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Abstract. Decision trees are one of the most widely used predictive
modelling methods primarily because they are readily interpretable and
fast to learn. These nice properties come at the price of predictive perfor-
mance. Moreover, the standard induction of decision trees suffers from
myopia: A single split is chosen in each internal node which is selected
in a greedy manner; hence, the resulting tree may be sub-optimal. To
address these issues, option trees have been proposed which can include
several alternative splits in a new type of internal nodes called option
nodes. Considering all of this, an option tree can be also regarded as
a condensed representation of an ensemble. In this work, we propose to
extend predictive clustering trees for multi-target regression by consider-
ing option nodes, i.e., learn option predictive clustering trees (OPCTSs).
Multi-target regression is concerned with learning predictive models for
tasks with multiple continuous target variables. We evaluate the pro-
posed OPCTs on 11 benchmark MTR datasets. The results reveal that
OPCTs achieve statistically significantly better predictive performance
than a single PCT. Next, the performance is competitive with that of
bagging and random forests of PCTs. Finally, we demonstrate the poten-
tial of OPCTs for multifaceted interpretability and illustrate the poten-
tial of inclusion of domain knowledge in the tree learning process.

Keywords: Multi-target regression -+ Option trees -+ Interpretable
models - Predictive clustering trees

1 Introduction

Supervised learning is one of the most widely researched and investigated areas
of machine learning. The goal in supervised learning is to learn, from a set of
examples with known class, a function that outputs a prediction for the (scalar-
valued) class of a previously unseen example. However, in many real life problems
of predictive modelling the output (i.e., the target) is structured, e.g., is a vector
of class values of a tuple of target variables. There can be dependencies between
the class values/targets (e.g., they can be organized into a tree-shaped hierarchy
or a directed acyclic graph) or some internal relations between the class values
(e.g., as in sequences).

© Springer International Publishing Switzerland 2016
T. Calders et al. (Eds.): DS 2016, LNAI 9956, pp. 118-133, 2016.
DOI: 10.1007/978-3-319-46307-0-8



Option PCTs for Multi-target Regression 119

In this work, we concentrate on the task of predicting multiple continuous
variables. Examples thus take the form (x;,y;), where x; = (x;1,...,%) is a
vector of k input variables and y; = (v;1,- .-, ¥:t) is a vector of ¢ target variables.
This task is known under the name of multi-target regression (MTR) [1] (also
known as multi-output or multivariate regression). MTR is a type of structured
output prediction task which has applications in many real life problems, where
we are interested in simultaneously predicting multiple continuous variables.
Prominent examples come from ecology and include predicting the abundance
of different species living in the same habitat [2] and predicting properties of
forests [3,4]. Due to its applicability to a wide range of domains, this task is
recently gaining increasing interest in the research community.

Several methods for addressing the task of MTR have been proposed [1,5].
These methods can be categorized into two groups of methods [6]: (1) local
methods, that predict each of the target variable separately and then combine
the individual model predictions to get the overall model prediction and (2)
global methods, that predict all of the variables simultaneously (also known as
‘big-bang’ approaches). In the case of local models, for a domain with ¢ target
variables one needs to construct t predictive models — each predicting a sin-
gle target. The prediction vector (that consists of ¢ components) of an unseen
example is then obtained by concatenating the predictions of the multiple single-
target predictive models. Conversely, in the case of global models, for the same
problem, one needs to construct only one model. In this case, the prediction
vector of an unseen example is obtained by passing the example through the
model and getting its (complete) prediction.

In the past, several researchers proposed methods for solving the task of
MTR directly and demonstrated their effectiveness [1,4,7-9]. The global meth-
ods have several advantages over the local methods. First, they exploit and use
the dependencies that exist between the components of the structured output
in the model learning phase, which can result in better predictive performance.
Next, they are typically more efficient: it can easily happen that the number of
components in the output is very large (e.g., predicting the bioactivity profiles
of compounds described with their quantitative structure activity relationships
on a large set of proteins), in which case executing a basic method for each
component is not feasible. Furthermore, they produce models that are typically
smaller than the sum of the sizes of the models built for each of the components.

The state-of-the-art methods for MTR are based on tree and ensemble learn-
ing [1,5]. Trees for MTR (from the predictive clustering framework) inherit the
properties of regression trees: they are interpretable models, but the learning
them is greedy. The performance of the trees is significantly improved when
they are used in an ensemble setting [1,7]. However, the myopia, i.e., greediness,
of the tree construction process can lead to learning sub-optimal models. One
way to alleviate this is to use a beam-search algorithm for tree induction [10],
while another approach is to introduce option splits in the nodes [11,12].

In this work, we propose to extend predictive clustering trees (PCTs) for
MTR towards option trees, hence we propose to learn option predictive clustering
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trees (OPCTSs). An option tree can be seen as a condensed representation of an
ensemble of trees which share a common substructure. More specifically, the
heuristic function for split selection can return multiple values that are close to
each other within a predefined range. These splits are then used to construct an
option node. For illustration, see Fig. 1.

The remainder of this paper is organized as follows. Section 2 proposes the
algorithm for learning option PCTs for MTR. Next, Sect. 3 outlines the design of
the experimental evaluation. Section 4 continues with a discussion of the results.
Finally, Sect.5 concludes and provides directions for further work.

2 Option Predictive Clustering Trees

The predictive clustering trees framework views a decision tree as a hierarchy
of clusters. The top-node corresponds to one cluster containing all data, which
is recursively partitioned into smaller clusters while moving down the tree. The
PCT framework is implemented in the CLUS system [13], which is available for
download at http://clus.sourceforge.net.

Option predictive clustering trees (OPCT) extend the usual PCT frame-
work, by introducing option nodes into the tree building procedure outlined in
Algorithm 1. Option decision trees were first introduced as classification trees
by Buntine [11] and then analyzed in more detail by Kohavi and Kunz [12].
Ikonomovska et al. [14] analyzed regression option trees in the context of data
streams.

The major motivation for the introduction of option trees is to address the
myopia of the top-down induction of decision trees (TDIDT) algorithm [15].
Viewed through the lens of the predictive clustering framework, a PCT is a non-
overlapping hierarchical clustering of the whole input space. Each node/subtree
corresponds to a clustering go a subspace and prediction functions are placed in
the leaves, i.e., lowest clusters in the hierarchy. An OPCT, however, allows the
construction of an overlapping hierarchical clustering. This means that, at each
node of the tree several alternative hierarchical clusterings of the subspace can
appear instead of a single one.

When using an OPCT for prediction on a new example, we produce the
prediction by aggregating over the predictions of the alternative subtrees (over-
lapping clusters) the example may encounter. However, as not all parts of the tree
(hierarchical clustering) are necessarily overlapping, the example may encounter
only nonoverlapping (sub)clusters. In that case, we produce the prediction as we
would with a regular PCT.

When using TDIDT to construct a predictive clustering tree, and in particu-
lar when splitting a leaf, all possible splits are evaluated by using a heuristic and
the best one is selected. However, other splits may have very similar heuristic
values. The best split could be selected over another split as a consequence of
noise or of the sampling that generated the data. In this case, selecting a differ-
ent split could be optimal. To address this concern, the use of option nodes was
proposed [12].
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An option node is introduced into the tree when it would be hard to determine
the best split, i.e., when the best splits have similar heuristic values. When
this occurs, instead of selecting only the best split, we select several of them.
Specifically, we select up to 5 splits s, called options, that satisfy the following

Heur(s)

>1—¢- dlevel
Heur(spest) — ’

where spes; is the best split, € determines how similar the heuristics must be,
d € [0,1] is a decay factor and level is the level in the tree of the node we are
attempting to split. After we have determined the candidate splits, we intro-
duce an option node whose children are split nodes obtained by using the
selected splits, i.e., an option node contains options as its children. Selecting
more than 5 options is possible, vbut, uses exponentially more resources and is
not advised [12].

As usual, we define the level of a node to be the number of its ancestor nodes,
however, we do not count option nodes. This is motivated by the predictive
clustering viewpoint, i.e., the option nodes only mark that there are overlapping
clusters and not that there is an additional level of clustering.

The use of a decay factor makes the selection criterion more stringent in the
lower nodes of the tree. The intuition behind this is that higher up, the split

Algorithm 1. The top-down induction algorithm for option PCTs.
Procedure OptionPCT
Input: A dataset F, parameter €, decay factor d, current tree level [
Output: An option predictive clustering tree
candidates = FindBestTests(E, 5)
if |candidates| > 0 then
if |candidates| =1 or [ > 2 then
(t*,h", P*) = candidates|0]
for each E; € P* do
tree; = OptionPCT(FE;,e,d,l 4+ 1)
return node(t*, |J,{tree:})

else
(t5, ho, Py) = candidates|0]
nodes = {}

for each (t;,h;,P;) € candidates do
if 7+ > 1—c-d then
for each E; € P; do
tree; = OptionPCT(Ej,e,d,l + 1)
nodes = nodes U {node(t",J,{tree; })}
if |nodes| > 1 then
return option_node(nodes)
else
return nodes|0]
else
return leaf(Prototype(E))
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selection is more important and a larger error would be inferred by introducing
a non-optimal split. However, as we get deeper into the tree, the use of a non-
optimal split would make decreasing impact. This intuition also allows us to
prohibit the use of option nodes on levels 3 and greater, which severely mitigates
the problem of combinatorial explosion.

When using a small €, e.g., ¢ = 0.1, we are selecting only options whose
heuristics are within 10 % of the best split. However, the use of larger €, in the
extreme case even € = 1, can also be motivated through the success of methods
such as random forests and ensembles of extremely randomized trees. Allowing
the selection of options whose heuristics are considerably worse than the heuristic
of the best split, might not necessarily reduce the performance of the tree, but
actually increase it.

Once an OPCT is built, we want to use it for prediction. If we reiterate
the methodology described above in a tree-prediction setting, we could say the
following. In a regular PCT, it is simple to produce a prediction for a new
example. It is sorted into a leaf (according to the splits of the tree) where a
prediction is made by using a prototype function. When traversing an example
through an OPCT, we behave the same when we encounter a split or leaf node. If
we traverse an example to an option node, however, we clone the example for each
of the options and traverse one of the copies down each of the options. This means
that in an option node an example is (by proxy of its copies) traversed to multiple
leaves, where multiple predictions are produced. To obtain a single prediction
in an option node, we aggregate the obtained predictions. When addressing
multi-target regression this is generally done by averaging all the predictions per
target.

An option tree is usually seen a single tree, however, it can also be interpreted
as a compact representation of an ensemble. To generate the ensemble of the
embedded trees, we start recursively from the root node and move in a top-down
fashion. Each time we encounter an option node we copy the tree above (and
in “parallel”) for each of the options and replace the option node with only the
option, i.e., single split. This produces one tree for each option while removing
the option node in question. We repeat this procedure on all of the generated
trees until we are left with no option nodes. This is illustrated in Fig. 1. For this
reason, we will sometimes refer to option trees as pseudo-ensembles.

On the other hand, a given OPCT is a direct extension of the PCT that
would be learned on the same data. By definition, whenever we introduce an
option node, we include the best split (in terms of the heuristic)'. In regular
construction of PCTs, this is the only split we consider. Consequently, the PCT
is embedded in the OPCT. Specifically, we can extract it, if we, in a top-down
fashion, only select the best option in each option node.

Let’s consider a full option node, i.e., one where we have the full 5 options.
Let’s assume that there are no option nodes further down in the tree. Since we
have 5 options and no options lower in the tree, we have a total of 5 embedded

! Not only is the best split included, other splits are compared to it to determine their
inclusion in the option tree.
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trees. Now, let’s consider the size of the embedded ensemble, when we add two
such nodes under a split node, i.e., each leaf of a split node was extended into a
full option node. To construct an embedded tree we can now choose one of the 5
options when the test is satisfied and one of 5 options when it is not. This results
in 25 different embedded trees. It can easily be inferred, that to calculate the
number of embedded trees for an option node we need just to sum up the number
of embedded trees for each of its options. In a (binary) split node, however, we
multiply the numbers of embedded trees of the subtree that satisfies the split
and of the subtree that doesn’t, to obtain the total number of embedded trees.

Given the construction constraints described above, we know that option
nodes with up to 5 options can appear only on the first three levels, i.e., levels
0, 1 and 2. If we now consider a full option tree, we calculate a maximum of
(52-5)? -5 =57 = 78125 embedded trees. However, many of these trees overlap
to a large extent.

Note that a given example will not traverse the entire tree. For example, in
Fig. 1, if an example reaches S; and is traversed into the left child L, the same
result would happen in both the first and second embedded tree. The example
is “agnostic” of any option nodes in the right child of S;. Therefore, in a general
option tree, a given example will visit only up to 5% = 125 leaves, as it will only
traverse down one side of the tree in each split node.

In other words, there are a maximum of 125 different predictions that would
be aggregated in order to obtain the final prediction of an option tree constructed
this way. This can be compared to a single tree, where only 1 prediction will be
made for each example, or to a tree ensemble, where 1 prediction would be
made for each member of the ensemble and then aggregated to produce the final
prediction.

3 Experimental Design

To evaluate the performance and efficiency of the OPCT method, we construct
OPCTs by using different values for the algorithms’ parameters, as well as stan-
dard PCTs and ensembles of PCTs. We first present the benchmark datasets
used for evaluation of the methods and then give the specific experimental setup:
parameter instantiations and evaluation measures.

3.1 Data Description

The 11 datasets with multiple continuous targets used in this study come mainly
from the domain of ecological modelling. Table 1 outlines the properties of the
datasets. This selection contains datasets with various number of examples
described with different numbers of attributes. For more details on the datasets,
we refer the reader to the referenced literature.
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3.2 Experimental Setup

We use 10-fold cross-validation to estimate the predictive performance of the
used methods. We assess the predictive performance of the algorithms using
several evaluation measures. In particular, since the task we consider is that
of MTR, we employed three well known measures: the correlation coefficient
(CC), root mean squared error (RM SFE) and relative root mean squared error
(RRMSE). We present here only the results in terms of RRM SE, but similar
conclusions hold for the other two measures. Finally, the efficiency of the pro-
posed methods is measured with the time needed to construct a model and the
size of the models (in terms of total number of leaf nodes available for making a
prediction).

Fig. 1. An option tree (a) and the ensemble of its embedded trees (b). O; are option
nodes, S; split nodes and Lj, leaf nodes.
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We parameterize OPCTs by selecting values for the parameters ¢ and d.
When e = 1, there are no constraints on the heuristic value of the selected splits
with regards to the best test. However, since only the 5 best splits are selected,
the risk that a split which would decrease the predictive performance would
be selected is relatively low. This setting most resembles the ensemble setting,
where greater variation is desired. If we were to select ¢ = 0, the resulting
OPCT would almost always directly coincide with a regular PCT, as no split
would likely reach exactly the same heuristic value as the best split. Hence, the
only way an option node would be induced is if two splits had the exact same
heuristic value. This configuration is not of interest, so for ¢ we consider the
values {0.1,0.2,0.5,1.0}, corresponding in order from the most stringent to the
least stringent construction criterion.

As discussed above, the higher in the tree an option node is induced, the
higher the variation in the learned subtrees. Induction of option nodes in lower
levels of the tree not only contributes to the combinatorial explosion of the
number of trees (and consequently the use of resources), but also generates less
variation in the predictions, since the subtrees affected cover a smaller number
of examples. Hence, we wish to curtail the number of options induced in option
nodes lower in the tree. If we select a decay factor of d = 1, the depth of the
option node induction will have no impact, while selecting a decay factor of 0.5
will effectively double the effective heuristic requirement ¢ - d* at each level. For
example, for ¢ = 0.5 and d = 0.5, the requirement would be 0.5 at the root level,
0.25 at the first level and 0.125 at the third level. We use the following values
of the decay factor: {0.5,0.9,1}, these are the most to the least constrictive in
terms of the construction of the OPCT.

Table 1. Properties of the datasets with multiple continuous targets (regression
datasets): N is the number of instances, |D|/|C| the number of descriptive attributes
(discrete/continuous), and T the number of target attributes.

Name of dataset N |D|/|C||T
Collembola [16] 393 | 8/39

EDM [17] 154 0/16

Forestry-Kras [3] 60607 | 0/160 |11
Forestry-Slivnica-LandSat [18] | 6218 | 0/150 2
Forestry-Slivnica-IRS [18] 2731 0/29 | 2
Forestry-Slivnica-SPOT [18] 2731 0/49 2
Sigmea real [19] 817 0/4 2
Soil quality [2] 1944 0/142 | 3
Vegetation clustering [20] 20679 | 0/65 |11
Vegetation condition [4] 16967 | 1/39 7
Water quality [21] 1060 0/16 |14
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Note that, on a given dataset, all of the values of ¢ and d could produce
the same OPCT, if the splits have very similar heuristic values, e.g., there could
always be 5 splits that are within 10 % - d’ of the heuristic value of the best split.
Therefore, the evaluation of how ¢ and d affect both the predictive performance
and efficiency must by design be evaluated on multiple datasets. The parame-
terized version of the OPCT method for a given € and d is denoted OPCTesdd,
e.g., OPCTe0.5d0.9.

Next, we define the parameter values used in the algorithms for construct-
ing single PCTs and ensembles of PCTs. The multi-target PCTs are obtained
using F-test pruning. This pruning procedure uses the exact Fisher test to check
whether a given split/test in an internal node of the tree results in a reduction
in variance that is statistically significant at a given significance level. If there
is no split/test that can satisfy this, then the node is converted to a leaf. An
optimal significance level was selected by using internal 3-fold cross validation,
from the following values: 0.125, 0.1, 0.05, 0.01, 0.005 and 0.001.

We consider two ensemble learning techniques: bagging [22] and random
forests [23]. These are the most widely used tree-base ensemble learning meth-
ods. The construction of both ensemble methods takes as an input parameter the
size of the ensemble, i.e., number of base predictive models to be constructed.
We constructed ensembles with 100 base predictive models [1]. Furthermore,
the random forests algorithm takes as input the size of the feature subset that
is randomly selected at each node. For this purpose, we apply the logarithmic
function of the number of descriptive attributes |log, |D|| + 1, as recommended
by Breiman [23].

In order to assess the statistical significance of the differences in performance
of the studied algorithms, we adopt the recommendations by Demsar [24] for
the statistical evaluation of the results. In particular, we use the Friedman test
for statistical significance. Afterwards, to detect where statistically significant
differences occur (i.e., between which algorithms), we use the Nemenyi post-hoc
test to compare all the methods among each other.

We present the results from the statistical analysis with average ranks dia-
grams. The diagrams plot the average ranks of the algorithms and connect those
whose average ranks differ by less than a given value, called critical distance.
The critical distance depends on the level of the statistical significance (set in
our case to 0.05). The difference in performance of the algorithms connected
with a line is not statistically significant at the given significance level.

4 Results and Discussion

We discuss the results from the experimental evaluation along three major
dimensions. First, we select the optimal parameter values for the construction
of OPCTs. Second, we compare the performance of OPCTs with a single PCT
and ensembles of PCTs. The comparison is performed on their predictive power,
time consumption and size of the produced models. Third, we examine the inter-
pretability of OPCTs in juxtaposition to PCTs.
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Critical Distance = 2.16942
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Fig. 2. Average rank diagram (in terms of predictive performance) for OPCTs obtained
with different values of the parameters € (e) and d.

4.1 Parametrization of OPCTs

In Fig. 2, we depict the performance of the different OPCTs obtained by using
the experimental design outlined above. We can note that lower values for both
the parameters leads to performance degradation. This is somewhat expected,
because by imposing more stringent values, we are forcing the algorithm not to
introduce option nodes, hence the obtained OPCTs are small. On the opposite
side of the spectrum, we have the OPCTs obtained with larger values for the
parameters. These achieve the best predictive performance and the correspond-
ing OPCTs are large.

We can also observe that the £ parameter has a stronger influence on the
performance than d. Namely, the OPCTs constructed with selecting 0.1 and 0.2
as values for € (no matter the value of d) are the ones with the weakest predictive
power. Furthermore, we can also note that the larger values for d also lead to
better predictive performance. The best predictive performance is obtained when
setting both parameters to 1. Such a setting produces large OPCTs and requires
the most time to construct the OPCTs. All in all, we can recommend the use
of two instantiations of the OPCT algorithm: OPCTeldl (¢ = 1, d = 1) and
OPCTe0.5d1 (¢ = 0.5, d = 1). These two variants represent the parameters for
the best performance and the trade-off between predictive power and efficiency,
respectively.

4.2 Predictive Performance and Efficiency

Figure 3 shows the results of the statistical evaluation of the predictive perfor-
mance of the proposed OPCT method in comparison to a single PCT and ensem-
bles of PCTs. We can first note that both OPCTs (OPCTeldl and OPCTe0.5d1)
achieve statistically significantly better predictive performance than the single
PCT. Second, there is no statistically significant difference in the performance
of the ensemble methods and the OPCTs. Furthermore, the two ensemble meth-
ods are bounded by the two OPCT variants: the best performing method is the
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Critical Distance = 0.794152
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Fig. 3. Comparison of OPCTs predictive performance of OPCTs to the competing
methods: average rank diagram in terms of predictive performance.

OPCTeldl, followed by Bagging of PCTs, Random forests of PCTs, and the
OPCTe0.5d1 method.

Next, we compare the methods in terms of their efficiency. First of all, learn-
ing PCTs is the most efficient method both in terms of time needed for model
construction and model size. More specifically, single PCT models are statisti-
cally significantly smaller than all of the other models and are obtained statisti-
cally significantly faster than Bagging of PCTs and OPCTeldl.

If we focus on the efficiency of the OPCT models, OPCTeldl is the least
efficient: it produces models with largest numbers of leaves and takes the most
time for model construction. Recall that this is due to the fact that, in the worst
case, OPCTeldl is actually a condensed representation of what amounts to 125
PCTs. We also note that reducing the value of the ¢ parameter to 0.5 yields
smaller models that are constructed faster than both bagging and random forests
of PCTs. All in all, OPCTe0.5d1 offers the best trade-off between predictive
performance and efficiency and should be considered for further use. However,
if a given task requires the best predictive performance then one should use

OPCTeldl (Fig.4).

4.3 Interpretability of OPCTs

OPCTs, as well as option trees in general, offer a much higher degree of inter-
pretability than ensemble methods. This is expressed through both the fact that
the “ensemble” of an option tree is represented in a compact form, i.e., a single
tree, as well as the fact that many of the embedded trees overlap. Additionally,
the regular PCT that would be learned from the same data is always present in
the OPCT, as described in Sect.2. A PCT and an OPCT learned on the EDM
dataset, and their relations are illustrated in Fig. 5.

Providing a domain expert with an option tree gives them a lot of choices
with regards to the model. They can observe the selected options and attempt
to determine which of the selected options were selected due to their actual
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Fig. 4. Comparison of the efficiency of OPCTs to that of the competing methods as
measured by the time needed to learn a model and the size of the models (number of
leaf nodes).

importance as opposed to the sampling of the dataset or other artifacts of the
data. If they are able to discard all but one of the options in each of the option
nodes, we can collapse the OPCT into a single tree, specifically a PCT, which
corresponds not only to the data, but also to the knowledge of the domain expert.
In terms of the predictive clustering framework, this means selecting only one of
the overlapping hierarchical clusters when multiple clusters are presented. This
approach also has the advantage that the domain expert need not be available
for interaction when the model is learned, but can assess the OPCT and chose
the preferred options later on.

This process can also be looked at through a different lens. As we have
introduced option trees (in part) to address myopia, by considering more options
and later deciding on only one of them in each option node, we are essentially
“looking ahead” of just the one split and utilizing, in the case of the domain
expert, additional domain knowledge.

However, instead of using domain knowledge by proxy of interaction with a
domain expert, we could also collapse the learned OPCT to a single PCT by
using additional unseen data, i.e., by calculating an unbiased estimate of the
predictive performance of the different options present in the OPCT. Since the
collection and preparation of additional data examples could be expensive to the
point of infeasibility, we could introduce a modified experimental setup. Part of
the training data could be separated into a validation set which would not be
used for the initial learning of the OPCT, but would be utilized to determine
which of the selected options, and consequently embedded trees, has the best
predictive performance. We would then collapse the OPCT into a PCT according
to this validation set, after which we would test the obtained PCT on the test
set. In this scenario, we could not only study the effect of myopia by comparing
the collapsed OPCT to a PCT learned on the entire training dataset, but also
observe the effect of averaging multiple predictions on the predictive performance
by comparing the collapsed PCT and the original (pseudo-ensemble) OPCT.
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5 Conclusions

In this work, we propose an algorithm for learning option predictive clustering
trees (OPCTs) for the task of multi-target regression (MTR). In contrast to
standard regression, where the output is a single scalar value, in MTR the output
is a data structure — a tuple/vector of continuous variable values. We consider
learning of a global model, i.e., of a single model that predicts all of the target
variables simultaneously.

More specifically, we propose OPCTs to address the myopia of the standard
greedy PCT learning algorithm. OPCTs have the possibility to construct option
nodes, i.e., nodes with a set of alternative sub-nodes, each containing a different
split. These option nodes are constructed in the cases when the heuristic scores
of the candidate splits are close to each other. Furthermore, OPCTs, and option
trees in general, can be regarded as a condensed representation of an ensemble
of trees.

The proposed method was experimentally evaluated on 11 benchmark MTR
datasets. We first determined the optimal parameters of the algorithm. The
results show that both parameters that control the number of option nodes (the
range of heuristic scores considered ¢ and the decay factor d) need larger values
to achieve better predictive performance. We then compared the performance of
learning OPCTs (in terms of predictive power and efficiency) to the induction of
standard PCTs and to two ensemble learning methods, i.e., bagging and random
forests of PCTs.

The evaluation revealed that OPCTs yield statistically significantly better
predictive performance than a single PCT. Next, the predictive performance of
the OPCTs is not statistically significantly different than that of the other two
ensemble methods, but OPCT with € and d set to 1 achieves the best predictive
performance on average. Moreover, in terms of efficiency, an OPCT with ¢ set to
0.5 and d set to 1 is faster to learn that the ensemble models and the OPCT with
€ and d set to 1T. Finally, through an example, we illustrated the interpretability
of the constructed OPCTs: they offer a multifaceted view on the data at hand.

We plan to extend this work along several directions. First of all, we will
evaluate the OPCTs in the single tree context, i.e., we will use the induction of
OPCTs as a beam-search algorithm for tree induction. Next, we will evaluate
the influence of the two parameters at a more fine grained resolution. Finally,
we will extend the algorithm towards other output types, i.e., machine learning
tasks, such as multi-label classification, hierarchical multi-label classification and
time series prediction.
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