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1 Introduction

The aim of this document is to derive the filtering equations for the simplest
Linear Dynamical System case, the Kalman Filter, outline the filter’s im-
plementation, do a similar thing for the smoothing equations and conclude
with parameter learning in an LDS (calibrating the Kalman Filter).

The document is based closely on Bishop [1] and Gharamani’s [2] texts,
but is more suitable for those who wish to understand every aspect of the
mathematics required and see how it all comes together in a procedural
sense.

2 Model Specification

The simplest form of Linear Dynamical System (LDS) models a discrete time
process where a latent variable h is updated every time step by a constant
linear state transition A with the addition of zero-mean Gaussian noise 7":

hi = Ahy_1 + 7" where ' ~ N(0,2p)
= p(ht|ht_1) ~ N(Aht_l, EH) (21)

This latent variable is observed through a constant linear function of the
latent state B also subject to zero-mean Gaussian noise n°:

vy = Bhy +n;  where n; ~ N(0,Xy)
ép(?}t’hﬂ ~ N(Bht,zv) (22)

We wish to infer the probability distribution of h; given the observations up
to that point in time vy, i.e. p(h¢|vi.e), which can be expressed recursively.

Starting with an initial distribution for our latent variable given the first
observation:

p(ha|v1) o< p(vilhi)p(h1)

and the assumption that hq has a Gaussian distribution:

p(h1) ~ N(po, o5)



values for p(h¢|vi) for subsequent values of ¢ can be found by iteration:

p(hilvie) = p(he|ve, v1:-1)
_ plhe, velvre—1)
B p(vilvie—1)
o p(he, velvre—1)

= / p(he, ve|vie—1, hi—1)p(he—1|v1:0—1)
hi—1

:/ P(ve|v1:e—1, he—1, he)p(Re|he—1, v1:0—1)p(hi—1|v1:4-1)
hi—1

heLlvyg—1|hi—1 = P(ve|v1:e—1, he—1, he) (R he—1)p(he—1|v1:4—1)
hi—1
vpLhiq|vie—1, he = p(ve|vie—1, he)p(he|he—1)p(he—1|v1:4-1)
hi—1
= / p(velhe)p(hehe—1)p(he—1]v1:0-1) (2.3)
hi—1

The fact that the distributions described in (2.1) and (2.2) are both Gaussian
and the operations in (2.3) of multiplication and then integration will yield
Gaussians when performed on Gaussians, means that we know p(h¢|vy.) will
itself be a Gaussian:

p(helvie) ~ N(pe, 07) (2.4)

and the task is to derive the expressions for y; and o?.

3 Deriving the state estimate variance

If we define Ah=h —E [ﬁ], where h denotes the actual value of the latent

variable, h is its estimated value, £ [il} is the expected value of this estimate

and F' as the covariance of the error estimate then:
Fyi—1 = E[AhAR] ]
= E [(ADh1 + An)(AAR - + AT

=K

——

(AAR_ 1 Ahy 1 TAT + AnhAntT + AnhATARL | + AAR,_ AT
= AE [Ahy 1 ART ] AT +E [AannfT}
= AF 141 AT + Sy (3.1)

The subscript in Fy;_; denotes the fact that this is F’s value before an
observation is made at time ¢ (i.e. its a priori value) while Fy, would denote
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a value for Fy, after an observation is made (its posterior value). This more
informative notation allows the update equation in (2.1) to be expressed as
follows:

]Alt\t—l = AiLt—1|t—1 (3.2)

Once we have an observation (and are therefore dealing with posterior val-
ues), we can define ¢; as the difference between the observation we’d expect
to see given our estimate of the latent state (its a priori value) and the one
actually observed, i.e.:

€ = UVt — Bilt\tfl (3-3)

Now that we have an observation, if we wish to add a correction to our a
priori estimate that is proportional to the error €; we can use a coefficient
K:

iLt\t = ﬁt\t—l + Keg (34)

This allows us to express Fy; recursively:

Ft\t = Cov(ht — Bt|t)
= Cov(h — (izﬂt_l + Ker)
= Cov(hy — (Bt|t_1 + k(v — Bilt|t—1)))
= Cov(hy — (izt|t,1 + k(Bht + 1y — Bilt|t—1)))
= Cov(hy — flﬂt_l — kBhy — knf + HBilﬂt—l)
=Cov((I — kB)(hy — ]Alt\t—l) — K1)
— Cou((T — wB)(he — hujp—1)) + Cov(sr)
= (I —kB)Cov(h; — iLt|t71)(I - HB)T + “COU(U;))HT
= (I - kB)Fy_1(I — B)" + kSyr"
= (Fyj—1 — kBFy 1)1 — kB)T + kv’
= Fyy1 — kBFy 1 — Fye 1 (kB)T + kBFy 1 (kB)" + sSyw"
= Fyy—1 — kBFy—1 — Ft|t—1BT’fT + H(BFﬂt—lBT +3y)r" (3.5)

If we define the innovation variance as S; = BFt‘t,lBT + Yy then (3.5)
becomes:

Ft‘t - Ft‘t—l - I{BFﬂt—l - Ft|t_1BT/‘{aT “I‘ /{St/’/f/T (36)



4 Minimizing the state estimate variance

If we wish to minimize the variance of Fy;, we can use the mean square error
measure (MSE):

~ 2 ~
E Uht - hﬂt‘ } = Tr(Cov(hy — hyy)) = Tr(Fyy) (4.1)

The only coeflicient we have control over is k, so we wish to find the x that
gives us the minimum MSE, i.e. we need to find x such that:

5TT(Ft|t) .
0K
STr(Fy;_1 — kBF,;_1 — Fy;_1BTkT + kS;rT
(2.6)@ ( tlt—1 t|¢ 1(5 tle—1 t ):O
K
=K = Fy,_BTS; " (4.2)

This optimum value for x in terms of minimizing MSE is known as the
Kalman Gain and will be denoted K.

If we multiply by both sides of (4.2) by SK7:
KSK" = Fy, 1BTK" (4.3)
Substituting this into (3.6):

Fyy = Fyy1 — KBFy 1 — Ft|t—1BTKT + Ft\t—lBTKT
= - KB)Ft|t—1 (4.4)



5 Filtered Latent State Estimation Procedure (The
Kalman Filter)

The procedure for estimating the state of h;, which when using the MSE
optimal value for k is called Kalman Filtering, proceeds as follows:

1. Choose initial values for h and F (i.e. ilo|0 and Fyg).

2. Advance latent state estimate:
ht\t—l = Aht—1|t—1

3. Advance estimate covariance:
Fy1=AF,_1;_1 AT + 3y

4. Make an observation v;

5. Calculate innovation:
€ = UVt — Bht\tfl

6. Calculate S;:
Sy = BF;;_1BT + Xy

7. Calculate K:
K = Fy_BTS;!

8. Update latent state estimate:
hyg = hyjp—1 + Key

9. Update estimate covariance (from (4.2)):
Ft\t = (—7 - KB)Ft|t71

10. Cycle through stages 2 to 9 for each time step.

Note that Bﬂt and Fy, correspond to py and o? from (2.4).



6 Smoothed Latent State Estimation

The smoothed probability of the latent variable is the probability it had a
value at time ¢ after a sequence of T observations, i.e. p(h¢|vi.7). Unlike the
Kalman Filter which you can update with each observation, one has to wait
until 7" observations have been made and then retrospectively calculate the
probability the latent variable had a value at time ¢ where t < T'.

Commencing at the final time step in the sequence (t = T') and working
backwards to the start (¢ = 1), p(h¢|v1.7) can be evaluated as follows:

p(he|viT) =/ p(he| g, vir)p(higa|vir)
hit1
hiLvegr.p|higr = p(helhigr, vir) = p(helhegr, viee)

p(ht|U1:T) Z/ p(ht|ht+1,Ul:t)p(htﬂ’vl:T)
hit1

/ p(hes1, helvie)p(hesa|vrr)
hit1
p(hegi|vie)
X / p(hes1, helvie)p(hesa|vrr)
hit1

= / p(hes1|he, vie)p(hevre) p(hesr lvrr)
hit1

hip1Lvig|hy = P(hesalhe)p(he|vre)p(hest|vir) (6.1)
hit1



As before, we know that p(h¢|vi.z) will be a Gaussian and we will need to
establish it’s mean and variance at each ¢, i.e. in a similar manned to (2.4):

p(helorr) ~ N(hi, FY) (6.2)

Using the filtered values calculated in the previous section for IA”Lt‘t and Fy
for each time step, the procedure for estimating the smoothed parameters
hi and Fy works backwards from the last time step in the sequence, i.e. at
t =T as follows:

1.

2.

Set hi. and F7} to fLT|T and Frp from steps 8 and 9 in section 5.

Calculate Aj:
Af = (AFy) " (AR AT + )71

Calculate S;:
St = Ft|t - AZ?AFt\t

Calculate the smoothed latent variable estimate hj:
hi = Ay + by — A Ay

Calculate the smoothed estimate covariance F:
Fp = L [(AFg AT + 57) + (A7 Fp AT + 57) ]

Calculate the smoothed cross-variance X;:
X7 = AP FY + hihy),
Cycle through stages 2 to 6 for each time step backwards through the
sequence from t =T to t = 1.



7 Expectation Maximization (Calibrating the Kalman
Filter)

The procedures outlined in the previous sections are fine if we assume that
we know the value in the parameter set 6 = {,ug, ag,A, Yu,B, EV} but in
order to learn these values, we will need to perform the Expectation Maxi-
mization algorithm.

The joint probability of T' time steps of the latent and observable variables
is:

T T
p(haer, vrr) = p(ha) [ [ p(hel 1) T [ p(vele) (7.1)
i=2 i=1

Making the dependence on the parameters explicit, the likelihood of the
model given the parameter set 6 is:

!

T
p(haar, v1710) = p(halpo, o8) [ [ p(helhe—1, A, Su) [ [ (vl e, B, Zv)
t=2 t=1
(7.2)

Taking logs gives us the model’s log likelihood:

T T
Inp(hy.7, v1.7|0) = Inp(h1|puo, 0’(%) + Zlnp(hﬂhtfl, A Xy) + Zlnp(vtlht, B,Xy)
t=2 t=1
(7.3)

We will deal with each of the three components of (7.3) in turn. Using V'
to represent the set of observations up to and including time ¢ (i.e. wv1y),
H for hy.p, 99 to represent our parameter values before an iteration of the
EM loop, the superscript n to represent the value of a parameter after an
iteration of the loop, ¢ to represent terms that are not dependent on pgy or
03, A to represent (03)~! and Q = E (gt [Inp(H, V|0)] we will first find the
expected value for p(h1|uo, o3):

1 1
Q= —iln ’0’3‘ — EH|90ld [Q(hl - MO)T)‘(hl - MO)] t+c

1 1
=5 o5 | — 5 Erjgeta [T Ahy — hi Apo — pd At + pd Apo] + ¢
1
= (1A = 77 [NE s [mahT = hapif — ok + popd]|) + ¢

(7.4)



In order to find the pp which maximizes the expected log likelihood described
n (7.4), we will differentiate it wrt po and set the differential to zero:

09 oxp — 20E [hn] =
5#0
= ul = E[hy] (7.5)

Proceeding in a similar manner to establish the maximal A:

1)
§f§< E [hih]] —E (] ] — o (7] + puou) = 0

=E [mhi] —E[m]E [h]] (7.6)

In order to optimize for A and Xy we will substitute for p(h¢|hi—1, A, Xpr)
n (7.3) giving:

T
T-1
Q = — 5 ID|ZH| — ]EH‘gold [22 — Ah;_ 1 TZ (ht — Ahtfl)
t=2

—_

+c

(7.7)

Maximizing with respect to these parameters then gives:

- (ET:E [hth;‘F_l]) (iE [hth$_1]>_1 (7.8)

t=2

T

1

S = Z; {E [heh? ] — A"E [he_1hT] — E [hh? ] A" + A"E [hy_1hT ] (A")T}
t=

(7.9)

In order to determine values for B and ¥y we substitute for p(vi|h¢, B, Xy)
in (7.3) to give:

T

1
= Z(Ut - Bht)TE‘;l(Ut - Bht)

T
Q= —§1n|2\/] — Eppota 2 2

(7.10)

Maximizing this with respect to B and Xy gives:

= <§T: uE [hﬂ) (ET:E [hthtT]>_ (7.11)
Z {viof — B"E[h]vf — wE[hf] B" + B"E [hh]] B"}

(7.12)



Using the values calculated from the smoothing procedure in section 5:

E [h] = b}
E [hhi] = F}
E [hth;—1] = Xy

We can now set out the procedure for parameter learning using Expectation
Maximization:

1.

2.

10.

Choose starting values for the parameters § = {MO» 0(2), A Xy, B, EV}.

Using the parameter set 6, calculate the filtered statistics iLt|t and Fy
for each time step as described in section 4.

Using the parameter set 6, calculate the smoothed statistics hf, F}y
and X} for each time step as described in section 5.

Update A:
T T T T -1
A=Y mn T Xf] [Z Wit + ) Fy
t=1 t=1 t=1 t=1
Update Xg:

T T r
£ =T -17" |y —hihi" - Ff — A" (Z hihi oy + ZX?)

t=1 t=1
Update B:

T T T
> vtth] [Z hihit + ) FP
t=1 t=1

-1

B" =
t=1

Update Xy:
T T T

Xy = thvgp - B" (Z Utth> T-1
t=1 t=1

Update pug:

g = hi

Update 03:
of" = [Fi + hini™] [ = i)

Iterate steps 2 to 10 a given number of times or until the difference
between parameter values from succeeding iterations is below a pre-
defined threshold.
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