
Information Sciences 450 (2018) 109–127

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Semi-supervised trees for multi-target regression

Jurica Levati ́c

a , b , ∗, Dragi Kocev

a , b , c , Michelangelo Ceci c , d , Sašo Džeroski a , b

a Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia
b Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
c Department of Computer Science, University of Bari Aldo Moro, Bari, Italy
d CINI, Consorzio Interuniversitario Nazionale per l’Informatica, Italy

a r t i c l e i n f o

Article history:

Received 13 May 2016

Revised 4 January 2018

Accepted 11 March 2018

Available online 12 March 2018

Keywords:

Semi-supervised learning

Multi-target regression

Structured outputs

Predictive clustering trees

Random forests

a b s t r a c t

The predictive performance of traditional supervised methods heavily depends on the

amount of labeled data. However, obtaining labels is a difficult process in many real-life

tasks, and only a small amount of labeled data is typically available for model learning. As

an answer to this problem, the concept of semi-supervised learning has emerged. Semi-

supervised methods use unlabeled data in addition to labeled data to improve the perfor-

mance of supervised methods.

It is even more difficult to get labeled data for data mining problems with structured

outputs since several labels need to be determined for each example. Multi-target regres-

sion (MTR) is one type of a structured output prediction problem, where we need to si-

multaneously predict multiple continuous variables. Despite the apparent need for semi-

supervised methods able to deal with MTR, only a few such methods are available and

even those are difficult to use in practice and/or their advantages over supervised meth-

ods for MTR are not clear.

This paper presents an extension of predictive clustering trees for MTR and ensembles

thereof towards semi-supervised learning. The proposed method preserves the appealing

characteristic of decision trees while enabling the use of unlabeled examples. In partic-

ular, the proposed semi-supervised trees for MTR are interpretable, easy to understand,

fast to learn, and can handle both numeric and nominal descriptive features. We perform

an extensive empirical evaluation in both an inductive and a transductive semi-supervised

setting. The results show that the proposed method improves the performance of super-

vised predictive clustering trees and enhances their interpretability (due to reduced tree

size), whereas, in the ensemble learning scenario, it outperforms its supervised counter-

part in the transductive setting. The proposed methods have a mechanism for controlling

the influence of unlabeled examples, which makes them highly useful in practice: This

mechanism can protect them against a degradation of performance of their supervised

counterparts – an inherent risk of semi-supervised learning. The proposed methods also

outperform two existing semi-supervised methods for MTR.

© 2018 Elsevier Inc. All rights reserved.
∗ Corresponding author.

E-mail address: jurica.levatic@ijs.si (J. Levati ́c).

https://doi.org/10.1016/j.ins.2018.03.033

0020-0255/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ins.2018.03.033
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2018.03.033&domain=pdf
mailto:jurica.levatic@ijs.si
https://doi.org/10.1016/j.ins.2018.03.033

110 J. Levati ́c et al. / Information Sciences 450 (2018) 109–127

1. Introduction

In supervised learning, the goal is to learn, from a set of examples with known labels, a function that outputs a predic-

tion for a previously unseen example. Supervised algorithms often need a large amount of labeled data to obtain satisfac-

tory predictive performance. However, in many real-life problems, only a few labeled examples are available to learn from,

due to expensive and/or time-consuming annotation procedures. The concept of semi-supervised learning (SSL) emerged

in the1970’s as an answer to this problem [12] . Semi-supervised algorithms use unlabeled examples (often freely available

in vast amounts), in addition to labeled ones, in order to achieve better performance than algorithms using only labeled

examples.

Independently from the development of SSL, the need to mine knowledge from structured data was recognized as a

machine learning problem of great importance [19,29] . The output (i.e., the target) space is structured in many applications

of predictive modelling, meaning that the values to be predicted are structured (rather than scalar). Multi-target regression

(MTR) is a type of structured output prediction (SOP) task where multiple continuous variables are simultaneously pre-

dicted: The structured value to be predicted in this case is a tuple of real numbers. MTR has applications in many real-life

problems, with prominent examples in ecology, such as predicting the abundance of different species living in the same

habitat [17] , and predicting different properties of forests from remote sensing data [26,43] .

Since the establishment of SSL as a research topic, the scientific community has devoted a lot of effort to SSL for the

classical (i.e., unstructured) data mining tasks: classification and regression [52] . Unfortunately, this has not been the case

for SOP tasks, although the need for SSL is even stronger there: The labeling process is even more expensive and laborious

in SOP, since several simple/primitive labels (or one structured/complicated label) need to be provided for each example.

Furthermore, the existing SSL methods for SOP largely deal with discrete types of outputs, such as a recent method proposed

by Du [20] . There are only a few examples of SSL methods dealing with the task of MTR [10,23,31,35] . In addition these

have several serious limitations, including (a) applicability only to a certain domain, (b) unclear advantage as compared

to supervised learning due to insufficient evaluation, (c) high computational complexity, and (d) high risk of performance

degradation as compared to the underlying supervised method. Finally, none of the available semi-supervised methods for

MTR produces interpretable models, which often is an important asset in the context of knowledge discovery for predictive

modelling.

As an attempt to overcome these limitations, we propose to perform SSL for MTR with a popular data mining method

- decision trees. More specifically, we extend the approach of predictive clustering trees (PCTs) for MTR [4,44] , as well as

ensembles thereof [28] , towards the SSL framework. We also thoroughly evaluate the proposed methods on a wide variety of

data-sets from different domains and extensively discuss their characteristics from several viewpoints, including predictive

performance, computational complexity, model size, and sensitivity to parameters. Our empirical evaluation shows that the

proposed extension of PCTs towards SSL improves the predictive performance of PCTs and enhances their interpretability.

Furthermore, ensembles (i.e., random forests) of semi-supervised PCTs for MTR can improve the predictive performance of

ensembles of supervised PCTs.

The remainder of this paper is organized as follows. The next section clarifies our motivation and outlines the main con-

tributions of this study. Section 3 presents the background of the work, which includes a discussion on related work and

a brief description of the predictive clustering framework. Section 4 describes the proposed method, while Section 5 spec-

ifies the experimental design. The results of the empirical investigations are presented and discussed in Section 6 . Finally,

Section 7 concludes the paper.

2. Motivation and contributions

As already noted in the introduction, the selection of semi-supervised methods for the task of MTR is very limited, even

though the need for semi-supervised methods is arguably even greater in the context of structured output (due to the in-

creased complexity of labeling). Semi-supervised learning for single-target regression, on the other hand, has seen much

more development [52] . In principle, it is possible to decompose a MTR problem into several (local) single-target ones, and

then apply some of the available semi-supervised methods for single-target regression (i.e., local methods). However, the

methods that learn to predict all of the target variables simultaneously (i.e., global methods) are typically more compu-

tationally efficient, produce simpler models, and overfit less than the local methods [26,28,33] . In addition, global models

can yield better predictive performance than local models [25,26,46] . Although recent studies show that more sophisticated

local models (where outputs of local models are taken as inputs for other local models) for MTR can perform better than

state-of-the-art global approaches for MTR [41] .

Given the above-mentioned advantages of global methods, in this work, we aim to develop global semi-supervised meth-

ods for MTR. To this end, we consider predictive clustering trees (PCTs) for MTR [4,44] . PCTs are a generalization of standard

decision trees towards predicting structured outputs, such as tuples of continuous/discrete variables, hierarchies of classes,

and time series. We consider PCTs as a very natural candidate for extension towards SSL since they are situated at the in-

tersection of predictive modelling (supervised learning) and clustering (unsupervised learning). That is, PCTs use a flexible

definition of descriptive, target, and clustering attributes, which are used to divide examples into groups (i.e., define splits),

to evaluate the quality of candidate splits, and to calculate the predicted values in the leafs of the tree, respectively. In

J. Levati ́c et al. / Information Sciences 450 (2018) 109–127 111

0.5

1.0

1.5

2.0

2.5

0.5 1.0 1.5 2.0 2.5 3.0

Unlabeled examples
Labeled examples
Split made by
supervised PCT
Split made by
semi-supervised PCT

T
a
rg

et
sp

a
ce

(Y
)

Descriptive space (X)

X > 1.198

yes no

Y = 1.874 Y = 0.829

Supervised PCT (MSE = 0.15)

X > 1.468

yes no

Y = 1.874 Y = 0.829

Semi-supervised PCT (MSE = 0.10)

Fig. 1. A semi-supervised and a supervised PCT built by using toy data. MSE denotes the mean squared error.

classical decision/regression trees, in contrast, there is no distinction between clustering and target attributes, i.e., the target

attributes are the only attributes used for split evaluation.

We capitalize on these properties of PCTs to extend them towards SSL, following a similar methodology we have proposed

earlier in the context of semi-supervised classification [32] . Namely, semi-supervised PCTs produce clusters compact in both

the descriptive and the target space, allowing to exploit also examples for which only descriptive attributes are known (i.e.,

unlabeled data). This could be viewed as enforcing the semi-supervised smoothness assumption, which states that if two

points x i and x j in a high-density region are close, then their outputs y i and y j should also be close [12] .

We illustrate the above-described extension of PCTs towards SSL on the toy example of modelling a step function f (x) =
{ 1 , x ≤ 1 . 5 ; 2 , x > 1 . 5 given in Fig. 1 . We generated two clusters of 50 data points each, where the descriptive space of

examples is sampled for two normal distributions (N (1, 0.25) for the first cluster and N (2, 0.25) for the second), while

the target values of examples are generated according to the above step function with some random noise added. Data

obtained in such a way complies with the semi-supervised smoothness assumption. Four points were selected at random

as labeled examples, while the remaining data points were used as unlabeled examples and test examples. The supervised

PCT positions the split in the middle of a gap between the labeled examples from different clusters. However, this split cuts

through the dense cluster of (unlabeled) data and consequentially the supervised prediction function (i.e., an average of the

target values of examples in the leafs) has a big change in the highly populated region. The semi-supervised PCT, on the

other hand, positions the split so that it separates well both the labeled and unlabeled data, leading to a prediction function

that matches the step function more closely (i.e., a split is close to 1.5) and results in the lower error as compared to the

supervised PCT.

We argue that, by extending PCTs towards SSL, it is possible to obtain predictive models which preserve the appealing

characteristics of decision trees and are more accurate than the models learned with labeled data alone. This would be

achieved by exploiting both unlabeled and labeled data on one hand, and the properties of global predictive models for SOP

on the other. The contributions of this paper are summarized as follows:

• We develop a method for semi-supervised learning of interpretable and global models for MTR;

• We explore the performance of the proposed semi-supervised trees for MTR in the ensemble setting;

• We perform an extensive empirical evaluation of the proposed method on 15 MTR datasets from various domains, inves-

tigating several properties of the methods: predictive performance, influence of the amount of labeled data, model size,

and sensitivity to parameters;

• We explore the use of feature weighting to reduce the influence of irrelevant attributes;

• We extensively discuss the characteristics of the proposed approach from the viewpoint of practical utility and the pos-

sible uses of the method in fields of data mining other than SSL.

3. Background

This work is motivated by research at the intersection between the fields of semi-supervised learning and multi-target

regression. In the following subsection, we discuss related work from both research fields, with the focus on limitations of

the currently available semi-supervised methods for MTR, and on the novelties and contributions of our work with respect

to the most closely related work. We also provide a description of predictive clustering trees for MTR and ensembles thereof,

which are the starting point for the semi-supervised methods we propose.

112 J. Levati ́c et al. / Information Sciences 450 (2018) 109–127

3.1. Related work

Zhang et al. [50] and Cardona et al. [11] proposed semi-supervised methods based on Gaussian processes for a task

related to (but different than) MTR: multi-task regression. Multi-target regression and multi-task regression

1 are similar, but

some notable differences exist between the two. In multi-task learning, we have several tasks of single-target prediction

with different training sets (with possibly different descriptive attributes) and the emphasis is on learning transfer between

the tasks. Navaratnam et al. [35] have proposed a SSL method for MTR, which is also based on Gaussian processes. This

method is, however, specialized for application in a specific domain, namely computer vision.

The methods proposed by Gönen and Kaski [23] and Brouard et al. [10] are rare examples of semi-supervised meth-

ods which can handle both discrete and continuous types of structured outputs. Among other types of structured output

prediction tasks, their methods can also handle MTR. Both methods are based on kernels. Gönen and Kaski [23] proposed

the Kernelized Bayesian Matrix Factorization (KBMF) method, where multiple sources of information can be exploited as

different kernels in multiple kernel learning. Brouard et al. [10] proposed Input Output Kernel Regression (IOKR) which can

exploit the structure both in the input and the output space by defining different kernels for the input and for the output

space. A similar principle, i.e., defining separate kernels for input and the output spaces, can be obtained with the KBMF

method. The competitive advantages of the KBMF and IOKR methods in the context of semi-supervised learning for MTR

are, however, not entirely clear. Namely, the KBMF method has not been tested in its semi-supervised version on the task

of MTR, while the IOKR method was tested on only one MTR dataset. In contrast, we extensively evaluate the proposed

semi-supervised methods for MTR on a wide variety of benchmark datasets showing their utility over a variety of domains.

Furthermore, the KBMF and IOKR methods are arguably difficult to use for non-experts, since the user needs to define ker-

nels that are appropriate for the task at hand and optimize several parameters, while the semi-supervised methods we

propose here have only one parameter to tune (which is tuned automatically).

In a previous study, we have developed a SSL method based on self-training of random forests of PCTs for MTR [31] ,

where the most reliable predictions on unlabeled data are iteratively used to re-train the model. The previous method and

the one we propose in this paper are used for the same task, i.e., SSL for MTR. However, the two methods are different in

the way they exploit the unlabeled examples. More specifically, they are based on different assumptions of semi-supervised

learning: Self-training assumes that the most confident predictions are correct, while the method proposed in this work

assumes smoothness of the prediction function in highly populated regions. The next difference comes from the perspective

of utility and efficiency. First, self-training requires repeated re-training of the base model; therefore, its computational

demand is much higher than the demand of the method proposed here. Next, the self-training approach is, in general,

prone to error propagation, i.e., it can degrade the performance of its base model if erroneous predictions enter the training

set. The method proposed in this work, on the other hand, has a built-in safety mechanism due to which it has very low

risk of performance degradation (as compared to its supervised counterpart).

Finally, none of the above-mentioned semi-supervised methods for MTR produce interpretable models. Interpretable

models are, however, of great importance in many applications of machine learning where knowledge discovery is of in-

terest. They can help experts to extract knowledge from the data, explain the data, or even form new (testable) hypotheses.

Furthermore, we postulate that experts which are not familiar with machine learning are more willing to trust and use ma-

chine learning methods if they can easily understand the model and how it produces the predictions. The semi-supervised

algorithm proposed in this work preserves the interpretability of supervised PCTs, while enabling the exploitation of unla-

beled data.

The semi-supervised PCTs proposed here are related to the work of Blockeel et al. [4] , who proposed clustering trees

which can consider both descriptive and target attributes in the evaluation of splits. Blockeel et al. [4] suggested that, when

the class information is missing, considering both descriptive and target attributes in the evaluation of splits can improve

the predictive performance of clustering trees. The semi-supervised decision trees that we propose in this work are similar

in nature to the ones proposed by Blockeel et al. [4] , but there are several key differences. First of all, in experiments with

missing class information, Blockeel et al. [4] did not consider tasks of predicting structured outputs. Second, we introduce

an additional parameter, by which we control the amount of supervision in the decision trees (i.e., the influence of the

target relative to the descriptive attributes). This allows us to build fully supervised trees, semi-supervised trees, or fully

unsupervised trees, depending on the specific needs of the problem at hand. A similar concept was considered by Ženko

[47] who proposed predictive clustering rules (PCRs). In the context of learning PCRs for multi-target classification, the use

of a heuristic was proposed that guides the rule learning process and takes into account (with a trade-off parameter) both

the descriptive and the target attributes. However, Ženko [47] considered learning of such PCRs only in a supervised learning

context. We recently explored decision trees that use both the descriptive and the target attributes for evaluation of splits

in the context of semi-supervised learning for binary and multi-class classification [32] , however, it is not clear whether the

findings from the simpler tasks will transfer also to the MTR task.

Independently of SSL, MTR receives increasing attention by the research community [6] . Several machine learning meth-

ods, popular for regression, have been implemented also for the task of MTR, such as decision trees [2,44] , support vector

machines [49] , k-nearest neighbors [38] and ensemble-based methods [1,28,41,46] . Here, ensemble-based methods present
1 Note that, multi-task regression is sometimes referred to as a multi-output regression which is also a synonym for multi-target regression.

J. Levati ́c et al. / Information Sciences 450 (2018) 109–127 113

Table 1

The top-down induction algorithm for PCTs.

the state-of-the-art regarding predictive performance. However, out of the available methods for MTR, only decision trees

produce interpretable models, which is an important property in many domains, such as biology, medicine, and chemoin-

formatics. Our study builds upon the work of Struyf and Džeroski [44] and Kocev et al. [28] , extending the decision tree

algorithm of Struyf and Džeroski and random forests algorithm of Kocev et al. towards semi-supervised learning.

3.2. Predictive clustering trees for MTR

The PCT framework views a decision tree as a hierarchy of clusters, where the top-node corresponds to one cluster

containing all the data. This cluster is recursively partitioned into smaller clusters while moving down the tree. The PCT

framework is implemented in the CLUS system [28,44] , available at http://sourceforge.net/projects/clus .

PCTs are induced with a standard top-down induction of decision trees (TDIDT) algorithm (see Table 1), which takes as

input a set of examples E and outputs a tree. The heuristic that is used for selecting the tests to put in internal tree nodes is

the reduction of variance caused by partitioning the examples according to the tests. By maximizing the variance reduction,

the cluster homogeneity is maximized and the predictive performance is improved.

The main difference between the algorithm for learning PCTs and a standard decision tree learner is that the former

considers the variance function and the prototype function (that computes a label for each leaf) as parameters that can be

instantiated for a given learning task. So far, PCTs have been instantiated for the following tasks [28] : multi-target prediction

(which includes MTR), hierarchical multi-label classification, and prediction of time-series.

In this article, we focus on the task of MTR, which we formalize as follows. Given:

• A description (or input) space X spanned by D descriptive variables, i.e., X = (X 1 , . . . , X D) .

• A target (or output) space Y spanned by T continuous target variables, i.e., Y = (Y 1 , . . . , Y T) .

• A set of examples E , where each example is a pair consisting of one element from the descriptive space and one element

from the target space (the example’s label), i.e., E = { (x i , y i) : x i ∈ X, y i ∈ Y, 1 ≤ i ≤ N } , and N is the number of examples.

• A quality criterion q .

Find: a function f : X → Y such that f maximizes q . In this work, the function f is represented with decision trees, i.e.,

PCTs.

The quality criterion q is based on the reduction of overall variances which is calculated as the average of the variances

of the target variables (see Table 1 , procedure BestTest, line 4). For each set of examples E , the variance is computed as

follows:

V ar f (E) =

1

T
·

T ∑

i =1

V ar i (E) , (1)

where Var i (E) is the variance of the i th target variable Y i for a set of examples E . The variance of the i th target variable is

calculated as follows:

V ar i (E) =

∑ N
j=1 (y i, j)

2 − 1
N

·
(∑ N

j=1 y i, j

)2

N

, (2)

where, y j, i is the value of the i th target variable for the j th example, and N = | E| is the number of examples. The variances

of the targets are normalized, so that each target contributes equally to the overall variance. The normalization is performed

by dividing the above estimates (2) with the variance of the target variable on the entire available training set.

http://sourceforge.net/projects/clus

114 J. Levati ́c et al. / Information Sciences 450 (2018) 109–127

In the prediction phase, for each new example, the algorithm identifies the leaf it belongs to and returns the value

predicted by a prototype function associated to that leaf (see Table 1 , procedure PCT, line 7). In PCTs for MTR the prototype

function calculates the mean vector of all target variables Y for the training examples that belong to the leaf.

3.3. Ensembles of predictive clustering trees for MTR

Kocev et al. [28] implemented ensembles of PCTs for structured outputs in the CLUS system. The ensembles of PCTs are

constructed by using the bagging [7] and random forests [9] methods, which are often used in the context of decision trees.

Bagging is an ensemble method that constructs the different classifiers by making bootstrap replicates of the training set

and using each of these replicates to construct a predictive model. Each bootstrap sample is obtained by randomly sampling

training instances, with replacement, from the original training set, until an equal number of instances as in the training

set is obtained. Breiman [7] showed that bagging can give substantial gains in predictive performance, when applied to an

unstable learner (i.e., a learner for which small changes in the training set result in large changes in the predictions), such

as classification and regression tree learners.

A random forest is an ensemble of trees, where diversity among the predictors is obtained by using bootstrap replicates

as in bagging, and additionally by changing the set of descriptive attributes during learning. To learn a random forest,

the PCT algorithm for tree construction (Algorithm 1) is changed to a randomized version of the selection of attributes,

which replaces the standard selection of attributes. More precisely, at each node in the decision trees, a random subset of

the descriptive attributes is taken, and the best attribute is selected from this subset. The number of attributes that are

retained is given by a function f of the total number of descriptive attributes D (e.g., f (D) = 1 , f (D) = � √

D + 1 � , f (D) =
� log 2 (D) + 1 � ...). By setting f (D) = D, we obtain the bagging procedure.

To construct an ensemble model for MTR, a corresponding type of PCTs is used as a base model, i.e., PCTs for MTR. The

prediction of an ensemble for a new instance is obtained by combining the predictions of all the base predictive models

from the ensemble. Namely, for the MTR task, predictions of the base models are combined by taking their average.

4. Semi-supervised learning of PCTs for MTR

In this section, we present the proposed algorithm for semi-supervised learning of predictive clustering trees (SSL-PCTs)

for MTR. Before describing the algorithm in detail, we first need to define the task of semi-supervised multi-target regression .

We formalize it as follows.

Given:

• A description (or input) space X spanned by D descriptive variables, i.e., X = (X 1 , . . . , X D) .

• A target (or output) space Y spanned by T continuous target variables, i.e., Y = (Y 1 , . . . , Y T) .

• A set of labeled examples E l , where each example is a pair consisting of one element from the descriptive space and one

element from the target space (the example’s label), i.e., E l = { (x i , y i) : x i ∈ X, y i ∈ Y, 1 ≤ i ≤ N l } , and N l is the number

of labeled examples.

• A set of unlabeled examples E u , which consists only of elements from the descriptive space, i.e., E u =
{ x i : x i ∈ X, 1 ≤ i ≤ N u } , and N u is the number of unlabeled examples.

• A quality criterion q , e.g., which rewards models with low predictive error.

Find: a function f : X → Y , by using both E l and E u , such that f maximizes q .

Note that, even though the supervised and semi-supervised methods have the same goal (i.e., they optimize the same

quality criterion q), their success is characterized differently. Namely, the success of supervised methods is measured by

their predictive performance in absolute terms, while the success of semi-supervised methods is judged by their predictive

performance relative to the corresponding supervised methods. A successful semi-supervised method should be able to

outperform the corresponding supervised method while using the same set of labeled examples E l and an additional set of

unlabeled examples E u .

In semi-supervised learning, there are two different settings: inductive and transductive semi-supervised learning. In-

ductive learning is concerned with predicting the labels of examples unseen during learning, while transductive learning is

concerned with predicting only the labels of unlabeled examples in the training set (i.e., labels of examples in E u). More

specifically, the goal of inductive SSL is to obtain a predictive model that can be then applied to other examples, while the

goal of transductive SSL is to obtain the labels of the unlabeled examples used during learning. All of the inductive SSL

methods can be evaluated in both inductive and transductive setting. The semi-supervised methods we propose here can

work both in the inductive and transductive settings.

Our extension of the supervised PCTs towards SSL for MTR goes along two dimensions. The first extension as compared

to the classical algorithm for the induction of PCTs concerns the input, which, in case of semi-supervised PCTs, consists of

both the labeled and unlabeled examples. This means that E = E l ∪ E u , where E l is the part of the dataset with known labels

and E u is the part with unknown labels.

The second extension concerns, as mentioned before, the variance function that takes into account both the target and

the descriptive attributes in the identification of the best split. This is achieved by adapting the variance function used for

learning of supervised PCTs, which takes into account only the target attributes (Eq. (1)). The variance function used to

J. Levati ́c et al. / Information Sciences 450 (2018) 109–127 115

learn semi-supervised PCTs, on the other hand, is defined as a weighted sum of the variance functions over the target space

(V ar Y
f
) and over the descriptive space (V ar X

f
) :

V ar f (E) = w · V ar Y f (E) + (1 − w) · V ar X f (E) , (3)

where w ∈ [0, 1] is the weight parameter that controls how much the target space and the descriptive space contribute to the

variance function. Consequently, this controls the amount of supervision employed during the learning of semi-supervised

PCTs. Values of the parameter w close to 1 emphasize more the target space, consequently labeled examples affecting the

construction of the tree more than unlabeled examples (i.e., there is more supervision). On the other hand, values of w

closer to 0 put more emphasis on the descriptive space, thus unlabeled examples affect the tree construction more than

labeled examples and the tree learning algorithm receives less supervision. The w parameter enables the learning of semi-

supervised PCTs to range from fully supervised trees (i.e., w = 1) to completely unsupervised trees (i.e., w = 0). The ability

to control the influence of unlabeled examples with the w parameter is very important, since different datasets may require

different amounts of supervision. This aspect is discussed in more detail in Section 6.2 .

The variance of a set of examples E over the target space (V ar Y
f
(E)) is calculated similarly as in the supervised PCTs

(Eq. (1)), i.e., as the average of the variances of the target variable. However, we re-define the variance of individual target

attributes (Var i (E)) in order to handle missing values (i.e., unlabeled examples):

V ar i (E) =

∑ K i
j=1

(y i, j)
2 − 1

K i
·
(∑ K i

j=1
y i, j

)2

K i

, (4)

where N is the number of examples and K i is the number of examples with known (non-missing) values of the i th attribute.

Note that, the number of examples with non-missing values is usually the same across all target attributes (i.e., K i = | E l | , i ∈
1 , . . . , T). However, these numbers can differ if partially labeled examples are present in the dataset, i.e., examples which

have known values for some of the target variables, and unknown for the others. The above definition of variance (Eq. (4))

enables exploitation of such examples, i.e., semi-supervised PCTs can learn from, labeled, unlabeled, as well as partially

labeled examples.

The descriptive variables can be either numeric or nominal, thus the variance of a set of examples E with descriptive

space (V ar X
f
(E)) consisting of D descriptive attributes is calculated as follows:

V ar f (E, X) =

1

D

·
(∑

X i is numeric

V ar i (E) +

∑

X j is nominal

Gini j (E)

)

, (5)

where Var i / Gini j is the variance/Gini score of individual numeric/nominal descriptive attributes, respectively. Var i is calcu-

lated analogously to Eq. (4) , whereas Gini j is calculated as follows:

Gini j (E) = 1 −
C j ∑

k =1

(| { e : e ∈ E such that e has class c k } |
K j

)2

= 1 −
C j ∑

k =1

ˆ p k , (6)

where C j is the number class values of descriptive attribute X j , and ˆ p k is the empirical probability of class value c k estimated

by considering only examples with a known value for attribute X j , with K j being their number.

As in supervised PCTs, the variances or Gini scores of the individual attributes are normalized, so that each attribute

contributes equally to the overall variance. The normalization is performed by dividing the variance/Gini score estimates of

the individual attributes in Eqs. (4) and (6) on the set of examples in the current tree node with the variance/Gini score of

the attribute on the entire available training set.

Note that the proposed algorithm is not limited to using the Gini index or variance as impurity measures. In principle,

other impurity measures could be used. For example, the PCT framework also implements the sum of the entropies of

class variables, reduced error, gain ratio and m -estimate impurity measures. We chose to use the Gini score because it is

one of the most popular measures for impurity of nominal variables. The other obvious choice would be Information gain:

However, Gini score and information gain perform very similarly and it is mostly not possible to decide which of the two

measures to prefer [40] . Similarly, for measuring the impurity of numeric variables, we choose variance, because it is the de

facto standard used for regression trees.

When building semi-supervised trees, two extreme cases may occur: (1) A leaf of the tree may contain only unlabeled

examples, and (2) The calculation of variance may be necessary for attributes where all the examples have missing values

or only one example has a known (non-missing) value (e.g., K i = 0 in Eq. (4)). The first extreme opens the question: How to

calculate the prototype function for such a leaf? In fact, the prototype function of semi-supervised PCT s is calculated in the

same way as in supervised PCTs, but by using only the labeled training examples that belong to the given node. We handle

the extreme case of no labeled examples in a leaf by returning the prototype of the first parent of such a leaf that contains

labeled examples. Nodes of the tree that contain only unlabeled examples are not divided anymore, while in leaf nodes that

contain labeled examples we allow no less than 2 of those. The same criterion is used in supervised PCTs, i.e., the minimum

number of (labeled) examples in a leaf node is set to 2.

The second extreme occurs when a candidate split needs to be evaluated, such that all the examples in one of the

resulting groups/branches have missing values for one of the attributes. For example, this occurs when the split is performed

116 J. Levati ́c et al. / Information Sciences 450 (2018) 109–127

such that only unlabeled examples travel to one of the branches of the decision tree. We handle this extreme by estimating

the variance with the variance of the parent node 2

Having presented the induction of SSL-PCT s, we can now extend the semi-supervised learning solution to learn ran-

dom forests of SSL-PCTs . By using SSL-PCT s, it is possible to build semi-supervised random forests by simply using trees

learned with a SSL algorithm to construct the members of the ensemble (as described in Section 3.3), instead of using trees

learned with a supervised algorithm. The only difference is that the bootstrap samples are obtained from the whole set of

examples E , which includes both labeled and unlabeled examples. In semi-supervised ensembles, we modify the bootstrap

sampling procedure to perform stratified bootstrap sampling, considering the proportions of labeled and unlabeled exam-

ples in the stratification. This is to avoid having bootstrap samples made out of only unlabeled examples. We denote the

semi-supervised random forest build in such a way as SSL-RF , while supervised random forest is denoted as CLUS-RF .

4.1. Feature weighted semi-supervised PCTs for MTR

Unlike some machine learning methods, such as k-nearest neighbors, PCTs (and, more generally, decision/regression trees)

are robust to irrelevant features. Only the most informative features are used as tests when building (supervised) trees;

therefore, irrelevant features are likely to be ignored. However, in SSL-PCTs the robustness to irrelevant features may be

compromised, since both target and descriptive features contribute to the evaluation of tests. Moreover, as anticipated be-

fore, different features can have different impact on the predictive capabilities of the learned models. To deal with these

issues, we propose to use feature weighting to enhance the robustness to irrelevant/less relevant features in SSL-PCTs.

In the literature, methods for feature ranking are used to select the most important features, and to discard the irrelevant

ones. An importance score, which corresponds to the informativeness of a feature, is assigned to each descriptive feature.

More informative features are associated with a higher score, while less informative ones are associated with a lower score.

Cunningham and Delany [16] showed that weighting features with importance scores helps the k-nearest neighbors method

in dealing with irrelevant features. In a similar manner, we use importance scores as feature weights when building SSL-

PCTs .

More specifically, for each descriptive attribute X i , we determine its importance score ˆ σi by using feature ranking for MTR

based on a random forest of PCTs [27] . The feature ranking of the descriptive variables is obtained by exploiting the intrinsic

mechanism of random forests: it uses the internal out-of-bag (OOB) estimates of the error and noising of the descriptive

variables to estimate their importance. To create each tree from the forest, the algorithm first creates a bootstrap replicate.

The samples that are not selected for the bootstrap are called OOB samples and are used to evaluate the performance of

each tree from the forest. The rationale behind this method is that if a descriptive variable is important for the output

variables, then adding noise to its OOB values will yield an increase of the error of the base predictive model.

This method is executed on the available labeled E l portion of the data prior to building SSL-PCTs. The obtained im-

portance scores are then normalized according to the following formula: σi = ˆ σi / max (ˆ σ1 , ˆ σ2 , . . . , ˆ σD) . The variance of each

descriptive attribute X i is then multiplied by its normalized importance score σ i in the variance function of SSL-PCTs:

V ar X f (E) =

1

D

·
(∑

X i is numeric

σi · V ar i (E) +

∑

X j is nominal

σ j · Gini j (E)

)

. (7)

In this way, irrelevant features (i.e., features with low importance score) contribute less to the calculation of variance. We

denote semi-supervised PCTs and semi-supervised random forests where feature weighting is used with SSL-PCT-FR and

SSL-RF-FR, respectively.

4.2. Computational complexity analysis

To analyze the computational complexity of SSL-PCTs, we first recall the procedures that contribute to the computational

complexity of supervised PCTs. These are as follows: sorting the values of D descriptive attributes (O(DN log N)), calculating

the best split for T target variables (O(T DN)), and applying the split to the N (labeled) training examples (O (N)). Assuming

that the depth of the tree is in the order of O(log N) [48] , the total computational complexity of constructing a single PCT

is O(DN log
2

N) + O(T DN log N) + O(N log N) .

We then consider what changes from supervised PCTs to SSL-PCT s. This is, first, the value of N : In the case of semi-

supervised PCTs, the number of training examples is equal to the number of labeled and unlabeled examples combined,

i.e., N = N l + N u , instead of N = N l . Second, SSL-PCTs consider both D descriptive attributes and T target variables when the

split is calculated, thus the complexity of this step is O((T + D) DN) . The total computational complexity of learning a single

SSL-PCT is thus O(DN log
2

N)) + O((T + D) DN log N) + O(N log N) .

The upper bound of the computational complexity of global random forests of SSL-PCT s is k (O(D

′ N

′ log
2

N

′) + O((T +
D) D

′ N

′ log N

′)) , where N

′ is the size of the bootstrap samples and D

′ is the size of the feature subsets at each tree node and
2 Note that, the second extreme could be handled differently, e.g., by estimating the variance with the variance on the entire training set, or by ignoring

such attributes in the calculation of the overall variance (Eq. (3)). We have explored these two solutions as well, but they perform very similar or slightly

worse than the solution that uses the variance of the parent node.

J. Levati ́c et al. / Information Sciences 450 (2018) 109–127 117

k is the number of base SSL-PCT s. The feature ranking adds the computational cost of random permutations of the values

in the out-of-bag sample (N

′′ = N − N

′) and sorting the examples through the tree. Both operations are performed for each

descriptive attribute and their cost is O (DN

′′ + D log N) . This computational overhead is small compared to the overall cost

of learning the random forests. Furthermore, note that the number of examples here is E l , since the feature weights are

calculated using only the labeled examples.

4.3. Software availability

Implementation of the methods proposed in this paper and the corresponding manual are available at the following URL:

http://kt.ijs.si/jurica _ levatic/ .

5. Experimental design

5.1. Data description

We use 15 datasets with multiple continuous target variables to evaluate the predictive performance of the proposed

methods. The datasets come from several different domains and vary in their size, number of attributes and number of

target variables.

The majority of the data are from the area of environmental sciences. To begin with, Forestry Kras, Forestry LIDAR IRS,

Forestry LIDAR LandSat and Forestry LIDAR Spot datasets concern the task of predicting forest properties from remotely sensed

data. Second, the task in the RF1 dataset is to predict river network flows 48 h ahead. Next, the Soil quality and Water quality

datasets concern habitat modelling of soil and water organisms, respectively. Finally, Vegetation condition and Vegetation clus-

tering datasets are concerned with predicting several indicators of condition of indigenous and other vegetation in Victoria,

Australia.

From the domain of economy, we consider the SCM1D and SCM20D datasets, where the task is to predict the price of 16

products for the next day and their mean price over the next 20 days, respectively.

The Scpf dataset is concerned with human behavior, namely, with the task for prediction of the number of views, clicks,

and comments that a specific issue (i.e., an article) concerning public space and service will receive. The data comes from

the issues collected in Oakland, Richmond, New Haven and Chicago. The task for the Eunite dataset is forecasting of the

maximal daily electrical load, while the Enb dataset is concerned with predicting the energy efficiency of buildings, i.e.,

heating and cooling load requirements. Finally, the Solar flare 2 dataset is concerned with the prediction of the occurrence

of 3 types of solar flares, on the basis of observed characteristics of the Sun.

5.2. Experimental setup and evaluation procedure

We have proposed semi-supervised PCTs (SSL-PCT) and feature weighted semi-supervised PCTs (SSL-PCT-FR). As a base-

line for comparison with these methods we use the standard PCT algorithm for MTR, denoted as Base-PCT. This is the most

reasonable baseline since the goal is to precisely measure the contribution of unlabeled data to the overall performance

under the same conditions. By comparing to Base-PCTs, we answer the main question of this study: Are SSL-PCTs able to

improve over standard supervised PCTs? . In all of the single-tree experiments, both supervised and semi-supervised trees are

pruned with the procedure used in M5 regression trees [39] . In particular, the pruning procedure compares the error esti-

mates obtained by pruning a node or not. The error estimates are based on the training cases and corrected in order to take

into account the complexity of the model in the node (Table 2).

We also explore the predictive performance of semi-supervised random forests, denoted as SSL-RF and SSL-RF-FR , where

SSL-PCT s and SSL-PCT-FR s are used as base models, respectively. We compare the SSL-RF method with baseline supervised

random forests for MTR (i.e., CLUS-RF) where Base-PCTs are used as base models. We construct random forests consisting

of 100 trees. The trees in the random forest are not pruned and the number of random features considered at each internal

node is set to � log 2 (D) + 1 � , where D is the total number of features [9] .

As additional semi-supervised methods for comparison, we use the self-training for MTR [31] and the KBMF method

[23] . As a base method for self-training, we use CLUS-RF. To select the most reliable predictions during the self-training

iterations, we use the automatic threshold selection procedure AutomaticOOBInitial [31] . As a stopping criterion for the self-

training, we use the Airbag procedure [30] . This stopping criterion monitors the out-of-bag error [8] of an ensemble to

automatically stop the self-training procedure in the case of predictive performance degradation. For the KBMF method, we

use the same parameter settings recommended in the original paper [23] . This method uses twin kernels, the first kernel

matrix K x is calculated by using the Gaussian kernel whose width is selected as the square root of the dimensionality of the

descriptive space (i.e.,
√

D), while the second kernel matrix K y is calculated as the Pearson correlation coefficient between

the target variables. The number of components R is selected from 1 , 2 , . . . , 15 on the basis of the training set performance.

The σ y parameter and the kernel weights (αη , βη , αλ, βλ) are set to one, the standard deviations (σ g , σ h) are set to (0.1,

0.1). For fair comparisons, KBMF is compared with non-ensemble PCTs, while the self-training approach, which is based on

CLUS-RF, is compared with other ensemble methods.

http://kt.ijs.si/jurica_levatic/

118 J. Levati ́c et al. / Information Sciences 450 (2018) 109–127

Table 2

Characteristics of the datasets. N : number of instances, D / C : the number of descriptive

attributes (nominal/continuous), T : number of target variables.

Dataset (Reference) Domain N D T

Enb [41,45] Energy efficiency 768 0/8 2

Eunite [14] Electricity load forecasting 8064 0/34 5

Forestry Kras [21] Ecology 60,607 0/160 11

Forestry LIDAR IRS [42] Ecology 2731 0/29 2

Forestry LIDAR LandSat [42] Ecology 6218 0/150 2

Forestry LIDAR Spot [42] Ecology 2731 0/49 2

RF1 [41] Ecology 9125 0/64 8

SCM1D [41] Economy 9803 0/280 16

SCM20D [41] Economy 9803 0/61 16

Scpf [41] Human behavior 1137 19/4 3

Soil quality [17] Ecology 1944 0/142 3

Solar flare 2 [3] Astronomy 1066 10/0 3

Vegetation clustering [22] Ecology 27,522 0/66 10

Vegetation condition [26] Ecology 16,967 1/39 7

Water quality [5] Ecology 1060 0/16 14

We use various amounts of labeled data for both the supervised and semi-supervised methods to explore the influence

of the amount of labeled data on the predictive performance of the methods.We perform experiments where the ratio of

labeled (relative to unlabeled) data range as follows: 5%, 10%, 20% and 30% of labeled examples.

As discussed in Section 4 , in semi-supervised learning two evaluation scenarios exist: Evaluation on unlabeled examples

used during learning (i.e., transductive evaluation), and evaluation on examples unseen during learning (i.e., inductive eval-

uation). We evaluate the methods considering both scenarios. To this end, we consider a procedure similar to the 10-fold

cross-validation. First, we randomly divide the dataset into 10 folds, where 9 are used for training and 1 for testing. Next,

from the training folds, we randomly select the labeled data used for training the predictive models (both supervised and

semi-supervised), while the remaining examples (of the training folds) serve as unlabeled data (we temporarily remove their

labels). Finally, the models are tested on the test fold (i.e., inductive evaluation) and on the unlabeled examples with their

true labels restored (i.e., transductive evaluation). The procedure is repeated so that each fold is used exactly once as the

test set, giving 10 results, which are averaged to obtain a single predictive performance estimation.

Note that the results of transductive and inductive evaluation are not directly comparable since they are obtained on

different test sets. Furthermore, in the inductive evaluation, models that are learned with different amounts of labeled data

are evaluated on the same test set, thus the results are directly comparable, whereas, in the transductive evaluation, the test

set changes as the amount of labeled data changes.

For each training/test split of the cross-validation, we optimize the weight parameter w by performing internal 3-fold

cross-validation on the available labeled part of the training set. During the internal cross-validation procedure, semi-

supervised methods are supplied with available unlabeled examples (without their respective true labels). We consider

values of the parameter w from 0 to 1 with a step of 0.1.

We assess the predictive performance of the algorithms by using the average relative root-mean-square-error (RRMSE),

defined as follows:

RRMSE =

1

T

T ∑

i =1

√ ∑ N test

j=1
(y j,i − ˆ y j,i) 2 ∑ N test

j=1
(y j,i − y i)

2
,

where T is the number of target variables, y j, i is the value of the i th target variable for the j th example of the test set, ˆ y j,i
is prediction of the j th example, N test is the number of examples in the test set, and y i is the mean value (on the training

set) of the j th target variable.

To investigate whether the observed differences in performance among the methods are statistically significant, we follow

the recommendations given by Demšar [18] . More specifically, we use the corrected Friedman test and the post-hoc Nemenyi

test [36] . We present the result from the Nemenyi post-hoc test with an average ranks diagram. The ranks are depicted on

an axis, in such a manner that the best ranking algorithms are at the right-most side of the diagram. The algorithms that

do not differ significantly (in performance) for a significance level of 0.05 are connected with a line.

All experiments were performed on a computer cluster which has 44 nodes and 984 central processing units (CPUs) in

total: 9 nodes with 16 CPUs with an AMD Opteron processor at 800 GHz on 64GB of RAM with the Fedora 24 operating

system, 10 nodes with 24 CPUs with an AMD Opteron processor at 1900 GHz on 128GB of RAM with the Fedora 24 operating

system, and 25 nodes with 24 CPUs with an AMD Opteron processor at 1400 GHz on 256GB of RAM with the Fedora 24

operating system. The methods based on the predictive clustering trees are implemented in the Java programming language

(version 1.6), while the KBMF method is implemented in the R programming language.

J. Levati ́c et al. / Information Sciences 450 (2018) 109–127 119

Transductive evaluation

3 2 1

SSL-PCTSSL-PCT-FR
BasePCT

Critical Distance = 0.855543

3 2 1

SSL-PCT-FRSSL-PCT
BasePCT

Critical Distance = 0.855543
3 2 1

SSL-PCTSSL-PCT-FR
BasePCT

Critical Distance = 0.855543

3 2 1

SSL-PCT-FRSSL-PCT
BasePCT

Critical Distance = 0.855543

(a) 5% labeled (b) 10% labeled (c) 20% labeled (d) 30% labeled
Inductive evaluation

3 2 1

SSL-PCTSSL-PCT-FR
BasePCT

Critical Distance = 0.855543
3 2 1

SSL-PCTSSL-PCT-FR
BasePCT

Critical Distance = 0.855543
3 2 1

SSL-PCTSSL-PCT-FR
BasePCT

Critical Distance = 0.855543

3 2 1

SSL-PCT-FRSSL-PCT
BasePCT

Critical Distance = 0.855543

(e) 5% labeled (f) 10% labeled (g) 20% labeled (h) 30% labeled

Fig. 2. Average ranks diagrams for the performance of the single tree methods. Each graph presents the ranking among the algorithms (the algorithms

positioned at the rightmost side are the best performing) and the statistical significance of the difference between pairs of algorithms (if their distance is

less than the critical distance (at p-value = 0.05) there is no statistically significant difference between the two).

6. Results and discussion

In this section, we present the results of the empirical evaluation of semi-supervised and supervised PCTs for MTR. We

first analyze the predictive performance of the methods by using different amounts of labeled data. We then investigate the

influence of the weight parameter w , which controls the amount of supervision in the models. Furthermore, we discuss the

interpretability and model size of the models. Finally, we analyze the influence of unlabeled data on the performance of

SSL-PCTs.

6.1. Analysis of the predictive performances

In this section, we analyze the predictive performance of the methods on the 15 MTR datasets considered in this study,

with varying amounts of labeled data. We first focus on the single tree methods (i.e., Base-PCT, SSL-PCT and SSL-PCT-FR)

and the KBMF method, followed by the ensemble methods (i.e., CLUS-RF, SSL-RF, SSL-RF-FR and Self-training).

6.1.1. Single tree methods

Table 3 presents the results of single tree methods and the KBMF method. Clearly, semi-supervised PCTs (i.e., SSL-PCT

and SSL-PCT-FR) improve over supervised PCTs on most of the datasets for all different amounts of labeled data considered.

This is observed in both the transductive and the inductive evaluation scenarios, though, semi-supervised PCT wins over

supervised PCTs on more occasions in the inductive scenario, suggesting that semi-supervised PCTs have improved capabil-

ity to generalize on unseen data. The above-mentioned observations validate the ability of the proposed semi-supervised

approach to successfully exploit unlabeled data.

As mentioned, semi-supervised PCTs win over supervised PCTs on most of the datasets considered, but not on all of

them. This is not surprising since the semi-supervised methods are in general known to be domain-dependent [13] . In other

words, there are no universally good semi-supervised methods, i.e., such that would always perform better than supervised

methods. This observation is confirmed also in our results. Namely, certain datasets are obviously not suitable for semi-

supervised PCTs. More specifically, semi-supervised PCTs mostly do not improve over supervised PCTs on the following

datasets: Enb, RF1, SCM1D, SCM20D and Soil quality . The other 10 datasets are, on the other hand, better suited for semi-

supervised PCTs.

The KBMF method performed the worst in most of the experiments, though it achieves the best result for Eunite dataset

(inductive evaluation). Note that, due to the high computational complexity of this method, we were not able to complete

experiments for datasets with a large number of examples. In the experimental evaluation of the KBMF method, we used the

same parameter settings as the authors of the method [23] , i.e., the same kernels and their parameters. Possibly, better per-

formance could be achieved with different kernels and/or their better parametrization. This aspect highlights one advantage

of the methods based on decision trees: They are very easy to use since they do not require much of an expert knowledge.

That is, tree-based methods are not very sensitive to parameters, and the values of the parameters that are generally good

are known, such as the number of trees for ensemble methods, or the number of randomly selected features at each node

of random forests.

We next present the average ranks diagrams for single tree methods (Fig. 2). Note that the KBMF method is not included

into the average ranks diagrams since the results of this method for some of the datasets are missing due to the above-

mentioned reason.

120 J. Levati ́c et al. / Information Sciences 450 (2018) 109–127

Table 3

Results (RRMSE) of the single tree and the KBMF methods. For each dataset, the best result is marked in

bold (separately for transductive and inductive evaluation). The ‘ • ’/‘ ◦’ symbols denote that the SSL-PCTs im-

prove/degrade the performance of Base-PCT, while W/T/L denotes the number of wins, ties and loses against

Base-PCT. DNF denotes that the method did not finish within 10 days under the available resources.

Transductive evaluation Inductive evaluation

BasePCT SSL-PCT SSL-PCT-FR KBMF BasePCT SSL-PCT SSL-PCT-FR KBMF

5% labeled

Enb 0.447 0.406 • 0.406 • 1.084 0.4 4 4 0.409 • 0.409 • 1.073

Eunite 0.885 0.873 • 0.876 • 0.999 1.149 1.075 • 1.091 • 0.999

F. Kras 0.725 0.714 • 0.712 • DNF 0.777 0.743 • 0.744 • DNF

F. IRS 0.479 0.471 • 0.472 • 1.109 0.485 0.478 • 0.481 • 1.118

F. LandSat 0.854 0.831 • 0.846 • 1.177 0.842 0.811 • 0.828 • 1.19

F. Spot 0.504 0.509 ◦ 0.507 ◦ 1.102 0.505 0.504 • 0.508 ◦ 1.12

RF1 0.402 0.402 0.402 0.991 0.941 0.941 0.941 1.054

SCM1D 0.643 0.643 0.643 DNF 0.71 0.71 0.71 DNF

SCM20D 0.846 0.851 ◦ 0.855 ◦ DNF 0.923 0.922 • 0.905 • DNF

Scpf 0.979 0.986 ◦ 0.957 • 1.981 1.01 0.988 • 0.943 • 1.561

Soil Quality 1.017 1.017 1.017 1.213 1.025 1.025 1.025 1.283

Solar Flare 2 1 1 1.002 ◦ 1.645 0.81 0.8 • 0.811 ◦ 1.128

V. Clustering 0.894 0.894 0.896 ◦ DNF 0.942 0.942 0.944 ◦ DNF

V. Condition 0.739 0.728 • 0.73 • DNF 0.753 0.741 • 0.738 • DNF

Water Quality 1 1 1 1.692 1 1 1 1.836

W/T/L: 6/6/3 7/4/4 10/5/0 8/4/3

10% labeled

Enb 0.332 0.332 0.332 1.071 0.32 0.32 0.32 1.014

Eunite 0.842 0.819 • 0.816 • 1 1.101 1.083 • 1.083 • 0.999

F. Kras 0.7 0.689 • 0.687 • DNF 0.757 0.733 • 0.735 • DNF

F. IRS 0.439 0.439 0.439 1.031 0.439 0.439 0.439 1.02

F. LandSat 0.788 0.776 • 0.79 ◦ 1.161 0.78 0.77 • 0.752 • 1.17

F. Spot 0.484 0.482 • 0.481 • 1.027 0.488 0.484 • 0.484 • 1.028

RF1 0.315 0.315 0.315 0.996 0.984 0.984 0.984 1.014

SCM1D 0.602 0.602 0.602 DNF 0.687 0.687 0.687 DNF

SCM20D 0.795 0.804 ◦ 0.801 ◦ DNF 0.893 0.886 • 0.882 • DNF

Scpf 0.933 0.931 • 0.931 • 1.691 0.905 0.891 • 0.904 • 1.387

Soil Quality 0.964 1 ◦ 1.001 ◦ 1.075 1.072 1 • 1.012 • 1.282

Solar Flare 2 1.028 1.021 • 0.992 • 1.322 0.817 0.847 ◦ 0.846 ◦ 1.193

V. Clustering 0.862 0.864 ◦ 0.862 DNF 0.918 0.91 • 0.907 • DNF

V. Condition 0.714 0.71 • 0.711 • DNF 0.719 0.739 ◦ 0.741 ◦ DNF

Water Quality 1 0.981 • 0.983 • 1.672 1 0.994 • 1.002 ◦ 1.799

W/T/L: 8/4/3 7/5/3 9/4/2 8/4/3

20% labeled

Enb 0.241 0.241 0.241 0.734 0.242 0.242 0.242 0.673

Eunite 0.8 0.775 • 0.775 • 1 1.125 1.167 ◦ 1.165 ◦ 1

F. Kras 0.673 0.666 • 0.667 • DNF 0.75 0.727 • 0.741 • DNF

F. IRS 0.398 0.396 • 0.396 • 0.871 0.408 0.405 • 0.405 • 0.824

F. LandSat 0.72 0.714 • 0.72 1.176 0.72 0.706 • 0.72 1.194

F. Spot 0.44 0.429 • 0.428 • 0.84 0.443 0.432 • 0.429 • 0.807

RF1 0.241 0.241 0.241 0.997 0.976 0.976 0.976 1.012

SCM1D 0.557 0.557 0.557 DNF 0.684 0.684 0.684 DNF

SCM20D 0.74 0.74 0.74 DNF 0.925 0.925 0.925 DNF

Scpf 1.074 1.04 • 0.922 • 1.479 0.919 0.834 • 0.881 • 1.17

Soil Quality 0.892 0.892 0.892 0.989 0.964 0.964 0.964 1.312

Solar Flare 2 1.006 0.996 • 0.995 • 2.176 1.288 1.274 • 1.194 • 1.464

V. Clustering 0.833 0.831 • 0.833 DNF 0.898 0.89 • 0.898 DNF

V. Condition 0.698 0.694 • 0.693 • DNF 0.728 0.714 • 0.717 • DNF

Water Quality 0.993 0.973 • 0.977 • 1.6 0.998 0.995 • 0.997 • 1.841

W/T/L: 10/5/0 9/6/0 10/4/1 7/7/1

30% labeled

Enb 0.209 0.209 0.209 0.405 0.231 0.231 0.231 0.463

Eunite 0.774 0.751 • 0.748 • 1 1.179 1.171 • 1.17 • 1

F. Kras 0.657 0.654 • 0.65 • DNF 0.747 0.722 • 0.727 • DNF

F. IRS 0.393 0.392 • 0.393 0.724 0.402 0.4 • 0.401 • 0.673

F. LandSat 0.691 0.715 ◦ 0.704 ◦ 1.122 0.692 0.691 • 0.679 • 1.153

F. Spot 0.42 0.42 0.42 0.718 0.429 0.429 0.429 0.697

RF1 0.283 0.283 0.283 0.997 0.998 0.998 0.998 1.012

SCM1D 0.532 0.532 0.532 DNF 0.667 0.667 0.667 DNF

SCM20D 0.694 0.694 0.694 DNF 0.932 0.932 0.932 DNF

Scpf 0.97 0.913 • 0.912 • 1.426 0.898 0.881 • 0.878 • 1.154

Soil Quality 0.863 0.863 0.863 0.947 1.011 1.011 1.011 1.335

Solar Flare 2 1.024 1.025 ◦ 1.016 • 3.111 1.591 1.427 • 1.178 • 2.985

V. Clustering 0.817 0.815 • 0.815 • DNF 0.875 0.873 • 0.873 • DNF

V. Condition 0.687 0.686 • 0.685 • DNF 0.728 0.715 • 0.709 • DNF

Water Quality 0.983 0.967 • 0.967 • 1.561 0.995 0.988 • 0.988 • 1.814

W/T/L: 7/6/2 7/7/1 9/6/0 9/6/0

J. Levati ́c et al. / Information Sciences 450 (2018) 109–127 121

Transductive evaluation

4 3 2 1

SSL-RF-FR
SSL-RF

CLUS-RF
Self-training

Critical Distance = 1.21104
4 3 2 1

SSL-RF-FR
SSL-RF

CLUS-RF
Self-training

Critical Distance = 1.21104
4 3 2 1

SSL-RF-FR
SSL-RF

CLUS-RF
Self-training

Critical Distance = 1.21104
4 3 2 1

SSL-RF-FR
SSL-RF

CLUS-RF
Self-training

Critical Distance = 1.21104

(a) 5% labeled (b) 10% labeled (c) 20% labeled (d) 30% labeled
Inductive evaluation

4 3 2 1

CLUS-RF
SSL-RF-FR

SSL-RF
Self-training

Critical Distance = 1.21104
4 3 2 1

CLUS-RF
SSL-RF-FR

SSL-RF
Self-training

Critical Distance = 1.21104
4 3 2 1

CLUS-RF
SSL-RF

SSL-RF-FR
Self-training

Critical Distance = 1.21104
4 3 2 1

CLUS-RF
SSL-RF

SSL-RF-FR
Self-training

Critical Distance = 1.21104

(e) 5% labeled (f) 10% labeled (g) 20% labeled (h) 30% labeled

Fig. 3. Average ranks diagrams for the performance of the ensemble methods. Each graph presents the ranking among the algorithms (the algorithms

positioned at the rightmost side are the best performing) and the statistical significance of the difference between pairs of algorithms (if their distance is

less than the critical distance (at p-value = 0.05) there is no statistically significant difference between the two).

We can observe that semi-supervised PCTs (i.e., SSL-PCT and SSL-PCT-FR) are always ranked better than the supervised

PCTs (i.e., Base-PCT) – for all the amounts of labeled data considered in both the transductive and inductive evaluation.

Statistical significance is obtained when using 20% of the labeled data (both SSL-PCT and SSL-PCT-FR) in the transductive

evaluation and for 5% (only SSL-PCT) and 30% (only SSL-PCT-FR) of the labeled data in the inductive evaluation.

Next, we analyze the effect of feature weighting on the predictive performance of the proposed semi-supervised PCTs.

We can observe that, up to 20% of labeled data, the SSL-PCT method is ranked better than its feature weighted counterpart

SSL-PCT-FR, both in transductive and inductive evaluation (with the exception of the setting with 10% of labeled data, where

SSL-PCT is ranked better only in the transductive setting). However, as the amount of labeled data is increased to 30%, SSL-

PCT-FR becomes better ranked in both evaluation settings. Recall that (Section 4.1) feature weights are calculated by using

the available labeled examples. Thus, it is possible that as the amount of labeled data increases, better feature weights can

be calculated, allowing feature weighted SSL-PCTs to perform better than SSL-PCTs.

6.1.2. Ensemble methods

In the case of single-trees, we observed clear advantage of semi-supervised PCTs over supervised ones, however, this

is not entirely preserved in the ensemble setting. Namely, even though semi-supervised random forests (i.e., SSL-RF and

SSL-RF-FR) can improve over supervised random forests (i.e., CLUS-RF), this is observed on fewer occasions as compared to

single tree methods. Furthermore, the results show that the improvement of SSL-PCT(-FR) over Base-PCT does not guarantee

the improvement of SSL-RF(-FR) over CLUS-RF , for example as observed on Vegetation Condition dataset. The opposite is

also observed, i.e., SSL-RF(-FR) can improve over CLUS-RF even if SSL-PCT(-FR) does not improve over Base-PCTs, such as on

SCM1D and SCM20D datasets.

The self-training method achieves the best result on some of the datasets (especially in inductive setting). However, the

issue of error-propagation of this method is evident. Namely, self-training iteratively uses its own most reliable predictions

as additional data in the training process. An error, once made, can reinforce itself in the subsequent iterations, leading to

the degradation of the performance of the base method – this is observed for several datasets. This consideration makes the

semi-supervised random forests and the self-training method somehow complementary, i.e., they usually improve CLUS-RF

on different datasets.

We next present the average ranks diagrams for ensemble methods (Fig. 3). We can observe that semi-supervised random

forests (i.e., SSL-FR and SSL-FR-FR) are always ranked better than the supervised random forests (CLUS-RF). However, this

is evident only in the transductive evaluation, although statistical significance is not achieved. In the inductive evaluation,

CLUS-RF is ranked better than all of the other semi-supervised ensemble methods, suggesting that if there is a need to

predict the labels of examples that are not available during learning, it is better to use supervised random forests (Table 4).

Note that such a difference between transductive and inductive evaluation was not observed for semi-supervised PCTs,

i.e., SSL-PCTs were able to consistently improve over supervised PCTs in both evaluation scenarios. We next ask for the

reasons behind this difference observed between individual trees and random forests. We hypothesize that the lower success

rate of semi-supervised random forests in the inductive scenario might be due to overfitting. To investigate this hypothesis,

we define and calculate the overfitting score: OS = (RRM SE test − RRM SE train) /RRM SE train , where lower OS corresponds to less

overfitting (i.e., the predictive performance of the method on the training and test set is similar). In the case of single trees,

BasePCT , SSL-PCT , and SSL-PCT-FR , achieve an average OS (over all experiments) of 32%, 25%, 27% in transductive, and 70%,

63%, and 65% in inductive evaluation, respectively. The corresponding figures for CLUS-RF , SSL-RF , and SSL-RF-FR are 93%,

90%, 90% in transductive, and 152%, 150%, and 150% in inductive evaluation, respectively. This shows that random forests

(both supervised and semi-supervised) overfit the training data more than single trees. Thus, due to the intrinsic capability

of random forests to fit the training data very well, semi-supervised random forests may overfit the unlabeled examples

122 J. Levati ́c et al. / Information Sciences 450 (2018) 109–127

Table 4

Results (RRMSE) of the ensemble methods. For each dataset, the best result is marked in bold (separately for trans-

ductive and inductive evaluation). The ‘ • ’/‘ ◦’ symbols denote that the semi-supervised method improves/degrades the

performance of CLUS-RF, while W/T/L denotes the number of wins, ties and loses against CLUS-RF.

Transductive evaluation Inductive evaluation

CLUS-RF SSL-RF SSL-RF-FR Self-training CLUS-RF SSL-RF SSL-RF-FR Self-training

5% labeled

Enb 0.326 0.303 • 0.31 • 0.328 ◦ 0.335 0.309 • 0.312 • 0.34 ◦
Eunite 0.784 0.775 • 0.774 • 0.785 ◦ 1.063 1.077 ◦ 1.074 ◦ 1.062 •
F. Kras 0.627 0.627 0.627 0.627 0.664 0.664 0.664 0.668 ◦
F. IRS 0.399 0.399 0.396 • 0.402 ◦ 0.404 0.404 0.4 • 0.413 ◦
F. LandSat 0.721 0.727 ◦ 0.723 ◦ 0.734 ◦ 0.724 0.727 ◦ 0.727 ◦ 0.753 ◦
F. Spot 0.437 0.437 0.435 • 0.44 ◦ 0.442 0.442 0.44 • 0.452 ◦
RF1 0.279 0.279 0.279 0.28 ◦ 0.622 0.622 0.634 ◦ 0.623 ◦
SCM1D 0.499 0.493 • 0.492 • 0.503 ◦ 0.587 0.59 ◦ 0.587 0.618 ◦
SCM20D 0.657 0.647 • 0.65 • 0.659 ◦ 0.768 0.769 ◦ 0.768 0.784 ◦
Scpf 0.915 0.915 0.915 0.914 • 0.867 0.867 0.867 0.867

Soil Quality 0.904 0.904 0.903 • 0.916 ◦ 0.963 0.963 0.975 ◦ 0.975 ◦
Solar Flare 2 1.015 1.015 1.015 1.011 • 0.853 0.853 0.853 0.842 •

V. Clustering 0.768 0.768 0.768 0.777 ◦ 0.816 0.816 0.816 0.835 ◦
V. Condition 0.664 0.664 0.664 0.664 0.67 0.67 0.67 0.673 ◦
Water Quality 0.955 0.957 ◦ 0.958 ◦ 0.952 • 0.982 0.98 • 0.979 • 0.975 •

W/T/L: 4/9/2 7/6/2 3/2/10 2/9/4 4/7/4 3/1/11

10% labeled

Enb 0.237 0.241 ◦ 0.241 ◦ 0.241 ◦ 0.245 0.245 0.247 ◦ 0.253 ◦
Eunite 0.738 0.73 • 0.73 • 0.739 ◦ 1.046 1.062 ◦ 1.057 ◦ 1.04 •

F. Kras 0.606 0.606 0.606 0.607 ◦ 0.654 0.654 0.654 0.658 ◦
F. IRS 0.368 0.367 • 0.365 • 0.371 ◦ 0.369 0.37 ◦ 0.366 • 0.38 ◦
F. LandSat 0.65 0.65 0.65 0.664 ◦ 0.643 0.643 0.643 0.678 ◦
F. Spot 0.398 0.398 0.398 0.402 ◦ 0.398 0.398 0.402 ◦ 0.413 ◦
RF1 0.226 0.226 0.226 0.227 ◦ 0.62 0.62 0.62 0.613 •

SCM1D 0.453 0.446 • 0.446 • 0.457 ◦ 0.571 0.576 ◦ 0.573 ◦ 0.598 ◦
SCM20D 0.596 0.57 • 0.573 • 0.598 ◦ 0.76 0.775 ◦ 0.77 ◦ 0.773 ◦
Scpf 0.897 0.897 0.9 ◦ 0.897 0.845 0.845 0.847 ◦ 0.848 ◦
Soil Quality 0.854 0.857 ◦ 0.86 ◦ 0.867 ◦ 0.953 0.96 ◦ 0.951 • 0.958 ◦
Solar Flare 2 1.006 1.01 ◦ 1.006 1.004 • 0.927 0.921 • 0.957 ◦ 0.88 •

V. Clustering 0.739 0.739 0.739 0.739 0.794 0.794 0.794 0.794

V. Condition 0.649 0.649 0.649 0.649 0.658 0.658 0.658 0.662 ◦
Water Quality 0.943 0.946 ◦ 0.942 • 0.94 • 0.969 0.968 • 0.971 ◦ 0.963 •

W/T/L: 4/7/3 5/7/3 2/3/10 2/8/5 4/7/4 4/1/10

20% labeled

Enb 0.182 0.182 0.182 0.191 ◦ 0.205 0.205 0.205 0.218 ◦
Eunite 0.693 0.683 • 0.684 • 0.694 ◦ 1.068 1.08 ◦ 1.077 ◦ 1.054 •

F. Kras 0.586 0.586 0.586 0.587 ◦ 0.647 0.647 0.647 0.65 ◦
F. IRS 0.336 0.336 0.336 0.339 ◦ 0.338 0.338 0.338 0.348 ◦
F. LandSat 0.604 0.604 0.604 0.616 ◦ 0.602 0.602 0.602 0.632 ◦
F. Spot 0.366 0.366 0.364 • 0.369 ◦ 0.373 0.373 0.371 • 0.383 ◦
RF1 0.184 0.184 0.184 0.185 ◦ 0.623 0.623 0.623 0.632 ◦
SCM1D 0.41 0.399 • 0.399 • 0.412 ◦ 0.559 0.568 ◦ 0.572 ◦ 0.58 ◦
SCM20D 0.527 0.489 • 0.484 • 0.528 ◦ 0.758 0.771 ◦ 0.78 ◦ 0.764 ◦
Scpf 0.917 0.921 ◦ 0.925 ◦ 0.915 • 0.819 0.814 • 0.816 • 0.811 •

Soil Quality 0.808 0.808 0.808 0.826 ◦ 0.936 0.936 0.936 0.939 ◦
Solar Flare 2 1.009 1 • 1.001 • 1.007 • 1.408 1.224 • 1.268 • 1.333 •

V. Clustering 0.713 0.713 0.711 • 0.713 0.772 0.772 0.773 ◦ 0.772

V. Condition 0.634 0.634 0.634 0.635 ◦ 0.649 0.649 0.649 0.654 ◦
Water Quality 0.929 0.929 0.927 • 0.928 • 0.961 0.961 0.959 • 0.954 •

W/T/L: 4/10/1 7/7/1 3/1/11 2/10/3 4/7/4 4/1/10

30% labeled

Enb 0.163 0.163 0.163 0.172 ◦ 0.193 0.193 0.193 0.205 ◦
Eunite 0.669 0.661 • 0.661 • 0.67 ◦ 1.071 1.08 ◦ 1.082 ◦ 1.064 •

F. Kras 0.574 0.574 0.574 0.576 ◦ 0.645 0.645 0.645 0.646 ◦
F. IRS 0.324 0.324 0.324 0.327 ◦ 0.326 0.326 0.326 0.335 ◦
F. LandSat 0.588 0.588 0.588 0.593 ◦ 0.582 0.582 0.582 0.596 ◦
F. Spot 0.354 0.354 0.354 0.356 ◦ 0.359 0.359 0.359 0.368 ◦
RF1 0.166 0.166 0.166 0.17 ◦ 0.644 0.644 0.644 0.667 ◦
SCM1D 0.381 0.369 • 0.369 • 0.383 ◦ 0.554 0.563 ◦ 0.563 ◦ 0.568 ◦
SCM20D 0.485 0.439 • 0.44 • 0.486 ◦ 0.757 0.781 ◦ 0.779 ◦ 0.764 ◦
Scpf 0.895 0.901 ◦ 0.886 • 0.896 ◦ 0.815 0.818 ◦ 0.816 ◦ 0.813 •

Soil Quality 0.781 0.781 0.781 0.799 ◦ 0.937 0.937 0.937 0.932 •
Solar Flare 2 1.031 1.023 • 1.02 • 1.027 • 1.617 1.359 • 1.408 • 1.519 •

V. Clustering 0.699 0.699 0.697 • 0.699 0.761 0.761 0.762 ◦ 0.761

V. Condition 0.626 0.626 0.626 0.627 ◦ 0.643 0.643 0.643 0.647 ◦
Water Quality 0.923 0.923 0.923 0.921 • 0.954 0.954 0.954 0.952 •

W/T/L: 4/10/1 6/9/0 2/1/12 1/10/4 1/9/5 5/1/9

J. Levati ́c et al. / Information Sciences 450 (2018) 109–127 123

(which are part of their training set). This is not a problem in the transductive evaluation, since the unlabeled examples are

also used as testing examples, however, it may cause the loss of some generalization capabilities in inductive evaluation. To

further investigate this hypothesis, we analyze the OS values separately for the cases where SSL-RF or SSL-RF-FR improve

over CLUS-RF in the transductive, but not in the inductive evaluation (e.g., SCM20D dataset), and cases where SSL-RF or SSL-

RF-FR improve over CLUS-RF in the inductive but not in the transductive evaluation (e.g., Water Quality dataset, 5% labeled).

In the former cases, SSL-RF and SSL-RF-FR achieve an average OS of 100% and 90% in transductive, and 183% and 154% in

inductive evaluation. Strikingly, in the latter cases, SSL-RF and SSL-RF-FR achieve much lower average OS scores: 49% and

50% in the transductive and 66% and 61% in the transductive evaluation, respectively, suggesting that low OS score is the

determinant of the success of semi-supervised random forests in the inductive evaluation.

The self-training method is always ranked last and is also statistically significantly outperformed by SSL-RF and SSL-RF-FR

for 20% and 30% of labeled examples in the transductive evaluation.

In the case of ensemble methods, the SSL-RF-FR method is always ranked better than the SSL-RF method (considering

transductive evaluation), suggesting that feature weighting is more beneficial for semi-supervised random forests than for

semi-supervised PCTs. A possible explanation is that the feature weights are more relevant for the SSL-RF-FR method since

they are determined by using the same method, i.e., the random forest feature importance procedure (Section 4.1).

6.2. Influence of the w parameter

The w parameter controls the amount of supervision in the models. A value of w = 0 results in completely unsupervised

PCTs, then, as w increases, PCTs rely more on labeled and less on unlabeled data, and end in being completely supervised

for w = 1 . The ability to fine-tune the SSL-PCT s for a given dataset by controlling the amount of influence of unlabeled data

is very important in practical applications since several researchers have found that semi-supervised learning may perform

worse than supervised learning [15,24,37,51] .

As clarified before, the success of semi-supervised methods was found to be domain dependent, i.e., in SSL there are

no universally good methods as in supervised learning [13] . Moreover, choosing the appropriate SSL method for the prob-

lem at hand is still an open question. In other words, when performing semi-supervised learning, there is always a danger

(to some extent) of unlabeled data hurting the predictive performance. Therefore, the research community is putting ef-

fort into developing safe semi-supervised methods [34] . Such methods should never perform worse than their supervised

counterparts.

By the virtue of the w parameter, we provide a safety mechanism for SSL-PCTs. In theory, if the optimal value of the

parameter w is known, SSL-PCTs and SSL-RF will never perform worse than their supervised counterparts, since Base-PCTs

and CLUS-RF are special cases of SSL-PCT and SSL-RF obtained with w = 1 . However, since the w parameter is optimized via

cross-validation on the available labeled data, it is possible that the chosen value of w will not be the right one to achieve

the optimal test set performance. Thus, in practice, SSL-PCT and SSL-RF can also perform worse than Base-PCT and CLUS-RF,

though this rarely happened in our empirical evaluation. Considering all the experiments in both the transductive and the

inductive evaluation (Table 3), SSL-PCTs performed better than their supervised counterpart Base-PCT on 57% of occasions,

worse on 9% of occasions, and the same on 34% of occasions. 3

Fig. 4 illustrates the influence of the parameter w on the predictive performance for 3 different datasets (in the transduc-

tive setting). On the Foresty Kras dataset (Fig. 4 a), SSL-PCTs improve over Base-PCTs for almost any value of the w parameter,

though, an optimal value of w changes as the amount of labeled data changes. Next, on the Forestry LIDAR LandSat dataset,

SSL-PCT requires a high amount of supervision, in order to improve over Base-PCT. Otherwise, if w is set to a too low value,

degradation of performance could occur. Finally, the SCM1D dataset (Fig. 4 c) is an example of a dataset where using the pro-

posed methods does not improve over its supervised counterparts: Regardless of the value of w , or the amount of labeled

data, SSL-PCT is not able to improve over Base-PCT. The value of w = 1 is always chosen, and with that, degradation of the

performance is avoided.

As exemplified in Fig. 4 , a general recommendation for the value of w is difficult to provide, since the optimal value

of w varies from dataset to dataset, and even within the same dataset as the amount of labeled data changes. Hence, this

parameter needs to be optimized by internal cross-validation for each dataset and each amount of labeled data.

6.3. Size and interpretability of supervised and semi-supervised trees

As mentioned previously, interpretability is an important property of predictive models in applications where machine

learning is not only used for predictive modelling, but also for knowledge discovery. The models produced by semi-

supervised PCTs are readily interpretable since they are in the form of decision trees. To the best of our knowledge, there is

currently no other semi-supervised method for MTR that produces interpretable models.

Table 5 presents the model sizes of supervised and semi-supervised trees. We can observe that semi-supervised trees are,

in almost all of the cases, smaller than the supervised trees. Recall that, due to the definition of the variance function used to
3 The wins, ties and loses of SSL-PCTs over Base-PCTs are counted considering all the different amounts of labeled data over all the datasets that are

used in the experimental evaluation.

124 J. Levati ́c et al. / Information Sciences 450 (2018) 109–127

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

R
R

M
SE

%03%02%01%5

Amount of labeled examples

0 .2 .4 .6 .8 1/0 .2 .4 .6 .8 1/0 .2 .4 .6 .8 1/0 .2 .4 .6 .8 1/0

Weight parameter (w)

Base-PCT
SSL-PCT
selected by xval

CLUS-RF
SSL-RF
selected by xval

(a) Foresty Kras

0.6

0.7

0.8

0.9

1.0

1.1

R
R

M
SE

%03%02%01%5

Amount of labeled examples

0 .2 .4 .6 .8 1/0 .2 .4 .6 .8 1/0 .2 .4 .6 .8 1/0 .2 .4 .6 .8 1/0

Weight parameter (w)

Base-PCT
SSL-PCT
selected by xval

CLUS-RF
SSL-RF
selected by xval

(b) Forestry LIDAR LandSat

0.6

0.7

0.8

0.9

1.0

R
R

M
SE

%03%02%01%5

Amount of labeled examples

0 .2 .4 .6 .8 1/0 .2 .4 .6 .8 1/0 .2 .4 .6 .8 1/0 .2 .4 .6 .8 1/0

Weight parameter (w)

Base-PCT
SSL-PCT
selected by xval

CLUS-RF
SSL-RF
selected by xval

(c) SCM1D

Fig. 4. The effect of the w parameter on the performance of the SSL-PCT (red line) and SSL-RF (orange line) methods on 3 datasets: Foresty Kras, Forestry

LIDAR LandSat, SCM1D . The values of the w parameter selected by cross-validation and used in the experimental evaluation are denoted with colored

markers. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

learn semi-supervised PCTs, they group examples into clusters that are compact both in the descriptive and the target space,

while the supervised trees consider only the target space. Obviously, semi-supervised trees have a more strict clustering

criterion, which likely is a reason for the smaller tree size. Furthermore, Table 5 demonstrates that in situations with limited

availability of labeled data, semi-supervised learning of PCTs offers better interpretability (i.e., smaller PCTs), and also, as we

previously discussed, more accurate trees as compared to supervised learning of PCTs. Note that, Table 5 presents the tree

sizes of SSL-PCTs, while the tree sizes of the feature weighted variant of the algorithm (SSL-PCT-FR) are not presented since

the conclusions are similar.

6.4. The influence of unlabeled data

The semi-supervised PCT learning differs from supervised PCT learning in two aspects: (1) it considers both the descrip-

tive and target space to evaluate the candidate splits, and (2) it uses unlabeled examples in addition to labeled ones. We

have demonstrated that semi-supervised PCTs offer predictive performance that is highly competitive to the one of super-

vised PCTs, but we might question whether the improvements stem from the combination of (1) and (2), or is only (1)

sufficient to improve over supervised PCTs? To this end, we compare the predictive performance of SSL-PCTs to the super-

vised variant of the algorithm which uses both the descriptive and target space to evaluate the candidate splits but is not

supplied with unlabeled examples (denoted as SL-PCT). In such a way, we can precisely assess the influence of the unla-

beled examples, since in both cases de facto the same algorithm is used and the only difference comes from the availability

J. Levati ́c et al. / Information Sciences 450 (2018) 109–127 125

Table 5

Model sizes, in terms of number of nodes, obtained with the supervised PCTs (Base-PCT) and the

semi-supervised PCTs (SSL-PCT) on the 15 MTR datasets.

Dataset Amount of labeled examples

5% 10% 20% 30%

Base SSL Base SSL Base SSL Base SSL

-PCT -PCT -PCT -PCT -PCT -PCT -PCT -PCT

Enb 6.8 4.4 12.6 12.6 29.2 29.2 41 41

Eunite 22.8 15.6 35 33 79 73.6 149.4 113.2

Forestry Kras 154.2 88.8 294 155 554.4 365.6 785 552

Forestry LIDAR IRS 22.6 13 34.6 34.6 60.6 37.6 79.2 46.6

Forestry LIDAR LandSat 17 11.2 33.6 19.2 57.6 39.4 77.8 59

Forestry LIDAR Spot 23.6 13.6 35.2 25.6 65.6 43.4 84.2 84.2

RF1 93 93 224.2 224.2 478.6 478.6 647.4 647.4

SCM1D 37 37 69.8 69.8 160.2 160.2 252.2 252.2

SCM20D 23.8 17 52.2 38.8 139 139 241.2 241.2

Scpf 3.4 1.6 4.2 5.2 6.6 20.6 9.2 33.4

Soil Quality 3.8 3.8 6.6 1 16.4 16.4 26.2 26.2

Solar Flare 2 2 1 2.8 8.8 3.8 24.4 5.2 6.2

Vegetation Clustering 38.2 38.2 76 70.4 154 131.8 217 201.6

Vegetation Condition 23.4 29.4 46.2 52.2 84 96 124.2 138

Water Quality 1 1 1 5 2.2 10.8 3 17.8

Average: 31.5 24.6 61.9 50.4 126.1 111.1 182.8 164.0

0.05

0.1

0.15

0.05 0.1 0.15

Δ SL-PCT

Δ
S
S
L
-P

C
T

Fig. 5. Comparison of the predictive performance of SSL-PCT and SL-PCT with Base-PCT across all datasets and different amounts of labeled data. �SSL-PCT

and �SL-PCT denote the difference between Base-PCT and SSL-PCT or SL-PCT , respectively. Negative values mean that Base-PCT is better, while positive

values mean the opposite. SSL-PCT outperforms SL-PCT above the diagonal (dashed line), while SL-PCT outperforms SSL-PCT below the diagonal line.

SSL-PCT improves over Base-PCT for positive values of the y -axis, and degrades the performance of Base-PCT for negative values of the y -axis. The same

relations hold for SL-PCT , but for the x -axis.

of unlabeled data. In the experimental analysis, we optimized the value of the w parameter for SL-PCT in the same way as

for SSL-PCTs, i.e., via internal 3-fold cross-validation.

Fig. 5 presents a detailed comparison of improvement/degradation of SL-PCT and SSL-PCT over Base-PCT. We can observe

that, even without unlabeled data, the algorithm for semi-supervised learning of PCTs we proposed can improve over stan-

dard supervised PCTs (Fig. 5 , points with the positive x values). However, SSL-PCT method improves over Base-PCT more

frequently and more strongly than SL-PCT (most of the points on Fig. 5 are above the diagonal), thus, it successfully exploits

unlabeled data. These observations suggest that the proposed algorithm for semi-supervised learning of PCTs might be wor-

thy of attention even in its supervised form, though if supplied with unlabeled data it has a better chance to improve the

standard supervised PCT algorithm.

126 J. Levati ́c et al. / Information Sciences 450 (2018) 109–127

7. Conclusions

In this paper, we propose a method for semi-supervised learning of predictive clustering trees and random forests thereof

for the task of multi-target regression. We extensively evaluate the proposed methods on 15 multi-target regression datasets

from different domains and analyze their predictive performance, model size and sensitivity to parameters.

We show that semi-supervised predictive clustering trees improve the performance of standard supervised predictive

clustering trees and enhance their interpretability (due to the reduced model size). Therefore, in situations where unlabeled

data are available and labeled data are a limited asset, semi-supervised predictive clustering trees should be preferred over

supervised predictive clustering trees – if the focus is on the knowledge discovery aspect of predictive modelling. Otherwise,

if the focus is on the predictive performance, semi-supervised random forests may offer better performance than supervised

random forests in a transductive setting.

The variant of semi-supervised random forests that weight the descriptive features by their relevance performed

favourably to the variant without feature weighting. In the case of single trees, feature weighting was beneficial for the

performance of semi-supervised predictive clustering trees only if enough labeled data was available (i.e., at least 30%).

Smaller amounts of labeled data were apparently insufficient to estimate feature relevance well enough.

The proposed methods represent a step towards ‘safe’ semi-supervised methods, i.e., methods that would always guar-

antee better or at least equal performance as compared to supervised methods: Due to the built-in safety mechanism, they

seldom degraded the performance of their supervised counterparts.

The proposed methods have some intrinsic properties which could be useful in other fields of machine learning besides

semi-supervised predictive modelling. Namely, as we demonstrated, with this approach it is possible to perform unsuper-

vised learning, i.e., (hierarchical) clustering while simultaneously providing symbolic descriptions of the clusters. The method

could be thus easily compared to methods in this area as well. Next, the method has the intrinsic capability of handing par-

tially labeled data - a scenario highly relevant for tasks with structured outputs. When some parts of the output labels are

missing, the corresponding examples are often discarded, or completed by missing data imputation. Our approach could be

an elegant way to avoid both of these (undesired) solutions. Finally, it could be used to perform feature ranking for semi-

supervised and unsupervised learning by including it in algorithms that are based on tree models (e.g., feature ranking with

random forests).

As a direction for future work, we point out the possibility to easily extend the proposed approach to other types of

structured outputs (other than multi-target regression), such as multi-target classification, hierarchical multi-label classifica-

tion and time-series prediction. Therefore, our immediate research effort s will follow this direction.

Acknowledgments

We acknowledge the financial support of the Slovenian Research Agency, via the grants P2-0103 and L2-7509, and a

young researcher grant to the first author, as well as the European Commission, via the grants FP7-ICT-612944 MAESTRA,

H2020-720270 HBP SGA1 and H2020-ICT-688797 TOREADOR.

References

[1] T. Aho , B. Ženko , S. Džeroski , T. Elomaa , Multi-target regression with rule ensembles, J. Mach. Learn. Res. 13 (1) (2012) 2367–2407 .

[2] A. Appice , S. Džeroski , Stepwise induction of multi-target model trees, in: Proc. of ECML 2007, in: LNCS, 4701, 2007, pp. 502–509 .

[3] A. Asuncion, D. Newman, UCI machine learning repository, 2007.
[4] H. Blockeel , L. De Raedt , J. Ramon , Top-down induction of clustering trees, in: Proceeding of the 15th Int’l Conference on Machine learning, 1998,

pp. 55–63 .
[5] H. Blockeel , S. Džeroski , J. Grbovi ́c , Simultaneous prediction of multiple chemical parameters of river water quality with TILDE, in: Principles of Data

Mining and Knowledge Discovery, in: LNCS, 1704, 1999, pp. 32–40 .
[6] H. Borchani , G. Varando , C. Bielza , P. Larrañaga , A survey on multi-output regression, in: Data Mining and Knowledge Discovery, 5, Wiley Interdisci-

plinary Reviews, 2015, pp. 216–233 .

[7] L. Breiman , Bagging predictors, Mach. Learn. 24 (2) (1996) 123–140 .
[8] L. Breiman , Out-of-bag estimation, Technical Report, University of California, 1996 .

[9] L. Breiman , Random forests, Mach. Learn. 45 (1) (2001) 5–32 .
[10] C. Brouard , M. Szafranski , F. d’Alché-Buc , Input output kernel regression: supervised and semi-supervised structured output prediction with operator–

valued kernels, J. Mach. Learn. Res. 17 (176) (2016) 1–48 .
[11] H.D.V. Cardona, M.A. Álvarez, A .A . Orozco, Convolved multi-output Gaussian processes for semi-supervised learning, vol. 9279 of Lecture Notes in

Computer Science, Springer, Berlin, pp. 109–118.

[12] O. Chapelle , B. Schölkopf , A. Zien , Semi-Supervised Learning, 2, MIT Press, 2006 .
[13] N. Chawla , G. Karakoulas , Learning from labeled and unlabeled data: an empirical study across techniques and domains, J. Artif. Intell. Res. 23 (1)

(2005) 331–366 .
[14] B.-J. Chen , M.-W. Chang , C.-J. lin , Load forecasting using support vector machines: a study on EUNITE competition 2001, IEEE Trans. Power Syst. 19 (4)

(2004) 1821–1830 .
[15] F. Cozman , I. Cohen , M. Cirelo , Unlabeled data can degrade classification performance of generative classifiers, in: Proc. of the 15th International Florida

Artificial Intelligence Research Society Conference, 2002, pp. 327–331 .

[16] P. Cunningham , S.J. Delany , k-Nearest neighbour classifiers, Technical Report, UCD-CSI-2007-4, 2007 .
[17] D. Demšar , S. Džeroski , T. Larsen , J. Struyf , J. Axelsen , M. Pedersen , P. Krogh , Using multi-objective classification to model communities of soil, Ecol.

Modell. 191 (1) (2006) 131–143 .
[18] J. Demšar , Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res. 7 (2006) 1–30 .

[19] T.G. Dietterich , P. Domingos , L. Getoor , S. Muggleton , P. Tadepalli , Structured machine learning: the next ten years, Mach. Learn. 73 (1) (2008) 3–23 .
[20] X. Du , Semi-supervised learning of local structured output predictors, Neurocomputing 220 (2017) 151–159 .

http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0008
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0008
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0018
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0018

J. Levati ́c et al. / Information Sciences 450 (2018) 109–127 127

[21] S. Džeroski , A. Kobler , V. Gjorgjioski , P. Panov , Using decision trees to predict forest stand height and canopy cover from Landsat and LIDAR data, in:
Proc. of the 20th Int’l Conf. on Informatics for Environmental Protection, 2006, pp. 125–133 .

[22] V. Gjorgjioski , S. Džeroski , Clustering analysis of vegetation data, Technical Report, Jožef Stefan Institute, 2003 .
[23] M. Gönen , S. Kaski , Kernelized Bayesian matrix factorization, IEEE Trans. Pattern Anal. Mach. Intell. 36 (10) (2014) 2047–2060 .

[24] Y. Guo , X. Niu , H. Zhang , An extensive empirical study on semi-supervised learning, in: Proc. of 10th Int’l Conf. on Data Mining, 2010, pp. 186–195 .
[25] Z. Han , Y. Liu , J. Zhao , W. Wang , Real time prediction for converter gas tank levels based on multi-output least square support vector regressor, Control

Eng. Pract. 20 (12) (2012) 1400–1409 .

[26] D. Kocev , S. Džeroski , M.D. White , G.R. Newell , P. Griffioen , Using single- and multi-target regression trees and ensembles to model a compound index
of vegetation condition, Ecol. Modell. 220 (8) (2009) 1159–1168 .

[27] D. Kocev , I. Slavkov , S. Džeroski , Feature ranking for multi-label classification using predictive clustering trees, in: International Workshop on Solving
Complex Machine Learning Problems with Ensemble Methods, in Conjunction with ECML/PKDD, 2013, pp. 56–68 .

[28] D. Kocev , C. Vens , J. Struyf , S. Džeroski , Tree ensembles for predicting structured outputs, Pattern Recognit. 46 (3) (2013) 817–833 .
[29] H.-P. Kriegel , K. Borgwardt , P. Kröger , A. Pryakhin , M. Schubert , A. Zimek , Future trends in data mining, Data Min. Knowl. Discov. 15 (2007) 87–97 .

[30] C. Leistner , A. Saffari , J. Santner , H. Bischof , Semi-supervised random forests, in: Proc. of the 12th Int’l Conf. on Computer Vision, 2009, pp. 506–513 .
[31] J. Levati ́c , M. Ceci , D. Kocev , S. Džeroski , Self-training for multi-target regression with tree ensembles, Knowl. Based. Syst. 123 (2017) 41–60 .

[32] J. Levati ́c , M. Ceci , D. Kocev , S. Džeroski , Semi-supervised classification trees, J. Intell. Inf. Syst. 49 (3) (2017) 461–486 .

[33] J. Levati ́c , D. Kocev , S. Džeroski , The importance of the label hierarchy in hierarchical multi-label classification, J. Intell. Inf. Syst. 45 (2) (2014) 247–271 .
[34] Y.-F. Li , Z.-H. Zhou , Towards making unlabeled data never hurt, in: Proc. of the 28th International Conference on Machine Learning, 2011,

pp. 1081–1088 .
[35] R. Navaratnam , A. Fitzgibbon , R. Cipolla , The joint manifold model for semi-supervised multi-valued regression, in: Proc. of the 11th IEEE Int’l Conf.

on Computer Vision, 2007, pp. 1–8 .
[36] P.B. Nemenyi , Distribution-free multiple comparisons, Princeton University, Ph.D. thesis, Princeton, NY, USA, 1963 .

[37] K. Nigam , A.K. McCallum , S. Thrun , T. Mitchell , Text classification from labeled and unlabeled documents using em, Mach. Learn. 39 (2-3) (20 0 0)

103–134 .
[38] M. Pugelj , S. Džeroski , Predicting structured outputs k-nearest neighbours method, in: Discovery Science, in: LNCS, 6926, 2011, pp. 262–276 .

[39] J.R. Quinlan , Learning with continuous classes, in: Proc. of the 5th Australian Joint Conference on Artificial Intelligence, Singapore, 1992, pp. 343–348 .
[40] L.E. Raileanu , K. Stoffel , Theoretical comparison between the gini index and information gain criteria, Ann. Math. Artif. Intell. 41 (1) (2004) 77–93 .

[41] E. Spyromitros-Xioufis , G. Tsoumakas , W. Groves , I. Vlahavas , Multi-target regression via input space expansion: treating targets as inputs, Mach. Learn.
104 (1) (2016) 55–98 .

[42] D. Stojanova , Estimating Forest Properties from Remotely Sensed Data by using Machine Learning, MSc thesis, Jožef Stefan International Postgraduate

School, Ljubljana, Slovenia, 2009 .
[43] D. Stojanova , P. Panov , V. Gjorgjioski , A. Kobler , S. Džeroski , Estimating vegetation height and canopy cover from remotely sensed data with machine

learning, Ecol. Inform. 5 (4) (2010) 256–266 .
[44] J. Struyf , S. Džeroski , Constraint based induction of multi-objective regression trees, in: Knowledge Discovery in Inductive Databases, in: LNCS, 3933,

2006, pp. 222–233 .
[45] A . Tsanas , A . Xifara , Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools, Energy

Build. 49 (2012) 560–567 .

[46] G. Tsoumakas , E. Spyromitros-Xioufis , A. Vrekou , I. Vlahavas , Multi-target regression via random linear target combinations, in: Machine Learning and
Knowledge Discovery in Databases, in: LNCS, 8726, 2014, pp. 225–240 .

[47] B. Ženko , Learning Predictive Clustering Rules, Faculty of Computer Science, PhD thesis University of Ljubljana, Ljubljana, Slovenia, 2007 .
[48] I.H. Witten , E. Frank , Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann, 2005 .

[49] S. Xu , X. An , X. Qiao , L. Zhu , L. Li , Multi-output least-squares support vector regression machines, Pattern Recognit. Lett. 34 (9) (2013) 1078–1084 .
[50] Y. Zhang , D.-Y. Yeung , Semi-supervised multi-task regression, in: Machine Learning and Knowledge Discovery in Databases, in: LNCS, 5782, 2009,

pp. 617–631 .

[51] Z.-H. Zhou , M. Li , Semi-supervised regression with co-training style algorithms, IEEE Trans. Knowl. Data Eng. 19 (11) (2007) 1479–1493 .
[52] X. Zhu , Semi-Supervised Learning Literature Survey, Technical Report, Computer Sciences, University of Wisconsin-Madison, 2008 .

http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0019
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0019
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0019
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0019
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0019
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0033
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0033
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0033
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0033
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0034
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0034
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0036
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0036
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0036
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0037
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0037
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0038
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0038
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0038
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0039
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0039
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0039
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0039
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0039
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0040
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0040
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0041
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0041
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0041
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0041
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0041
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0041
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0042
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0042
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0042
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0043
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0043
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0043
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0044
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0044
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0044
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0044
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0044
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0045
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0045
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0046
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0046
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0046
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0047
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0047
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0047
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0047
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0047
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0047
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0048
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0048
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0048
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0049
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0049
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0049
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0050
http://refhub.elsevier.com/S0020-0255(18)30210-X/sbref0050

	Semi-supervised trees for multi-target regression
	1 Introduction
	2 Motivation and contributions
	3 Background
	3.1 Related work
	3.2 Predictive clustering trees for MTR
	3.3 Ensembles of predictive clustering trees for MTR

	4 Semi-supervised learning of PCTs for MTR
	4.1 Feature weighted semi-supervised PCTs for MTR
	4.2 Computational complexity analysis
	4.3 Software availability

	5 Experimental design
	5.1 Data description
	5.2 Experimental setup and evaluation procedure

	6 Results and discussion
	6.1 Analysis of the predictive performances
	6.1.1 Single tree methods
	6.1.2 Ensemble methods

	6.2 Influence of the w parameter
	6.3 Size and interpretability of supervised and semi-supervised trees
	6.4 The influence of unlabeled data

	7 Conclusions
	 Acknowledgments
	 References

