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ABSTRACT

Motivation: Statistical inference of biological networks such as gene
regulatory networks, signaling pathways and metabolic networks
can contribute to build a picture of complex interactions that take
place in the cell. However, biological systems considered as
dynamical, non-linear and generally partially observed processes
may be difficult to estimate even if the structure of interactions
is given.

Results: Using the same approach as Sitz et al. proposed in another
context, we derive non-linear state-space models from ODEs
describing biological networks. In this framework, we apply
Unscented Kalman Filtering (UKF) to the estimation of both
parameters and hidden variables of non-linear state-space models.
We instantiate the method on a transcriptional regulatory model
based on Hill kinetics and a signaling pathway model based on mass
action kinetics. We successfully use synthetic data and experimental
data to test our approach.

Conclusion: This approach covers a large set of biological networks
models and gives rise to simple and fast estimation algorithms.
Moreover, the Bayesian tool used here directly provides uncertainty
estimates on parameters and hidden states. Let us also emphasize
that it can be coupled with structure inference methods used in
Graphical Probabilistic Models.

Availability: Matlab code available on demand.

Contact: florence.dalche@ibisc.univ-evry.fr

Supplementary information: Supplementary data are available from
http://amisbio.ibisc.fr/dm

1 INTRODUCTION

Cellular networks (Elowitz and Leibler, 2000; Klipp and
Liebermeister, 2006) implement complex mechanisms that
enable the cell to respond through time to input signals.
Identifying the structure and the parameters of these networks
from experimental data is undoubtedly one of the most
important challenges in systems biology. Recently, several
directions have been simultaneously but independently explored
in reverse engineering of metabolic networks, signaling
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pathways and transcriptional regulatory. This diversity of
approaches is essentially due to the kind of available data.

In the case of metabolic pathways, various modeling frame-
works from Flux Balance Analysis (FBA) to Ordinary
Differential Equations (ODEs) have been developed. As
modelers in this domain often benefit from an important
background knowledge, much of the current work is focused on
model refinement (Herrgard et al., 2006) using perturbation
data. Only few works concern parameter estimation of ODEs
with a strong assumption about the network structure.

Regarding signaling pathways, most of the related work in
the modeling literature (Klipp and Liebermeister, 2006) also
considers that the structure of signaling pathways is known.
In this case, the most important task becomes the estimation of
(generally) non-linear models based on Hill or mass action
kinetics.

On the contrary, in modeling transcriptional regulatory
networks, the availability of mRNA concentrations has led
researchers to develop algorithms for the estimation of both
parameters and structure from prior knowledge and experi-
mental data (Nachman et al., 2004; Perrin et al., 2003; Rangel
et al., 2004).

While differences can be stressed between gene regulatory
networks, signaling pathways and metabolic networks (Klipp
and Liebermeister, 2006), we adopt here a transversal point of
view and propose to solve in a unique framework the parameter
estimation task when the structure of the network is known. We
notice that whichever biological network is under study
(metabolic, signaling or regulatory), some of its variables may
not be observed, increasing the difficulty of the estimation task.
We thus suggest the use of a general framework based on state-
space models that accounts not only for non-linear dynamics
but also for partially observed systems. Similarly to Sitz et al.’s
(2002) work developed in a non-biological context, we derive
such models from well-grounded Ordinary Differential
Equations used in systems biology. This broadens our ability
to cover a large variety of biological systems and establishes a
bridge between dynamical graphical models and ODEs used in
Systems Biology. In non-linear systems, the statistical learning
problem is no longer solved in closed form as opposed to linear
systems and this raises computational difficulties. In this work,
we have chosen to use Unscented Kalman Filtering to tackle
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non-linearities. Among other Bayesian approaches, this one is
fast and relatively easy to implement. It can be considered as a
first step towards more sophisticated approaches such as
particle filtering. We illustrate the efficiency of this framework
by estimating the parameters and hidden variables of two
different systems. The first system is the Repressilator, a
synthetic transcriptional regulatory network proposed by
Elowitz and Leibler (2000) in order to exhibit how sustained
oscillations can be obtained through a simple system of three
repressors. We use Michaelis—Menten kinetics with Hill curves
to describe it.

The second system under consideration is the JAK-STAT
signaling pathway (Swameye et al., 2003; Zi and Klipp, 2006)
which takes part in the regulation of cellular responses to
cytokines and growth factors. Following the setting introduced
by Zi and Klipp (2006), we study the parameter and hidden
variables estimation problem when using mass action dynamics.

We show by our derivations that the same state-space model
can encompass these two kinds of modeling. Both on artificial
and experimental data, the estimation method performs
successfully.

2 MODELING BIOLOGICAL NETWORKS WITH
NON-LINEAR STATE-SPACE MODELS

Let us consider a biological network composed of p, variables
evolving with time, denoted x = (x, ..., X, ). The vector x(?) is
supposed to represent the state of the network at time ¢, which
is observed at N+ 1 times tp=0<?<...<ty, The graph
structure of the network is known. Thus the functional nature
of interactions is contained in a parameter 0 and the state
evolves in the following way for n>0

Xnyl = Fn(xn; 9) (])
The function F, has to be chosen according to the kind of
network considered (metabolic, signaling or regulatory path-
ways). We assume that, for biological or experimental reasons,
the states x,, may not be accessible and we can only observe the

variables y = (y1,...,),,) through the observation functions
0,,n=0,...., N '

Y. = O,,(X,,; 9) + EZ- (2)
€7 is a measurement noise chosen as a centered Gaussian noise
with covariance R,. The model defined by Equations (1) and (2)
is a state-space model, frequently encountered in engineering
science. In general state-space models, x can have a stochastic
evolution, so equation (1) may be replaced by the more general
one X, 41 = Fu(X,, €; 0), with (€)),~, being a white noise. This
assumption also has a biological motivation; for instance,
McAdams and Arkin (1999) have shown the intrinsic random-
ness of gene regulatory networks, where x represents gene
expression levels and concentrations of transcription factors in
the cell. Our goal is to provide a general learning framework in
which parameters and hidden variables can be estimated from a
time series Yo.n = (Yo, - - - Y N)-

2.1 Deriving non-linear state-space models from ODEs

Quantitative models of biological networks are usually based
on Ordinary Differential Equations (ODE), which means that

the state of the networks is supposed to satisfy the following
ODE

X(1) = f(x(0), u(1); 6). (3)

There exist several ways to link state-space models with ODEs,
for instance by discretizing time (Perrin et al., 2003). Contrary
to the use of integration though time, this implies several
limitations for the sampling interval of the observations.
Similarly to Sitz et al.’s approach (Sitz et al., 2002), we notice
that when the state is observed at finite times (Z,0<, <), its
evolution can be cast into (1) with functions F, and x(7,) =x,,
forn>0

F,(x,: 0) = X, + / " fx(2), u(o): O)dr. @)

In general, the transition from x, to X, is time-dependent:
first, because of uneven sampling times [even if the ODE (3) is
autonomous] and second, because of the presence of a
time — dependent input variable. Finally, the network can be
partially observed and the observation process is usually
described by Equation (2) with O,(-, @) =o(-) being a function
independent of n and 0. In the following, we show that this
framework encompasses both models of transcriptional reg-
ulatory networks and models of signaling pathways.

2.2 Modeling transcriptional regulatory networks with
Hill equations

In transcriptional regulatory networks, variables of interest
are mRNA and protein concentrations, denoted respectively
by r;and p,, i=1,....,d. Let us make the assumption here that
one gene can only produce one protein. We consider trans-
cription and translation as dynamical processes, in which
the production of mRNAs depends on the concentrations
of protein transcription factors (TFs) and the production
of proteins depends on the concentrations of mRNAs.
Hence, we have x(t) = (r(t) ", p(1) )" with r(t) = (r1(0), ..., rdt)) "
and p(t)= (1), ....pA1)". Equation (3) can be split into
the following equations:

ri =gi(p) — kiri, (5)

pi =kiri — kf[’i- (6)
Where kf and k% are respectively the degradation rates of
mRNA / and protein i. The function g; describes how TFs
regulate the transcription of gene i and Equation (6) describes
the production and the degradation of protein i as linear
functions where k; is the translational constant for gene i (Chen
et al., 1999).

Various forms have been proposed to model g,(p), ranging
from linear (Chen et al., 1999) to non-linear approaches (de
Jong, 2002; Elowitz and Leibler, 2000; Nachman et al., 2004;
Smolen et al., 2000). Experimental evidence has suggested that
the response of mRNA to TFs concentrations has a Hill curve
form (de Jong, 2002; Elowitz and Leibler, 2000). The regulation
function of transcription factor p; on its target gene i can be
described by g*(pj; V"™, ky, n) = v (p} /k}; + pf) for the acti-
vation case and g (p;; vi"™, ky, n) = v (kj;/kj; + pj) for the

inhibition case. v"™** is the maximum rate of transcription of
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Fig. 1. Left: repressilator. The first repressor protein, Lacl inhibits the
transcription of the second repressor gene TetR whose protein product
in turn inhibits the expression of a third gene cl. Finally, CI inhibits lacl
expression, completing the cycle. Right: JAK-STAT signaling pathway.
JAK protein binds to the Erythropoietin Receptor (EpoR) and causes
the phosphorylation of STATS protein. Phosphorylated STATS protein
then forms a dimer and moves into the nucleus. In the nucleus,
phosphorylated STATS dimer is dephosphorylated and forms a STATS
monomer, which finally goes back to the cytoplasm.

lacl

gene i, k; is the concentration of protein p; at which gene i
reaches half of its maximum transcription rate and » is a
steepness parameter describing the shape of sigmoid responses.
The parameter = (v, ky, k%, k;, k§,n) for i, j=1,..., d is the
set of kinetic constants to be estimated. Note that if a gene has
several regulators, the regulatory part of the Equation (5) can
be extended into a product of functions g© and g~ that
expresses the combined effect of regulators. However, we
consider here examples where the genes have only one
regulator.

Elowitz and Leibler (2000) introduced the Repressilator, a
synthetic network based on three transcriptional repressors in
order to implement the desired dynamical behavior (sustained
oscillations) as illustrated in Figure 1. The system was also built
experimentally by genetic engineering with mutated Escherichia
coli strains. Despite the simplicity of the transcriptional
regulation model, the negative feedback loop leads to oscillat-
ing concentrations confirmed by experiments. The kinetics of
the system can be described by six coupled ODEs, which exactly
fit the framework previously described and can be translated
into a discrete-time state-space model of form (1). The hidden
variables are the protein concentrations with evolution as in
Equation (6), and the observations are the (noisily) observed
mRNA concentrations r;, i=1,..., 3 which satisfies:

Fi(1) = & (prisny; VI, ki, n) — kSri(t)

where [i + 1] equals 7+ 1 modulo 3.

2.3 Modeling signaling pathways: the JAK-STAT
example

Signaling pathways usually involve numerous and various
intermediate products in a complex sequence of transforma-
tions hence it is quite difficult to describe them in a general way.
Depending on the types of signals and intermediary compo-
nents, and the localization of the pathways, there exist several
relevant types of ODEs. Consequently, it seems rather difficult
to give the same wide picture as for transcriptional regulatory
networks, but most of the time we can say that the ODEs

system involves non-linear reaction rates derived from mass
action law and Michaelis—Menten (or Hill) kinetics. We focus
here on the JAK-STAT signaling pathway involved in the
cellular response to cytokines and growth factors, which
involves Janus kinases (JAKs) and Signal Transducers and
Activators of Transcription (STATS), see the graph on the right
of Figure 1. This pathway transduces the signal carried by these
extracellular polypeptides to the cell nucleus, where activated
STAT proteins modify gene expression. In both cases, there
may be some difficulties to observe the variables of the
pathway, and this gives rise to different observation functions
o from gene regulatory networks. This is particularly empha-
sized in the JAK-STAT pathway, for which it is difficult to
discriminate between several intermediates in the pathway.
Swameye et al. (2003) have suggested an ODE linking the
Erythropoietin receptor (EpoR) to the various forms of the
STATS protein: dephosphorylated STATS monomer (x;) and
phosphorylated STATS5 dimer (x,) in the cytoplasm, phos-
phorylated STATS dimer (x3) and STATS monomer (x4) in the
nucleus. In Swameye ez al. (2003), the concentration of EpoR is
considered as an exogenous variable of the system. The
evolution of this network can be described by the following
system of coupled differential equations with an input variable
u(-) (EpoR), which is an adaptation of the system proposed in
Swameye et al. (2003) by Zi and Klipp (2006):

xi() = —arxi(Ou(?) + 2a4x4()1 1=

() = arxi(Du(t) — 2a4x3(1) ™
() = —azxs(n)+ x3(0)

Xa() = azx3(t) — asxa(Dli= g

where 1;,-; denotes the indicator function, equal to 0 for <t
and equal to 1 otherwise. The concentrations and constants «;,
i=1, 3,4 1in (7) stand for normalized quantities (Zi, 2006). 0 =
(ay, as, as)" is the parameter to be estimated. As pointed out by
Swameye et al., the individual STATS population is difficult to
access experimentally, and only the following variables could be
measured: y; = (x» 4+ 2x3), the concentration of phosphorylated
STATS in the cytoplasm and y,= (x;+ x>+ 2x3), the total
amount of STATS in the cytoplasm. Thus, the model and data
obtained fit the framework of the state space model described
in Section 2.1.

3 ESTIMATION WITH UNSCENTED KALMAN
FILTERING

3.1 Bayesian estimation

In a Bayesian framework, parameters as well as hidden states
are random variables. The goal of inference is to compute the
posterior distribution of parameters and initial state, p(6,
Xo|Yo.n), given a prior distribution 7(0,xo). It is then possible to
estimate variances for parameters. Moreover, we benefit from
the large family of algorithms developed for this framework:
the state-space form given by equations (1) and (2) is exploited
for deriving a sequential estimation procedure based on
filtering. We then use an extension of Kalman filtering that
computes an approximation of the posterior probability and
which also gives an approximation of the Minimum Mean
Squared Error estimator (MMSE). This method makes it
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possible to deal with hidden variables and to estimate them
quite simply.

We first recall the general principle of filtering and describe
the adaptation of the Kalman filter to the case of non-linear
evolution equations, using the Unscented Transformation
(UT). We then derive the estimation method for unknown
parameters and partially observed states and describe it for the
biological models considered in the previous section.

3.2 Filtering

In this section, we remove for sake of clarity parameter 0 in
Equations (1) and (2), and we describe only the estimation of
hidden states. Filtering is the sequential computation of the
posterior (or filtering) probability «,(x)=p(X,|yo..) for
n=0,...,N (Cappé, et al., 2005). Without loss of generality,
the complete process X =(X,)o<,<y may be a Markov (non-
deterministic) chain, with values in X (here X C R’"). The
computation of the filtering probability consists of the alternate
and sequential computation of the prediction probability
PXulYo.n—1), n>0, the so-called prediction step:

p(xn|YO:n—l) = /p(xn|anl)an—l(xn—l)dxn—l (8)

X

and its ‘correction’ into «,(-) (the so-called correction step) by:

p(Yn|xn)p(Xn|YO:n—1) (9)
fx p(yn |Xn)[7(xn | Yon—1 )dxn

an (x)l) =

We can then derive the sequence of most likely current states
characterized by X, = argmax,cya,(x),n=0,..., N. Note
that at n=0, the prediction step is replaced by setting
p(xo\yoj,l)érf(xo), where m(Xq) is our prior distribution on
the initial state.

3.3 Approximate filtering

When X is a Gaussian and linear Markov process (F and o are
linear), the prediction-correction algorithm is the well-known
Kalman filter that consists of a recursive computation of the
mean and covariance of the (Gaussian) distribution «,(-). This
algorithm is no longer valid when the process X is not
Gaussian, nor when the function F is non-linear, but several
extensions have been proposed to tackle non-linearity or non-
gaussianity: Extended Kalman Filtering (EKF, Wan and van
der Merwe, 2001), Kernel Kalman Filtering (KKF, Ralaivola
and d’Alché-Buc, 2004), Unscented Kalman Filtering (UKF,
Julier et al., 2000; Wan and van der Merwe, 2001) and Particle
Filtering (PF, Doucet et al., 2001). Among the previously
published methods, we have focused on UKF that is an
approximation of the posterior distributions «,(-) by Gaussian
distributions with mean m,,(x) and covariance X,(x). The UKF
has the same computational complexity as EKF but offers a
better approximation of the true covariance X,(x) and does not
require the derivatives of F to be computed. Compared to the
other filtering methods, KKF requires us to define a kernel
function that may be difficult to choose if one wants to stick to
classical equations of kinetics. PF involves several hyperpara-
meters and, unlike UKF, is based on clouds of randomly
generated points of important size that induces numerous ODE

integrations in prediction-correction steps and leads to a higher
computational cost. UKF relies on small deterministic sets of
appropriately chosen points used in order to mimic the non-
linear evolution of the state variable: the so-called sigma points
&>+ - -5 E2p» 1 (py 1s the dimension of x). The key idea in UKF
lies in the prediction step, where the ‘unscented transformation’
allows one to compute an approximation of the mean
m, . ;,(x) and covariance X,.;,(x) of the prediction prob-
ability. The mean and covariance of the transformed
variable F(x,) (when x,, has the posterior distribution «,,) can
indeed be approximated simply by using the first empirical
moments of transformed sigma points chosen as &, =m,(x),
E[,)I:m}’l(x)—’_Qi,ll and %_H—p,\,n = mn(x) - Qi,na where Qn is a
square root matrix of (2p,+1/2) X,(x). Other interesting
choices of sigma points are given in Julier et al. (2000).

Then, the correction step is carried out in a way similar to
Kalman filtering using the classical Kalman gain matrix K, |
and the (approximate) covariance X, ,(y) of the pdf p(y,1l
Yo..) (see Section 1 in the Supplementary Material for a
complete description of the algorithm). The sequence of
estimates (filtered process) X, of the hidden variables is the
sequence of means m,,(X).

3.4 Bayesian estimation of parameters

We adapt here the previous general setting to the joint
estimation of hidden states and parameters. This can be
accomplished using the augmented state vector approach,
which consists in rewriting the dynamical system (1), (2):

0)1+1 = 011 (10)
Xn+1 = F (Xn; 0n) (1 1)
Yo = 0(Xu; 0n) + € (12)

i.e. the parameter is considered as a hidden state without any
temporal evolution. We can use the previous UKF in order to
compute the approximation of p(0,, x,,| yo.,) and we can derive
a sequence of (improving) estimates (én, Xp).

The minimizer of the squared error is approximated by m,,(6).
Nevertheless, in practice m,,() can be a spurious minimizer, and
it is recommended to perform several sweeps of the algorithm
on the data, i.e. the parameters estimated in the previous sweep
are chosen as the initial value for the next sweep.

As described for hidden states, at n =0, the prediction step
is replaced by setting p(6y, Xo | Yo.—1) = 7m(0.x0). We pro-
pose using the rather non-informative hierarchical prior
m(0,x0) =m(O)m(xo), where 7((x);) = [[;V(ttx. 07), with
my, ~ U(0, 1)), i.e. all of the components of the vector are
independent and Gaussian, with a mean drawn according to
a uniform distribution whose support is determined by a
hyperparameter A; computed from the data, and the variance

o2 is a fixed value (depending on the data). However, if

X;
a certain constraint concerning the initial value is made
available, more informative prior could be used.

The estimation procedure for the Repressilator and the JAK-
STAT model is done by considering the stacked state variable
X, = 0], x,) T, The state components of the points &;, are

computed using by F,(-, 0,), i.e. by integration of the ODE
described in Section 2.1. For the repressilator, the y;, are
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Fig. 2. Left: the evolution of the true (dashed) and estimated (solid) protein concentrations. Right: recursive estimation of the maximal rate of
Michaelis—Menten kinetics through time for the sampling interval A, = 0.2 (corresponds to 100 data points). Dash lines: true parameters. Solid lines:
estimated parameters. For each parameter, the bold solid line shows the mean of the filtering distribution and the thin curves show the confidence

interval with one SD.

vectors of dimension 3 corresponding to the gene expression
levels. For the JAK-STAT model, the yx;, are vectors of
dimension 2 computed from &;, by the linear combinations
)C2+2X3 and X1 +X2+2X3.

4 RESULTS

We first illustrate our approach on artificial data generated
from the Repressilator model and second, on experimental data
of the JAK-STAT pathway. Simulation studies are useful in
providing insights into the strengths and weaknesses of learning
algorithms, such as robustness against numerous choices of
settings, including the quantity of observed data, the sampling
interval for observing the data, the number of time points in the
observed time series.

The size of the systems used in the experiments are quite
representative of the size of the models that the proposed
method (based on UKF) can efficiently handle, i.e. around 10
variables and parameters. In higher dimensions, the recursive
optimization using the UKF approximation can lead to spurious
minimizers, but such a limitation can be partly overcome by
using a better approximation, such as the Particle Filter. The
main limitation of the approach depends on the respective sizes
of the observed and hidden parts of the system.

4.1 Parameter estimation of the Repressilator

4.1.1 Simulated data We start from the equations given in
(2.2) and fix the following values of the parameters according to
the stability study presented in Elowitz and Leibler (2000):
K =1,k =2,k =3, k{ =5 = k5 = 1, "™ = 50, vi"™* = 80,
Vi =100, k1 = 50, ko3 = 30, k31 = 40 and n=3. The compo-
nents of the initial state are drawn independently from a
uniform distribution on [0, 100] (arbitrary units). Simulations
are performed using the MATLAB numerical integrator ode45
over the time interval [0, 7], with T=20. The observation
noises €/ are added to three observed variables to mimic gene
expression data and the SD of €] shown in the experiments is
chosen to be equal to 20% of the SD of the states. The
robustness of the method has been tested with respect to a
higher noise level (30%, 40%), and similar results for the
estimation for the states and parameters have been obtained.

The estimated predicted variance and the variance of the
estimators increase, although no systematic divergence of the
method has been detected.

During the simulation, measurements are sampled at a fixed
interval A,, so that for each experiment a time series containing
T/A,; time points is collected. We assume that the learning
problem consists in identifying the following six parameters:
VI VR ys ko, ko3 and k3 while the degradation rates for
proteins and mRNAs are known. In order to learn the true
parameters, we use a multi-start approach by sampling 7= 50
different initial states and parameters from our prior 7(0, xo),
so that we compute 50 filters in parallel. Our final state and
parameter estimates are simply the mean of the prediction of
the 50 different filters (an alternative way to combine the
different filters would be to select the filter with the lowest
prediction error). The Gaussian priors for the parameter are
such that 1, = 2 x 6f and oy, = 0.2 x 67, and for the unobserved
variables A; = 2 x x}, and oy, is set to 20% of the SD of the state
x;. For the observed variables, the prior is also Gaussian with
mean fiy = v and the same formula as for the unobserved
variables is used for the SD.

4.1.2  Evaluation of parameter estimation The filtered pro-
tein concentrations and parameters using UKF are shown in
Figure 2 for A,=0.2, (see also Fig. 1 in Supplementary
Material for the case of one experiment: one time series
corresponding to one initial condition). The filtered concentra-
tions of proteins quickly adjust to the true protein trajectories.
The SDs of the estimators are estimated using the square-root
of the diagonal of the matrix X,(x). Parameter estimates start
far from the true value with high SDs, but they gradually
converge to the true parameters. The small values of the final
SDs of the estimates point out the convergence of the learning
algorithm. Finally, since a single sweep of UKF on a time series
containing 100 observations takes less 5s, our multi — start
approach gives an estimation within ~250s.

4.1.3  Dependency between the prediction error of the hidden
states and the sampling interval In order to analyze the
dependency between the prediction error and the sampling
interval, we used different sampling intervals (respectively)
A,= 0.2,0.4, 0.8, 1 and 2, corresponding to (respectively) 100,
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Fig. 3. Estimation of parameter v"** versus the length of observed time
series. The dash line shows the true parameter. The bars show means
and SDs of estimated parameter.

50, 25, 20 and 10 time points. The estimates for all parameters
are reported in Table 1 of the Supplementary Material. We plot
the estimation results for parameter v in Figure 3.
Obviously, the estimates are closer to the true values with
smaller SD when there are more time points available. In order
to compare errors for the different cases, we introduce the
normalized Mean Squared Error between the true and
estimated trajectories:

1 . T 1 e :
MSE = ; (R — x,") T diag(Z, Ry — x,")

where ¥, is the covariance matrix of the UKF estimate at time
n and diag(A4) is the diagonal matrix equal to the diagonal of a
square matrix 4. The errors for each component of the state
variable are rescaled in order for them to be comparable
(though the covariance between the components is not taken
into account). The MSE is plotted in Figure 2 of the
Supplementary Material and increases when there are less
time points. However, a relevant result is still obtained for only
10 observed time points. As we can see in the final column of
Table 1 of the Supplementary Material, the true parameters
stands within +o confidence interval of the estimated
parameters.

4.1.4 Dependency between the prediction error of the para-
meters and the number of repeated experiments We show here
that the influence of the number of different experiments (i.e.
time series corresponding to the observation of the same system
but with different initial conditions). The learning algorithm
can be adapted to this setting in a straightforward manner, and
we show that it is possible to deal with more difficult situations.
As an illustration, we assume that the parameters kq, k», k3 are
also unknown, so that we have to estimate nine parameters
from several time series (with 50 observations each). The MSE’s
obtained for a number of experiments varying from 1 to 6 are
reported in Figure 4 of the Supplementary material. The MSE
decreases when more experiments are available. One notes that
three different experiments provides the same mean level of
MSE as six experiments but with higher variance. This may
help in designing experiments and gives some hints for
obtaining accurate estimates of the parameters from only a
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Fig. 4. Prediction of phosphorylated STATS and total amount of
STATS.

few experiments. We also plot the estimation of parameter v"**
versus the number of repeated experiments in Figure 3 of the
Supplementary Material. The estimated parameter tends to the
true value with smaller SDs when the number of experiment
increases.

4.2 Parameter estimation for the JAK-STAT pathway
model using experimental data

Experimental data of JAK-STAT pathways from Swameye
et al. (2003) was used. Time series of two observed variables
y1 (the total concentration of phosphorylated STATS) and
> (the total concentration of STATS in the cytoplasm) are
measurable. Each time series contains 16 time points sampled
at =0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 40, 50, 60]
min. Data for the input EPoR phosphorylation is also
available. Here, we use a linear interpolation in order to
obtain a continuous time input. We initialize the parameters aj,
a3, aq and the initial condition x; independently with a uniform
distribution on [0,5]. We plot the normalized MSE between the
predicted time series and the data in Figure 4 of the
Supplementary Material. The convergence of this curve shows
the stability of the learning algorithm, and ensures that we have
reached a local minima. Eventually, the parameter estimates
(with SDs) are a; = 0.0515+0.0055, a3 =3.39+0.45 and
a4 = 0.3540.047, and the prediction for the observed variables
y1 and y, are shown in Figure 5, which shows a good fit of the
learned model. We also check the coherence of the estimation
by simulating the JAK-STAT pathway with these estimates. A
new time series x* is simulated from (7) with initial conditions
x1=0.2, x=x3=x4=0 and the estimated parameters. The
result in Figure 5 showed that the learned model is able to
predict well the four unobserved components of x*, so we may
have a higher confidence in the prediction of the unobserved
variables.

5 DISCUSSION

The approach we derived for non-linear biological systems has
already been proposed in another context by Sitz et al. (2002).
However, the present work is a novel application of this
approach in Systems Biology, which opens new perspectives in
estimating non-linear biological systems. So far, linear state-
space models have been mainly used for transcriptional
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Estimating parameters and hidden variables

Concentrations
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Fig. 5. The evolution of the simulated (dashed) and estimated (solid)
concentrations of the four unobserved variables.

regulatory networks. Perrin er al. (2003) proposed IDBN
(Inertial Dynamic Bayesian Network), a second-order linear
ODE model that accounts for inertia and allows us to represent
damped oscillations: in this model hidden variables are the true
mRNA concentrations and their derivative. Parameters and
hidden variables have been estimated in this context by linear
Kalman filtering and smoothing (d’Alché-Buc et al., 2005).
Rangel et al. (2004) introduced also a linear dynamical
probabilistic model for which the biological interpretation is
less explicit but this work has been interestingly followed by a
study on hidden variable estimation in Beal er al. (2005).
However, a higher level of detail is often required in order to
improve the biological relevance of the models. This is why
Nachman et al. (2004) suggested a non-linear state-space model
based on Michaelis-Menten equations but only to cope with
transcription factors. In their model as well as in Rogers et al.
(2007), the equation taking into account protein production
and degradation is not used. Our model in the case of
regulatory networks can thus be seen as an extension to a full
modeling of protein and mRNA concentrations through time.

Another interest in the state-space interpretation of ODE
model lies in the access to new estimation methods, which could
be faster than classical ones and could also be able to
incorporate priors on the system. Indeed, most of the methods
proposed so far for signaling pathway consist of the minimiza-
tion of a least squares criterion (Li er al., 2005; van Riel and
Sontag, 2006) without any regularization term. Even when the
model is slightly complex (around 10 variables), the minimiza-
tion step requires special care in order to reach the true
maxima, because classical local optimization methods (gra-
dient-based or Newton-like) are doomed to reach local minima.
In the end, global optimization techniques have been proposed
in order to solve these problems such as simulated annealing,
evolutionary algorithms, (Koh et al., 2006; Moles et al., 2003;
Polisetty et al., 2006). These techniques are batch methods that
do not use the recursive structure induced by the ODE model.
In contrast to the former, the alternate regression (Chou et al.,
2006) or the system perturbation method (Schmidt ez al., 2005)
exploit the particular structure of the learning problem in order
to derive relatively simple algorithms. Our method takes
advantage of the dynamical nature of the model by implement-
ing a recursive optimization. Though the UKF is only able to

reach a local minimum of the posterior probability, it delivers a
sequence of estimated states X, and parameters én which are
likely for all the intermediate estimation problems with
observations yj.,. This sequence of estimates remains plausible,
at least when the initial conditions are correctly chosen (which
can be done in some case with the literature). We have used in
our experiments simple priors (flat or Gaussian priors), but
Bayesian estimation may benefit from more elaborated prior
distributions in order to favor meaningful regions of the
parameter and state spaces. Moreover, the most striking
property of this estimator is its ease of implementation and
above all its speed, which is an advantage over global
optimization methods. One should also note that the variance
of the estimator (Xy, 6 ) is simultaneously computed, whereas it
is not straightforward to compute it in batch methods since the
model can be too complex to be done analytically or
approximately. Moreover, our estimation method can still be
enhanced by the use of smoothing probabilities and the
promising results of UKF calls for more sophisticated filtering
approaches such as particle filtering.

6 CONCLUSION AND PERSPECTIVES

We have presented non-linear state-space models for describing
biological networks and non-linear filtering approaches to
estimate both parameters and hidden variables. As the models
are built up from ODEs, they benefit from all the existing
background in biological modeling with ODEs and thus are
ensured to exhibit high biological relevance. This point was
illustrated on two different kinds of networks models: a
transcriptional regulatory model based on Hill kinetics and a
signaling pathway model based on mass action kinetics. Let us
notice that, given the type of equations we already dealt with,
there is no reason not to apply this approach to model
metabolic networks and to estimate their parameters as soon as
experimental data are available. Moreover, this work raises
several issues that encourage further works. First, our estima-
tion algorithm like others in literature requires time series of
sufficient length to be efficient. In this case, we need to reduce
the complexity of the parameter space by introducing relevant
biological priors. The Bayesian framework we use is appro-
priate for this. Second, large networks with large number of
parameters may not be identifiable. In order to overcome this
limitation, we suggest applying the decompositional scheme
developed in Koh er al. (2006) in order to work only on
subnetworks. Third, it should be emphasized that our
parameter estimation method can be coupled with any of the
classical structure learning schemes used in graphical probabil-
istic models (MCMC, evolutionary approaches) in order to
fully reverse-engineer biological networks. Finally, it should
also be stressed that this framework could account for joint
modeling of metabolic, signaling and regulatory networks if
one can deal with the various time scales and has access to
appropriately observed time series.
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