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Abstract

Nonlinear and non-Gaussian processes with constraints are commonly encountered in dynamic estimation problems. Methods for solving
such problems either ignore the constraints or rely on crude approximations of the model or probability distributions. Such approximations
may reduce the accuracy of the estimates since they often fail to capture the variety of probability distributions encountered in constrained
linear and nonlinear dynamic systems. This article describes a practical approach that overcomes these shortcomings via a novel extension of
sequential Monte Carlo (SMC) sampling or particle filtering. Inequality constraints are imposed by accept/reject steps in the algorithm. The
proposed approach provides samples representing the posterior distribution at each time point, and is shown to satisfy the same theoretical
properties as unconstrained SMC. Illustrative examples show that results of the proposed approach are at least as accurate as moving horizon
estimation, but computationally more efficient and in addition, the approach indicates the uncertainty associated with these estimates.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Estimation of dynamic processes is generally expressed as
follows. Given measurements y1:k = {y1, y2, . . . , yk}, process
models,

xk = fk−1(xk−1, �k−1), (1)

yk = hk(xk, �k) (2)

and initial guess p(x1), estimate the current state, xk . Here,
xk ∈ Rnx is the state vector and fk : Rnx × Rn� → Rnx is
the system equation. Measurements, yk ∈ Rny are related to
the state vector through the measurement equation hk : Rnx ×
Rn� → Rny . System and measurement errors are represented
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by �k and �k , respectively, and p(x) denotes the probability
density function (pdf) of a random variable x.

This nonlinear dynamic estimation problem has received sig-
nificant attention over the decades and many techniques have
been developed including extended Kalman filtering (EKF)
(Jazwinski, 1970), unscented Kalman filtering (UKF) (Julier
& Uhlmann, 2004), and moving-horizon based least-squares
estimation (MHE) (Robertson, Lee, & Rawlings, 1996). EKF
linearizes the nonlinear model at each time point and implicitly
assumes the noise and variable distributions to be Gaussian.
It is computationally efficient, but often fails to provide accu-
rate estimates and may even diverge. UKF avoids the use of
linearization and can perform better than EKF, but the deter-
ministic choice of sigma points severely limits flexibility in the
shape of the distributions. Also, this approach does not accom-
modate constraints. MHE formulates a nonlinear programming
problem under possible constraints, which it solves in overlap-
ping moving windows, usually of a fixed size. The objective
function is usually formulated to find the least-squares solu-
tion and the approach has been shown to outperform EKF
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Fig. 1. Evolution of the prior of a McKeithan reaction network. In each subfigure the x-axis represents the variable’s range while the y-axis is the density value.

(Haseltine & Rawlings, 2005). However, two significant short-
comings of MHE are that it is not recursive in nature, and it
has to rely on multivariate Gaussian or other fixed shape distri-
butions to represent the prior knowledge or arrival cost at the
beginning of each moving window. These characteristics may
increase the computational cost and reduce estimation accu-
racy. Fig. 1 shows typical prior distributions encountered in a
reaction network example, which is discussed in Section 4.2.
These distributions are truncated, unimodal or multimodal, and
change shape over time. Any method that requires fitting of
such arbitrary shapes is not likely to be practical, and has to
rely on approximations such as Gaussian and give up some of
its accuracy.

Recently, Bayesian estimation of dynamic processes through
sequential Monte Carlo (SMC), also known as particle filter-
ing, has been the subject of extensive research (Arulampalam,
Maskell, Gordon, & Clapp, 2002; Doucet, Godsill, & Andrieu,

2000; Gordon, Salmond, & Smith, 1993). Our previous work
(Chen, Bakshi, Goel, & Ungarala, 2004) introduced SMC for
estimation in dynamic chemical process systems and compared
it, for the first time, with MHE for unconstrained estimation.
It showed that SMC can not only provide more accurate re-
sults than MHE but can also be more computationally effi-
cient. This paper extends our work to deal with constraints,
and compares its performance with EKF and MHE via pop-
ular case studies from the literature. Using sampling based
methods for solving this type of problem does not seem to
have received any attention to date. For imposing constraints
within SMC, a novel acceptance/rejection algorithm is devel-
oped. This approach is equivalent to truncating or modifying
the appropriate constrained distribution (prior or likelihood) to
satisfy the constraints, which ensures that the posterior also
satisfies the constraints. This approach is shown to possess
the same theoretical properties as the traditional unconstrained
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SMC approach. Furthermore, SMC readily provides insight into
the quality of the estimates via regions of highest probability
density (uncertainty) at each time point. Case studies demon-
strate better accuracy and smaller computational cost of SMC
over MHE.

In the following sections, introduction of the generic SMC
is first provided. Then the proposed approach for extending
sequential Monte Carlo to constrained nonlinear dynamic sys-
tems is described. Theoretical analysis of convergence proper-
ties of SMC methods is also introduced. Finally, performance
of the proposed approach is compared with existing methods
via simulation.

2. Sequential Monte Carlo

Using Monte Carlo sampling to solve estimation problems
requires an approach for generating samples from the posterior.
This may be accomplished via sequential importance sampling,
since direct drawing from the posterior distribution is not feasi-
ble. For example, one can draw samples {x(i), i =1, 2, . . . , N}
from a convenient importance function �(x), and the estimate
of E[�(x)] regarding a distribution, say, p(x), is given by

E[�(x)] =
∫

�(x)
p(x)

�(x)
�(x) dx

≈ 1

N

N∑
i=1

�(x(i))q∗(i) where q∗(i) = p(x(i))

�(x(i))
.

In fact, both p(x) and �(x) only have to be known up to a
constant, in which case q∗(i) are normalized and we have,

E[�(x)] ≈
N∑

i=1

�(x(i))q(i) where q(i) = q∗(i)∑N
j=1 q∗(j)

. (3)

Here, information about the relevant distribution is contained
in the pairs of samples and weights, {x(i), q(i)}, known as
particles. A basic requirement on the importance function is that
its support should include the support of the true distribution
(Geweke, 1989).

For dynamic processes, the same operation is used, though a
recursive mechanism is needed to update the particles over time.
Generally, a prediction step is applied recursively by passing
each sample through the state equation (1), to obtain samples
corresponding to the prior at time k, p(xk|y1:k−1). This pre-
diction step utilizes information about process dynamics and
model accuracy without making any assumptions about the na-
ture of the dynamics and shape or any other characteristic of
the distributions. Once the measurement, yk is available, it can
be used to recursively update the previous weights by the fol-
lowing equation (Arulampalam et al., 2002):

q∗
k (i) ∝ q∗

k−1(i)
p(yk|xk(i))p(xk(i)|xk−1(i))

�(xk(i)|xk−1(i), yk)
. (4)

This updating step utilizes the measurement model and infor-
mation about the measurement error. Again, no assumptions
about the type of model or distributions are required. The re-
sult of these prediction and updating steps is the particles and

weights at time k, {xk(i), qk(i)}. Any posterior moment may
then be calculated via Eq. (3). The resulting algorithm is fully
recursive and computationally efficient since it avoids integra-
tion for obtaining the moments at each time step, nonlinear
optimization in a moving window, or restrictive assumptions
about the nature of the error or prior distributions and models.

2.1. Convergence properties

Convergence properties of SMC have been studied by Del
Moral and Miclo (2000), Crisan (2001), Künsch (2005), and
many references cited in these papers. A survey of some con-
vergence results for SMC is provided by Crisan and Doucet
(2002). We summarize the state of the art based on the con-
vention of Künsch (2005), followed by a discussion of their
validity for the proposed constrained SMC algorithm.

Consider the general state space model described by
Eqs. (1) and (2) in the context of a hidden Markov model.
The state sequence {xk, k�1} consists of a Markov chain with
transition densities ak such that

Pr(xk ∈ dx|x1:k−1) = Pr(xk ∈ dx|xk−1) = ak(xk−1, dx).

Similarly, given x1, x2, . . . , measurements y1, y2, . . . are con-
ditionally independent and each follows the distribution

Pr(yk ∈ dy|xk) = bk(xk, dy).

For example, in the widely used state space models with inde-
pendent additive noises �k ∼ p� and �k ∼ p�, the expressions
of ak and bk are given by

ak(xk−1, xk) = p�(xk − fk(xk−1)),

bk(xk, yk) = p�(yk − hk(xk)).

Given the measurements y1:k , the posterior density of xk is
estimated by the empirical distribution based on the N particles
and weights at time k, {xk(i), qk(i)}, in Eq. (3),

p̂N (xk|y1:k) =
N∑

i=1

�(xk − xk(i))qk(i).

Then Künsch (2005) provides the following theorem.

Theorem 1. If x → ak(x, ·) is continuous, and if for all k, all
x and all y,

0 < bk(x, y)�C(k, y) < ∞,

then for all k and all y1:k ,

‖p̂N (xk|y1:k) − p(xk|y1:k)‖1 → 0

in probability as N → ∞.

This result states that at each time point, the empirical
distribution of the particles converges to the underlying true
posterior density when the number of particles is increased.
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Table 1
Algorithm for estimation by constrained SMC

• FOR times k = 1, 2, 3, . . .

— FOR samples i = 1, 2, 3, . . . , N

– UNTIL (xk(i),�k(i)) satisfy constraints,
- Draw sample, �k−1(i) from system noise
- Calculate xk(i) using Eq. (1)

– END UNTIL
– Assign a weight, q∗

k (i), to xk(i)

— END FOR
— Normalize q∗

k (i) to find qk(i)

—Implement resampling if necessary
• END FOR

The conditions imposed above are quite weak. Furthermore, it
is straightforward to verify that these conditions are satisfied
for the widely used additive Gaussian noise model.

The convergence of SMC shows that the empirical distri-
bution based on the sampled particles and weights converges
to the true distribution. However, the availability of a particle
based approximation to the posterior distribution, though crit-
ical, does not answer the problem of the approximation error
in the estimate of the parameter of interest. The following cen-
tral limit theorem (Künsch, 2005) shows that under very weak
conditions, the SMC approximation of the estimate based on
the empirical distribution p̂N (xk|y1:k) converges to the true es-
timate at the rate of 1/

√
N .

Theorem 2. Under the conditions in Theorem 1, for each finite
k, and all y1:k and functions �(·) that are square integrable
with respect to the true posterior distribution,

√
N

(
N∑

i=1

�(xk(i))q(i) − E(�(xk))

)

is asymptotically normal.

This result is a highly simplified version of the one in Künsch
(2005). As a practical matter, as time increases, it is important
that the asymptotic variance of the Monte Carlo estimate stays
bounded.

3. Constrained SMC

3.1. Algorithm

The proposed approach extends existing SMC algorithms
to ensure satisfaction of inequality constraints. Equality con-
straints may be imposed by including them in the state or mea-
surement equations (Ungarala & Bakshi, 2001). This approach,
represented by the pseudo-code in Table 1, extends our previ-
ous work on unconstrained estimation (Chen et al., 2004). This
implementation of SMC uses a convenient and popular choice
of importance function as the following equation (Gordon
et al., 1993):

�(xk|xk−1, yk) = p(xk|xk−1).

This choice simplifies the recursive weight calculation by Eq.
(4) to the following equation:

q∗
k (i) = q∗

k−1(i)p(yk|xk(i)). (5)

Updating the prior with the current information then only re-
quires the likelihood value. Other importance functions may be
readily used, if necessary.

Enforcement of constraints in SMC is implemented by the
extra steps shown in bold in Table 1. These accept/reject steps
evaluate the samples �k−1(i) and the corresponding xk(i) gen-
erated by the prediction step, via Eq. (1). Only those samples
of the generated {�k−1(i), xk(i)} that satisfy constraints are ac-
cepted. Note that, the noise distributions for k�2, or the prior
distribution at k = 1, itself may be subject to the constraints,
and therefore drawing samples from these distributions may re-
quire another accept/reject step whenever it is inconvenient to
sample directly from the underlying distributions. For example,
in Fig. 1, the first subfigure shows samples from a trun-
cated Gaussian distribution. The steps shown in bold face in
Table 1 may require a larger number of samples than uncon-
strained estimation, but as shown by the illustrative examples
in Section 4, the computational complexity still remains rea-
sonable and better than MHE. Usually, the number of rejected
samples is not large, since most prior samples already satisfy
the constraints.

3.2. Convergence properties

Remark 1. The constrained SMC algorithm in Table 1 satisfies
the theorems given above.

The bold lines in Table 1 ensure that the accepted particles
are truly generated from the correct transition densities under
the constraints. In other words, the accept/reject operation leads
to particles that correctly represent the posterior distribution,
which ensures validity of the three theorems for constrained
SMC.

4. Case studies

Simulations are run on a 2.0 GHz CPU with 512 MB RAM
personal computer using Matlab and GNU/Octave. MHE is
implemented by a publicly available package, which uses a
specially structured solver for computational efficiency (Tenny,
2002). Allowing for uncertainty, a total of 100 realizations were
run for each model with each procedure applied to the data sets
generated by that model. The performance is evaluated by the
overall mean-squared error (MSE) and, specifically MSER

k , the
MSE averaged over realizations for each time k=1, 2, . . . , Nm,
where Nm is the number of measurements available in each
realization. Examining MSER

k over time is likely to indicate the
long-term behavior of the tested method and provide insight
into the distribution of errors over time. They are defined as

MSER
k = 1

100

100∑
r=1

(xk,r − x̂k,r )
T(xk,r − x̂k,r ), (6)
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MSE = 1

Nm

Nm∑
k=1

MSER
k . (7)

In the above equations, xk,r is the true state at time step k of
the rth realization, and x̂k,r is the point estimate of xk,r . In this
paper, the posterior mean is chosen as the point estimate for
SMC. More details are available in Lang, Chen, Bakshi, Goel,
and Ungarala (2006).
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Fig. 2. MSE and CPU time comparison for the constrained CSTR Model.
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4.1. Constrained adiabatic CSTR

In this section, a popular process engineering problem, an
adiabatic CSTR, is studied (Jang, Joseph, & Mukai, 1986;
Henson & Seborg, 1997). Governing equations are as follows:

dC

dt
= q

V
(C0 − C) − kC e−EA/T ,

dT

dt
= q

V
(T0 − T ) − �H

�Cp

kC e−EA/T − UA

�CpV
(T − Tc),

where C is the concentration, T is the temperature, q is the
flow rate, V is the volume of the reactor, C0 and T0 are inflow
concentration and temperature, kC e−EA/T is the reaction rate,
�H is the heat of reaction, � is the density, Cp is the specific
heat, Tc is the temperature of the cooling fluid, and U and A are
the effective heat transfer coefficient and area. Discretization
of continuous differential equations is implemented by finite
difference with �t = 0.005. The operating conditions are listed
in Lang et al. (2006). The system noise at the scale of the
normalized state variables is p(�) ∼ N(0, �2

� · I2), where
�2

� = 2.5 × 10−7 and Im is an m × m identity matrix, and
the measurement noise is p(�) ∼ N(0, �2

� · I2), where �2
� =

0.0025. The initial guess is p(x1) ∼ N(	x1
, �2

�), where 	x1
=

[0.5; 350] is the initial state value. There are 400 measurements
in each realization. A non-negative constraint is enforced on
the concentration Ck at each time step, k.

As shown in Fig. 2, SMC consistently requires less computa-
tion time and results in slightly better accuracy than MHE, with
both methods being much more accurate than EKF. The MSER

k

values shown in Fig. 3 indicate that EKF performs quite well
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in the beginning but has an abrupt increase in errors after time
100. In fact, this process experiences rapid state changes at that
time and the concentration level drops nearly to zero, which
is the constraint value. This shows that EKF suffers due to
linearization and its inability to enforce constraints. In con-
trast, MHE uses the smoothing approach for estimating the
arrival cost for each window. For this nonlinear problem, the
smoother does not reduce to EKF, but utilizes information
about the measurements in each window to estimate a more
accurate arrival cost than that obtained via filtering (Tenny,
2002). Compared to EKF and MHE, SMC uses neither lin-
earization nor Gaussian approximation. For SMC, the dynamic
process is well approximated by the particles that satisfy the
constraint.

4.2. Constrained McKeithan network

The McKeithan reaction network represents the kinetics
of signaling in a cellular system (Chaves & Sontag, 2002;
McKeithan, 1995). Compared to the previous model, it is
nonlinear in both the state and measurement equations. In
addition, one state component, C, is not present in the mea-
surement equation. The differential form of this model is
described by

Ȧ = −k1AB + k3C + k4D,

Ḃ = −k1AB + k3C + k4D,

Ċ = k2AB − (k3 + 
3)C,

Ḋ = 
3C − k4D,

y = [AB2 AD]T.

Details about model parameters and discretization are in Lang
et al. (2006). The initial value is x1 = (1, 3, 3, 2)T, and the
constraint is set to Dk such that Dk > 0.7 for all k. The sys-
tem noise is iid Gaussian with covariance �w = �2

wI4, where
�2

w = 10−4. The measurement noise is also iid Gaussian with
covariance �v = I2. The initial prior distribution is set to be
N(x1, 0.5I4). There are 1000 measurements.

The MSE for different methods is shown in Fig. 4. Like
the previous case, EKF is worse than MHE, which is worse
than SMC. Furthermore, the MSER

k values shown in Fig. 5
for EKF and MHE are worse than SMC for most of the time
steps due to the non-Gaussian distributions shown in Fig. 1,
which are caused by the complex nonlinearities in the state and
measurement equations.

5. Conclusions

This paper described a practical approach for extending SMC
sampling or particle filtering based Bayesian estimation to con-
strained dynamic systems. The proposed algorithm is based on
previous work on estimation of unconstrained nonlinear dy-
namic systems (Gordon et al., 1993). It enforces inequality
constraints via an acceptance/rejection algorithm that ensures
that all samples representing the likelihood, prior or posterior

satisfy relevant constraints. Equality constraints may be read-
ily imposed via the proposed approach by including them in
the state or measurement equations. The resulting formulation
is general and may be combined with modifications of SMC
such as alternate ways of constructing importance functions,
dealing with poor initial guess, or enforcing constraints. The
proposed algorithm is also shown to possess the theoretical
properties of unconstrained SMC. Application of constrained
SMC to various case studies indicates that the proposed ap-
proach is capable of handling constraints and can provide ac-
curate estimates with efficient computation. Constrained SMC
easily outperforms EKF in estimation accuracy and also shows
improvement in estimation accuracy over MHE especially when
the posterior distributions at each time point cannot be ade-
quately represented by multivariate Gaussian or other fixed-
shape distributions. In terms of computational efficiency, SMC
consistently requires less CPU time than MHE especially in
nonlinear dynamic systems.
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