MATLAB environment. For each set of time series
data, the genetic algorithm was run over 300 generations, and we used a
population of 100 individuals in each generation. The values of kinetic
rates are taken initially to be uniformly distributed in the range [0,W ],
and the value of W« will be specified for each parameter based on the
possible range of kinetic rates. The initial estimation of kinetic rates can
be changed by using different random seeds in the genetic algorithm, and
different initial rates will lead to slightly different final estimations. Simi-
larly, different random seeds for generating samples in step 2 of Methods 1
and 2 will result in slightly different estimations because a fixed number of
stochastic simulations are used in estimation.

3 RESULTS

The first test system models the transcription of a single gene (8) with
transcript initiation rate /; = 0.6 min”~ ' and degradation rate d; = 0.3465
(Thattai and van Oudenaarden, 2001). We used the SSA to generate six
sets of mMRNA numbers that were observed at every 3 min of 1 h. We
present these gene expression profiles in two groups: the three sets with
less zero molecular numbers (Fig. 2A) and the other three sets with more
zero molecular numbers and more variability (Fig. 2B).

We used the genetic algorithm to search the optimal kinetic rates in
theregion (ry,d;) € {[0,2]x[0, 1]}. The averagedrelative error (ARE)
is used to measure the accuracy of estimations. For Methods 1 and 2,
we use 1000 simulations (M = 1000) at each time point to evaluate the
transitional density. Table 1 presents the estimated kinetic rates and
corresponding ARE. Numerical results indicate that it is not appro-
priate to use the ODE model to estimate kinetic rates in biochemical
reaction systems with small molecular numbers. The estimation of
only one dataset has acceptable accuracy while others have large
errors. Similarly, Method 1, the SML method based on the SDE
model and normal kernel, cannot give robust estimations. Estimations
have good accuracy for the firstand sixth datasets, buthave large errors
forthe other four datasets. On the contrary, Method 2, the SML method
based on discrete biochemical reactions and frequency distribution,
can give robust estimations with good accuracy. Among them, esti-
mations for the first three datasets in Figure 2A have better accuracy
than those from the last three datasets in Figure 2B. The reason may be

due to the larger fluctuations of mRNA numbers in the last
three datasets. To demonstrate the effectiveness of frequency
distribution, we use a modified Method 2 in which the normal ker-
nel density function is used in Step 3 of Method 2. Simulation results,
presented in Table 1 as Method 2 (normal kernel), indicate that the
accuracy of this modified method is not as good as that of Method 2.

For this simple network with two parameters, we used the global
search method to find the optimal kinetic rates in the region
(r, dy) € {0, 2] x [0, 1]} with grid size &7 = 0.005 (data not
shown). For all methods in Table 1, estimations obtained from
the global search method are consistent with those obtained from
the genetic algorithm. In addition, we tested the influence of
the number of realizations on the accuracy of estimations by evalu-
ating kinetic rates based on 5000 realizations for the three methods
based on stochastic models in Table 1 (data not shown). Although
in most cases parameters estimated from 5000 simulations have
better accuracy than those from 1000 simulations, the improvement
in accuracy is not significant. This observation is consistent with
the slow convergence property of the Monte-Carlo simulation
methods. Thus 1000 simulations may be already large enough to
achieve good accuracy, and a significant larger number of simula-
tions should be needed if we hope to improve upon the accuracy of
estimations derived from 1000 simulations.

The second test system describes the gene expression of a single
gene with both transcription and translation

DNA —L DNA + mRNA
mRNA -2 () (14)
mRNA -2 mRNA + protein

protein &, 0.

We use the simulated molecular numbers published in Figure 2 of
Swain et al. (2002) as the gene expression profile. The lifetime of
each cell cycle is 60 min and molecular numbers in 10 cell cycles
were presented in Figure 2 of Swain ef al. (2002). We estimated
the numbers of mRNA transcript and protein at every 3 min from
the gene expression profile of the first 4 cell cycles, which are
reproduced in Figure 3.

We obtained 40 sets of estimations for each methods in Table 2
by using different random seeds in either the genetic algorithm
or stochastic simulation. For the ODE model, we used 10 different
random seeds in the genetic algorithm based on the gene express-
ion profile in the 4 cell cycles. For Methods 1 and 2, we fixed
the random seeds in stochastic simulation and used five different
random seeds in the genetic algorithm to obtain 20 sets of estima-
tions, and then fixed the random seed in the genetic algorithm
and used five different random seeds in the stochastic simulations
to obtain another 20 sets of estimations. The 40 sets of estimations
obtained from Method 2 are presented in Figure 4.

We calculated the mean and standard deviation of the 40 sets
of estimations obtained from these three methods. The AREs in
the top part of Table 2 again indicate that the ODE model is not
appropriate for estimating kinetic rates in systems with small
molecular numbers. Estimation errors and standard deviations are
large for each parameter. Compared with the first test system,
Method 1 can give estimations with better accuracy for the second
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Table 1. Estimated kinetic rates of the first test system (8). Results are presented as (k;, d;, ARE). Exact values are (k;,d;) = (0.6,0.3466)

Dataset

ODE model

Method 1

Method 2 (normal kernel)

Method 2

[) NV, IOV SR

(0.3222, 0.1324, 0.54)
(1.9522, 1.0000, 2.06)
(2.0000, 0.9546, 2.04)
(1.2009, 1.0000, 1.44)
(2.0000, 1.0000, 2.10)
(1.5001, 1.0000, 1.69)

(0.6592, 0.3249, 0.08)
(1.8586, 1.0000, 1.99)
(1.9040, 0.7517, 1.67)
(0.1999, 0.1798, 0.57)
(1.2284, 0.6393, 0.95)
(0.5687, 0.3604, 0.05)

(0.3877, 0.2058, 0.38)
(0.0931, 0.0603, 0.83)
(0.2047, 0.1543, 0.60)
(0.1164, 0.1540, 0.68)
(0.6410, 0.6020, 0.40)
(0.1209, 0.0674, 0.80)

(0.7616, 0.3649, 0.16)
(0.5475, 0.2876, 0.12)
(0.5278, 0.2565, 0.19)
(0.4363, 0.3584, 0.15)
(0.8777, 0.4111, 0.32)
(0.3521, 0.2224, 0.38)

ARE represents averaged relative error.

system because of the relatively large protein numbers. Similar to
the results of the first system, the estimation of Method 2 has better
accuracy than that of Method 1.

We also tested the influence of the amount of data on the accuracy
of estimations. For the second test system, we used the data in
Figure 3 of the first cell cycle measured every 6, 12 or 30 min.
Estimations obtained from Method 2 are presented in the bottom
part of Table 2. If molecular numbers are measured every 6 min,
there are molecular numbers at 11 time points and this amount
of data can still ensure good accuracy of estimations although
the accuracy is not as good as that of estimations from data mea-
sured every 3 min. However, if molecular numbers are measured
every 12 min (6 time points) or every 30 min (only 3 time points),
estimations in Table 2 have not only large AREs but also large
standard derivations. Similar observations have also been found
for the ODE model and Method 1.

The third test system is the genetic toggle switch interfaced
with the SOS pathway (Gardner et al., 2000; Kobayashi et al.,
2004). This network consists of two genes, /acl and A cl, that
encode the transcriptional regulator proteins LacR and A CI,
respectively. This system is regulated by a double-negative feed-
back loop and has two distinct bistable states. Transition between
the two steady-states can be induced by a signal from the DNA
damage that temporarily moves the system out of the bistable
region. A deterministic model has been proposed for studying
the existence of bistability properties (Gardner et al., 2000;
Kobayashi et al., 2004), and a stochastic model based on the Poisson
random variables has been used to realize the bimodal population
distributions observed in experiments (Tian and Burrage, 2006).
More detailed descriptions of this system and models can be
found in (Gardner et al., 2000; Kobayashi et al., 2004; Tian and
Burrage, 2006). Here we only present the corresponding model in
terms of SDEs, given by

LS Bk}
dt dW (¢
K{ +3 * 8a1+K?+v3 1)

— dl[l + (P(S)}Mdl‘ + \/dl(l -+ ¢(S))udW2(t)

du = s(al +

B.K3 ) sB.K3
dv==celay+——= |dt+ [ear + —=dW;(t
( K ™0 )

— dyvdt + £/ szdW4(f).

A 25 T T T T
l‘g 20+~ 1
*
g 15+ 4
= *
¢ | * |
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£
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Fig. 3. Molecular numbers of gene products in every 3 min estimated from
the generated gene expression profile of the first 4 cell cycles in Figure 2 of
Swain et al. (2002). (A) mRNA numbers; (B) protein numbers.

Instead of using ¢(s) = s/(1+s) which can lead to two different
estimations, we use a linear function ¢(s) = s to represent the signal
from DNA damage. Here ¢ = 1 is a parameter associated with the
number of the toggle switch plasmid (Kobayashi ez al., 2004), and
constants in the Hill functions are K; = K> = 1 u M = 500 molecule
(Tian and Burrage, 2006). We are interested in the estimation of
kinetic rates s, «;, 3; and d; (i = 1,2). The unit of the rate constants
a; and B; in the stochastic model is molecule/min, and their values
are obtained from «a; = SOOaf-O) and B; = SOOBEO), where af()) and
BEO) are parameters in the deterministic model (Tias and Burrage,
2006). In order to reduce the searching area, we use the genetic
algorithm to find the optimal rates a?o and /3}‘”. Variables in all
three types of models are molecular numbers in this paper.
Figure 5A gives a simulation of successful switching generated
from the discrete stochastic model (Tian and Burrage, 2006) and
molecular numbers are measured every 10 min. The signal from the
DNA damage (s > 0) is applied at 7 € [10,70] min. Then we esti-
mated the values of the seven parameters based on deterministic
model (Gardner et al., 2000; Kobayashi et al., 2004), Method 1
based on the SDE model (15), and Method 2 based on the discrete
stochastic model (Tian and Burrage, 2006). Similar to the approach
used for the second test system, we obtained 10 sets of estimations
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Table 2. The mean, standard deviations and ARE of the estimations for the second test system

k d, k d, ARE
ODE model 3.442 + 1.852 0.093 + 0.144 3.383 + 1.995 761 x 107 £ 6.51 x 1072 0.736
Method 1 3.822 + 0.926 0.434 + 0.088 10.671 + 1.932 512x 1073 £3.24 x 1073 0.273
Method 2 4.735 + 1.695 0.542 + 0.168 11.056 + 1.963 547x 1073 +3.02x 1073 0.228
Method 2 (6 min) 4595 +2.115 0.538 + 0.285 10.564 + 2.647 6.20 x 1073 £ 4.86 x 1073 0.271
Method 2 (15 min) 3.205 + 1.284 0.345 + 1.33 11.597 + 2.774 7.82 %1073 +4.00 x 1073 0.528
Method 2 (30 min) 0.784 + 0.137 0.698 + 0.317 7.820 + 5.331 0.175 + 0.160 11.37
Exact 6 0.6931 10.3972 3.852x 1073 0

Upper part: estimations of the three methods based on the data measured every 3 min from the gene expression profile of the 4 cell cycles in Figure 3. Lower part: estimations of Method 2
based on the data measured every 6, 12 and 20 min, respectively, from the gene expression profile of the first cell cycle in Figure 3.

ARE represents averaged relative error.

A 10 B 1
8 0.8
[ 06
- e
4 04
2 02
a 0
o 10 20 30 40

0 10 20 30
simulations simulations
D
[ 15
10 1. o.m
0.008
o™ (3]
= © 008
i 0.004
0
0 10 20 30 40 0 10 20 30 40
simulations simulations

Fig. 4. Forty different estimations by using Method 2 for the kinetic rates of the
second test system (14) based on molecular numbers in Figure 3. The exact
values of these rates are (11, dy, 12, d») = (6,0.6931, 10.3972, 3.852x 10~ %) that
are presented as a horizontal line in each figure. (A) ry; (B) dy; (C); 123 (D) ds.

from each method and presented the mean, standard deviation and
ARE of these estimations in Table 3. Compared with the first and
second test systems, the ODE model can give relatively better
estimations because molecular numbers in this system are relatively
large. Estimations from stochastic models have better accuracy than
that of the ODE model. The accuracy of Method 1 is even slightly
better than that of Method 2. In addition, we simulated these three
mathematical models by using the estimated parameters in Table 3.
Simulations in Figure 5 indicate that only the estimation from
Method 2 can keep the molecular numbers at the steady states of
the original simulation in Figure SA. Furthermore, simulations with-
out a signal from DNA damage (s = 0) indicate that only the
estimation from Method 2 can maintain the bistability property
and genetic switching of the original system.

4 DISCUSSIONS

In this paper, we have developed the SML method for estimating
kinetic rates in genetic regulation. Concentrating on gene expres-
sion processes with small molecular numbers, we used stochastic

A s B o500
5 2
8 2000] 3 2000
E £
2 1500; 2 1500
= i
5 - ks
3 1000 . 3 1000
@ % a
o I (o]
g s g sonf
0 i 0
0 20 40 60 80 100 o 20 40 80 80 100
time time
C a0 D 2500
@ | @ -
8 2000 8 2000
E E
2 1500 2 1so0f |
= o
i) | @
3 1000 3 1000
@ 2
S | S
g oo g so
o 20 40 B0 a0 100 0 20 40 B0 B0 100
time time

Fig. 5. Simulations of the genetic toggle switch system. (A) A simulation of
the discrete model (Tian and Burrage, 2006) with a; = a, = 0.2 X500, B, =
B>=4x500,andd, =d, =1.5=0.66 (t €[10,70]) and s = 0 elsewhere. Data
are measured at every 10 min. (B) A deterministic simulation of the ODE
model by using the estimation of the ODE model in Table 3; (C) A stochastic
simulation of model (15) by using the estimation of Method 1 in Table 3; (D)
A stochastic simulation of the discrete model by using the estimation of
Method 2 in Table 3. (Line: u; dash-line: v)

models described by either SDEs or discrete biochemical reactions
that give better descriptions of gene expression than deterministic
models. Numerical results indicate that only the SML method based
on discrete biochemical reactions can give robust estimations of
kinetic rates with good accuracy when molecular numbers are small.
If molecular numbers in the system are relatively large, the SML
method based on either discrete biochemical reactions or SDEs can
give robust estimations with good accuracy. Although we concen-
trated on estimating kinetic rates in genetic regulation, the proposed
SML methods set up a general framework for estimating parameters
in stochastic models of biochemical reaction systems and ecological
systems where noise plays a very important role.

The transitional density function measures the transitional proba-
bility of the system states and is approximated by a non-parametric
kernel function. When gene products are measured by molecular
numbers, we have shown that the frequency distribution is a good
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Table 3. The mean, standard deviations and ARE of the estimations for the third test system

) B as B> d, d, s ARE
ODE model 0.028 = 0.021 0.15£0.15 0.34 £ 0.34 1.13 £ 0.98 1.60 = 0.41 0.99 £ 0.76 0.92 +£0.48 0.62
Method 1 0.11 £0.24 1.78 + 3.37 0.25 £ 0.30 295+ 149 1.59 + 0.42 1.59 £ 0.55 0.83 +£0.70 0.43
Method 2 0.34 + 0.06 6.17 £ 1.28 0.31 £ 0.19 4.86 + 1.47 1.54 £ 0.22 1.25 + 0.37 0.94 + 0.46 0.46
Exact 0.2 0.2 4 4 1 1 0.66 0

ARE represents averaged relative error.

non-parametric kernel. We may also use a specific discrete proba-
bility distribution to approximate the transitional density function,
but the accuracy of estimations strongly depends on the assumption
that the simulated molecular numbers follow this specific distribu-
tion. We have used the Poisson distribution to approximate the non-
parametric density function. Although the estimated kinetic rates for
the first system have good accuracy, simulated results for the second
system have large errors because the simulated protein number does
not follow a Poisson distribution (data not shown).

Another important issue in the application of the SML method is
computational efficiency. When using the genetic algorithm to
search for optimal kinetic rates, hundreds of generations should
be simulated and there are tens to a hundred individuals in each
generation. For each individual, a large number of trajectories are
required to ensure the accuracy and robustness property of the SML
method. Thus any slight improvement in the efficiency of
each stochastic simulation means significant improvement on the
efficiency of the SML method. In this approach the SSA and Poisson
7-leap method have been used to simulate small-scale biochemical
reaction systems. When the number of biochemical reactions or
molecular numbers of certain species are relatively large, other
simulation methods should be employed to accelerate stochastic
simulations. Recently, there has been significant progress in
the development of efficient methods for simulating biochemical
reaction systems including the 7-leap method (Gillespie, 2001; Tian
and Burrage, 2004a; Chatterjee et al., 2005a; Cao et al., 2005) and
the multi-scale simulation methods (Rao and Arkin, 2003; Haseltine
and Rawlings, 2002; Burrage et al., 2004b; Puchalka and Kierzek,
2004; Salis and Kaznessis 2005; Weinan et al., 2005; Samant and
Vlachos, 2005), and in the development of effective computer pro-
grams (Kierzek, 2002; Chatterjee et al., 2005b; Salis et al., 2006).
More work is needed to develop sophisticated computer programs in
order to increase the efficiency of the SML method for estimating
parameters in complicated biochemical reaction systems.

Because of the possible local optima in the genetic algorithm
and the finite number of simulations in the stochastic simulations,
different estimations can be obtained by using different random
seeds in either the genetic algorithm or stochastic simulation.
It may be more reasonable to use the mean of these estimations
obtained from different random seeds in the stochastic simulations
rather than to use the mean of the estimations obtained from
different random seeds in the genetic algorithm, although the
latter is a normal approach in the machine learning algorithms.
However, more information from biological systems, such as the
bistability and genetic switching in the genetic toggle switch
system, should be used as additional criteria to select an appropriate
estimation.

Stochasticity in gene expression may result from small numbers
of gene products, intermittent gene activity, fluctuations of the
activity of transcriptional factors and environmental variability.
In addition, recent studies in the gene expression of single cells
indicate that gene expression should be represented by a number
of ‘burst’ processes (Golding et al., 2005; Yu et al., 2006). More
work is needed to develop stochastic models for regulatory
networks by including both intrinsic and extrinsic noise, transcrip-
tional regulation, ‘burst’ processes and time delay in transcription
and translation. The next step should be based on the application of
the SML method to more sophisticated stochastic models that can
reflect the most recent progress in the study of gene expression.
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