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ABSTRACT

Motivation: Kinetic rate in gene expression is a key measurement

of the stability of gene products and gives important information for

the reconstruction of genetic regulatory networks. Recent develop-

ments in experimental technologies have made it possible to measure

the numbers of transcripts and protein molecules in single cells.

Although estimation methods based on deterministic models have

been proposed aimed at evaluating kinetic rates from experimental

observations, these methods cannot tackle noise in gene expression

that may arise from discrete processes of gene expression, small

numbers of mRNA transcript, fluctuations in the activity of transcrip-

tional factors and variability in the experimental environment.

Results: In this paper, we develop effective methods for estimating

kinetic rates in genetic regulatory networks. The simulated maximum

likelihood method is used to evaluate parameters in stochastic

models described by either stochastic differential equations or discrete

biochemical reactions. Different types of non-parametric density

functions are used to measure the transitional probability of experi-

mental observations. For stochastic models described by biochemical

reactions, we propose to use the simulated frequency distribution

to evaluate the transitional density based on the discrete nature of

stochastic simulations. The genetic optimization algorithm is used as

an efficient tool to search for optimal reaction rates. Numerical results

indicate that the proposed methods can give robust estimations of

kinetic rates with good accuracy.

Contact: tian@maths.uq.edu.au

1 INTRODUCTION

Gene expression is the process by which a gene’s DNA sequence is

converted into the structures and functions of a cell. This process

occurs in two important steps: transcription for making mRNA from

protein encoding genes and translation for the biosynthesis of pro-

tein from mRNA. Gene expression processes have been increas-

ingly studied in recent years from global perspectives in order to

understand their pathways, properties and behaviours as a system.

Progress in this research area will also be a key step towards the

inference of genetic regulatory networks, which is one of the major

challenges in systems biology during the postgenomic era (Akutsu,

et al., 2000; Crampin, et al., 2004; Blais and Dynlacht, 2005; Joyce

and Palsson, 2006). However, the bottleneck in the inference of

regulatory networks is the lack of synthesis and decay rates in gene

expression that are very expensive to be determined by experiments

(Yang et al., 2003). In recent years, there have been significant

advances in high-throughout technologies to monitor the various

components of the mRNA and protein synthesis machineries. In

addition, the combination of specific probes and advanced optical

microscopy now allows observations of real-time production of

single transcripts and protein molecules in individual cells (Golding

et al., 2005; Yu et al., 2006). The availability of both massive

‘omics’ datasets and real-time molecular numbers has made it

possible to study the function and stability of gene products and

to reconstruct genetic regulatory networks at the genome scale

(Joyce and Palsson, 2006).

It has been widely accepted that gene expression is a noisy

business (McAdams and Arkin, 1999). Biological experiments

and theoretical analysis have indicated that noise plays a very

important role in gene expression, and different approaches have

been proposed to investigate the impact of noise on the dynamics of

regulatory networks (Arkin et al., 1998; Rao et al., 2002; Hasty

et al., 2000; Tian and Burrage, 2004a; Puchalka and Kierzek, 2004;

Mao and Resat, 2004; Kaern, et al., 2005; Tian and Burrage, 2006).

Stochasticity in gene expression may result from small numbers of

gene products, intermittent gene activity, and variability of tran-

scriptional factor activities. With a limited number of promoter

sites, the activation of gene expression is a discrete process, that

switches randomly between the OFF states to the ON states. The

copy numbers of mRNA are usually less than 10 per cell and these

small numbers can lead to fluctuations in protein concentrations

because of the unfrequent events in gene translation (Hasty

et al., 2002; Golding et al., 2005). In addition to intrinsic noise,

which is derived from uncertainty in biochemical reactions, extrin-

sic noise arising from environmental variability also has significant

influence on the dynamics of the whole system.

A number of mathematical models have been proposed for

studying gene expression processes and the stability of gene prod-

ucts (Hargrove and Schmidt, 1989; Yang et al., 2003; Cao and

Parker, 2003). Recently, Bhasi et al. (2005) have developed a

method aimed at estimating the synthesis and degradation rates

of gene products based on high-throughout ‘omics’ datasets.

Based on deterministic models described by ordinary differential

equations (ODEs), this method can be used to analyze gene expres-

sion data averaged from a population of cells. In fact this method is

one of the approaches to estimating parameters in mathematical�To whom correspondence should be addressed.
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models of biological pathways (Moles et al., 2003; Gadkar et al.,
2005; Sugimoto et al., 2005; Kell, 2006), which remains a chal-

lenging problem and a bottleneck in the development of mathemati-

cal models (Gadkar et al., 2005). Furthermore, it is more

challenging to evaluate kinetic rates in stochastic models that

can generate different trajectories from the same parameters.

Although the simulated maximum likelihood (SML) methods

have been used to estimate parameters in stochastic differential

equations (SDEs) for financial market models for which a large

amount of information can be collected and very small time inter-

vals can be used in parameter estimation (Hurn and Lindsay, 1999;

Alcock and Burrage, 2004), the performance of these methods when

they are applied to biological systems with sparse quantitative

information, and especially when they are applied to systems

described by discrete molecular numbers rather than continuous

protein concentrations, is open to debate. Although an approach

has been proposed most recently for estimating parameters in stoch-

astic models of biological systems (Reinker et al., 2006), this

method is based on the analytic evaluation of transitional proba-

bilities and thus it may not be appropriate to apply this method to

biological systems in which the time intervals of the time series

datasets are not small.

In this paper, we propose to use the SML method to estimate

kinetic rates in gene expression processes that are described

by either SDEs or discrete biochemical reactions. The joint transi-

tional density is used to measure the fitness of stochastic simulations

to gene expression profiles. For stochastic models with small

numbers of molecular species, we propose to use the simulated

frequency distribution to evaluate the transitional density based

on the discrete nature of stochastic simulations.

2 METHODS

The start point of our discussion is the widely used deterministic model

represented by ODEs

d�xxi
dt

¼ f ið�xxÞ � gið�xxÞ‚ i ¼ 1‚ . . . ‚N‚ ð1Þ

where �xx ¼ ð�xx1‚ . . . ‚�xxNÞ and the �xxi represent the concentrations of gene

products and regulatory proteins in the regulatory network. Functions

f ið�xxÞ and gið�xxÞ represent the increase and decrease processes of molecule

�xxi in gene expression. This deterministic model is valid if molecular

numbers in the system are large. When molecular numbers of gene products

are not large, stochastic models based on biochemical reactions have

been used to describe the processes in gene expression (Thattai and van

Oudenaarden, 2001; Swain et al., 2002). Recently, a general modelling

approach has been proposed for the development of stochastic models

based on macroscopic reactions (Tian and Burrage, 2006). In this approach

the increase and decrease processes in model (1) are replaced by Poisson

random variables, given by

xiðtþ tÞ ¼ xiðtÞ þ P½ f iðxÞt� � P½giðxÞt�‚ ð2Þ

where x ¼ (x1, . . . , xN) and the xi are molecular numbers. If the processes

in Equation (2) contain a number of macroscopic reactions, e.g. fi(x) ¼
fi1(x) + � � �+ fik(x) with fij(x) � 0, the Poisson random variable P½ f iðxÞt�
can be replaced by P½ f i1ðxÞt� þ � � � þ P½ f ikðxÞt�.

If molecular numbers in the system are relatively large, stochastic models

in the form of SDEs can be developed by means of the Langevin approach

(Gillespie, 2001), given by

dxi ¼ ½ f iðxÞ � giðxÞ�dtþ
ffiffiffiffiffiffiffiffiffiffi
f iðxÞ

p
dWi1ðtÞ þ

ffiffiffiffiffiffiffiffiffiffi
giðxÞ

q
dWi2ðtÞ‚ ð3Þ

where the Wij(t) are the Wiener process. In this paper, SDEs (3) are

simulated by the Euler method with a small stepsize. High order and implicit

methods can also be used to improve the accuracy and stability properties of

numerical simulations (Burrage et al., 2004a).

It should be noticed that stochastic models can give better descriptions

of gene expression than deterministic models if certain species in the system

have small molecular numbers. Especially, the stochastic simulation algo-

rithm (SSA) is a statistically exact method for simulating biochemical reac-

tion systems (Gillespie, 1977). Compared with the SSA, the simulation time

of SDE models is smaller but SDE models can give good approximation

of the system dynamics only when molecular numbers in the system are

relatively large. Furthermore, stochastic components in the SDE model (3)

are negligible if all molecular numbers in the system are large, then the

solution of deterministic model (1) gives the averaged behaviour of

stochastic simulations with good accuracy. In this case, the advantage of

deterministic models is the computational efficiency because a large com-

putational time is usually required for stochastic simulation.

Parameter estimation in deterministic models can be achieved by the best

fit of numerical simulations to experimental observations. Recently, Bhasi

et al. (2005) have developed a program SPLINDID for estimating transcrip-

tional rates and gene regulatory parameters. Based on the deterministic

model with functional transcriptional rates described by spline functions,

this method can estimate degradation rates with very good accuracy when

the half-life of gene products is of the order of hours. However, it is not

appropriate to use this program if the molecular numbers of gene products

are not large. Instead, we should use methods based on stochastic models,

such as the SML method (Hurn and Lindsay, 1999). Based on a sequence of

N + 1 observations {x0, x1, . . . , xN} at time points {t0, t1, . . . , tN}, we define

the joint transitional density or likelihood function of these observations as

f 0½ðt0‚x0Þ j ��
YN
i¼1

f ½ðti‚xiÞ j ðti�1‚xi�1Þ‚ . . . ‚ðt0‚x0Þ; ��‚ ð4Þ

where � ¼ (�1, . . . , �s) are the undetermined parameters in model (2) or (3),

f0[·] is the density of the initial state, and f ½ðti‚xiÞ j ðti�1‚xi�1Þ‚ . . . ‚ðt0‚x0Þ; ��
is the transitional density starting from (ti�1, xi�1) and evolving to (ti, xi).

When gene expression is described by the stochastic model (2) or (3), the

stochastic process x is Markov (Gillespie, 2001), and the transitional density

can be simplified as

f ½ðti‚xiÞ j ðti�1‚xi�1Þ‚ . . . ‚ðt0‚x0Þ; �� ¼ f ½ðti‚xiÞ j ðti�1‚xi�1Þ; ��: ð5Þ

An equivalent form of the maximum of the joint transitional density (4) is

the minimum of the negative log-likelihood function, given by

Lð�Þ ¼ � log ðf 0½ðt0‚x0Þ j ��Þ �
XN
i¼1

log f ½ðti‚xiÞ j ðti�1‚xi�1Þ; ��: ð6Þ

Because the closed-form expression of the transitional density (5) is usually

unavailable, we use a non-parametric kernel density function

�ff M½ðt‚xÞ j ðti�1‚xi�1Þ; �� ¼
1

MB

XM
j¼1

K
x � yj

B

� �
ð7Þ

to evaluate the transitional density based on the M realizations y1, . . . , yM
of xi at ti given the initial condition (ti�1, xi�1). Here B is the kernel band-

width and K(·) is a non-negative kernel function enclosing unit probability

mass. In the case of SDE models with a single variable, the normal kernel

is widely used and the bandwidth can be chosen as B ¼ 0.9 sM�1/5, where

s is the sample standard deviation of the M realizations (Hurn and Lindsay,

1999). For SDE models with multiple variables, we can either assume the

independence of random variables or use the theory of multivariate density

estimation (Scott, 1992). Note that the same increments of the Wiener

process should be used in numerical simulations with different values of

parameter �. Finally the optimal value of parameter � can be estimated by

minimizing the log-likelihood function (6) over �. Thus we can derive the

first SML method for estimating kinetic rates when gene expression is

modelled by SDEs.
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Method 1

(1) Input the system states {x0, x1, . . . , xN} and time points {t0, t1, . . . , tN}.

(2) Take xi�1 at time ti�1 (i ¼ 1, . . . ,N) as the starting value and use a

numerical method to generate M realizations y1, . . . , yM of x at ti. A

random seed is specified for generating samples of the Gaussian

random variables.

(3) Use the non-parametric density (7) with the normal kernel or multi-

variate density functions to evaluate the transitional density (5).

(4) Steps 2 and 3 are repeated for each time point t0 , . . . , tN�1, and

results are used to construct the log-likelihood function (6).

(5) Search the optimal kinetic rates by a genetic optimization algorithm

based on the minimum of L(�) in (6).

Although the normal kernel has been used successfully in estimating

parameters in SDEs that have continuous solutions, it is not appropriate

to use this kernel function to measure the transitional probability for systems

described by discrete biochemical reactions. Consider the following example

for the transcription of a single gene

DNA�!r1
DNA þ mRNA

mRNA�!d1 ðÞ:
ð8Þ

Figure 1 gives the evaluated density functions (7) with the normal

kernel based on 1000 and 5000 realizations at t1 ¼ 3, respectively. Because

of small molecular numbers, there is a significant difference between the

values of density functions at integer points and those at other points in

Figure 1A and B, and these values also depend on the numbers of realiza-

tions. Because integer molecular numbers are observed in discrete stochastic

simulations, we are interested in the values of density functions only at

integer points that do not satisfy the property of the unit probability

mass, namely

X1
j¼0

�ff M½ðt1‚ jÞ j ðt0‚ x0Þ; �� > 1: ð9Þ

When molecular numbers are relatively large, the simulated density function

in Figure 1C obtained from 1000 realizations is close to that derived from

5000 realizations in Figure 1D. However, we can still observe fluctuations in

the density function values in Figure 1D.

Based on the discrete nature of biochemical reactions and low molecular

numbers in gene transcription, we propose to use the frequency distribution

of simulated molecular numbers to evaluate the transitional density (5). For

systems with one single variable, after generating M realizations y1‚ . . . ‚yM
of xi at ti, the frequency distribution is evaluated by

F½xðtiÞ ¼ m� ¼ 1

M

XM
j¼1

½1 � dðm � yjÞ� ð10Þ

with m ¼ 0, 1, . . . . Here

dðm � yjÞ ¼
0 m ¼ yi
1 else

:

�
ð11Þ

This frequency distribution satisfies the property of the unit probability mass

at integer points, namely

X1
m¼0

F½xðtiÞ ¼ m� ¼ 1: ð12Þ

For systems with species of both small and large molecular numbers, it may

be difficult for simulations to match the experimental data with large

molecular numbers in a finite number of simulations. Similar to the weighted

distance measure in deterministic models (Moles, et al., 2003; Sugimoto

et al., 2005), we can define the weighted frequency distribution in which the

function d(x) is defined by

dwðm � yjÞ ¼
0 wij jm � yjj < 1

1 else
‚

�
ð13Þ

where wij ¼ 1/(xi «). This weighted frequency distribution is the frequency

distribution (11) if wij ¼ 1. In addition, these two types of frequency

distributions are consistent for variables with small molecular numbers.

For example, if « ¼ 0.05, the two frequency distributions (11) and (13)

are the same if xi < 20. Thus, the weighted frequency distribution is a good

approximation of the transitional density for systems with both small and

large molecular numbers.

Figure 1 also gives the frequency distributions of the mRNA number

based on 1000 and 5000 realizations. Frequency distributions obtained

by 1000 realizations in Figure 1A and C are very close to those from

5000 realizations in Figure 1B and D, respectively. The frequency distri-

bution gives more stable estimations of the transitional density than the

normal kernel density function. If molecular numbers are relatively large,

frequency distributions in Figure 1C and D are close to the transitional

density based on the normal kernel. Thus the frequency distribution gives

better approximation of the transitional density (7) and we propose the

second SML method for estimating kinetic rates in gene expression.

Method 2

(1) Input the system states {x0, x1, . . . , xN} and time points {t0, t1, . . . , tN}.

(2) Take xi�1 at time ti�1(i ¼ 1, . . . ,N) as the starting value, and use a

stochastic simulation method to generate M realizations y1, . . . , yM
of x(t) at ti. A random seed is specified for generating samples of

the uniform random variable.

(3) Use the frequency distribution (10) or (13) to estimate the transitional

density (7).

(4) Steps 2 and 3 are repeated for each time point t0, . . . , tN�1, and results

are used to construct the log-likelihood function (6).

(5) Search the optimal kinetic rates by a genetic optimisation algorithm

based on the minimum of L(�) in (6).

Fig. 1. Values of the non-parametric density functions of system (8) calcu-

lated from the normal kernel (solid-line and diamond) and simulated fre-

quency distribution (star). (A and B) function values are based on 1000 and

5000 simulations, respectively, with kinetic rates r1 ¼ 0.6, k1 ¼ 0.3466 and

initial mRNA number x0 ¼ 0 at t0 ¼ 0; (C andD) function values are based on

1000 and 5000 simulations, respectively, with kinetic rates r1 ¼ 0.6, k1 ¼
3.466 · 10�4 and initial mRNA number x0 ¼ 4000 at t0 ¼ 0.

T.Tian et al.

86

 at T
he U

niversity of E
dinburgh on O

ctober 16, 2010
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


Although the global search is a feasible approach for systems with a limited

number of undetermined parameters, in general sophisticated searching

methods should be used for estimating the optimal reaction rates. In

this paper, a genetic algorithm is used as the search method that is especially

helpful for finding kinetic rates when the search space is associated with

a complex error landscape. We used a MATLAB toolbox developed by

Chipperfield et al. (1994), and developed programs in C++ that are

external programs of the MATLAB environment. For each set of time series

data, the genetic algorithm was run over 300 generations, and we used a

population of 100 individuals in each generation. The values of kinetic

rates are taken initially to be uniformly distributed in the range [0,Wmax],

and the value of Wmax will be specified for each parameter based on the

possible range of kinetic rates. The initial estimation of kinetic rates can

be changed by using different random seeds in the genetic algorithm, and

different initial rates will lead to slightly different final estimations. Simi-

larly, different random seeds for generating samples in step 2 of Methods 1

and 2 will result in slightly different estimations because a fixed number of

stochastic simulations are used in estimation.

3 RESULTS

The first test system models the transcription of a single gene (8) with

transcript initiationrater1¼0.6min�1 anddegradationrated1¼0.3465

(Thattai and van Oudenaarden, 2001). We used the SSA to generate six

sets of mRNA numbers that were observed at every 3 min of 1 h. We

present these gene expression profiles in two groups: the three sets with

lesszero molecularnumbers (Fig.2A)and theother threesetswithmore

zero molecular numbers and more variability (Fig. 2B).

We used the genetic algorithm to search the optimal kinetic rates in

theregion(r1,d1)2{[0,2]· [0,1]}.Theaveragedrelativeerror (ARE)

is used to measure the accuracy of estimations. For Methods 1 and 2,

we use 1000 simulations (M¼1000) at each time point to evaluate the

transitional density. Table 1 presents the estimated kinetic rates and

corresponding ARE. Numerical results indicate that it is not appro-

priate to use the ODE model to estimate kinetic rates in biochemical

reaction systems with small molecular numbers. The estimation of

only one dataset has acceptable accuracy while others have large

errors. Similarly, Method 1, the SML method based on the SDE

modelandnormalkernel, cannot give robust estimations. Estimations

havegoodaccuracyfor thefirstandsixthdatasets,buthavelargeerrors

for theotherfourdatasets.Onthecontrary,Method2, theSMLmethod

based on discrete biochemical reactions and frequency distribution,

can give robust estimations with good accuracy. Among them, esti-

mations for the first three datasets in Figure 2A have better accuracy

than those from the last three datasets in Figure 2B. The reason may be

due to the larger fluctuations of mRNA numbers in the last

three datasets. To demonstrate the effectiveness of frequency

distribution, we use a modified Method 2 in which the normal ker-

nel density function is used in Step 3 of Method 2. Simulation results,

presented in Table 1 as Method 2 (normal kernel), indicate that the

accuracy of this modified method is not as good as that of Method 2.

For this simple network with two parameters, we used the global

search method to find the optimal kinetic rates in the region

(r1, d1) 2 {[0, 2] · [0, 1]} with grid size h ¼ 0.005 (data not

shown). For all methods in Table 1, estimations obtained from

the global search method are consistent with those obtained from

the genetic algorithm. In addition, we tested the influence of

the number of realizations on the accuracy of estimations by evalu-

ating kinetic rates based on 5000 realizations for the three methods

based on stochastic models in Table 1 (data not shown). Although

in most cases parameters estimated from 5000 simulations have

better accuracy than those from 1000 simulations, the improvement

in accuracy is not significant. This observation is consistent with

the slow convergence property of the Monte-Carlo simulation

methods. Thus 1000 simulations may be already large enough to

achieve good accuracy, and a significant larger number of simula-

tions should be needed if we hope to improve upon the accuracy of

estimations derived from 1000 simulations.

The second test system describes the gene expression of a single

gene with both transcription and translation

DNA�!k1
DNA þ mRNA

mRNA�!d1 ðÞ ð14Þ

mRNA�!k2
mRNA þ protein

protein�!d2 ðÞ:

We use the simulated molecular numbers published in Figure 2 of

Swain et al. (2002) as the gene expression profile. The lifetime of

each cell cycle is 60 min and molecular numbers in 10 cell cycles

were presented in Figure 2 of Swain et al. (2002). We estimated

the numbers of mRNA transcript and protein at every 3 min from

the gene expression profile of the first 4 cell cycles, which are

reproduced in Figure 3.

We obtained 40 sets of estimations for each methods in Table 2

by using different random seeds in either the genetic algorithm

or stochastic simulation. For the ODE model, we used 10 different

random seeds in the genetic algorithm based on the gene express-

ion profile in the 4 cell cycles. For Methods 1 and 2, we fixed

the random seeds in stochastic simulation and used five different

random seeds in the genetic algorithm to obtain 20 sets of estima-

tions, and then fixed the random seed in the genetic algorithm

and used five different random seeds in the stochastic simulations

to obtain another 20 sets of estimations. The 40 sets of estimations

obtained from Method 2 are presented in Figure 4.

We calculated the mean and standard deviation of the 40 sets

of estimations obtained from these three methods. The AREs in

the top part of Table 2 again indicate that the ODE model is not

appropriate for estimating kinetic rates in systems with small

molecular numbers. Estimation errors and standard deviations are

large for each parameter. Compared with the first test system,

Method 1 can give estimations with better accuracy for the second

Fig. 2. Generated mRNA numbers from the first test system (8) in 60 min. (A)

Three sets of time-series data with less zero molecular numbers (diamond: set

1, star: set 2, triangle: set 3); (B) Three sets of time-series data with more zero

molecular numbers (diamond: set 4, star: set 5, triangle: set 6).
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system because of the relatively large protein numbers. Similar to

the results of the first system, the estimation of Method 2 has better

accuracy than that of Method 1.

We also tested the influence of the amount of data on the accuracy

of estimations. For the second test system, we used the data in

Figure 3 of the first cell cycle measured every 6, 12 or 30 min.

Estimations obtained from Method 2 are presented in the bottom

part of Table 2. If molecular numbers are measured every 6 min,

there are molecular numbers at 11 time points and this amount

of data can still ensure good accuracy of estimations although

the accuracy is not as good as that of estimations from data mea-

sured every 3 min. However, if molecular numbers are measured

every 12 min (6 time points) or every 30 min (only 3 time points),

estimations in Table 2 have not only large AREs but also large

standard derivations. Similar observations have also been found

for the ODE model and Method 1.

The third test system is the genetic toggle switch interfaced

with the SOS pathway (Gardner et al., 2000; Kobayashi et al.,
2004). This network consists of two genes, lacI and l cI, that

encode the transcriptional regulator proteins LacR and l CI,

respectively. This system is regulated by a double-negative feed-

back loop and has two distinct bistable states. Transition between

the two steady-states can be induced by a signal from the DNA

damage that temporarily moves the system out of the bistable

region. A deterministic model has been proposed for studying

the existence of bistability properties (Gardner et al., 2000;

Kobayashi et al., 2004), and a stochastic model based on the Poisson

random variables has been used to realize the bimodal population

distributions observed in experiments (Tian and Burrage, 2006).

More detailed descriptions of this system and models can be

found in (Gardner et al., 2000; Kobayashi et al., 2004; Tian and

Burrage, 2006). Here we only present the corresponding model in

terms of SDEs, given by

du ¼ « a1 þ
b1K

3
1

K3
1 þ v3

� �
dtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
«a1 þ

«b1K
3
1

K3
1 þ v3

s
dW1ðtÞ

� d1½1 þ fðsÞ�udtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1ð1 þ fðsÞÞu

p
dW2ðtÞ

dv ¼ « a2 þ
b2K

3
2

K3
2 þ u3

� �
dtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
«a2 þ

«b2K
3
2

K3
2 þ u3

s
dW3ðtÞ

� d2vdtþ
ffiffiffiffiffiffiffi
d2v

p
dW4ðtÞ:

ð15Þ

Instead of using f(s) ¼ s/(1+s) which can lead to two different

estimations, we use a linear function f(s) ¼ s to represent the signal

from DNA damage. Here « ¼ 1 is a parameter associated with the

number of the toggle switch plasmid (Kobayashi et al., 2004), and

constants in the Hill functions are K1 ¼ K2 ¼ 1 mM¼ 500 molecule

(Tian and Burrage, 2006). We are interested in the estimation of

kinetic rates s, ai, bi and di (i ¼ 1,2). The unit of the rate constants

ai and bi in the stochastic model is molecule/min, and their values

are obtained from ai ¼ 500a
ð0Þ
i and bi ¼ 500b

ð0Þ
i , where a

ð0Þ
i and

b
ð0Þ
i are parameters in the deterministic model (Tias and Burrage,

2006). In order to reduce the searching area, we use the genetic

algorithm to find the optimal rates a
ð0Þ
i and b

ð0Þ
i . Variables in all

three types of models are molecular numbers in this paper.

Figure 5A gives a simulation of successful switching generated

from the discrete stochastic model (Tian and Burrage, 2006) and

molecular numbers are measured every 10 min. The signal from the

DNA damage (s > 0) is applied at t 2 [10,70] min. Then we esti-

mated the values of the seven parameters based on deterministic

model (Gardner et al., 2000; Kobayashi et al., 2004), Method 1

based on the SDE model (15), and Method 2 based on the discrete

stochastic model (Tian and Burrage, 2006). Similar to the approach

used for the second test system, we obtained 10 sets of estimations

Fig. 3. Molecular numbers of gene products in every 3 min estimated from

the generated gene expression profile of the first 4 cell cycles in Figure 2 of

Swain et al. (2002). (A) mRNA numbers; (B) protein numbers.

Table 1. Estimated kinetic rates of the first test system (8). Results are presented as (k1, d1, ARE). Exact values are (k1, d1)¼ (0.6, 0.3466)

Dataset ODE model Method 1 Method 2 (normal kernel) Method 2

1 (0.3222, 0.1324, 0.54) (0.6592, 0.3249, 0.08) (0.3877, 0.2058, 0.38) (0.7616, 0.3649, 0.16)

2 (1.9522, 1.0000, 2.06) (1.8586, 1.0000, 1.99) (0.0931, 0.0603, 0.83) (0.5475, 0.2876, 0.12)

3 (2.0000, 0.9546, 2.04) (1.9040, 0.7517, 1.67) (0.2047, 0.1543, 0.60) (0.5278, 0.2565, 0.19)

4 (1.2009, 1.0000, 1.44) (0.1999, 0.1798, 0.57) (0.1164, 0.1540, 0.68) (0.4363, 0.3584, 0.15)

5 (2.0000, 1.0000, 2.10) (1.2284, 0.6393, 0.95) (0.6410, 0.6020, 0.40) (0.8777, 0.4111, 0.32)

6 (1.5001, 1.0000, 1.69) (0.5687, 0.3604, 0.05) (0.1209, 0.0674, 0.80) (0.3521, 0.2224, 0.38)

ARE represents averaged relative error.
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from each method and presented the mean, standard deviation and

ARE of these estimations in Table 3. Compared with the first and

second test systems, the ODE model can give relatively better

estimations because molecular numbers in this system are relatively

large. Estimations from stochastic models have better accuracy than

that of the ODE model. The accuracy of Method 1 is even slightly

better than that of Method 2. In addition, we simulated these three

mathematical models by using the estimated parameters in Table 3.

Simulations in Figure 5 indicate that only the estimation from

Method 2 can keep the molecular numbers at the steady states of

the original simulation in Figure 5A. Furthermore, simulations with-

out a signal from DNA damage (s � 0) indicate that only the

estimation from Method 2 can maintain the bistability property

and genetic switching of the original system.

4 DISCUSSIONS

In this paper, we have developed the SML method for estimating

kinetic rates in genetic regulation. Concentrating on gene expres-

sion processes with small molecular numbers, we used stochastic

models described by either SDEs or discrete biochemical reactions

that give better descriptions of gene expression than deterministic

models. Numerical results indicate that only the SML method based

on discrete biochemical reactions can give robust estimations of

kinetic rates with good accuracy when molecular numbers are small.

If molecular numbers in the system are relatively large, the SML

method based on either discrete biochemical reactions or SDEs can

give robust estimations with good accuracy. Although we concen-

trated on estimating kinetic rates in genetic regulation, the proposed

SML methods set up a general framework for estimating parameters

in stochastic models of biochemical reaction systems and ecological

systems where noise plays a very important role.

The transitional density function measures the transitional proba-

bility of the system states and is approximated by a non-parametric

kernel function. When gene products are measured by molecular

numbers, we have shown that the frequency distribution is a good

Table 2. The mean, standard deviations and ARE of the estimations for the second test system

k1 d1 k2 d2 ARE

ODE model 3.442 ± 1.852 0.093 ± 0.144 3.383 ± 1.995 7.61 · 10�3 ± 6.51 · 10�3 0.736

Method 1 3.822 ± 0.926 0.434 ± 0.088 10.671 ± 1.932 5.12 · 10�3 ± 3.24 · 10�3 0.273

Method 2 4.735 ± 1.695 0.542 ± 0.168 11.056 ± 1.963 5.47 · 10�3 ± 3.02 · 10�3 0.228

Method 2 (6 min) 4.595 ± 2.115 0.538 ± 0.285 10.564 ± 2.647 6.20 · 10�3 ± 4.86 · 10�3 0.271

Method 2 (15 min) 3.205 ± 1.284 0.345 ± 1.33 11.597 ± 2.774 7.82 · 10�3 ± 4.00 · 10�3 0.528

Method 2 (30 min) 0.784 ± 0.137 0.698 ± 0.317 7.820 ± 5.331 0.175 ± 0.160 11.37

Exact 6 0.6931 10.3972 3.852 · 10�3 0

Upper part: estimations of the three methods based on the data measured every 3 min from the gene expression profile of the 4 cell cycles in Figure 3. Lower part: estimations of Method 2

based on the data measured every 6, 12 and 20 min, respectively, from the gene expression profile of the first cell cycle in Figure 3.

ARE represents averaged relative error.

Fig. 4. FortydifferentestimationsbyusingMethod2for thekinetic ratesof the

second test system (14) based on molecular numbers in Figure 3. The exact

values of these rates are (r1, d1, r2, d2)¼ (6, 0.6931,10.3972, 3.852·10�3) that

are presented as a horizontal line in each figure. (A) r1; (B) d1; (C); r2; (D) d2.

Fig. 5. Simulations of the genetic toggle switch system. (A) A simulation of

the discrete model (Tian and Burrage, 2006) with a1 ¼ a2 ¼ 0.2 · 500, b1 ¼
b2 ¼ 4 · 500, and d1 ¼ d2 ¼ 1. s¼ 0.66 (t2[10,70]) and s¼ 0 elsewhere. Data

are measured at every 10 min. (B) A deterministic simulation of the ODE

model by using the estimation of the ODE model in Table 3; (C) A stochastic

simulation of model (15) by using the estimation of Method 1 in Table 3; (D)

A stochastic simulation of the discrete model by using the estimation of

Method 2 in Table 3. (Line: u; dash-line: v)
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non-parametric kernel. We may also use a specific discrete proba-

bility distribution to approximate the transitional density function,

but the accuracy of estimations strongly depends on the assumption

that the simulated molecular numbers follow this specific distribu-

tion. We have used the Poisson distribution to approximate the non-

parametric density function. Although the estimated kinetic rates for

the first system have good accuracy, simulated results for the second

system have large errors because the simulated protein number does

not follow a Poisson distribution (data not shown).

Another important issue in the application of the SML method is

computational efficiency. When using the genetic algorithm to

search for optimal kinetic rates, hundreds of generations should

be simulated and there are tens to a hundred individuals in each

generation. For each individual, a large number of trajectories are

required to ensure the accuracy and robustness property of the SML

method. Thus any slight improvement in the efficiency of

each stochastic simulation means significant improvement on the

efficiency of the SML method. In this approach the SSA and Poisson

t-leap method have been used to simulate small-scale biochemical

reaction systems. When the number of biochemical reactions or

molecular numbers of certain species are relatively large, other

simulation methods should be employed to accelerate stochastic

simulations. Recently, there has been significant progress in

the development of efficient methods for simulating biochemical

reaction systems including the t-leap method (Gillespie, 2001; Tian

and Burrage, 2004a; Chatterjee et al., 2005a; Cao et al., 2005) and

the multi-scale simulation methods (Rao and Arkin, 2003; Haseltine

and Rawlings, 2002; Burrage et al., 2004b; Puchalka and Kierzek,

2004; Salis and Kaznessis 2005; Weinan et al., 2005; Samant and

Vlachos, 2005), and in the development of effective computer pro-

grams (Kierzek, 2002; Chatterjee et al., 2005b; Salis et al., 2006).

More work is needed to develop sophisticated computer programs in

order to increase the efficiency of the SML method for estimating

parameters in complicated biochemical reaction systems.

Because of the possible local optima in the genetic algorithm

and the finite number of simulations in the stochastic simulations,

different estimations can be obtained by using different random

seeds in either the genetic algorithm or stochastic simulation.

It may be more reasonable to use the mean of these estimations

obtained from different random seeds in the stochastic simulations

rather than to use the mean of the estimations obtained from

different random seeds in the genetic algorithm, although the

latter is a normal approach in the machine learning algorithms.

However, more information from biological systems, such as the

bistability and genetic switching in the genetic toggle switch

system, should be used as additional criteria to select an appropriate

estimation.

Stochasticity in gene expression may result from small numbers

of gene products, intermittent gene activity, fluctuations of the

activity of transcriptional factors and environmental variability.

In addition, recent studies in the gene expression of single cells

indicate that gene expression should be represented by a number

of ‘burst’ processes (Golding et al., 2005; Yu et al., 2006). More

work is needed to develop stochastic models for regulatory

networks by including both intrinsic and extrinsic noise, transcrip-

tional regulation, ‘burst’ processes and time delay in transcription

and translation. The next step should be based on the application of

the SML method to more sophisticated stochastic models that can

reflect the most recent progress in the study of gene expression.
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