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Received: 11 July 2016 / Revised: 28 December 2016 / Accepted: 15 March 2017
© Springer Science+Business Media New York 2017

Abstract In many real-life problems, obtaining labelled data can be a very expensive and
laborious task, while unlabeled data can be abundant. The availability of labeled data can
seriously limit the performance of supervised learning methods. Here, we propose a semi-
supervised classification tree induction algorithm that can exploit both the labelled and
unlabeled data, while preserving all of the appealing characteristics of standard supervised
decision trees: being non-parametric, efficient, having good predictive performance and
producing readily interpretable models. Moreover, we further improve their predictive per-
formance by using them as base predictive models in random forests. We performed an
extensive empirical evaluation on 12 binary and 12 multi-class classification datasets. The
results showed that the proposed methods improve the predictive performance of their super-
vised counterparts. Moreover, we show that, in cases with limited availability of labeled
data, the semi-supervised decision trees often yield models that are smaller and easier to
interpret than supervised decision trees.
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1 Introduction

Traditional supervised algorithms often require a large amount of labeled data to learn mod-
els with good predictive performance. However, in many real life problems, labeled data are
expensive and hard to get since the labeling procedure may require human experts, expen-
sive devices or time consuming experiments. Real-world classification problems of this type
include: phonetic annotation of human speech, protein 3D structure prediction, quantitative
structure-activity relationship and spam filtering. In these cases, often only a few labeled
examples are available to learn from, while on the other hand, unlabeled data are freely
available in vast amounts.

The concept of semi-supervised learning (SSL) emerged in the 1970’s as an answer to
the problem of labeled data scarcity (Chapelle et al. 2006). Semi-supervised algorithms
use unlabeled examples, in addition to labeled ones, in order to learn models with better
performance than the models learnt by using only labeled examples. However, to exploit
this advantage, it is necessary that the knowledge we gain trough unlabeled data has to carry
some information about the class labels. If this prerequisite is fulfilled, we can draw on
unlabeled data by making certain assumptions about the behavior of labels with respect to
the structure of unlabeled data.

Since SSL is considered an established research topic, a number of different semi-
supervised methods have been proposed in the literature. On the basis of the assumption(s)
they implement, SSL methods can be grouped as follows (Zhu 2008): generative mod-
els, low-density separation methods, graph-based methods, and self-training and similar
methods (e.g., co-training).

Generative models assume a probabilistic model of the data and use unlabeled, together
with the labeled data, to estimate the most probable model parameters (e.g., the Expectation-
Maximization algorithm (Nigam et al. 2000)). Differently, low-density separation methods
assume that the decision boundary should lie in the region of low density of the data (e.g.,
semi-supervised support vector machines (Bennett et al. 1999)). Equivalent to the low den-
sity separation assumption is the cluster assumption: the points belonging to the same cluster
should be of the same class. Graph-based methods use nodes for data representation (labeled
and unlabeled) and edges for propagation of the labels through the graph, assuming label
smoothness over the graph (e.g., linear neighborhood propagation method (Zhang and Wang
2009)). Self-training (Yarowsky 1995), co-training (Blum and Mitchell 1998) and other sim-
ilar approaches (Triguero et al. 2015) use their own most reliable predictions in the training
process (assuming they are correct), as additional data for learning.

Despite the number of semi-supervised methods already proposed, only few of them
exploit the desirable properties of decision trees: they are non-parametric, efficient, read-
ily interpretable, yet exhibit excellent predictive performance in many domains (Breiman
et al. 1984; Quinlan 1993; De’ath and Fabricius 2000; Rokach and Maimon 2014). Fur-
thermore, interpretable semi-supervised methods hardly exist. Majority of semi-supervised
approaches that incorporate decision trees are based on self-training or similar paradigms.
While some researchers reported success with such methods (Tanha et al. 2015), the others
show evidence that, in some cases, self-training can seriously deteriorate the performance
of decision trees (Guo et al. 2010). The main pitfall of self-training is the reinforcement of
mistakes - a mistake once made can reinforce itself in the next iterations, leading to a degra-
dation of predictive performance. The other issue of self-training is the need to repetitively
re-train the base model, which considerably increases the computational cost.

In this work, we propose an algorithm for semi-supervised learning of classification trees.
In contrast to self-training, in the proposed algorithm, unlabeled examples are exploited
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directly in the tree construction process to improve the quality of the splits. This is achieved
by relying on the aforementioned cluster assumption. The proposed extension preserves all
of the appealing characteristics of decision trees, and, at the same time, enables the use of
unlabeled examples. Moreover, the empirical evaluation on several binary and multi-class
classification benchmark datasets reveals that the proposed SSL trees yield better predictive
performance. Furthermore, we investigate whether the improvement in predictive perfor-
mance carries over in the ensemble setting, i.e., whether an ensemble of SSL trees achieves
better predictive performance than an ensemble of regular supervised trees.

The remainder of this paper is organized as follows. Section 2 describes the proposed
methods, while Section 3 specifies the experimental design. The results of the empirical
investigations are presented and discussed in Section 4. Section 5 presents the related work.
Finally, Section 6 concludes the paper.

2 Methods

2.1 Semi-supervised learning of classification trees

Semi-supervised algorithms exploit unlabeled data by making certain assumptions about the
behavior of labels with respect to the structure of unlabeled data (Chapelle et al. 2006). The
semi-supervised approach to learn classification trees proposed in this paper is motivated
by the popular semi-supervised cluster assumption: If examples are in the same cluster, then
they are likely of the same class. Actually, a tree can be considered as a hierarchy of clusters,
thus our aim is to design decision trees where labeled and unlabeled examples similar to
each other are clustered together. If the cluster assumption holds, labels of unlabeled exam-
ples should be coherent with the labels associated to labeled examples falling in the same
leafs of the tree.

In traditional supervised trees, the quality of splits (i.e., the impurity of splits) is evalu-
ated only on the basis of the target space, i.e., the class labels. For example, by identifying
the split that maximizes the information gain. The effect is that the resulting clusters are
homogeneous with respect to the class label. Our goal is to learn trees that produce clus-
ters which are homogeneous both in the descriptive and in the target space. To achieve this,
we need a different measure of impurity. Specifically, we propose to measure the impu-
rity by considering the similarity among examples on the basis of both the class labels and
descriptive attributes. Since the class label is unknown for unlabeled examples (i.e., only
descriptive attributes are known), such measure should exploit, during the tree construction,
labels associated to examples only if they are available.

To implement the described semi-supervised learning of classification trees, we use the
predictive clustering (PC) framework (Blockeel et al. 1998; Kocev et al. 2013). The methods
within the PC framework partition the instances into subsets, and can thus be considered
as both predictive and clustering methods. These methods include the learning of decision
trees and decision rules.

In particular, the PC framework views a decision tree as a hierarchy of clusters, where the
top-node corresponds to one cluster containing all the data. This cluster is recursively parti-
tioned into smaller clusters while moving down the tree. The PC framework is implemented
in the CLUS system (Kocev et al. 2013), available at http://sourceforge.net/projects/clus.

The main difference between the algorithm for learning predictive clustering trees
(PCTs) and a standard decision tree learner is that the former considers the impurity func-
tion (i.e., the measure of quality of the splits) and the prototype function (that associates

http://sourceforge.net/projects/clus
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a label to each leaf) as parameters, i.e., that can be instantiated for a given learning task.
This is an aspect that makes the PCTs suitable for our purpose since, as stated before,
the proposed semi-supervised solution requires a novel measure of impurity. So far, PCTs
have been instantiated for various machine learning tasks, including multi-target prediction
(Struyf and Džeroski 2006), hierarchical multi-label classification (Vens et al. 2008; Levatić
et al. 2014), and prediction of time-series (Slavkov et al. 2010).

The semi-supervised approach proposed in this study is based on the standard top-down
induction of decision trees (TDIDT) algorithm (see Table 1), which takes as input a set of
examples E and outputs a tree. The heuristic (h) that is used for selecting the tests (t) to put
in internal tree nodes is reduction of impurity caused by partitioning (P , Table 1, line 3 of
the BestTest procedure) the examples according to the tests. In principle, by maximizing the
impurity reduction, the cluster homogeneity is maximized and the predictive performance
is improved.

In classical supervised PCTs, the impurity for each set of examples E is calculated as the
Gini impurity (Table 1, line 4 of the BestTest procedure):

Impurity(E) = Gini(E, Y ). (1)

The Gini impurity of a set E for the target variable Y is calculated as follows:

Gini(E, Y ) = 1 −
C∑

i=1

p2
i , (2)

where C is the number of classes of the target variable Y (e.g., if Y is binary, then C = 2),
and pi is the apriori probability of a class ci (i.e., the proportion of examples in a set E

belonging to the class ci).
The first extension to the classical algorithm for the induction of PCTs concerns the

input: the dataset we consider (see Table 1) takes as input the whole set of examples, that is,
labeled and unlabeled examples. This means that E = El ∪ Eu, where El is the part of the
dataset with known labels and Eu is the part with unknown labels. The second extension
concerns, as mentioned before, the impurity function which should take into account both
the class labels (i.e., the target attribute) and the descriptive attributes in the identification

Table 1 The top-down induction algorithm for decision trees construction

procedure InduceTree procedure BestTest

Input: A dataset E Input: A dataset E

Output: A predictive clustering Output: the best test (t∗), its heuristic score (h∗)

tree and the partition (P∗) it induces on the dataset (E)

1: (t∗, h∗,P∗) = BestTest(E) 1: (t∗, h∗,P∗) = (none, 0,∅)

2: if t∗ �= none then 2: for each possible test t do

3: for each Ei ∈ P∗ 3: P = partition induced by t on E

4: treei = InduceTree(Ei ) 4: h = Impurity(E) − ∑
Ei∈P

|Ei ||E| Impurity(Ei)

5: return

node(t∗,
⋃

i{treei}) 5: if (h > h∗) ∧ Acceptable(t,P) then

6: else 6: (t∗, h∗,P∗) = (t, h,P)

7: return leaf(Prototype(E)) 7: return (t∗, h∗)
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of the best split. This is achieved by changing the equation for the calculation of impurity
for supervised PCTs (1). Impurity of a set of examples E (which may contain labeled and
unlabeled examples) is calculated as a weighted sum of impurities over the target attribute
(Y ) and impurities over the descriptive attributes (Xi):

ImpuritySSL(E) = w · Impurity(El, Y ) + 1 − w

D
·

D∑

i=1

Impurity(E,Xi), (3)

where E = El ∪ Eu is the dataset available at a node of the tree, D is the number of
descriptive attributes, Xi is the ith descriptive attribute, and w ∈ [0, 1] is a weight param-
eter (which is discussed bellow). More specifically, the impurity of the target attribute
(Impurity(El, Y )) is calculated using only the labeled examples (El), while the impurity

over the descriptive attributes
(∑D

i=1 Impurity(E,Xi)
)

is calculated by using both labeled

and unlabeled examples (E).
The impurity of the target attribute Y over a set of labeled examples El is calculated as

follows:

Impurity(El, Y ) = Gini(El, Y )

Gini(Etrain
l , Y )

, (4)

where Etrain
l represents the labeled part of the entire training set.

Differently from the target attribute, which is nominal, the descriptive attributes can be
either nominal or numeric. For this reason, we need to separately consider the two cases:
if the attribute is nominal as a measure of impurity we use the Gini impurity whereas, if
the attribute is numeric, as a measure of impurity we use the variance. More formally, the
impurity of a descriptive variable Ei over a set of examples E is calculated as follows:

Impurity(E, Xi) =

⎧
⎪⎨

⎪⎩

Gini(E,Xi)

Gini(Etrain,Xi )
, if Xi is nominal

V ar(E,Xi)

V ar(Etrain,Xi)
, if Xi is numeric

(5)

where Etrain represents the entire training set. The variance of the ith attribute is calculated
as follows:

V ar(E,Xi) =
∑N

j=1

(
x

j
i

)2 − 1
N

·
(∑N

j=1 x
j
i

)2

N
, (6)

where x
j
i is the value of the ith target variable of the j th example, and N is the number

of examples. The impurity is calculated when evaluating a split for each node of the tree
(Table 1, line 4 of the BestTest procedure).

Obviously, in order to make the impurity computed on nominal attributes and the impu-
rity computed on numeric attributes comparable, some normalization is necessary. This
motivates the denominator of the fractions in (4) and (5) which ensures that all the attributes
equally contribute to the calculation of the overall impurity.

Note that, the proposed algorithm is not limited to Gini index or variance as impurity
measures. In principle, other impurity measures could be used. For example, the PCT frame-
work also implements the sum of the entropies of class variables, reduced error, gain ratio
and m-estimate. We choose to use Gini index because it is one of the most popular measures
for impurity of nominal variables. The other obvious choice would be Information gain,
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however, Gini index and Information gain perform very similar and mostly it is not possible
to decide which of the two measures to prefer (Raileanu and Stoffel 2004). Similarly, for
measuring impurity of numeric variables, we choose variance, because variance is de facto
standard used for regression trees.

The weight parameter w in (3) controls how much the target side or the descriptive
side contribute to the calculation of the impurity. Consequently, this controls the amount of
supervision in the learning of semi-supervised PCTs. Values of the parameter w close to 1
emphasize more the target attribute, and consequently labeled examples affect the construc-
tion of the tree more than unlabeled examples (i.e., there is more supervision). On the other
hand, values of w closer to 0 put more emphasis on the descriptive attributes, thus unlabeled
examples affect the tree construction more than labeled examples and the tree learning algo-
rithm receives less supervision. The w parameter enables the learning of semi-supervised
PCTs to range from fully supervised trees (i.e., w = 1) to completely unsupervised trees
(i.e., w = 0). The ability to control the influence of unlabeled examples with the w parame-
ter is very important, since different datasets may require different amounts of supervision.
This aspect is discussed in more detail in Section 4.3.

Henceforth, the semi-supervised predictive clustering trees are denoted as SSL-PCTs,
while supervised predictive clustering trees are denoted as PCTs.

2.2 Semi-supervised random forests

Once we have discussed the case of the induction of classical decision trees, we can also
extend the semi-supervised learning solution to the case of random forests. A random forest
(Breiman 2001) is an ensemble of trees, where diversity among the predictors is obtained
by using bootstrap replicates of the training set (as in bagging) and by changing the set
of descriptive attributes during learning. Bootstrap samples are obtained by randomly sam-
pling training examples, with replacement, from the original training set, until an number
of examples, which is equal to the size of the training set, is sampled. Breiman (1996a)
showed that bagging can give notable gains in predictive performance, when applied to
unstable learners (for which small changes in the training set result in large changes in the
predictions), such as classification and regression tree learners.

A set of descriptive attributes is changed at each node in each decision tree of a random
forest: a random subset of the descriptive attributes is taken, and the best attribute is selected
from this subset. The number of attributes that are retained is given by a function f of the
total number of descriptive attributes D (e.g., f (D) = �log2(D) + 1	).

In a random forest, the prediction for a new example is obtained by combining the predic-
tions of all trees in the forest. For the classification tasks, different aggregation schemes can
be applied, such as majority of probability distribution voting. We use probability distribu-
tion voting, as suggested by Bauer and Kohavi (1999). In the probability distribution voting
scheme, the base trees predict the probability that an example belongs to each possible class.
Thus, each base tree gives its vote (i.e., probability estimate) for each class separately. At the
end, the predicted class is the one that has highest sum of probabilities from all base trees.

In Section 2.1 we have discussed a semi-supervised approach to learn classification trees
(SSL-PCTS). By using SSL-PCTS, it is possible to build semi-supervised random forests
by simply using trees learned with such an algorithm to construct the members of the ensem-
ble, instead of using trees learned with a supervised algorithm. The only difference is that
the bootstrap samples are obtained from the whole set of examples Etrain which includes
both labeled and unlabeled examples. We denote the semi-supervised random forest build
in such a way as SSL-RF, while supervised random forest is denoted as RF.
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3 Experimental design

3.1 Data description

We use 12 binary classification datasets and 12 multi-class classification dataset to evalu-
ate the predictive performance of the proposed methods. The datasets were mainly obtained
from the UCI repository (Lichman 2013) and from the OpenML repository (Vanschoren
et al. 2014). From these repositories, we selected datasets which differ in the domains
they represent, number of attributes and examples, and distribution of classes. We focus
on datasets which have more than a thousand of examples, so that we can simulate a sce-
nario relevant for semi-supervised learning, i.e., when large amounts of unlabeled data are
available. Namely, in our experimental setup (see Section 3.2), we consider from 25 to 500
labeled examples; therefore, we use datasets with a thousand or more examples to ensure
that there are always at least as many unlabeled examples as there are labeled examples.

The characteristics of binary and multi-class classification datasets are given in Tables 2
and 3, respectively.

3.2 Experimental setup and evaluation procedure

We have proposed semi-supervised decision trees (SSL-PCT) and semi-supervised ran-
dom forest tree ensemble (SSL-RF). As a baseline for comparison, we use the supervised
counterparts of these methods, i.e., supervised classification trees (PCT), and supervised
random forests (RF). Those are the most reasonable baselines, since the goal is to measure
the contribution of the unlabeled data to the overall performance under the same conditions.

As an additional method for comparison, we use the popular semi-supervised algorithm:
self-training (Yarowsky 1995). Self-training iteratively uses its own most confident predic-
tions on unlabeled examples as an additional training instances. As the base method used in
the self-training algorithm we use (supervised) random forest. Confidence of predictions is
measured on the basis of votes of an ensemble. For example, if 80% of the trees in ensemble

Table 2 Characteristics of the binary classification datasets

Dataset (Reference) Domain N D/C P

Abalone (Lichman 2013) Biology 4177 1/7 50%

Adult (Lichman 2013) Socio-economic 48842 8/6 76%

Bank (Lichman 2013; Moro et al. 2011) Economy 4521 9/7 88%

Banknote (Lichman 2013) Images 1372 0/4 55%

Biodegradation (Lichman 2013; Mansouri et al. 2013) QSAR 1055 0/41 66%

Diabetes (Lichman 2013) Medicine 768 0/8 65%

Eyestate (Lichman 2013) Medicine 14980 0/14 55%

Madelon (Lichman 2013; Guyon et al. 2004) Synthetic 2000 0/500 50%

Mushroom (Lichman 2013) Biology 8124 22/0 51%

Pgp (Levatić et al. 2013) QSAR 932 0/34 52%

Phishing (Lichman 2013) Security 11055 30/0 55%

Thyroid (Lichman 2013) Medicine 3772 21/6 93%

N : number of instances, D/C: number of descriptive attributes (discrete/continuous), P : percentage of the
majority class
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Table 3 Characteristics of the multi-class classification datasets

Dataset (Reference) Domain N D/C K P

Baseball (Vanschoren et al. 2014; Simonoff 2013) Sport 1340 1/15 3 90%

Cardiotocogramy3 (Lichman 2013) Medicine 2126 0/35 3 77%

Cardiotocogramy10 (Lichman 2013) Medicine 2126 0/35 10 27%

Cmc (Vanschoren et al. 2014) Socio-economic 1473 7/2 3 42%

Gasdrift (Lichman 2013; Vergara et al. 2012) Chemistry 13910 0/128 6 21%

Gasdriftdc (Lichman 2013; Vergara et al. 2012) Chemistry 13910 0/129 6 21%

GesturePhase (Lichman 2013) Video 9873 0/32 5 29%

Imagesegment (Lichman 2013) Images 2310 0/18 7 14%

MiceProtein (Higuera et al. 2015) Biology 1080 3/77 8 14%

Optdigits (Lichman 2013) Images 5620 0/62 10 10%

Pageblocks (Lichman 2013) Text 5473 0/10 5 89%

Pendigits (Lichman 2013) Images 10992 0/16 10 10%

N : number of instances, D/C: number of descriptive attributes (discrete/continuous), K: number of classes,
P : percentage of the majority class

predict a positive class for a given instance, confidence of prediction for that instance is set
to 0.8. Note that this is a rather straightforward definition of the confidence scores, and more
sophisticated variations can be found in the literature (Tanha et al. 2015). In this method
used for comparison, the 10% most confident predictions are used as training instances at
the next iteration, as proposed by Tanha et al. (2015). As a stopping criteria for self-training,
we use the Airbag procedure as proposed by Leistner et al. (2009). This stopping criterion
monitors the out-of-bag error (Breiman 1996b) of an ensemble and automatically stops the
self-training procedure in the case of predictive performance degradation. Henceforth, we
will call this method, used for comparison, SELFTRAININGRF.

In the experiments, both supervised and semi-supervised trees are pruned with the pro-
cedure used in C4.5 classification trees (Quinlan 1993). For each variant which uses an
ensemble learning approach (i.e., SSL-RF and SELFTRAININGRF), we construct random
forests consisting of 100 trees. The trees in random forest are not pruned and the number of
random features at each internal node is set to

⌊
log2(D) + 1

⌋
, where D is the total number

of features (following (Breiman 2001)).
Moreover, in order to explore the influence of the amount of labeled data on the predictive

performance of the semi-supervised methods and compare them with their supervised coun-
terparts, we execute experiments where we varied the absolute number of labeled examples
in the set {25, 50, 100, and 200, 350, 500}. By considering this setup, it is easier to iden-
tify the applicability range of a given SSL method with respect to the amount of labeled
data. Moreover, this approach is close to a real-world setup: typically, the number of labeled
examples is known beforehand, while the number of unlabeled examples can vary.

The main premise of SSL is that a limited amount of labeled data is available, thus it is
expected that the success of semi-supervised methods will depend on the amount of labeled
data. By varying the amount of labeled data, it is possible to identify for which amounts SSL
methods outperform the supervised ones. The alternative to the use of the absolute number
of labeled data would be to consider a relative amount of labeled data. However, in such a
case, the applicability range becomes a ’moving target’, since, for example, 10% of labeled
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data can correspond to few tens of examples in one dataset, and a few thousands examples
in another dataset.

The labeled data used for training the predictive models (both supervised and semi-
supervised) are randomly selected from the available training data, while the remaining
examples serve both as unlabeled data and as a test set. Namely, we temporarily remove
their labels and provide the examples to the algorithm to serve as unlabeled data during
training. When the models are built, the performance is evaluated on the test set composed
of the unlabeled examples with their true labels restored. In other words, the evaluation of
the semi-supervised methods is performed in the context of transductive learning. For a fair
comparison, the supervised methods are trained only on the labeled part of the data and
evaluated on the same test set. To get more stable results, the procedure is repeated 10 times
with different random initializations. The predictive performance reported in the results is
the average of the performance values obtained from the 10 runs.

For each run, we optimize the weight parameter w by performing 3-fold cross-validation
on the available labeled part of the training set. During the cross-validation procedure, the
semi-supervised methods are supplied with the available unlabeled examples. We consider
values of the parameter w ranging from 0 to 1 with a step of 0.1.

To investigate whether the observed differences in performance among the methods
are statistically significant, we use the non-parametric Wilcoxon paired signed rank test
(Wilcoxon 1945). More specifically, we compare the predictive performance of two meth-
ods over multiple datasets. In all the experiments reported in this study, the significance
level is set to 0.05. The p-values for the pairwise comparisons are reported, along with an
indication of which of the two methods performed better (’-’ if the first, ’+’ if the sec-
ond performed better). More specifically, when comparing two methods, i.e., Method1 vs.
Method2, the ’−’ sign denotes that the sum of ranks where the first method outperformed
the second is higher than the sum of ranks where the second method outperformed the first.
The ’+’ sign denotes the opposite.

4 Results and discussion

In this section, we present the results of the empirical evaluation. We first present results on
binary classification datasets, followed by a presentation of results on multi-class classifica-
tion datasets. We then investigate the influence of the weight parameter w, which controls
the amount of supervision used to learn the models. Next, we analyze the influence of
the number of labeled examples on predictive performance of semi-supervised algorithms.
Finally, we present examples of supervised and semi-supervised trees and we discuss their
interpretability.

4.1 Binary classification

Figure 1 presents classification accuracy of semi-supervised (SSL-PCT, SSL-RF and
SELFTRAININGRF) and supervised methods (PCT and RF) on the 12 binary classification
datasets, with an increasing amount of labeled data.

We can observe consistent improvement of SSL-PCTs over supervised PCTs on a
number of datasets: Abalone, Adult, Bank, Biodegradation, Diabetes, Madelon and Pgp.
The degree of improvement is different from one dataset to another, from relatively
small improvement (i.e., around 1% in accuracy) on Biodegradation dataset, to substan-
tial improvement (i.e., up to 16% in accuracy) on Madelon dataset. On other datasets,
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(a) (b)

(c) (d)

(e) (f)

Fig. 1 Accuracy of the supervised and semi-supervised methods on the binary classification datasets
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(g) (h)

(i) (j)

(k) (l)

Fig. 1 (continued)
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SSL-PCTs and PCTs seem to show similar behaviour, with small improvements or
degradations in performance of SSL-PCT as compared to PCT. The different perfor-
mance of SSL methods on different datasets is somewhat expected, since success of the
semi-supervised methods is known to be domain dependant (Chawla and Karakoulas 2005).

We next compare the performance of semi-supervised random forests (SSL-RF) and
supervised random forests (SSL-RF). Consistent improvement of SSL-RF over RF is
observed on Abalone, Banknote, Madelon, Thyroid and Mushroom (for 100 and more
labeled examples) datasets. It seems that the success of SSL-RF over RF is not directly con-
nected with the success of its base model, i.e., SSL-PCTs. More specifically, improvement
of SSL-PCTs over PCTs does not guarantee the improvement of SSL-RF over RF (e.g.,
Adult and Bank datasets), and vice versa, SSL-RF can improve over RF even if SSL-PCTs
does not improve over PCTs (e.g., Banknote and Thyroid datasets). This means that the
advantage introduced by the adoption of the semi-supervised learning approach is somehow
orthogonal with respect to the advantage introduced by the ensemble learning approach.

The semi-supervised self-training random forest method (SELFTRAININGRF) did not
improve notably over RF on any of the datasets. It even consistently degraded the perfor-
mance of RF on Eyestate dataset. This confirms that self-training suffers from the problem
of ”reinforcement of mistakes” mentioned before.

Statistical analysis of the performance of the methods (Table 4) shows that SSL-PCTs
are better than the PCTs for all amounts of labeled data, while statistical significance is
achieved for the smallest amount of labeled data considered (i.e., 25 labeled examples)
and when 200 or more of labeled examples are available. Similarly, SSL-RF are better
than RF for all amounts of labeled data, and statistically significantly better for 100 and
500 of labeled examples. The proposed semi-supervised random forests are statistically
significantly better than SELFTRAININGRF for all amounts of labeled data, except when
50 labeled examples are available.

4.2 Multi-class classification

Figure 2 presents classification accuracy of semi-supervised (SSL-PCT, SSL-RF and
SELFTRAININGRF) and supervised methods (PCT and RF) on 12 multi-class classification
datasets, with increasing amount of labeled data.

Similarly to the case of binary classification, SSL-PCTs consistently improve over
the accuracy of PCTs on a number of datasets: Baseball, Cardiotocogramy3, Car-
diotocogramy10, GesturePhase, Optdigits and Pendigits. On other datasets, the two methods
perform very similarly, with the exception of the Cmc dataset, where SSL-PCTs are more
accurate than PCTs only when 100 or 200 labeled examples are available.

Table 4 P-values of the Wilcoxon signed-rank test applied to the performances of the supervised and semi-
supervised algorithms on the 12 binary classification datasets considered in this study

Methods 25 50 100 200 350 500

PCT vs. SSL-PCT 0.009 (+) 0.388 (+) 0.066 (+) 0.005 (+) 0.019 (+) 0.019 (+)

RF vs. SSL-RF 0.529 (+) 0.192 (+) 0.002 (+) 0.099 (+) 0.093 (+) 0.012 (+)

SELFTRAININGRF vs. SSL-RF 0.015 (+) 0.072 (+) 0.005 (+) 0.005 (+) 0.015 (+) 0.016 (+)

In bold, we report significant p-values (< 0.05). The ‘+’ sign means that the second method performs better
(SSL-PCT and SSL-RF)
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Fig. 2 Accuracy of the supervised and semi-supervised methods on the multi-class classification
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Fig. 2 (continued)
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SSL-RF consistently improves over RF on Cardiotocogramy3, Cardiotocogramy10,
Gasdrift, Gasdriftsc, Optdigits, Pageblocks, and Pendigits datasets, while on the other five
datasets the performance of the two methods is very similar. Again, the results suggest that
SSL-RF can improve over RF regardless of whether SSL-PCTs were able to improve over
PCTs or not. For example, SSL-RF was successful on Gasdrift and Gasdriftdc datasets,
while SSL-PCT was not. On the other hand, the success of SSL-PCTs does not necessarily
transfer to ensemble of SSL-PCTs, as it is the case on Baseball and GesturePhase datasets.

Again, SELFTRAININGRF achieved only very small improvements over RF on few
occasions (e.g., Gastrift and Gasdriftdc datasets for 200 or more labeled examples), while
more frequently it degraded the performance of the RF. The degradation of performance is
not very severe (probably due to the the use of the Airbag stopping criterion), however, it
happens on the majority of the datasets.

Also in this case we performed a statistical analysis (Table 5) which shows that SSL-
PCTs are better than the PCTs for all amounts of labeled data, while statistical significance
is achieved for 100 and 200 labeled examples. SSL-RFs are statistically significantly bet-
ter than RF for all amounts of labeled data, except the smallest amount, i.e., 25 labeled
examples. SSL-RFs achieve superior performance with respect to the one of SELFTRAIN-
INGRF: statistically significantly better predictive performance is achieved for all the
various amounts of labeled data.

4.3 Influence of the w parameter

The w parameter controls the amount of supervision in the induction of the models. Com-
pletely unsupervised learning is performed when w is set to 0. Then, as w increases,
SSL-PCTs rely more on labeled and less on unlabeled data, arriving at completely
supervised learning for w = 1.

The ability to fine tune the SSL-PCTs for a given dataset by controlling the amount of
influence of unlabeled data is very important in practical applications, since it can protect
SSL-PCTs and SSL-RF from severe performance degradation (as compared to their super-
vised counterparts). When performing semi-supervised learning, there is always a danger
(to some extent) of unlabeled data negatively affecting the predictive performances. Several
researchers have found that semi-supervised learning may perform worse than supervised
learning (Nigam et al. 2000; Cozman et al. 2002; Zhou and Li 2007; Guo et al. 2010). Fur-
thermore, the success of semi-supervised methods was found to be domain dependent, i.e.,
there are no guaranties that SSL methods will improve the predictive performance of the
supervised ones (Chawla and Karakoulas 2005). Moreover, choosing an appropriate SSL

Table 5 P-values of the Wilcoxon signed-rank test applied to the performances of the supervised and semi-
supervised algorithms on the 12 multi-class classification datasets considered in this study

Methods 25 50 100 200 350 500

PCT vs. SSL-PCT 0.248 (+) 0.084 (+) 0.014 (+) 0.007 (+) 0.192 (+) 0.081 (+)

RF vs. SSL-RF 0.563 (+) 0.011 (+) 0.011 (+) 0.003 (+) 0.004 (+) 0.02 (+)

SELFTRAININGRF vs. SSL-RF 0.005 (+) 0.003 (+) 0.002 (+) 0.002 (+) 0.006 (+) 0.03 (+)

In bold, we report significant p-values (< 0.05). The ‘+’ sign means that the second method performs better
(SSL-PCT and SSL-RF
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method for the problem at hand is still an open question. Thus, even if the main focus in
SSL is to outperform the supervised methods, care needs to be taken to make the semi-
supervised methods safe, i.e., make sure they do not perform worse than their corresponding
supervised methods.

With the w parameter, we provide a safety mechanism for semi-supervised PCTs. In the-
ory, if the optimal value of the parameter w is known, SSL-PCTs and SSL-RF will never
perform worse than their supervised counterparts, since PCTs and RF are special cases
of SSL-PCT and SSL-RF (respectively) when w = 1. However, since the w parameter
is optimized via cross-validation on the available labeled data, it is possible that the cho-
sen value of w is not the right one to achieve the optimal test set performance. Thus, in
practice, SSL-PCT and SSL-RF can also perform worse than PCT and RF, though this
rarely happened in empirical evaluation (Figs. 1 and 2). Considering all the experiments
(Figs. 1 and 2), semi-supervised methods (SSL-PCT and SSL-RF) preformed better than
their supervised counterparts (PCTs and RF) on 60% of occasions, worse on 17% of occa-
sions, and the same on 23% of occasions. Moreover, the degradation of performance, if it
happened, was always for a very small amount as compared to the improvements achieved
by SSL-PCT over PCT, and SSL-RF over RF. For example, the average improvement of
accuracy on binary classification datasets (Fig. 1) of SSL-PCTs over PCTs is 2.4%, while
the average degradation of accuracy is 0.58%.

Figure 3 illustrates the influence of the parameter w on the predictive performance for
3 different datasets. The Optdigits dataset (Fig. 3a) requires little to no supervision, since
increasing the value of w leads to worse predictive performance of the SSL-PCT and SSL-
RF methods.

For the Baseball dataset (Fig. 3b), the optimal value of w changes with the amount of
labeled data, and it is different between the semi-supervised trees and random forests. When
small number of labeled examples is available (i.e., up to 50), SSL-PCTs require no super-
vision and improve a lot over the supervised PCTs. Then, as the number of labeled examples
increases beyond 50, improvements are getting smaller and more supervision is needed to
achieve the best performance. On the other hand, SSL-RF does not improve notably over
the supervised random forests on the Baseball dataset. Generally, larger values of w than at
SSL-PCTs are chosen, where SSL-RF perform very similar to RF.

Finally, the Imagesegment dataset (Fig. 3c) is an example of a dataset where the proposed
semi-supervised methods do not improve over their supervised counterparts. Regardless of
the value of the w parameter, or the amount of the labeled data, SSL-PCT and SSL-RF are
not able to improve over supervised learning (except SSL-PCT for 25 labeled examples,
however cross-validation narrowly missed the optimal values of the w parameter). Almost
always, the value of w = 1 is chosen (i.e., supervised learning is performed), and with that,
degradation of the performance is avoided.

A general recommendation for the value of w is difficult to provide, since, as shown on
Fig. 3, the optimal value of w can vary from dataset to dataset, and even within the same
dataset as the amount of labeled data changes. As previously discussed, the performance
of semi-supervised methods is known to be domain dependant, i.e., the success of semi-
supervised methods can vary from one dataset to another. In other words, different datasets
may require different amount of supervision. Since the w parameter controls the amount
of supervision, it is not surprising that different values of w are appropriate for different
datasets. Hence, this parameter, as done in this empirical evaluation, needs to be optimized
by cross-validation for each specific use case.
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(a)

(b)

(c)

Fig. 3 The effect of the w parameter on the performance of the SSL-PCT (red line) and SSL-RF (orange
line) methods on 3 datasets: Optdigits, Baseball and Imagesegment. The values of the w parameter selected
by cross-validation and used in the experimental evaluation are denoted with coloured markers

4.4 Influence of the number of labeled examples

The number of available labeled examples is important for the the success of semi-
supervised learning. Intuitively, semi-supervised learning has the best potential to improve
over supervised learning when a small number of labeled examples is available, while the
improvement is expected to decrease as the number of labeled examples increases.

Figure 4 shows that the proposed semi-supervised methods (SSL-PCT and SSL-RF)
can improve over their supervised counterparts for any number of labeled examples consid-
ered in this study, even for very small amount of labeled data (i.e., 25 labeled examples).
However, it seems that for small amounts of labeled data (i.e., up to 50 labeled exam-
ples) improvements of semi-supervised methods over supervised methods can vary a
lot. For example, semi-supervised random forests on binary classification datasets yield
small improvement for 25 labeled examples, while on multi-class classification datasets
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Fig. 4 Average difference in accuracy (�Accuracy) across all datasets between semi-supervised SSL-PCT
and SSL-RF over their supervised counterparts, PCT and RF, respectively

semi-supervised random forests yield substantial improvement. As the number of labeled
examples reaches 100, the degree of improvement somewhat stabilizes, i.e., it does not
differ much between single trees and random forests considering binary classification and
multi-class classification.

An interesting difference can be observed between binary classification and multi-class
classification. As the number of labeled examples is increased beyond 100, the improvement
in accuracy of semi-supervised methods on multi-class classification datasets starts to taper
off. On the other hand, on binary classification datasets, the improvement is consistent as
the number of labeled examples is increasing. This deserves further investigation.

4.5 Interpretability and size of the trees

The models produced by the semi-supervised algorithm are readily interpretable, since they
are decision trees. Here, we present examples of decision trees obtained on one binary
classification dataset, and one multi-class classification dataset. We discuss the differences
between the trees generated by the supervised and the semi-supervised learning algorithms.
Our intuition is that if the clustering assumption holds, we can have trees which are less
prone to overfitting or, in other terms, smaller trees which better adapt to and predict unseen
instances.

From binary classification, we present the trees obtained on the Diabetes dataset
(Lichman 2013) with 100 labeled examples (Fig. 5a and b). The task at this dataset is to
classify subjects to tested positive for diabetes (class value 1) and tested negative for dia-
betes (class value 0), on the basis of 8 descriptive attributes: number of times the subject
was pregnant, plasma glucose concentration in an oral glucose tolerance test, diastolic blood
pressure, triceps skin fold thickness, 2-hour serum insulin, body mass index (BMI ), dia-
betes pedigree function (takes into account ancestor’s diabetes history), and age. We can
observe that the semi-supervised tree (Fig. 5b) is slightly smaller than the supervised tree
(Fig. 5a), making it easier to interpret. In spite of its smaller size, the semi-supervised tree
is more accurate than the supervised one, meaning that the unlabeled examples contributed
to make better splits in the tree. Both trees chose the same split at the root node of the tree:
Patients with BMI ≤ 29.85 are classified as tested negative for diabetes, whereas patients
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(a)

(c) (d)

(b)

Fig. 5 Examples of trees obtained with the supervised PCT algorithm (a and c), and the semi-supervised
SSL-PCT algorithm (b and d) on the Diabetes and Cardiotocogramy3 datasets

with BMI > 29.85 are further divided on the basis of other descriptive attributes into pos-
itive and negative class. Obesity is known to contribute to increased risk of diabetes, where
subjects with BMI > 30 are considered obese (Ford 1999). Interestingly, this coincides
with the split in the top node of both decision trees. In the lower levels of decision trees,
semi-supervised and supervised trees mainly choose different attributes, or different splitting
points on the same attribute.

From multi-class classification, we present the trees obtained on the Cardiotocogramy3
dataset (Lichman 2013) with 50 labeled examples (Fig. 5c and d). This dataset is about
classifying the state of the fetus on the basis of cardiotocograms (CTGs) into 3 classes:
Normal, Suspect and Pathologic. CTGs are records of measurements of fetal heartbeat and
the uterine contractions during pregnancy. From CTGs, 35 features were generated: Various
features describing the histogram of foetal heart rate values (Min, Mode, Median etc.), mean
value of short term (beat-to-beat) variability (MSTV), heartbeat accelerations (AC), foetal
movement (FM), largely decelerative pattern (LD), flat-sinusoidal pattern (FS), etc. We can
observe that the tree learned with the semi-supervised algorithm (Fig. 5d) is slightly smaller
than the one learned with the supervised algorithm, (Fig. 5c), and that the two trees have
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very different structure (i.e., completely different attributes were chosen). The tree learned
with the semi-supervised algorithm is much more accurate, meaning that it was able to find
better splits.

Tables 6 and 7 present the model sizes of supervised and semi-supervised trees. We
can observe that the semi-supervised trees are, almost without exception, smaller than the
supervised trees. Recall that, because of the way the impurity measure is defined, semi-
supervised trees group examples into clusters that are compact both in the descriptive and
the label space, while the supervised trees consider only the label space. Obviously, semi-
supervised trees have a more strict clustering criterion, which likely is a reason for the
smaller tree size. On average, semi-supervised trees are 25% smaller on binary classification
datasets, and 12% smaller on multi-class classification datasets.

Furthermore, Tables 6 and 7 demonstrate that in situations with limited availability of
labeled data, semi-supervised learning of PCTs offers better interpretability (i.e., smaller
PCTs) and frequently also more accurate trees as compared to supervised learning of PCTs
(Figs. 1 and 2). For example, on the Diabetes dataset (Fig. 5a and b), the algorithm for
learning supervised PCTs needs approximately 500 labeled examples to achieve predictive
performance comparable to the semi-supervised approach with only 100 labeled examples
(Fig. 1). Consequently, this can lead to very large, and hence difficult to analyze, supervised
trees.

5 Related work

Within SSL, many different methods have been proposed, which are grouped on the basis
how they utilize the unlabeled data. Low-density separation methods try to find a labeling

Table 6 Model sizes, in terms of number of nodes, obtained with the supervised algorithm (PCT) and the
semi-supervised algorithm (SSL-PCT) on the 12 binary classification datasets considered in this study

Dataset Number of labeled examples

25 50 100 200 350 500

PCT
SSL

PCT
SSL

PCT
SSL

PCT
SSL

PCT
SSL

PCT
SSL

−PCT −PCT −PCT −PCT −PCT −PCT

Abalone 6.4 4.6 11 4 17.2 9.4 33.4 20 59 39 75.6 52.4

Adult 5.2 2.8 7.6 3.6 16.4 4.8 25.8 6.4 36.8 6.2 54 37.4

Bank 3.2 1 6 1.4 8.4 1 15.2 10.6 25.4 17.4 39.6 3.6

Banknote 5 5 7.6 4.6 11.2 9.2 15.8 13.2 22 18.2 22.6 21.6

Biodegradation 6.4 4.6 10.2 6.6 18.4 14.4 29.6 26.4 48.4 45.2 66.4 64.6

Diabetes 5.4 5.4 10.2 8.4 20.6 14 34.4 31.2 63.6 60 82 92

Eyestate 8.6 8.6 12 11.8 24.6 20.6 49.2 36.8 83.2 63.6 111.2 94.6

Madelon 5.6 6.2 9.2 10 18.2 17 34.2 20.4 60 34.6 82.2 40.8

Mushroom 3.2 3 3.2 3.2 3.4 3.4 4.4 4.4 6.6 6.6 8.4 8.4

Pgp 6.6 6.2 11.8 4.4 19.4 15.4 35.8 29.8 57.8 53.6 74.4 71.2

Phishing 4 3.6 6.8 3.8 8.8 8 13.2 11.8 20.2 20.2 28.8 28.8

Thyroid 2.2 1 2.6 3 4.4 4.4 5.8 5.8 8.6 8.6 9.8 9.8

Average: 5.2 4.3 8.2 5.4 14.3 10.1 24.7 18.1 41.0 31.1 54.6 43.8
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Table 7 Model sizes, in terms of number of nodes, obtained with the supervised algorithm (PCT) and the
semi-supervised algorithm (SSL-PCT) on the 12 multi-class classification datasets considered in this study

Dataset Number of labeled examples

25 50 100 200 350 500

PCT
SSL

PCT
SSL

PCT
SSL

PCT
SSL

PCT
SSL

PCT
SSL

−PCT −PCT −PCT −PCT −PCT −PCT

Baseball 3.2 1 4.4 1.8 8 6.4 12 10.8 19 17.2 24 19.8

Cardiotocogramy3 3.6 2.2 6.4 6.8 9.6 11 10.2 10.6 12.2 9.8 14.8 14.8

Cardiotocogramy10 11.6 11.6 15.2 15.2 17.4 18.4 19 20 19 19.4 19 19

Cmc 10.2 10.2 17.8 11.4 31.4 17.8 67 37.4 101.2 68.4 129.8 84.4

Gasdrift 10.6 10.4 15 15 25 22.2 40 40 55.8 56.4 70.8 70.8

Gasdriftdc 10.6 9.6 15 15 24.4 21.6 39.4 39.4 54.4 51.6 70.2 70.2

GesturePhase 10.8 9.8 21 16.2 38 6.8 71.8 66.8 123.2 120.4 172.6 169.8

Imagesegment 12.4 11.2 14.6 14.6 18.4 18.4 23.6 23.6 32.4 31.2 39.2 38

MiceProtein 12.8 12.8 14.8 14.8 15 15 15 15 15 15 15 15

Optdigits 14.8 9.2 20.2 19.2 30.8 31.4 51 46.6 76.4 69.2 92.8 87.6

Pageblocks 3 1.4 4.8 4.8 8.2 8.2 12 9.6 18 18 21.4 18.4

Pendigits 14.8 12.4 20.8 20 28.4 32 43.4 42.4 63.2 55.6 74 72.2

Average: 9.9 8.5 14.2 12.9 21.2 17.4 33.7 30.2 49.2 44.4 62.0 56.7

for the unlabeled data in a way that maximizes the margin of the decision boundary con-
sidering both labeled and unlabeled data. Semi-supervised support vector machines are a
typical representative of this group (see for instance (Joachims 1999; Ceci 2008)). Find-
ing the exact solution for semi-supervised support vector machines is NP-hard (Zhu 2008),
therefore, current implementations, either calculate an approximate solution (Chapelle et al.
2008), or cannot handle more than a few hundred unlabeled examples.

Graph-based methods (Zhang and Wang 2009) use unlabeled data as an additional source
of information to infer the structure of the graph. The graph can be considered as a low
dimensional representation of the (high dimensional) data. Labels are propagated through
the graph assuming label smoothness over the graph. Graph based methods are inherently
transductive (i.e., they do not build a model for the whole space, but only infer the labels
of the test set). The main problem of these methods is, however, the high computational
complexity and recently, some alternative and more efficient solutions were proposed (Liu
et al. 2012).

Generative models (Zhu 2008) assume a probabilistic model of the data and use unla-
beled, together with labeled data, to estimate the most probable model parameters. Such
methods have also been investigated in the multi-relational data mining setting (Malerba
et al. 2009; Ceci et al. 2012). The success of generative models depends largely on choosing
a probabilistic model which is appropriate for the data.

In this work, we focus on tree-based semi-supervised methods. To the best of our knowl-
edge, semi-supervised classification trees are limited (and interpretable semi-supervised
methods in general, as a matter of fact) to the self-training approaches (Yarowsky
1995) wrapped around traditional supervised trees. In an extensive empirical investigation
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performed on a large number of UCI datasets, Guo et al. (2010) showed that there is a
great risk of performance deterioration when self-training is employed. In fact, the same
was shown when the LLGC method (Zhou et al. 2004) was used, and to a somewhat lesser
extend when transductive support vector machines (Joachims 1999) were used. Further-
more, they show that ”smart” instance selection based on confidence score in self-training
and co-training is not necessarily superior to random selection, and that even if unlabeled
examples are correctly labeled, improvement of predictive performance is not guaranteed.

Tanha et al. (2015) performed self-training with decision trees and proposed the use of
various techniques (such as grafting or Laplace correction) to improve probability estima-
tion in the leaves of the trees. Better probability estimates, used as a proxy for confidence
scores, were beneficial for predictive performance of self-trained classification trees. How-
ever, even though very similar experimental setup (but not the same) was used by Guo
et al. (2010) and Tanha et al. (2015), very different results (serious deterioration of accu-
racy vs. improvement) were reported on some datasets even if the same method was used.
This suggests that even a very small change in the experimental design can have big conse-
quences to the performance of self-training. It is not clear yet, how self-training should be
parameterized, in terms of stopping criteria, definition of the confidence score and thresh-
old on the confidence score, to ensure the improvement in performance or at lest to prevent
a degradation of the predictive performance.

We propose semi-supervised learning of predictive clustering trees, where unlabeled
examples are used to improve the quality of the splits of classification trees, i.e., the algo-
rithm does not depend on predicted labels of unlabeled examples. We show that such an
approach can substantially improve the accuracy of supervised decision trees, while being
reasonably safe to use (i.e., does not reinforce mistakes).

The only previous attempt to use predictive clustering trees in the semi-supervised learn-
ing setting is based on the self-training paradigm (Levatic et al. 2014). As previously
mentioned, self-training is prone to error propagation and increases the computational com-
plexity of the base method due to the repetitive re-training of the base method. The method
presented in Levatic et al. (2014) relies on the intrinsic mechanisms of ensemble learning to
estimate the reliability of predictions, thus, it is applicable only to ensemble approaches and
cannot produce interpretable models. Furthermore, the machine learning task considered by
the method (Levatic et al. 2014) is multi-target regression and the method is not directly
applicable to the machine learning tasks considered in this study, i.e., binary and multi-class
classification.

As for ensemble-learning solutions, Leistner et al. (2009) proposed to learn semi-
supervised random forests where unlabeled data are used to maximize the margin between
classes. Similarly as in semi-superviesd SVMs, finding the exact solution there is NP-hard,
therefore, heuristic techniques are used to find an approximate solution, and the algorithm
still depends on predicted labels of unlabeled examples. Liu et al. (2015), proposed semi-
supervised random forests, where (similarly to our work) unlabeled data are employed to
improve the quality of splits in the trees. They suggest that node splitting is the key issue of
tree-based classifiers to achieve high accuracy and avoid overfitting. They use kernel-based
density estimation which employs both labeled and unlabeled data to improve categorical
probability estimates. These estimates are used directly in impurity measures, such as infor-
mation gain or Gini index. They show that their method performs favourably to the method
proposed by Leistner et al. (2009) on several datasets from the computer vision domain.
However, it is not clear if the performance gains observed on random forests would transfer
to single trees.
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Methodologically related to our work is the work of Blockeel et al. (1998) who proposed
clustering trees and suggested that they may be useful when class information is missing.
They construct the decision trees in an unsupervised manner, where distances among exam-
ples take into account all descriptive attributes. Class labels are not used during the tree
construction phase, but only to assign labels at leaf nodes once the tree has been constructed.
This concept can be considered as a semi-supervised cluster-then-label approach (Dara et al.
2002; Demiriz et al. 1999; Goldberg et al. 2009). The semi-supervised decision trees that
we propose in this work are similar in nature to the ones proposed by Blockeel et al. (1998),
but there are several key differences. To construct the trees, we consider simultaneously the
descriptive and the target attributes. In other words, clustering and predictive modelling are
performed simultaneously, which enables us to fully exploit both the labeled and unlabled
examples. Next, we introduce an additional parameter to control the amount of supervision
in the decision trees. This allows us to build fully supervised trees, semi-supervised trees,
or fully unsupervised trees, depending on the specific needs of the data mining problem at
hand.

6 Conclusions

We proposed a method for semi-supervised learning of classification trees. The trees can
be learned from binary and multi-class classification datasets with nominal and/or numeric
descriptive attributes. Moreover, the constructed trees can be used as base predictive models
in ensembles, such as random forests.

We performed an extensive empirical evaluation showing that the proposed semi-
supervised classification trees and ensembles thereof are more accurate than the traditional
supervised trees and random forests on many binary and multi-class classification datasets.
The attractive predictive performance is not the only advantage of our methods over the
existing semi-supervised methods. Quite often, semi-supervised methods promise better
accuracy but have high computational demands, many parameters to optimize, or high
risk of degrading the performance of their base supervised method, thus limiting their
applicability in real-life problems.

In contrast, the methods proposed in this paper are highly useful in practice. First of
all, the proposed semi-supervised algorithm for tree learning preserves all of the appealing
characteristics of supervised tree learning: semi-supervised trees are fast to learn and are
readily interpretable (unlike the models learned by most semi-supervised algorithms). Also,
the proposed semi-supervised trees are generally smaller than the supervised ones, making
them easier to interpret. Next, due to the parametrization which controls the amount of
supervision, the proposed methods are safe to use: They either improve the accuracy of their
supervised counterparts, or perform very similar to them.

To conclude, if the user has access to (a large number of) unlabeled examples and the
availability of labeled data is limited for the classification task at hand, the methods pro-
posed in this paper will be helpful to improve the predictive performance. Furthermore, if
the goal of the modelling is knowledge discovery and understandable models are needed,
the proposed semi-supervised trees should be preferred over the traditional supervised trees.
On the other hand, if state-of-the art predictive performance is of interest, the proposed
semi-supervised random forests are advantageous to traditional supervised random forests.

The proposed approach has potential for development in several different directions in
the future. To begin with, we plan to investigate the influence of the class distribution on
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the performance of the method. Next, the method can be extended to regression, as well as
to more complex machine learning tasks, such as (hierarchical) multi-label classification.
Furthermore, the proposed approach could be used to address tasks other than predictive
modelling. Namely, with this approach it is possible to perform unsupervised learning, i.e.,
(hierarchical) clustering while simultaneously providing symbolic descriptions of the clus-
ters. Finally, the method can be used to perform feature ranking for semi-supervised and
unsupervised learning by exploiting the principle of feature ranking with random forests.
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