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Constrained Nonlinear Estimation for Industrial Process Fouling

Benjamin J. Spivey,*" John D. Hedengren,” and Thomas F. Edgar’

Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, and Baytown
Chemical Plant, ExxonMobil Chemical Company, 5000 Bayway Drive, Baytown, Texas 77520

Industrial process monitoring tools require robust and efficient estimation techniques that maintain a high
service factor by remaining online during abnormal operating conditions, such as during loss of measurements,
changes in control status, or maintenance. Constraints incorporate additional process knowledge into estimation
by bounding estimated disturbances within feasibility limits thereby providing robustness to faulty measurements
or conditions that violate process models. Moving horizon estimation (MHE) and unscented Kalman filtering
(UKF) are two estimation techniques that permit incorporation of constraints prior to evaluating the a priori
estimate. This paper evaluates both constrained nonlinear estimators versus the extended Kalman filter (EKF)
using industrial process data provided by ExxonMobil Chemical Company. Results provide short-term insight
into the fouling process, and parameter estimates produced by UKF and MHE are shown to be more accurate

than EKF.

1. Introduction

State and parameter estimation have demonstrated valuable
application in the chemical process industries by enhancing
process monitoring and control. Examples of industrial applica-
tions include offline and online process system identification,
online monitoring and fault detection, parameter estimation for
use in model predictive control, and process disturbance
prediction. These estimation techniques may be Bayesian if the
estimator represents the probability distribution with a collection
of unique point estimates or deterministic if the distribution is
characterized by its moments, for example, the mean and
covariance. Techniques also vary in whether they retain past
data as with batch estimation or propagate the distribution as
with sequential estimation. This paper presents an investigation
of several constrained deterministic sequential estimation tech-
niques for monitoring fouling in an industrial chemical reactor
at ExxonMobil Chemical Company’s Baytown Chemical Plant.

Fouling directly affects the economics of the reactor operation.
When fouling is removed, temperature control of the reactor is
more accurate and provides more consistent reactor product
qualities. In addition, scheduled cleanouts directly impact
productivity by requiring the full product line upstream and
downstream of the reactor to quit operation until the reactor is
replaced. However, failure to clean the reactor prior to significant
fouling accumulation will result in plugging of downstream lines
and downtime greater than that required for a cleanout.
Implementing a fouling monitor is critical to optimizing the
schedule of cleanouts and gaining process knowledge of the
fouling mechanism.

Traditional methods for estimating fouling assume that
measurements are at steady-state or require local measurements.
Alternative data reconciliation techniques, such as the Huber
M-estimator, are based on linear regression; however, the fouling
process has been shown to be nonlinear in recent works, and
the linearity assumption will be an additional source of model
mismatch. These issues have motivated recent work on develop-
ing fouling estimations that can use nonlinear physical dynamic
models and utilize bulk measurements. Jonsson et al. proposes
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a method to model a heat exchanger based on conservation laws
and estimates two dimensionless parameters for the heat transfer
units for the hot and cold side tubes using the extended Kalman
filter (EKF). Their work incorporates mass flow and inlet and
outlet temperature measurements from a consecutive set of
reliable, dynamic data.' Zavala et al. likewise develop a physical,
dynamic model for estimating fouling of a multizone tubular
low-density polyethylene reactor. The authors of that work
justify using the moving horizon estimation (MHE) since it is
capable of utilizing sophisticated dynamic models and handling
bound constraints that prevent the estimated parameter from
entering unreal regions.” In the present paper (unscented Kalman
filtering) UKF is likewise capable of incorporating bound
constraints, and the index-1 differential and algebraic equation
(DAE) model can be simplified to ordinary differential equation
(ODE) form for UKF and EKF.

Deterministic sequential estimation techniques have primarily
evolved from the recursive least-squares solution used to derive
the Kalman filter. The KF produces the optimal estimate given
a linear, time-invariant, unconstrained system with Gaussian
noise and propagates noise with the mean and covariance. The
EKEF refers to a class of estimation techniques that linearize
nonlinear state and observation equations about the current
operating state and use the optimal Kalman gain for updating
the nominal trajectory. While the EKF has been commonly used
in practice for unconstrained systems, key limitations of EKF
are the inability to incorporate physical constraints accurately
and inaccuracies in the Jacobian linearization causing estimate
divergence.® These challenges have motivated alternative esti-
mation techniques that retain the nonlinear system and incor-
porate physical constraints.

Two estimation techniques capable of accurately representing
nonlinear dynamics without linearization and incorporating
estimate constraints are UKF* and MHE.? An additional benefit
of MHE is the capability of directly handling DAE models
without simplification to ODE. Both techniques are sequential
and deterministic. However, UKF represents system nonlinearity
in a probabilistic manner by sampling the distribution initially
at sigma points. Within UKF, the sigma points are transformed
through the state-update and measurement-update equations. The
a priori estimates and covariance matrices are calculated directly
from the state sample and propagated using the KF equations.

© 2010 American Chemical Society

Published on Web 05/19/2010



UKF can also incorporate state or parameter equality and
inequality constraints within the Kalman update and with sigma
point clipping, respectively.®’ Sigma point clipping is unique
from EKF clipping constraints, as it is performed a priori thereby
constraining the distribution and resulting in modified covariance
matrices and Kalman gains.

MHE is unique from Kalman filter techniques, as the joint
probability distribution of prior state estimates is maximized
rather than the a posteriori estimate distribution. In this sense,
MHE is similar to a full information estimation, as a batch of
prior states or parameters is estimated at each time step.
However, the computational burden is reduced within MHE by
truncating past data to a specified number of previous time
periods. The horizon is shifted by a single time step at each
iteration and provides the initial state for solving the optimization
problem at the next time. MHE is formulated as a quadratic
programming problem and is commonly solved using sequential
quadratic programming (SQP). Inequality and equality con-
straints are incorporated directly into the optimization problem
to be solved simultaneously with model equations. Liebman and
Edgar proposed using nonlinear programming to perform data
reconciliation with chemical systems characterized by highly
nonlinear regions.® The formulation of MHE as a minimization
of the sum of squared errors is proposed by Muske and
Rawlings,” Michalska and Mayne,'® and Robertson et al.’
Sufficient conditions for stability of MHE formulation have been
proven by Rao and Rawlings.'" Zavala and Biegler demonstrated
a fast MHE formulation based on expedited covariance informa-
tion extraction to reduce computation time.'? Other reports of
MHE applications using online industrial chemical process
measurements include monitoring diluent loss,'* a feed blending
application,'* a gas-phase polymer reactor,'” and a high pressure
polymer reactor.'®

In this paper, the performance of constrained UKF and MHE
estimators are evaluated versus EKF for estimating industrial
chemical reactor fouling using a nonlinear dynamic model.
Constrained estimation is beneficial for most physical systems
to prevent infeasible estimates, to satisfy conservation laws, and
to improve the service factor of industrial process monitoring
applications. From an operational perspective, robust monitors
that recover automatically following abnormal conditions will
perform at a higher service factor than monitors requiring
manual reboot. The reasons for the lower service factor are listed
as follows: the operator may require engineer assistance in
returning the monitor online; the time lag between process
recovery and monitor recovery will not be repeatable as it will
vary by operator and time; and in particular, new monitors will
likely not be a first priority for operators to return online
following unplanned measurement losses or process excursions
that cause bad estimate values. Thus consistent information
following process recovery will be lost with manual involve-
ment. The robust monitor will guarantee that important informa-
tion following the event is captured, such as process performance
with clean or new equipment.

Mangold et al. compared a square root UKF to a similar
estimator termed state estimation by online minimization for
estimating barium sulfate particle distributions. This approach
of quasi-batch estimation differs from MHE, as the batch time
intervals do not overlap and systems are unconstrained.'” To
the best of our knowledge, this paper is the first comparison of
an inequality constrained unscented Kalman filter and moving
horizon estimator. This work was performed in conjunction with
the ExxonMobil Chemical Company at the Baytown Chemical
Plant.
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The paper is organized as follows: the derivation and
algorithms for UKF and MHE are presented in section 2; section
3 presents results of the state and parameter estimation using
UKF, MHE, and EKF; in section 4 we summarize conclusions
and propose future work.

2. Preliminaries

2.1. Constrained UKF Algorithm. The unscented Kalman
filter enables use of the Kalman update equations without
linearizing the nonlinear state or observation equations, f and
g, which are continuous in our application as follows:

X = fix,u,w)

Y=gt + v o

in which x is the state vector, w and v are the state and
observation noise, respectively, u is the state equation input
vector, and y is the observation vector. Note that the state vector,
x, may include constant model parameters that will be estimated.

The state vector is augmented as x, to include the state vector,
state noise, and observation noise, and the covariance matrix is
augmented as Py, in the same manner to include these terms.

X X
X0 = [w|=1]0 2
v 0

P. 0 0
P.o= El(x, = ¥)x, —%)1=|0 P, 0
0O 0 P,

in which x,p and Py, are the initialized augmented state vector
and covariance matrix, respectively.

Initial sigma points, X; , are generated at time ¢ as shown in
eq 1 using the estimated value of x, at the previous time such
thatx = £, and Py = P,. Any dimension of the sigma point
vector, X; , that violates an inequality constraint is replaced by
the boundary value.” Figure 1 demonstrates a two-dimensional
sigma point constrained within the hatched region by inequality
constraints.

Time-Update Equations. Each sigma point is propagated
by integrating the nonlinear state and observation equations to
produce current time state and observation sigma points, X" and

Yt

xF= [0 X wadr,

. + 3)
Y; = gX;)

The current sigma points X' are constrained in the same
manner as the initial sigma points, as shown in Figure 1. These
points are used to characterize the mean and covariance of the
a priori state estimate as follows:

—
X

X is shifted to
the boundary

X violates the
constraint

Figure 1. The initial covariance (left) exceeds constraints. After the
constraint is applied, the covariance matrix and all sigma points satisfy
constraints (right).
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The observation covariance matrix, P,,, and state-observation
cross-covariance matrix, Py, are calculated to compute the
optimal Kalman gain. Calculating the Kalman gain, K, using
the sampling approach rather than linearization enables UKF
to provide at least second-order accuracy with third and fourth-
order accuracy possible for non-Gaussian distributions.
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Measurement-Update Equations. A posteriori updates to
the state and covariance are performed using the Kalman gain
update equations as follows:

o

a = )_Ca + K(yobs - 5))

an — an _ pry KT (7)

in which yops is the observation vector.

Linear equality constraints can be enforced in several man-
ners, as derived by Simon.® The projection approach includes
the equality constraints into derivation of the Kalman filter.
Using a minimum variance derivation, the maximum probability
estimate is provided with the following correction to the a
posteriori state estimate:

%, =%, — P, D"(DP_D")(D%, — d) 8)

where X, is the a posteriori state estimate corrected with
constraints, D is a matrix containing the algebraic relationship
between states in constraint equations, and d is a vector
containing the constraint constants.

2.3. Moving Horizon Estimation. MHE is an approximation
to the full information state estimator (FIE) whereby a math-
ematical program is solved over a horizon limited to the previous
N measurements as follows:

min (0, Wi, V)

XT—N-Wk
-1 ) 5
Dy (xr_y, Wi V) = z ( ud| - T [ 1) + Zr )
k=T—-N R 0
subject to
0 = fix,x,u)
= g, x,u,v) ©)
h(x,u,w) =0

in which wy and vy are the state and observation disturbances
at time k, Q and R are the estimated state and observation noise
covariance matrices which may be used as tuning parameters,
and Zr-y is the arrival cost which incorporates estimate
knowledge prior to the horizon. For nonlinear models, the arrival
cost will necessarily be an approximate estimate.'® Methods for
handling the arrival cost include using EKF, UKF, or discarding
the arrival cost altogether by considering it as a constant
function.

MHE problem is solved using a sparse nonlinear program-
ming (NLP) solver, suitable for large-scale systems of industrial
process monitoring. The specific MHE software application and
NLP solver used are proprietary and cannot be disclosed;
however, algorithm used in this work is characterized by the
following: inequality constraints on states and parameters; the
arrival cost term is neglected; state and observation disturbances
do not include white noise in the model; an optimization cost
on estimated state moves.

These modifications have been included to enhance estimator
stability and reduce the computational burden. In particular, past
experience has shown that the increased computational burden
of computing the arrival cost has not justified by potential
improvements in accuracy or tuning of the moving horizon
estimation algorithm; therefore, the arrival cost has been
neglected within the algorithm used for this study. The modified
nonlinear programming problem is presented as follows:

min ¢
d

-1 ) 5

D= ( ull, + ||, 1)

k=T—N R w
subject to

0 = flx, x,d, u)
0=gW.x,d,u,v) (10)
h(x,d,u,w) <0

in which d; is equal to the delta in estimated states from the
previous solution to current estimate, 4 contains the algebraic
state constraints, and v represents the observation residual
without additive noise. MHE constraints on model disturbances
constrain the a posteriori probability distribution function and
increase the probability at valid state values.'®

2.4. Comparison. In the same manner as MHE, the Kalman
filter is derived from the least-squares objective function shown
as follows:

=3

A similar feature of all Kalman filtering techniques is that
they provide a linear update that can be derived from eq 11
using the maximum likelihood estimate. UKF employs sigma-
point sampling to estimate the covariance matrices within the
linear update. MHE minimizes the objective function by posing
the model equations, additional constraints, and objective

Uy

2 =1 T
= 2R =yt an



function as a mathematical programming problem. Additional
differences between UKF and MHE include the sequential
nature of KF versus the batch nature of MHE, nonlinearity
approximation, constraint handling, and system model formulation.

A framework for comparing MHE and UKF accuracy is made
by considering batch least-squares estimation (BLSE) versus
KF. BLSE is derived using the same objective function as KF
but is iterative and incorporates all past observations into the a
posteriori state estimate calculation. All results from the first
iteration of BLSE, including the estimate and residuals, are equal
to the final results of the Kalman filter over the same horizon
of data. However, since BLSE is iterative, the accuracy of BLSE
is naturally greater than or equal to the accuracy of KF.?° MHE
is similar to BLSE in minimizing the least-squares error of the
residual in an iterative manner, whereas UKF is a sequential
estimator. Both MHE SQP solver and UKF algorithms employ
second-order estimates at each iteration; however, the SQP
solver continues to iterate until the convergence tolerance is
satisfied. This is a robust means of guaranteeing local optimality
without tuning.

Incorporating inequality constraints directly into the Kalman
filter derivation requires an active set approach and necessitates
the use of mathematical programming solvers.® Hence, the a
posteriori state estimate cannot be constrained via inequalities
using the traditional UKF. As shown previously, the a priori
state estimate can be constrained using sigma-point constraints.
With MHE, the final state estimates are constrained within the
mathematical programming problem. UKF and MHE constraint
methods, as used in this paper, also constrain the state estimate
probability distribution. Application of state constraints requires
consideration of how the state constraints may create causality
between the state equation disturbances and states as demon-
strated by Rao and Rawlings."”

MHE is an ideal estimator for DAE models since the model
may be retained in DAE form without converting to ODE form.
The model is incorporated directly into the mathematical
programming problem as a constraint. For black-box input—output
models, which may contain logic statements and loops, UKF is
an ideal choice since only the model output is needed for
estimation.

For the purposes of comparison in this paper, the DAE model
of the industrial reactor is index-1 and may be algebraically
rearranged to ODE form for UKF and EKF comparisons. MHE
model equations in eq 10 are posed in an open equation form
that allows for the fewest restrictions on model structure and
facilitates solving DAE models. At the solution, the NLP solver
closes the residuals of the open form DAEs. Kalman filter
techniques require a model in semiexplicit ODE form as shown
in eq 1. However, for many first principles models the
conversion from DAE to ODE form is not practical or
impossible. For instance, chemical process models often employ
the quasi-steady-state (QSS) assumption to reduce model
stiffness.?!

3. Industrial Fouling Monitoring Application

Constrained unscented Kalman filtering and moving horizon
estimation have been applied to predict process fouling of an
industrial stirred tank reactor at ExxonMobil Chemical Com-
pany. This fouling model presents several challenges appropriate
for our evaluation of constrained nonlinear estimation: nonlinear
dynamics in the state and measurement equations; real process
data including abnormal operation events; inherent process-
model mismatch; and transport delays causing measurements
to be offset in time.
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Figure 2. A simplified diagram of the exothermic CSTR.
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Figure 3. Jacketed cooling water system for the CSTR.

3.1. Energy and Mass Conservation Model. Process
Overview. Reactants are mixed in upstream lines and fed to a
continuously stirred tank reactor (CSTR) for chemical activation
before entering into the main process lines. Mixing in upstream
lines and within the CSTR produce exothermic reactions, and
the CSTR temperature must be actively controlled via an
external jacketed cooling water system; the control system
consists of a PID cascade controller on the cooling water feed
valve. It is important to note that the estimator can utilize the
dynamic closed-loop measurement data to provide an accurate
measure of fouling. As mentioned in the introduction, traditional
fouling estimators require steady-state data and occasional
halting of process operation. A diagram of the chemical process
equipment is shown in Figure 2.

Fouling in this application and most heat exchangers is well-
known to insulate the hot process line from dedicated sources
of cooling necessary to maintain process operating temperatures.
As a result fouling degrades the cooling effectiveness of the
heat exchanger system. In this particular chemical process,
fouling is a mixture of reactants that coalesces to the side of
the reactor thereby insulating the reactor and decreasing the
overall wall heat transfer coefficient. Fouling of the reactor walls
causes loss of temperature control and increases the risk of
downstream plugging due to fouling particle release.

The available process knowledge indicates that as the cooling
jacket wall decreases in temperature, the rate of wall fouling
increases; hence, the fouling process is nonlinear. The fouling
estimator has assisted in determining an improved schedule for
cleanout and replacement. Additionally, the online monitoring
application identifies operating conditions that lead to higher
fouling rates.

Process Model. The jacketed cooling water system, shown
in Figure 3, has been chosen as the estimation model rather
than the chemical process, as the cooling water system presents
fewer unknown physical parameters.

A gray-box model comprised of a DAE system is used to
approximate the cooling system performance with a combination
of first principles mass and energy balances and an empirical
valve coefficient model as follows:

Internal cooling jacket energy balance:
dTCJ,o

pVe = 1iyc(Tey; = Teyo) T UAq(Tr = Tey) +

Y p—— TCJ,o) (12)
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External piping energy balance:
ey (Tey g = Teyy) = 1Ty o = Myc)Tyrs — W, (13)

Mass balances:
ny = iy g, i (14)

iy = iy, — iy (15)

Control valve mass flow:

my = pk (16)
Experimental valve coefficient:
k, = e + o 17)
Measurement time delay:
dm4,1ag _ . .
Tar Mt + my (18)

The external piping energy balance, eq 13, is modeled as steady-
state as is typical with insulated piping for incompressible fluids
over relatively short distances.

3.2. Estimation. The fouling model is created to estimate
the overall heat transfer coefficient, UAcj, as an indicator of
fouling thickness. The cooling jacket inlet temperature, Ty, is
the measured output. Three additional measured variables are
incorporated as model inputs: the lumped CSTR temperature,
Twr, the ambient temperature, Tympb, and the control valve percent
travel, PT. As the measured inlet temperature, the T¢;y;, response
is consistently delayed from the valve action by approximately
2 min, we include a first-order time delay on the inlet mass
flow, eq 18. This dynamic effect could also be handled by
incorporating a delayed mass flow measurement within MHE
algorithm; a first-order time delay equation is more feasible for
the algorithm used in this paper.

3.3. Results. Results of this study demonstrate a successful
application of MHE and UKF for industrial process monitoring
in the presence of noisy data during normal operation and faulty
measurements during a maintenance operation. Whereas an
unconstrained MHE or UKF estimator will often fail to solve
when faulty measurements cause estimates to enter infeasible
regions, the incorporation of estimated state or parameter
constraints enables the estimation routine to remain online and
recover automatically once repaired. In industrial settings,
monitoring tools that fail regularly during either planned or
unplanned process faults will naturally experience decreased
service time and lose favor with operators.

In the present application, faulty measurements occur during
maintenance when at least one of the required measurements
for process monitoring is removed and the operational nature
of the process is changed sufficiently to invalidate the normal
operating model. The authors also considered modelling the
process structure during the abnormal operating condition to
develop a more complex fault-detection scheme; however, the
available measurements during this period were not sufficient
to produce an accurate model. The following results are
produced using process monitoring based on parameter estimation.

The previously shown process model is employed within an
online MHE-based process monitoring tool loaded on the
distributed control system, and the estimated heat transfer
coefficient shown for MHE has been retrieved from historical
data. Results for UKF and EKF have been produced via offline
simulation in MATLAB. EKF has been included to provide a
baseline comparison of a technique that requires model linear-

Table 1. Constraints on the Estimated Overall Heat Transfer
Coefficient (UAcy)

lower bound upper bound

MHE 30 10000
UKF 30 1000

ization versus techniques that estimate model nonlinearity, MHE
and UKF. The EKF algorithm is adapted from the extended
sequential filter as shown by Tapley and is not modified to
include constraints.?'

Inequality parameter constraints are applied to UAcj, as
shown in Table 1. The constraints proved necessary to provide
high service factors for online monitoring. Without the parameter
constraints, both algorithms fail to continue solving in the
presence of abnormal operating conditions during which the
model is invalid and measurements are faulty.

UKF algorithm required tuning beyond that required by MHE
to ensure operation without failure. The estimated heat transfer
upper bound was reduced from MHE bound of 10000. MHE
bound was not altered for these results since MHE results are
provided from historical data. In addition, UKF required careful
tuning of the covariance matrix coefficients to achieve a robust
solution.

The measurement period used for the estimated heat transfer
coefficient, shown in Figure 4, includes an abnormal event to
illustrate how the estimator remains online with bad data. The
said event is a reactor cleanout during which the jacketed cooling
system control is shutdown and model assumptions are expected
to be violated. A plot without the constraints would simply show
the estimated parameter diverging and then stopping at the time
at which the estimator solution fails.

As shown in Figure 4, the overall heat transfer coefficient
increases over a factor of 2 following the reactor cleanout. The
results clearly indicate fouling removal during the reactor
cleanout operation on August 28 as it has been explained that
fouling decreases the heat transfer coefficient in this application.
Observing the immediate increase of heat transfer coefficient
following the cleanout is critical to validate proper operation
of UKF and MHE based on process knowledge. In addition,
these plots provide insight into the short-term fouling process.
The results demonstrate that the heat transfer rate for a clean
reactor is several times greater than a fouled reactor. The reactor
fouls more quickly during the first day immediately following
the cleanout; however, the rate of fouling slows to a similar
rate as shown prior to the cleanout.

The upper and lower bound constraints are active during the
reactor cleanout for the parameter estimated via MHE and UKF.
Preliminary tests have shown that without these constraints the
estimated heat transfer coefficient will exceed the constraints
and ultimately cause the estimator to fail. Had the estimator
been online without constraints, an operator would be respon-
sible for manually restarting the estimator follow every such
event, and valuable estimates of the heat transfer coefficient
immediately following cleanout are likely to be lost. In addition,
unplanned process excursions, such as loss of measurement data,
can cause an unconstrained estimator to fail as explained if
constraints are not included. A key intangible element of any
online process monitoring tool is gaining trust of operations to
utilize the data. Were the fouling monitor to fail on a regular
basis and require significant manual interaction, operators would
likely choose not to utilize or trust monitoring results. Ulti-
mately, failure to remain online would result in lost economic
opportunity. The benefit of constraints is apparent for this
application.



Ind. Eng. Chem. Res., Vol. 49, No. 17, 2010 7829

1000

800 -

600 |

UA (W/(m?K))

400 -

200

0

-~ MHE
UKF
- ——EKF

Figure 4. Estimated overall heat transfer coefficient for MHE, UKF, and EKF.

Both nonlinear estimators, MHF and UKF, provide similar
estimation performance. The linear estimation provided by EKF
approximates the nonlinear estimator results prior to the cleanout
event but fails to recover to an accurate value following the
cleanout. Calculating the estimation residuals is used to verify
that UKF and MHE results are more accurate than the EKF
results. Process knowledge indicates that the heat transfer
coefficient should increase after fouling removal; however, the
estimated parameter alone does not quantitatively distinguish
which is the accurate set of results. Thus the estimation residuals
are a critical indicator of estimator performance by quantifying
the difference between the measured output and output that is
calculated from the model. The magnitude of residuals is also
an important indicator for how well the estimator satisfies the
conservation equations at each time as the calculated output is
the reactor inlet temperature. Estimation residuals, dy;, and the
mean squared error, MSE, are calculated according to

dyi = Yobs — Ymodel

_IN o (20)
MSE = m;dy,.

Plots of the estimation residuals in Figure 5 indicate clearly
that EKF has larger residuals than MHE or UKF following the
reactor cleanout; note that the scale for the EKF plot is increased.

These results likewise agree with process knowledge and
indicate that MHE and UKF provide accurate estimates. Overall,
EKEF is less accurate than UKF before and after cleanout. The
decreased accuracy before the cleanout also explains why
the EKF estimate is smoother than the nonlinear estimates—the
EKEF is failing to close the residual during this time.

The use of a linear Jacobian estimate of model nonlinearity
explains the reduced accuracy with EKF. Linear approximations
are necessary to update the state transition matrix and informa-
tion matrix. MHE residuals are somewhat higher than UKF
residuals, but MHE is noticeably more accurate than EKF. For
this application, operations will be monitoring the estimated heat
transfer coefficient over a period of weeks, and MHE estimate
is satisfactory. As seen in Figure 4, MHE estimate is character-
ized by less noise than UKF estimate. The mean squared errors
(MSE) are shown in Table 2.

The MSE from the full dataset includes data that are
misleading since it also considers results during the reactor
cleanout when the model is not expected to be valid; UKF
produces worse residuals during the abnormal events, thereby
penalizing the MSE. A box plot may be used to identify

24-Aug  25-Aug 26-Aug 27-Aug  28-Aug 29-Aug 30-Aug 31-Aug 1-Sep

residuals; however, for this study, using a box plot disadvantaged
the EKF by identifying more outliers for UKF and MHE. A
more accurate approach for identifying outliers for this case was
to remove the same number of data points for each method.
Outliers were identified as the one-half percent of the data points
with the highest squared residual for each method. When outliers
during the transition period are removed, the MSE coincides
with the residual plots, indicating that UKF has a lower residual
for a majority of the data.

While UKF and MHE both provide acceptable estimates, the
smaller residuals produced by UKF may be explained by the
difference in estimation problem formulation. UKF calculates
an update for the two differential states, ri4.e and Tcyo, in
addition to the heat transfer coefficient. In particular, Ty, is
corrected near the same magnitude as the residual at each
iteration within UKF. In an effort to compare MHE to UKF
more fairly, estimated noise variables for the two differential
states were included in MHE model, and the state noise was
constrained as lvjl =< 1 and lvol =< 3 for ris)e, and Tcyp,
respectively. However, this approach provided too many degrees
of freedom and led to unrealistic estimates for the heat transfer
coefficient. The algorithm adjusted the noise variables to
compensate for model-mismatch rather than the heat transfer
coefficient.

As necessary for online application, all techniques provide
updates more quickly than real-time measurements, which arrive
in one minute intervals, as shown in Table 3.

This comparison illustrates that the computational burden of
MHE can be competitive to UKF. MHE is performed with
proprietary modeling and control software written in Fortran
and C++. UKF and EKF algorithms were formulated in
MATLAB. All simulations for computational comparison were
performed on a 3.60 GHz Intel Xeon-processor PC.

In summary, the results indicate that MHE and UKF provide
accurate estimates of the reactor fouling and remain online
despite loss of measurement data and process changes that
invalidate the basic operating model—temperature probes are
removed and a cooling system valve is set to prevent normal
operation during maintenance. The estimator has demonstrated
robust operation through the planned maintenance operation.
Robust operation makes an economic benefit of the estimator
possible. Economic benefit is realized by preventing an un-
necessary cleanout per year which would otherwise be per-
formed in absence of a fouling estimate. Preventing one cleanout
is sufficient incentive to justify the time required to develop
the fouling process monitor. The cleanout operation is only one
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Figure 5. Residual plots for MHE, UKF, and EKF.

Table 2. Mean Squared Error of the Output Calculation

Mean Squared Error

full data set excluding

full data set transition period

MHE 0.0296 0.0148
UKF 2.4925 0.0021
EKF 3.4838 3.2295

Table 3. Average Computation Time between Each A Posteriori
Estimate

CPU time(s)
MHE 0.3639
UKF 0.2218
EKF 0.0515

example of a planned or unplanned process fault. Insight into
the short-term fouling process is provided, and the online
monitoring tool is currently under observation for long-term
estimator performance, and process knowledge gained from
long-term performance remains for future work.

4. Conclusions

Adding constraints to estimators introduces additional process
knowledge into the estimation routine. Estimated state or
parameter distributions are often bounded by feasibility limits

27-Aug

28-Aug 29-Aug 30-Aug 31-Aug

outside of which the estimator is much more likely to fail.
Constraints enable the propagated distribution to incorporate
knowledge of the feasible operating region. A method of
introducing sigma-point constraints in UKF was evaluated versus
MHEF to estimate disturbances on a nonlinear gray-box model.
The study also demonstrates the estimation challenge presented
by the nonlinear process model by comparing UKF and MHE
to extended Kalman filtering. All evaluations were performed
using industrial process data.

A nonlinear model based on conservation laws was developed
to estimate fouling thickness within an exothermic continuously
stirred-tank reactor at the Baytown Chemical Plant within
ExxonMobil Chemical Company. The heat transfer coefficient
between the reactor and jacketed cooling system was estimated
as an indicator of fouling thickness.

The evaluation of constrained nonlinear estimation techniques
indicates that both constrained UKF and MHE produce heat
transfer coefficient estimates that agree with generic process
knowledge. The constraints are critical in this application to
ensure the estimators continue solving online during atypical
plant operation. EKF results fail to converge following the
maintenance operation, which demonstrates inaccuracy in the
Jacobian approximation to the nonlinear model. For this
comparison, MHE and constrained UKF were both competitive
in estimation accuracy and computational requirements for a



nonlinear industrial estimation problem with faulty data. In
general, MHE is a more accurate algorithm as discussed in the
comparison of batch and sequential estimation and is capable
of handling problems in implicit DAE form; UKF may be
preferred when legacy black-box models must be used since
the internal logic may prevent using the model directly as a set
of NLP constraint equations.

As future work, the authors propose a comparison between
UKF and MHE to solve a large-scale constrained estimation
problem using comparable computing architecture. In addition,
future work for this specific application includes translating the
estimated heat transfer coefficient directly into a fouling
thickness measure and monitoring long-term performance to
gain additional fouling process knowledge. The present work
was beneficial to discuss capabilities and limitations of MHE
and UKF with similar criteria and compare these techniques
with industrial data.

Acknowledgment

The authors thank Tyler Soderstrom for helpful review
comments and ExxonMobil Chemical Company for hosting and
supporting Benjamin Spivey during this project.

Literature Cited

(1) Jonsson, G. R.; Lalot, S.; Palsson, O. P.; Desmet, B. Use of extended
Kalman filtering in detecting fouling in heat exchangers. Int. J. Heat Mass
Transfer 2007, 50, 2643.

(2) Zavala, V. M.; Biegler, L. T. Optimization-based strategies for the
operation of low-density polyethylene tubular reactors: Moving horizon
estimation. Comput. Chem. Eng. 2009, 33, 379.

(3) Haseltine, E. L.; Rawlings, J. B. Critical evaluation of extended
Kalman filtering and moving-horizon estimation. Ind. Eng. Chem. Res. 2005,
44, 2451.

(4) Julier, S. J.; Uhlmann, J. K. Unscented Filtering and Nonlinear
Estimation. Proc. IEEE 2004, 92, 401.

(5) Robertson, D. G.; Lee, J. H.; Rawlings, J. B. A moving-horizon based
approach for least squares estimation. AIChE J. 1996, 42, 2209.

(6) Simon, D. Optimal State Estimation: Kalman, H Infinity and
Nonlinear Approaches; Wiley-Interscience: Hoboken, NJ, 2006.

Ind. Eng. Chem. Res., Vol. 49, No. 17, 2010 7831

(7) Kandepu, R.; Foss, B.; Imsland, L. Applying the unscented Kalman
filter for nonlinear state estimation. J. Process Control 2008, 8, 753.

(8) Liebman, M. J.; Edgar, T. F.; Lasdon, L. S. Efficient data reconcili-
ation and estimation for dynamic processes using nonlinear programming
techniques. Comput. Chem. Eng. 1992, 16, 963.

(9) Muske, K. R.; Rawlings, J. B. Receding Horizon Recursive State
Estimation; Proceedings of the American Control Conference, San Francisco,
CA, 1993.

(10) Michalska, H.; Mayne, D. Q. Moving horizon observers and
observer-based control. /EEE Trans. Automat. Control 1995, 40, 995.

(11) Rao, C. V.; Rawlings, J. B. International Symposium on Nonlinear
Model Predictive Control; Ascona, Switzerland, 1998.

(12) Zavala, V. M.; Laird, C. D.; Biegler, L. T. A fast moving horizon
estimation algorithm based on nonlinear programming sensitivity. J. Process
Control 2008, 18, 876.

(13) Soderstrom, T. A.; Edgar, T. F.; Russo, L. P.; Young, R. E.
Industrial application of a large-scale dynamic data reconciliation strategy.
Ind. Eng. Chem. Res. 2000, 39, 1683.

(14) Rajamani, M. R.; Rawlings, J. B.; Soderstrom, T. A. Application
of a new data-based covariance estimation technique to a nonlinear industrial
blending drum. Submitted for publication.

(15) Hedengren, J.; Allsford, K.; Ramlal, J. Moving Horizon Estimation
and Control for an Industrial Gas Phase Polymerization Reactor; Proceed-
ings of the American Control Conference, New York, NY, July, 2007.

(16) Zavala, V. M.; Biegler, L. T. Optimization-based strategies for the
operation of low-density polyethylene tubular reactors: Nonlinear model
predictive control. Comput. Chem. Eng. 2009, 33, 1735.

(17) Mangold, M.; Buck, A.; Schenkendorf, R.; Steyer, C.; Voigt, A.;
Sundmacher, K. Two state estimators for the barium sulfate precipitation
in a semi-batch reactor. Chem. Eng. Sci. 2009, 64, 646.

(18) Wan, E. A.; van der Merwe, R. The Unscented Kalman Filter.
Kalman Filtering and Neural Networks; Haykin, S., Ed.; Wiley: New York,
2001.

(19) Rao, C. V.; Rawlings, J. B. Constrained process monitoring:
Moving-horizon approach. AIChE J. 2002, 48, 97.

(20) Tapley, B. D. Statistical Orbit Determination; Elsevier, Academic
Press: Boston, MA, 2004.

(21) Kumar. A.; Daoutidis, P. Control of Nonlinear Differential
Algebraic Equation Systems; CRC Press: Boca Raton, FL, 1999.

Received for review November 15, 2009
Revised manuscript received January 22, 2010
Accepted April 26, 2010

1E9018116



