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ABSTRACT

Motivation: Statistical inference of biological networks such as gene

regulatory networks, signaling pathways and metabolic networks

can contribute to build a picture of complex interactions that take

place in the cell. However, biological systems considered as

dynamical, non-linear and generally partially observed processes

may be difficult to estimate even if the structure of interactions

is given.

Results: Using the same approach as Sitz et al. proposed in another

context, we derive non-linear state-space models from ODEs

describing biological networks. In this framework, we apply

Unscented Kalman Filtering (UKF) to the estimation of both

parameters and hidden variables of non-linear state-space models.

We instantiate the method on a transcriptional regulatory model

based on Hill kinetics and a signaling pathway model based on mass

action kinetics. We successfully use synthetic data and experimental

data to test our approach.

Conclusion: This approach covers a large set of biological networks

models and gives rise to simple and fast estimation algorithms.

Moreover, the Bayesian tool used here directly provides uncertainty

estimates on parameters and hidden states. Let us also emphasize

that it can be coupled with structure inference methods used in

Graphical Probabilistic Models.

Availability: Matlab code available on demand.

Contact: florence.dalche@ibisc.univ-evry.fr

Supplementary information: Supplementary data are available from

http://amisbio.ibisc.fr/dm

1 INTRODUCTION

Cellular networks (Elowitz and Leibler, 2000; Klipp and

Liebermeister, 2006) implement complex mechanisms that

enable the cell to respond through time to input signals.

Identifying the structure and the parameters of these networks

from experimental data is undoubtedly one of the most

important challenges in systems biology. Recently, several

directions have been simultaneously but independently explored

in reverse engineering of metabolic networks, signaling

pathways and transcriptional regulatory. This diversity of

approaches is essentially due to the kind of available data.
In the case of metabolic pathways, various modeling frame-

works from Flux Balance Analysis (FBA) to Ordinary

Differential Equations (ODEs) have been developed. As

modelers in this domain often benefit from an important

background knowledge, much of the current work is focused on

model refinement (Herrgard et al., 2006) using perturbation

data. Only few works concern parameter estimation of ODEs

with a strong assumption about the network structure.
Regarding signaling pathways, most of the related work in

the modeling literature (Klipp and Liebermeister, 2006) also

considers that the structure of signaling pathways is known.

In this case, the most important task becomes the estimation of

(generally) non-linear models based on Hill or mass action

kinetics.
On the contrary, in modeling transcriptional regulatory

networks, the availability of mRNA concentrations has led

researchers to develop algorithms for the estimation of both

parameters and structure from prior knowledge and experi-

mental data (Nachman et al., 2004; Perrin et al., 2003; Rangel

et al., 2004).
While differences can be stressed between gene regulatory

networks, signaling pathways and metabolic networks (Klipp

and Liebermeister, 2006), we adopt here a transversal point of

view and propose to solve in a unique framework the parameter

estimation task when the structure of the network is known. We

notice that whichever biological network is under study

(metabolic, signaling or regulatory), some of its variables may

not be observed, increasing the difficulty of the estimation task.

We thus suggest the use of a general framework based on state-

space models that accounts not only for non-linear dynamics

but also for partially observed systems. Similarly to Sitz et al.’s

(2002) work developed in a non-biological context, we derive

such models from well-grounded Ordinary Differential

Equations used in systems biology. This broadens our ability

to cover a large variety of biological systems and establishes a

bridge between dynamical graphical models and ODEs used in

Systems Biology. In non-linear systems, the statistical learning

problem is no longer solved in closed form as opposed to linear

systems and this raises computational difficulties. In this work,

we have chosen to use Unscented Kalman Filtering to tackle*To whom correspondence should be addressed.
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non-linearities. Among other Bayesian approaches, this one is
fast and relatively easy to implement. It can be considered as a

first step towards more sophisticated approaches such as

particle filtering. We illustrate the efficiency of this framework

by estimating the parameters and hidden variables of two

different systems. The first system is the Repressilator, a

synthetic transcriptional regulatory network proposed by

Elowitz and Leibler (2000) in order to exhibit how sustained

oscillations can be obtained through a simple system of three

repressors. We use Michaelis–Menten kinetics with Hill curves

to describe it.
The second system under consideration is the JAK-STAT

signaling pathway (Swameye et al., 2003; Zi and Klipp, 2006)

which takes part in the regulation of cellular responses to

cytokines and growth factors. Following the setting introduced

by Zi and Klipp (2006), we study the parameter and hidden
variables estimation problem when using mass action dynamics.

We show by our derivations that the same state-space model

can encompass these two kinds of modeling. Both on artificial

and experimental data, the estimation method performs
successfully.

2 MODELING BIOLOGICAL NETWORKS WITH
NON-LINEAR STATE-SPACE MODELS

Let us consider a biological network composed of px variables

evolving with time, denoted x ¼ ðx1; . . . ;xpx Þ. The vector x(t) is
supposed to represent the state of the network at time t, which

is observed at Nþ 1 times t0¼ 05t15. . .5tN, The graph

structure of the network is known. Thus the functional nature
of interactions is contained in a parameter y and the state

evolves in the following way for n� 0

xnþ1 ¼ Fnðxn; �Þ: ð1Þ

The function Fn has to be chosen according to the kind of

network considered (metabolic, signaling or regulatory path-

ways). We assume that, for biological or experimental reasons,

the states xn may not be accessible and we can only observe the

variables y ¼ ðy1; . . . ; ypy Þ through the observation functions

On, n¼ 0, . . . , N

yn ¼ Onðxn; �Þ þ �
o
n: ð2Þ

�on is a measurement noise chosen as a centered Gaussian noise

with covariance Rn. The model defined by Equations (1) and (2)
is a state-space model, frequently encountered in engineering

science. In general state-space models, x can have a stochastic

evolution, so equation (1) may be replaced by the more general

one xnþ1 ¼ Fnðxn; �
x
n; �Þ, with ð�xnÞn�0 being a white noise. This

assumption also has a biological motivation; for instance,

McAdams and Arkin (1999) have shown the intrinsic random-

ness of gene regulatory networks, where x represents gene

expression levels and concentrations of transcription factors in

the cell. Our goal is to provide a general learning framework in

which parameters and hidden variables can be estimated from a

time series y0:N¼ (y0, . . . ,yN).

2.1 Deriving non-linear state-space models from ODEs

Quantitative models of biological networks are usually based

on Ordinary Differential Equations (ODE), which means that

the state of the networks is supposed to satisfy the following

ODE

_xðtÞ ¼ fðxðtÞ; uðtÞ; �Þ: ð3Þ

There exist several ways to link state-space models with ODEs,

for instance by discretizing time (Perrin et al., 2003). Contrary

to the use of integration though time, this implies several

limitations for the sampling interval of the observations.

Similarly to Sitz et al.’s approach (Sitz et al., 2002), we notice

that when the state is observed at finite times (tn0� n�N), its

evolution can be cast into (1) with functions Fn and x(tn)¼ xn
for n� 0

Fnðxn; hÞ ¼ xn þ

Z tnþ1

tn

fðxð�Þ; uð�Þ; hÞd�: ð4Þ

In general, the transition from xn to xnþ1 is time-dependent:

first, because of uneven sampling times [even if the ODE (3) is

autonomous] and second, because of the presence of a

time� dependent input variable. Finally, the network can be

partially observed and the observation process is usually

described by Equation (2) with On(�, h)¼ o(�) being a function

independent of n and y. In the following, we show that this

framework encompasses both models of transcriptional reg-

ulatory networks and models of signaling pathways.

2.2 Modeling transcriptional regulatory networks with

Hill equations

In transcriptional regulatory networks, variables of interest

are mRNA and protein concentrations, denoted respectively

by ri and pi, i¼ 1, . . . ,d. Let us make the assumption here that

one gene can only produce one protein. We consider trans-

cription and translation as dynamical processes, in which

the production of mRNAs depends on the concentrations

of protein transcription factors (TFs) and the production

of proteins depends on the concentrations of mRNAs.

Hence, we have x(t)¼ (r(t)>, p(t)>)> with r(t)¼ (r1(t), . . . , rd(t))
>

and p(t)¼ (p1(t), . . . ,pd(t))
>. Equation (3) can be split into

the following equations:

_ri ¼ giðpÞ � kgi ri; ð5Þ

_pi ¼ kiri � kpi pi: ð6Þ

Where kgi and kpi are respectively the degradation rates of

mRNA i and protein i. The function gi describes how TFs

regulate the transcription of gene i and Equation (6) describes

the production and the degradation of protein i as linear

functions where ki is the translational constant for gene i (Chen

et al., 1999).
Various forms have been proposed to model gi(p), ranging

from linear (Chen et al., 1999) to non-linear approaches (de

Jong, 2002; Elowitz and Leibler, 2000; Nachman et al., 2004;

Smolen et al., 2000). Experimental evidence has suggested that

the response of mRNA to TFs concentrations has a Hill curve

form (de Jong, 2002; Elowitz and Leibler, 2000). The regulation

function of transcription factor pj on its target gene i can be

described by gþðpj; v
max
i ; kij; nÞ ¼ vmax

i ðp
n
j =k

n
ij þ pnj Þ for the acti-

vation case and g�ðpj; v
max
i ; kij; nÞ ¼ vmax

i ðk
n
ij=k

n
ij þ pnj Þ for the

inhibition case. vmax
i is the maximum rate of transcription of
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gene i, kij is the concentration of protein pj at which gene i

reaches half of its maximum transcription rate and n is a

steepness parameter describing the shape of sigmoid responses.

The parameter ¼ ðvmax
i ; kij; k

g
i ; ki; k

g
i ; nÞ for i, j¼ 1, . . . , d is the

set of kinetic constants to be estimated. Note that if a gene has

several regulators, the regulatory part of the Equation (5) can

be extended into a product of functions gþ and g� that

expresses the combined effect of regulators. However, we

consider here examples where the genes have only one

regulator.

Elowitz and Leibler (2000) introduced the Repressilator, a

synthetic network based on three transcriptional repressors in

order to implement the desired dynamical behavior (sustained

oscillations) as illustrated in Figure 1. The system was also built

experimentally by genetic engineering with mutated Escherichia

coli strains. Despite the simplicity of the transcriptional

regulation model, the negative feedback loop leads to oscillat-

ing concentrations confirmed by experiments. The kinetics of

the system can be described by six coupled ODEs, which exactly

fit the framework previously described and can be translated

into a discrete-time state-space model of form (1). The hidden

variables are the protein concentrations with evolution as in

Equation (6), and the observations are the (noisily) observed

mRNA concentrations ri, i¼ 1, . . . , 3 which satisfies:

_riðtÞ ¼ g�i ðp½iþ1�; v
max
i ; ki½iþ1�; nÞ � kgi riðtÞ

where [iþ 1] equals iþ 1 modulo 3.

2.3 Modeling signaling pathways: the JAK-STAT

example

Signaling pathways usually involve numerous and various

intermediate products in a complex sequence of transforma-

tions hence it is quite difficult to describe them in a general way.

Depending on the types of signals and intermediary compo-

nents, and the localization of the pathways, there exist several

relevant types of ODEs. Consequently, it seems rather difficult

to give the same wide picture as for transcriptional regulatory

networks, but most of the time we can say that the ODEs

system involves non-linear reaction rates derived from mass
action law and Michaelis–Menten (or Hill) kinetics. We focus

here on the JAK-STAT signaling pathway involved in the

cellular response to cytokines and growth factors, which

involves Janus kinases (JAKs) and Signal Transducers and

Activators of Transcription (STATs), see the graph on the right

of Figure 1. This pathway transduces the signal carried by these

extracellular polypeptides to the cell nucleus, where activated

STAT proteins modify gene expression. In both cases, there

may be some difficulties to observe the variables of the

pathway, and this gives rise to different observation functions
o from gene regulatory networks. This is particularly empha-

sized in the JAK-STAT pathway, for which it is difficult to

discriminate between several intermediates in the pathway.

Swameye et al. (2003) have suggested an ODE linking the

Erythropoietin receptor (EpoR) to the various forms of the

STAT5 protein: dephosphorylated STAT5 monomer (x1) and

phosphorylated STAT5 dimer (x2) in the cytoplasm, phos-

phorylated STAT5 dimer (x3) and STAT5 monomer (x4) in the

nucleus. In Swameye et al. (2003), the concentration of EpoR is

considered as an exogenous variable of the system. The
evolution of this network can be described by the following

system of coupled differential equations with an input variable

u(�) (EpoR), which is an adaptation of the system proposed in

Swameye et al. (2003) by Zi and Klipp (2006):

_x1ðtÞ ¼ �a1x1ðtÞuðtÞ þ 2a4x4ðtÞ1ft��g
_x2ðtÞ ¼ a1x1ðtÞuðtÞ � 2a4x

2
2ðtÞ

_x3ðtÞ ¼ �a3x3ðtÞ þ x22ðtÞ
_x4ðtÞ ¼ a3x3ðtÞ � a4x4ðtÞ1ft� �g

8>><
>>:

ð7Þ

where 1{t��} denotes the indicator function, equal to 0 for t� �
and equal to 1 otherwise. The concentrations and constants ai,

i¼ 1, 3,4 in (7) stand for normalized quantities (Zi, 2006). h ¼

(a1, a3, a4)
> is the parameter to be estimated. As pointed out by

Swameye et al., the individual STAT5 population is difficult to

access experimentally, and only the following variables could be

measured: y1¼ (x2þ 2x3), the concentration of phosphorylated

STAT5 in the cytoplasm and y2¼ (x1þ x2þ 2x3), the total

amount of STAT5 in the cytoplasm. Thus, the model and data

obtained fit the framework of the state space model described

in Section 2.1.

3 ESTIMATION WITH UNSCENTED KALMAN
FILTERING

3.1 Bayesian estimation

In a Bayesian framework, parameters as well as hidden states

are random variables. The goal of inference is to compute the

posterior distribution of parameters and initial state, p(h,

x0|y0:N), given a prior distribution �(y,x0). It is then possible to
estimate variances for parameters. Moreover, we benefit from

the large family of algorithms developed for this framework:

the state-space form given by equations (1) and (2) is exploited

for deriving a sequential estimation procedure based on

filtering. We then use an extension of Kalman filtering that

computes an approximation of the posterior probability and

which also gives an approximation of the Minimum Mean

Squared Error estimator (MMSE). This method makes it

Fig. 1. Left: repressilator. The first repressor protein, LacI inhibits the

transcription of the second repressor gene TetR whose protein product

in turn inhibits the expression of a third gene cI. Finally, CI inhibits lacI

expression, completing the cycle. Right: JAK-STAT signaling pathway.

JAK protein binds to the Erythropoietin Receptor (EpoR) and causes

the phosphorylation of STAT5 protein. Phosphorylated STAT5 protein

then forms a dimer and moves into the nucleus. In the nucleus,

phosphorylated STAT5 dimer is dephosphorylated and forms a STAT5

monomer, which finally goes back to the cytoplasm.

Estimating parameters and hidden variables
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possible to deal with hidden variables and to estimate them

quite simply.
We first recall the general principle of filtering and describe

the adaptation of the Kalman filter to the case of non-linear

evolution equations, using the Unscented Transformation

(UT). We then derive the estimation method for unknown

parameters and partially observed states and describe it for the

biological models considered in the previous section.

3.2 Filtering

In this section, we remove for sake of clarity parameter y in

Equations (1) and (2), and we describe only the estimation of

hidden states. Filtering is the sequential computation of the

posterior (or filtering) probability �n(x)¼ p(xn|y0:n) for

n¼ 0, . . . ,N (Cappé, et al., 2005). Without loss of generality,

the complete process x¼ (xn)0� n�N may be a Markov (non-

deterministic) chain, with values in X (here X � R
px ). The

computation of the filtering probability consists of the alternate

and sequential computation of the prediction probability

p(xn|y0:n�1), n�0, the so-called prediction step:

pðxnjy0:n�1Þ ¼

Z
x

pðxnjxn�1Þ�n�1ðxn�1Þdxn�1 ð8Þ

and its ‘correction’ into �n(�) (the so-called correction step) by:

�nðxnÞ ¼
pðynjxnÞpðxnjy0:n�1ÞR

x pðynjxnÞpðxnjy0:n�1Þdxn
ð9Þ

We can then derive the sequence of most likely current states

characterized by x̂n ¼ argmaxx2X �nðxÞ; n ¼ 0; . . . ;N. Note

that at n¼ 0, the prediction step is replaced by setting

p(x0|y0:�1)¼
4
�(x0), where �(x0) is our prior distribution on

the initial state.

3.3 Approximate filtering

When X is a Gaussian and linear Markov process (F and o are

linear), the prediction-correction algorithm is the well-known

Kalman filter that consists of a recursive computation of the

mean and covariance of the (Gaussian) distribution �n(�). This
algorithm is no longer valid when the process X is not

Gaussian, nor when the function F is non-linear, but several

extensions have been proposed to tackle non-linearity or non-

gaussianity: Extended Kalman Filtering (EKF, Wan and van

der Merwe, 2001), Kernel Kalman Filtering (KKF, Ralaivola

and d’Alché-Buc, 2004), Unscented Kalman Filtering (UKF,

Julier et al., 2000; Wan and van der Merwe, 2001) and Particle

Filtering (PF, Doucet et al., 2001). Among the previously

published methods, we have focused on UKF that is an

approximation of the posterior distributions �n(�) by Gaussian

distributions with mean mn(x) and covariance �n(x). The UKF

has the same computational complexity as EKF but offers a

better approximation of the true covariance �n(x) and does not

require the derivatives of F to be computed. Compared to the

other filtering methods, KKF requires us to define a kernel

function that may be difficult to choose if one wants to stick to

classical equations of kinetics. PF involves several hyperpara-

meters and, unlike UKF, is based on clouds of randomly

generated points of important size that induces numerous ODE

integrations in prediction-correction steps and leads to a higher

computational cost. UKF relies on small deterministic sets of

appropriately chosen points used in order to mimic the non-

linear evolution of the state variable: the so-called sigma points

�0,n, . . . , �2px, n (px is the dimension of x). The key idea in UKF

lies in the prediction step, where the ‘unscented transformation’

allows one to compute an approximation of the mean

mnþ 1|n(x) and covariance �nþ1|n(x) of the prediction prob-

ability. The mean and covariance of the transformed

variable F(xn) (when xn has the posterior distribution �n) can
indeed be approximated simply by using the first empirical

moments of transformed sigma points chosen as �0,n¼mn(x),

�i,n¼mn(x)þQi,n and �iþpx;n ¼ mnðxÞ �Qi;n, where Qn is a

square root matrix of (2pxþ 1/2) �n(x). Other interesting

choices of sigma points are given in Julier et al. (2000).
Then, the correction step is carried out in a way similar to

Kalman filtering using the classical Kalman gain matrix Knþ 1

and the (approximate) covariance �nþ1|n(y) of the pdf p(ynþ1|

y0:n) (see Section 1 in the Supplementary Material for a

complete description of the algorithm). The sequence of

estimates (filtered process) x̂n of the hidden variables is the

sequence of means mn(x).

3.4 Bayesian estimation of parameters

We adapt here the previous general setting to the joint

estimation of hidden states and parameters. This can be

accomplished using the augmented state vector approach,

which consists in rewriting the dynamical system (1), (2):

hnþ1 ¼ hn ð10Þ

xnþ1 ¼ F ðxn; hnÞ ð11Þ

yn ¼ oðxn; hnÞ þ �
o
n ð12Þ

i.e. the parameter is considered as a hidden state without any

temporal evolution. We can use the previous UKF in order to

compute the approximation of p(hn, xn| y0:n) and we can derive

a sequence of (improving) estimates ð�̂n; x̂nÞ.
The minimizer of the squared error is approximated by mn(h).

Nevertheless, in practice mn(h) can be a spurious minimizer, and

it is recommended to perform several sweeps of the algorithm

on the data, i.e. the parameters estimated in the previous sweep

are chosen as the initial value for the next sweep.
As described for hidden states, at n¼ 0, the prediction step

is replaced by setting p(h0, x0 | y0:�1) ¼ �(y,x0). We pro-

pose using the rather non-informative hierarchical prior

�(y,x0)¼�(y)�(x0), where �
�
ðxiÞi

�
¼
Q

iNð�xi ; �
2
xi
Þ, with

�xi � U ð½0; 	i�Þ, i.e. all of the components of the vector are

independent and Gaussian, with a mean drawn according to

a uniform distribution whose support is determined by a

hyperparameter 	i computed from the data, and the variance

�2xi is a fixed value (depending on the data). However, if

a certain constraint concerning the initial value is made

available, more informative prior could be used.

The estimation procedure for the Repressilator and the JAK-

STAT model is done by considering the stacked state variable
~xn ¼ ð�

>
n ;x

>
n Þ
>. The state components of the points �i,n are

computed using by Fn(�, hn), i.e. by integration of the ODE

described in Section 2.1. For the repressilator, the 
i,n are
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vectors of dimension 3 corresponding to the gene expression

levels. For the JAK-STAT model, the 
i,n are vectors of
dimension 2 computed from �i,n by the linear combinations

x2þ 2x3 and x1þ x2þ 2x3.

4 RESULTS

We first illustrate our approach on artificial data generated

from the Repressilator model and second, on experimental data

of the JAK-STAT pathway. Simulation studies are useful in
providing insights into the strengths and weaknesses of learning

algorithms, such as robustness against numerous choices of
settings, including the quantity of observed data, the sampling

interval for observing the data, the number of time points in the
observed time series.

The size of the systems used in the experiments are quite
representative of the size of the models that the proposed

method (based on UKF) can efficiently handle, i.e. around 10
variables and parameters. In higher dimensions, the recursive

optimization using theUKF approximation can lead to spurious

minimizers, but such a limitation can be partly overcome by
using a better approximation, such as the Particle Filter. The

main limitation of the approach depends on the respective sizes
of the observed and hidden parts of the system.

4.1 Parameter estimation of the Repressilator

4.1.1 Simulated data We start from the equations given in
(2.2) and fix the following values of the parameters according to

the stability study presented in Elowitz and Leibler (2000):

k
p
1 ¼ 1, k

p
2 ¼ 2, k

p
3 ¼ 3, kg1 ¼ kg2 ¼ kg3 ¼ 1; vmax

1 ¼ 50; vmax
2 ¼ 80;

vmax
3 ¼ 100; k12 ¼ 50; k23 ¼ 30; k31 ¼ 40 and n¼ 3. The compo-

nents of the initial state are drawn independently from a
uniform distribution on [0, 100] (arbitrary units). Simulations

are performed using the MATLAB numerical integrator ode45
over the time interval [0, T], with T¼ 20. The observation

noises �on are added to three observed variables to mimic gene

expression data and the SD of �on shown in the experiments is
chosen to be equal to 20% of the SD of the states. The

robustness of the method has been tested with respect to a
higher noise level (30%, 40%), and similar results for the

estimation for the states and parameters have been obtained.

The estimated predicted variance and the variance of the

estimators increase, although no systematic divergence of the

method has been detected.

During the simulation, measurements are sampled at a fixed

interval �t, so that for each experiment a time series containing

T/�t time points is collected. We assume that the learning

problem consists in identifying the following six parameters:

vmax
1 ; vmax

2 ; v3; k12; k23 and k31 while the degradation rates for

proteins and mRNAs are known. In order to learn the true

parameters, we use a multi-start approach by sampling I¼ 50

different initial states and parameters from our prior �(y, x0),
so that we compute 50 filters in parallel. Our final state and

parameter estimates are simply the mean of the prediction of

the 50 different filters (an alternative way to combine the

different filters would be to select the filter with the lowest

prediction error). The Gaussian priors for the parameter are

such that 	i ¼ 2� �	i and ��i ¼ 0:2� �	i , and for the unobserved

variables 	i ¼ 2� xi0 and �xi0 is set to 20% of the SD of the state

xi. For the observed variables, the prior is also Gaussian with

mean �xi
0
¼ yi0 and the same formula as for the unobserved

variables is used for the SD.

4.1.2 Evaluation of parameter estimation The filtered pro-

tein concentrations and parameters using UKF are shown in

Figure 2 for �t¼ 0.2, (see also Fig. 1 in Supplementary

Material for the case of one experiment: one time series

corresponding to one initial condition). The filtered concentra-

tions of proteins quickly adjust to the true protein trajectories.

The SDs of the estimators are estimated using the square-root

of the diagonal of the matrix �n(x). Parameter estimates start

far from the true value with high SDs, but they gradually

converge to the true parameters. The small values of the final

SDs of the estimates point out the convergence of the learning

algorithm. Finally, since a single sweep of UKF on a time series

containing 100 observations takes less 5 s, our multi� start

approach gives an estimation within �250 s.

4.1.3 Dependency between the prediction error of the hidden
states and the sampling interval In order to analyze the

dependency between the prediction error and the sampling

interval, we used different sampling intervals (respectively)

�t¼ 0.2, 0.4, 0.8, 1 and 2, corresponding to (respectively) 100,
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50, 25, 20 and 10 time points. The estimates for all parameters
are reported in Table 1 of the Supplementary Material. We plot
the estimation results for parameter vmax

1 in Figure 3.

Obviously, the estimates are closer to the true values with
smaller SD when there are more time points available. In order
to compare errors for the different cases, we introduce the

normalized Mean Squared Error between the true and
estimated trajectories:

MSE ¼
1

Nþ 1

XN
n¼0

ðx̂n � xtruen Þ
>diagð��1n Þðx̂n � xtruen Þ

where �n is the covariance matrix of the UKF estimate at time

n and diag(A) is the diagonal matrix equal to the diagonal of a
square matrix A. The errors for each component of the state
variable are rescaled in order for them to be comparable

(though the covariance between the components is not taken
into account). The MSE is plotted in Figure 2 of the
Supplementary Material and increases when there are less
time points. However, a relevant result is still obtained for only

10 observed time points. As we can see in the final column of
Table 1 of the Supplementary Material, the true parameters
stands within 
� confidence interval of the estimated

parameters.

4.1.4 Dependency between the prediction error of the para-
meters and the number of repeated experiments We show here

that the influence of the number of different experiments (i.e.
time series corresponding to the observation of the same system
but with different initial conditions). The learning algorithm

can be adapted to this setting in a straightforward manner, and
we show that it is possible to deal with more difficult situations.
As an illustration, we assume that the parameters k1, k2, k3 are
also unknown, so that we have to estimate nine parameters

from several time series (with 50 observations each). The MSE’s
obtained for a number of experiments varying from 1 to 6 are
reported in Figure 4 of the Supplementary material. The MSE

decreases when more experiments are available. One notes that
three different experiments provides the same mean level of
MSE as six experiments but with higher variance. This may

help in designing experiments and gives some hints for
obtaining accurate estimates of the parameters from only a

few experiments. We also plot the estimation of parameter vmax
1

versus the number of repeated experiments in Figure 3 of the

Supplementary Material. The estimated parameter tends to the

true value with smaller SDs when the number of experiment
increases.

4.2 Parameter estimation for the JAK-STAT pathway

model using experimental data

Experimental data of JAK-STAT pathways from Swameye
et al. (2003) was used. Time series of two observed variables

y1 (the total concentration of phosphorylated STAT5) and

y2 (the total concentration of STAT5 in the cytoplasm) are
measurable. Each time series contains 16 time points sampled

at t¼ [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 40, 50, 60]

min. Data for the input EPoR phosphorylation is also
available. Here, we use a linear interpolation in order to

obtain a continuous time input. We initialize the parameters a1,

a3, a4 and the initial condition x1 independently with a uniform
distribution on [0,5]. We plot the normalized MSE between the

predicted time series and the data in Figure 4 of the

Supplementary Material. The convergence of this curve shows
the stability of the learning algorithm, and ensures that we have

reached a local minima. Eventually, the parameter estimates
(with SDs) are â1 ¼ 0:0515
 0:0055, â3 ¼ 3:39
 0:45 and

â4 ¼ 0:35
 0:047, and the prediction for the observed variables

y1 and y2 are shown in Figure 5, which shows a good fit of the
learned model. We also check the coherence of the estimation

by simulating the JAK-STAT pathway with these estimates. A

new time series x? is simulated from (7) with initial conditions
x1¼ 0.2, x2¼ x3¼ x4¼ 0 and the estimated parameters. The

result in Figure 5 showed that the learned model is able to

predict well the four unobserved components of x?, so we may
have a higher confidence in the prediction of the unobserved

variables.

5 DISCUSSION

The approach we derived for non-linear biological systems has
already been proposed in another context by Sitz et al. (2002).

However, the present work is a novel application of this

approach in Systems Biology, which opens new perspectives in
estimating non-linear biological systems. So far, linear state-

space models have been mainly used for transcriptional
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regulatory networks. Perrin et al. (2003) proposed IDBN

(Inertial Dynamic Bayesian Network), a second-order linear

ODE model that accounts for inertia and allows us to represent

damped oscillations: in this model hidden variables are the true

mRNA concentrations and their derivative. Parameters and

hidden variables have been estimated in this context by linear

Kalman filtering and smoothing (d’Alché-Buc et al., 2005).

Rangel et al. (2004) introduced also a linear dynamical

probabilistic model for which the biological interpretation is

less explicit but this work has been interestingly followed by a

study on hidden variable estimation in Beal et al. (2005).

However, a higher level of detail is often required in order to

improve the biological relevance of the models. This is why

Nachman et al. (2004) suggested a non-linear state-space model

based on Michaelis–Menten equations but only to cope with

transcription factors. In their model as well as in Rogers et al.

(2007), the equation taking into account protein production

and degradation is not used. Our model in the case of

regulatory networks can thus be seen as an extension to a full

modeling of protein and mRNA concentrations through time.

Another interest in the state-space interpretation of ODE

model lies in the access to new estimation methods, which could

be faster than classical ones and could also be able to

incorporate priors on the system. Indeed, most of the methods

proposed so far for signaling pathway consist of the minimiza-

tion of a least squares criterion (Li et al., 2005; van Riel and

Sontag, 2006) without any regularization term. Even when the

model is slightly complex (around 10 variables), the minimiza-

tion step requires special care in order to reach the true

maxima, because classical local optimization methods (gra-

dient-based or Newton-like) are doomed to reach local minima.

In the end, global optimization techniques have been proposed

in order to solve these problems such as simulated annealing,

evolutionary algorithms, (Koh et al., 2006; Moles et al., 2003;

Polisetty et al., 2006). These techniques are batch methods that

do not use the recursive structure induced by the ODE model.

In contrast to the former, the alternate regression (Chou et al.,

2006) or the system perturbation method (Schmidt et al., 2005)

exploit the particular structure of the learning problem in order

to derive relatively simple algorithms. Our method takes

advantage of the dynamical nature of the model by implement-

ing a recursive optimization. Though the UKF is only able to

reach a local minimum of the posterior probability, it delivers a
sequence of estimated states x̂n and parameters �̂n which are
likely for all the intermediate estimation problems with

observations y0:n. This sequence of estimates remains plausible,
at least when the initial conditions are correctly chosen (which
can be done in some case with the literature). We have used in

our experiments simple priors (flat or Gaussian priors), but
Bayesian estimation may benefit from more elaborated prior
distributions in order to favor meaningful regions of the

parameter and state spaces. Moreover, the most striking
property of this estimator is its ease of implementation and
above all its speed, which is an advantage over global

optimization methods. One should also note that the variance
of the estimator ðx̂N; �̂ Þ is simultaneously computed, whereas it
is not straightforward to compute it in batch methods since the

model can be too complex to be done analytically or
approximately. Moreover, our estimation method can still be
enhanced by the use of smoothing probabilities and the

promising results of UKF calls for more sophisticated filtering
approaches such as particle filtering.

6 CONCLUSION AND PERSPECTIVES

We have presented non-linear state-space models for describing
biological networks and non-linear filtering approaches to
estimate both parameters and hidden variables. As the models

are built up from ODEs, they benefit from all the existing
background in biological modeling with ODEs and thus are
ensured to exhibit high biological relevance. This point was

illustrated on two different kinds of networks models: a
transcriptional regulatory model based on Hill kinetics and a
signaling pathway model based on mass action kinetics. Let us

notice that, given the type of equations we already dealt with,
there is no reason not to apply this approach to model

metabolic networks and to estimate their parameters as soon as
experimental data are available. Moreover, this work raises
several issues that encourage further works. First, our estima-

tion algorithm like others in literature requires time series of
sufficient length to be efficient. In this case, we need to reduce
the complexity of the parameter space by introducing relevant

biological priors. The Bayesian framework we use is appro-
priate for this. Second, large networks with large number of
parameters may not be identifiable. In order to overcome this

limitation, we suggest applying the decompositional scheme
developed in Koh et al. (2006) in order to work only on
subnetworks. Third, it should be emphasized that our

parameter estimation method can be coupled with any of the
classical structure learning schemes used in graphical probabil-
istic models (MCMC, evolutionary approaches) in order to

fully reverse-engineer biological networks. Finally, it should
also be stressed that this framework could account for joint
modeling of metabolic, signaling and regulatory networks if

one can deal with the various time scales and has access to
appropriately observed time series.
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