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Abstract

Motivation: The number of sequenced genomes rises steadily but we still lack the knowledge

about the biological roles of many genes. Automated function prediction (AFP) is thus a necessity.

We hypothesized that AFP approaches that draw on distinct genome features may be useful for

predicting different types of gene functions, motivating a systematic analysis of the benefits gained

by obtaining and integrating such predictions.

Results: Our pipeline amalgamates 5 133 543 genes from 2071 genomes in a single massive ana-

lysis that evaluates five established genomic AFP methodologies. While 1227 Gene Ontology (GO)

terms yielded reliable predictions, the majority of these functions were accessible to only one or

two of the methods. Moreover, different methods tend to assign a GO term to non-overlapping

sets of genes. Thus, inferences made by diverse genomic AFP methods display a striking comple-

mentary, both gene-wise and function-wise. Because of this, a viable integration strategy is to rely

on a single most-confident prediction per gene/function, rather than enforcing agreement across

multiple AFP methods. Using an information-theoretic approach, we estimate that current data-

bases contain 29.2 bits/gene of known Escherichia coli gene functions. This can be increased by up

to 5.5 bits/gene using individual AFP methods or by 11 additional bits/gene upon integration,

thereby providing a highly-ranking predictor on the Critical Assessment of Function Annotation 2

community benchmark. Availability of more sequenced genomes boosts the predictive accuracy of

AFP approaches and also the benefit from integrating them.

Availability and Implementation: The individual and integrated GO predictions for the complete

set of genes are available from http://gorbi.irb.hr/.

Contact: fran.supek@irb.hr

Supplementary information: Supplementary materials are available at Bioinformatics online.

1 Introduction

Even though the number of sequenced genomes rises steadily, we still

lack the knowledge about the biological roles of many genes. Gene

function may be determined experimentally, for instance by observing

a phenotype of a mutant organism with an altered or deleted gene of

interest (Brochado and Typas, 2013), allowing curators to annotate

the gene with Gene Ontology (GO) terms (Ashburner et al., 2000) or

with other controlled vocabularies. Experimental essays coupled to

manual curation result in high-quality function assignments, but are

costly, time consuming and cannot keep up with the deluge of new

genome sequences. Reliable automated function prediction (AFP)

methods are, therefore, of key importance for functional annotation

of newly sequenced genomes and metagenomes (Radivojac et al.,

2013, The CAFA Consortium, 2016).

The most common approach to AFP is transferring functions from

homologs—genes with shared ancestry—estimated by sequence
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similarity using BLAST (Altschul et al., 1990) or other tools. In add-

ition to homology, there exist many AFP methods that exploit add-

itional information extracted from the genome sequence, e.g.

conserved gene neighborhoods (Ling et al., 2009), phylogenetic distri-

bution (Pellegrini et al., 1999), protein motifs and biophysical proper-

ties (Ofer and Linial, 2015), codon usage biases (Kri�sko et al., 2014),

remote homology (Hawkins et al., 2009; Sokolov and Ben-Hur,

2010) and composition of protein domains (Hunter et al., 2012;

Punta et al., 2011). Moreover, inference using genomic information

can be further supplemented by experimental data: gene expression

(Tian et al., 2008), protein–protein interactions (Cao and Cheng,

2016) or protein structure (Wass et al., 2012), and also by text mining

the scientific literature (Cozzetto et al., 2013).

Combining diverse AFP models leads to higher accuracy. This

was made evident in the analyses of gene/protein functional associ-

ation networks, constructed using various sources of large-scale

data. Integrating the individual networks resulted in gene modules

that were more functionally consistent (Lee et al., 2004; von Mering

et al., 2005) and could thus more accurately predict gene function

(Troyanskaya et al., 2003; Hu et al., 2009) or phenotypic effects of

gene perturbation (Lee et al., 2010).

One explanation for the benefits of integration is that random

error from individual data sources cancels out, enabling the signal of

gene function to surface. In addition, different sources of genomic or

experimental data may be intrinsically better suited for predicting

some gene functions than for others. For instance, physical protein–

protein interactions more directly correspond to the ‘Cellular compo-

nent’ domain of the GO, while genetic interaction experiments relate

to the ‘Biological process’ GO domain. Such rules may, however, also

extend to the deeper, more informative levels of the GO. A known ex-

ample is the contrast between ribosomal proteins and membrane pro-

teins in yeast, where the former are predictable from gene co-

expression, while in the latter case, protein compositional features are

more relevant (Lanckriet et al., 2004). More generally, assigning

function-specific weights to integrated gene networks inferred from

biological experiments improves AFP accuracy (Myers and

Troyanskaya, 2007; Mostafavi and Morris, 2010). Thus, different

high-throughput experimental assays appear to be better suited for

predicting different aspects of a gene’s role in the cell. Given that AFP

methods often draw on analysis of genome sequences to predict gene

function, it is thus important to systematically characterize the bene-

fits to combining genomic methods.

We therefore investigate to what extent five well-known se-

quence-based methodologies differ in their ability to assign particular

gene functions across many organisms. One known example concerns

stress response genes, where phylogenetic profiling was shown to be

accurate for heat, osmotic and DNA damage responses but codon

usage biases were superior for starvation and oxidative stresses

(�Skunca et al., 2013; Kri�sko et al., 2014). We search for broader

trends of this sort by examining the overlap and complementarity be-

tween purely genome-based AFP methods. An advantage of these

approaches is that they apply to any organism with a genome se-

quence of sufficient quality and do not require costly and time-

consuming large-scale experimentation that is restricted to a handful

of model organisms.

Relying exclusively on genomic data enabled us to perform AFP

on a massive scale, considering>2000 bacterial and archaeal genomes

with>5 million genes in a single analysis, assigning 4145 different

GO functions. Since the amount of sequenced genomes will continue

to rise rapidly, there is a need to characterize the contribution of vari-

ous genomic AFP methodologies toward resolving particular func-

tions of poorly described genes. Crucially, we investigate to what

extent the methods will benefit from future availability of more gen-

omes. Using information-theoretic measures, we quantify the current

knowledge on gene function in model microorganisms, and suggest

that common AFP methods applied to the already-available genome

sequences can provide very high-confidence predictions that increase

this knowledge by at least 20%. The results of our analysis provide

guidelines for integrating predictions of diverse AFP methods. In par-

ticular, one simple but surprisingly accurate strategy is to rely on a sin-

gle most confident prediction for a given gene and function, thus best

exploiting the complementarity between individual genomic

predictors.

2 Methods

2.1 Representing gene families using diverse sets of

genomic features
Our pipeline includes five well-established AFP methods relying on

genomic data, which we examined in terms of complementarity of

their predictions (Fig. 1; implementation details in Supplementary

Material S1).

First, the phyletic profiles (PP) method represents the COG/

NOG gene families (OGs; see below) by the presence/absence pat-

terns of their member genes across 2071 genomes and then makes

inferences about gene functions by comparing such patterns via pair-

wise similarity (Supplementary Fig. S1a; Pellegrini et al., 1999;

Kensche et al., 2008; de Vienne and Azé, 2012) or by machine learn-

ing (Tian et al., 2008; �Skunca et al., 2013).

Second, biophysical and protein sequence properties (BPS)

method includes 1170 features representing amino acid compos-

ition, particular motifs or periodicities (King et al., 2001; Jensen

et al., 2003; Lanckriet et al., 2004; Minneci et al., 2013) and

various sequence statistics (summary in Supplementary Material

S1). Features were extracted using ProFET (Ofer and Linial,

2015).

Fig. 1. A pipeline for automated function prediction from genomic data
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Third, evolutionarily conserved gene neighborhoods (CGN) may

reflect co-regulated genes (Rogozin et al., 2002; Lemay et al., 2012)

and can thus be used to infer gene function (Ling et al., 2009). Here,

the data consist of the average log-distance (in bp) between genes

from individual gene families, measured across all genomes

(Supplementary Fig. S1d). For computational efficiency reasons, the

feature set encompasses the 5891 most common gene families

(occurring in�100 genomes).

Fourth, signal from remote homologs may predict gene function,

because such (individually unreliable) hits may be collectively en-

riched with correct gene functions (Wass and Sternberg, 2008;

Hawkins et al., 2009). We employ the empirical kernel map (EKM)

(Tsuda, 1999; Lanckriet et al., 2004; Sokolov and Ben-Hur, 2010)

approach, wherein sequence similarity between pairs of OGs is con-

sidered by performing searches against a reference set of genomes, in

our case encompassing 6 genomes (Supplementary Material S1) and

8447 OGs therein.

Fifth, evolution of codon usage biases relates to phenotypic di-

vergence (Man and Pilpel, 2007) and can be used to predict the roles

of genes in environmental adaptation (Supek et al., 2010; Kri�sko

et al., 2014). The translation efficiency profiles (TEP) (Kri�sko et al.,

2014) measure codon biases associated to gene expression; similarity

of such profiles suggests co-evolution of expression levels (Fraser

et al., 2004). The profiles are represented with 2071 features indicat-

ing OG’s predicted expression levels throughout genomes, and add-

itionally 5891 features that capture OGs predicted co-expression

patterns (Supplementary Material S1, Supplementary Fig. S1c).

2.2 Integrating across genomes in a single massive AFP

analysis
Importantly, prior to making inferences with each method, we amal-

gamate 5 133 543 genes from the 2071 bacterial and archaeal gen-

omes using COG/NOG gene families, here collectively referred to as

OGs. In particular, we selected 21 626 OGs from the EggNOG 4

database (Powell et al., 2014) that were represented in at least 20

genomes. These OGs form examples in our data sets, each described

by the five distinct groups of features, as described above.

Having a single, cross-genome set of training examples facilitates

unbiased comparisons between the AFP methods, with conclusions

valid for many organisms. Such a gene family-based representation

is moreover orders of magnitude computationally more efficient

than treating thousands of organisms separately (the typically em-

ployed ‘focal species’ approach).

Using OGs as examples bears an implicit assumption that the

genes within an OG share functions, and thus can be represented by

a single data point obtained by integrating over all genes in the OG.

In practice, the GO term labels of the OG were obtained by propa-

gating the known functions of individual genes across the OG, if the

specific function was initially assigned to at least 50% of the OG

member genes that had any known function (as in �Skunca et al.,

2013). This yielded 15 318 OGs with at least one non-root GO term

assigned, which constitute the training set of examples; the remain-

ing 6308 OGs were initially unlabeled but could receive predictions.

Thus, our pipeline first propagates GO annotations via sequence

similarity within the OGs, and then transfers GO functions across

the OGs using machine learning on five genomic representations,

which are orthogonal to the homology transfer employed in the first

step.

A classification model is constructed for each of the five AFP

methods using the supervised learning algorithm CLUS-HMC, a

Random Forest classifier adapted for hierarchical multilabel

classification. CLUS-HMC can exploit the hierarchical relationships

in GO to achieve higher predictive performance (Blockeel et al.,

2006; Vens et al., 2008) and was previously used for AFP tasks

(Schietgat et al., 2010; Slavkov et al., 2010; �Skunca et al., 2013).

For each OG and GO term pair, the classifier outputs a score rang-

ing between 0 and 1, which indicates confidence in assignment of

that function to the OG.

Predictions from the individual classifiers are then combined.

One approach to this is ’early fusion’, which implies joining the five

sets of features together before constructing classification models

(Snoek et al., 2005; Dong et al., 2014). Here, we employ the ’late fu-

sion’ approach, wherein each set of features was used to train a sep-

arate classifier and the outcomes were subsequently combined using

different schemes.

The ’one vote’ scheme requires the support of only a single classi-

fier, meaning it reports the maximum confidence observed among

the individual classifiers. In contrast, ’two votes’ and ’three votes’

schemes require independent support of more classifiers at a given

level of confidence, meaning they report the second-highest and the

third-highest score, respectively. Next, ’weighted voting’ reports the

mean of individual classifiers’ confidences weighted by the classi-

fiers’ accuracy [as the area under precision-recall curve (AUPRC)

score; explained below]. Finally, ’consensus’ considers support

of�1 classifier, reporting confidence at least equal to the maximum

confidence among the individual classifiers, which can be further

increased with calls from additional classifiers. It was computed as:

CconsensusðOGi;GOjÞ ¼ 1�
Y

p2P
ð1� CpðOGi;GOjÞÞ (1)

Cp is a confidence of an individual predictor p that GOj is as-

signed to an OGi. P is the set of five classification models, each

trained on a set of features derived from a single AFP method.

2.3 Complementarity analysis and evaluation measures
First, a visual estimate of overall complementarity between methods

was provided by clustered heatmaps, revealing groups of GO func-

tions well-predicted by each of the methods. Second, precision-recall

(P-R) curves and the corresponding AUPRC score quantify the ac-

curacy of individual predictors and of the integration schemes.

Third, the choice of the scheme(s) is validated on the external

Critical Assessment of Functional Annotation 2 (CAFA 2) bench-

mark (The CAFA Consortium, 2016). Finally, selected scheme(s) are

evaluated in terms of the proportion of genes in model microorgan-

isms that received new GO functions, the amount of novel informa-

tion implied by these functions and the extent to which the

scheme(s) may benefit from additional genome sequences.

In the P-R analysis, the predictors’ generalization ability is esti-

mated using out-of-bag cross-validation (Breiman, 2001) performed

on 15 318 OGs with available GO annotations. For OG-GO pairs,

the confidence scores given by the classifier are converted into the

precision (Pr) scores using P-R curves obtained from cross-

validation. Importantly, unlike the confidence score, Pr has a prob-

abilistic interpretation and is equivalent to 1—false discovery rate

(FDR). Upon combining the confidence scores of the five classifica-

tion models, this integrated score is also converted to a Pr score

using the joint P-R curve. In this approach, the individual fusion

schemes are not inherently more permissive or more stringent, but

the tradeoff between the two extremes can be adjusted by choosing

a Pr threshold for the fused predictions.

The AUPRC summarizes the precision versus recall tradeoff at

various Pr levels. It is computed separately for each GO term by

varying the Pr threshold from one to zero, thus gradually relaxing
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stringency of the predictions and consequently increasing the num-

ber of OGs that receive a GO label. Classifier AUPRC is the mean of

AUPRC scores of the individual GO P-R curves.

Further, both the training set and unlabeled OGs are classified

with each of the five classifiers, following the rationale that the sets

of known functions assigned to OGs may be incomplete (Dessimoz

et al., 2013).

We validate our predictions using data from CAFA 2, an AFP

community challenge where organizers publish a benchmark set of

genes with unknown function (Jiang et al., 2016). After the submis-

sion closes, the experimentally verified annotations for these genes

are collected during a certain period of time and later used to evalu-

ate the competing methods. We benchmarked our results against

CAFA 2 Escherichia coli set of annotations, following rules of the

challenge (the ‘no-knowledge’ benchmark in ‘full evaluation’ mode).

The evaluations of accuracy of the 129 CAFA 2 participating meth-

ods and the BLAST baseline were downloaded from the CAFA web

page. The Fmax measure was computed as the maximum F-measure

(harmonic mean of the precision and recall scores), and its stand-

ard deviation was found using bootstrapping (Supplementary

Material S1).

We estimated the total information in gene function annotations

contributed by different predictors using the information accretion

(IA) measure (Clark and Radivojac, 2013). IA of a GO term quanti-

fies the increase in specialization in the set of genes assigned to that

GO term, compared to its parent in the GO graph. In particular, IA

equals zero when the information content (IC) of a GO term is equal

to its parent. IA was computed as:

IAðGOiÞ ¼ – log2PðGOijTÞ (2)

T is a set of parent terms of GOi and P denotes conditional prob-

ability. We summed the IA of assigned annotations on the gene level

and expressed it in bits per gene, both for the known GO annota-

tions and also for the newly predicted ones in several representative

genomes.

3 Results

3.1 Extensive complementarity between AFP methods
Two methods that predict gene functions are complementary if one

draws on a set of features strongly associated with genes having a

certain function, while the features used by the other method are un-

informative in the context of that specific function.

A simple measure of complementarity is to consider whether a

GO function is learnable by a certain method, here defined as the

method being able to provide at least one prediction at Pr�50%

(equivalent to�50% FDR), estimated in cross-validation. In other

words, the features considered by this method can be used to con-

sistently recover one or more genes with that GO function from the

entire dataset. Out of 4145 GO functions considered in our ana-

lyses, 1227 are learnable by either of the 5 methods or some com-

bination thereof. Remarkably, 30% of these GO functions are only

learnable by a single classifier and inaccessible to the other four.

A further 25% are only learnable by two out of five classifiers (Fig.

2a). In other words, roughly half of the learnable GO terms are not

accessible to the majority of the AFP methods. On the other hand,

only 16% of the GOs are learnable by all of the five classifiers and

moreover these disparities become even more pronounced with a

more stringent threshold for learnability (�20% FDR; Fig. 2b).

This reveals a considerable complementarity between the different

methods: if methods are applied individually, some gene functions

Fig. 2. Complementarity between the AFP methods. (a, b) The number of GO

terms learnable by one, two or more classifiers. (c, d) Distributions of classi-

fiers’ AUPRCs scores for GO terms, stratified by GO domain and by informa-

tion content (IC); lower IC scores denote more general terms. (e, f)

Complementarity patterns in high-IC GO terms in different GO domains,

where rows represent GO terms, columns represent prediction methods and

brighter colors relate to higher accuracy, as AUPRC score (in crossvalidation).

(g) Examples of GO terms learned by TEP better than by the rest of the classi-

fiers. Excess AUPRC for a GO term (color) is computed by subtracting the

AUPRC of the best-performing other classifier from the TEP AUPRC, for a par-

ticular GO. (h) Precision-recall curve for the selected GO term where the TEP

method performs well. PP, phyletic profiles; EKM, empirical kernel map;

CGN, conserved gene neighborhoods; TEP, translation efficiency profiles;

BPS, biophysical and protein sequence properties
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may be predicted highly accurately while the others not at all.

A combination of genome sequence-based predictors is able to

reach many different GO functions, consistent with the success of

past approaches that integrate across large-scale experimental data

sources (Troyanskaya et al., 2003; Lee et al., 2004; Lanckriet

et al., 2004; von Mering et al., 2005; Hu et al., 2009; Lee et al.,

2010).

Next, we compare the accuracy of individual classifiers meas-

ured by the cross-validation AUPRC score (Section 2) for each indi-

vidual GO category (Fig. 2c). A broad trend can be observed when

comparing the three GO domains: the two sequence-based methods

(EKM and BPS) are generally better at predicting molecular function

GOs than the Biological process GOs (p¼3.6*10�7 and 0.02 for

EKM and BPS, respectively; Mann–Whitney test). This is consistent

with their ability to capture protein sequence motifs and structural

features informative of enzymatic activity. On the contrary, the

three ‘genomic context’ methods (PP, TEP and CGN) are better at

predicting the Biological process GOs (p¼10�13, 2*10� 4 and

3*10� 8, respectively). This is consistent with their ability to capture

the signal emanating from genetic interactions, thus describing the

context of a protein in a functional association network.

The methods’ relative performance also broadly differs between

the generality levels of GO functions (Fig. 2d). The sequence motif-

based EKM and BPS methods are more adept at capturing broader,

more general functional categories with IC<5 than the more specific

GOs (p<2*10� 16). In contrast, the genomic context PP and CGN

methods have higher overall performance for the more specific GOs

with IC�5, in comparison to the more general GOs (p¼10� 9 and

p<2*10� 16, respectively).

These broad trends notwithstanding, the predictive accuracy of

individual methods varies widely even between GOs in the same do-

main and of similar IC (Fig. 2e and f; Supplementary Fig. S2a and

c). We therefore next examine the comparative strengths and weak-

nesses of each AFP method with regard to the GO categories they

predict.

Of note, the overall ability to predict GO functions differs be-

tween methods: BPS has the highest AUPRC out of the five methods

for 33% of the 1227 learnable GO terms and PP for 25% of the GO

terms [example GO terms in Supplementary Fig. S2(d–g)].

Nevertheless, the other three methods prove valuable when predic-

tions for particular GO terms are sought. For instance, TEP is the

method with highest cross-validation AUPRC scores for the func-

tions ‘tRNA aminoacylation for protein translation’ and for ‘photo-

synthesis’ (Fig. 2h; Supplementary Fig. S2b) and it exhibits

comparable overall performance to other methods across a set of

other GO terms (Fig. 2g; trends across GO terms for other methods

visualized in Supplementary Fig. S2). Crucially, even two apparently

equally performing methods—exhibiting similar AUPRC for a GO

term—may provide complementary predictions in practice, assign-

ing the function to disjoint sets of genes. We further examine to

what extent this occurs and how can it be exploited to boost predict-

ive power by combining classifiers.

3.2 Method complementarity and prediction fusion
We quantified the complementarity of the five predictors described

above by testing the accuracy of combined predictions. In particular,

we evaluated five different fusion schemes in a cross-validation test

and additionally on the CAFA 2 independent validation set, while

stratifying by GO domain and by the IC of GO terms (Fig. 3;

Supplementary Fig. S3).

Fig. 3. Comparison of predictive performance between individual methods

and integration schemes. (a) Average AUPRC scores for the Biological pro-

cess GO domain computed from precision-recall (P-R) curves, obtained in

cross-validation. Error bars are standard error of the mean. IC, information

content; lower IC denotes more general GO terms. (b) P-R curves computed

by averaging individual Biological process GO term PR curves, stratified by

IC. (c) The Fmax accuracy measure on the CAFA 2 E. coli validation set. Error

bars are standard deviation by bootstrapping the set of benchmark genes. (d,

e) Cross-validation AUPRC scores of the individual Biological process GO

terms, while comparing the ‘best precision’ versus the ‘weighted voting’

scheme (d) and a Pr-based weighted voting scheme in (e). P-values are by

Wilcoxon test. Acronyms are explained in legend of Fig. 2
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Overall, integration schemes perform substantially better than the

individual predictors, regardless of the GO term generality (Fig. 3a

and b) or of the GO domain analyzed [Fig. 3a and b; Supplementary

Fig. S3(a–d)]. For example, the AUPRC scores for the most specific

(IC>10) GO terms range between 0.04 and 0.28 for the five individ-

ual predictors, and between 0.18 and 0.40 for the five fusion schemes

(Fig. 3a; Supplementary Fig. S3d). Therefore, the methods indeed do

cover different sets of genes with their predictions, raising the com-

bined accuracy far above the individual methods.

With respect to strategies to integrate predictions, an appealing

approach is to require that an annotation be made by more than one

independent methodology. Intuitively, enforcing consistency across

the methods would be expected to imply more confidence in the

call. We tested this approach using ‘two votes’ and ‘three votes’

schemes that conservatively annotate functions only if supported

in>1 predictor (Section 2). However, such schemes were routinely

outperformed by the two commonly employed fusion schemes [Fig.

3b; Supplementary Fig. S3(a–d)] that integrate the predictions across

all methods using weights (‘weighted voting’ and ‘consensus’;

Section 2). These integration schemes allow the overall result to

stem only from a single confident prediction, even if it is not consist-

ent across individual methods. This motivated us to test a simplified

strategy where we retain the prediction of the single most confident

model as the final prediction (‘one vote’). Somewhat counterintui-

tively, this approach appears to perform equally well as the

‘weighted voting’ for the general GO terms [Fig. 3b; Supplementary

Fig.S3(a–d)], and similarly well even for the more specific GO terms

(Fig. 3b, Supplementary Fig. S3c and d). This observation can be ex-

plained by the very high complementarity between the methods—if

the majority of reliable annotations are predicted only by a single

method and there is little overlap, even sophisticated methods to

combine them will not improve much over the ‘one vote’ approach,

and might even be counterproductive in some instances.

We further refined the ‘one vote’ scheme to first compute Pr scores

separately for each of the five methods and then to take the highest Pr

score among the methods as an integrated prediction (‘best precision’

scheme; highlighted bar in Fig 3c). This implicitly incorporates infor-

mation, via Pr scores, on the accuracy of classifiers in making each in-

dividual prediction. Such a scheme that considers only a single

prediction with highest Pr (or, equivalently, lowest FDR) performs in-

distinguishably from the commonly ‘weighted voting’ scheme that

combines many classifiers (Fig. 3d; P¼0.09, Wilcoxon signed-rank

test). Notably, a Pr-based weighted voting does not outperform the

‘best precision’ scheme either (Fig. 3e, P¼0.45).

The results from cross-validation were further validated on the

E. coli predictions from the CAFA 2 benchmark. Of note, the two

tests are on a rather different scale: our cross-validation results were

obtained from multiple genomes (15 318 OGs) compared to a single

genome we considered from the benchmark (70 genes).

Furthermore, the number of GOs available for testing was reduced

from 713 to 232 in Biological process and 409 to 139 in Molecular

function domain. The choice of optimal strategy was confirmed on

the largest ‘Biological process’ part of the benchmark: the conserva-

tive ‘two votes’ and ‘three votes’ perform worse than the other

schemes. Moreover, weighted voting does not outperform the simple

‘best precision’ scheme (Fig. 3c). In addition, all types of integration

are beneficial: all schemes performed equally or better than the best

CAFA 2 competitor on the Biological process domain (Fig. 3c).

These trends are broadly confirmed on Molecular function domain

(Supplementary Fig. S3c and d), where best precision and consensus

outperform other schemes and methods. In addition, these two

schemes are in the top 25% of the CAFA 2 competitors for the

molecular function E. coli benchmark (Supplementary Fig. S3e).

3.3 The tally and overlap of newly predicted functional

annotations
We examined the genomes of several model microorganisms in

terms of how many genes could be covered with novel GO predic-

tions at a certain Pr (or equivalently FDR) threshold, given a certain

annotation method or a fusion scheme to combine them (Fig. 4a;

Supplementary Fig. S4). The individual methods could annotate

roughly �1/6 of the genes in the genomes at Pr�50%, e.g. 9–19%

for the different methods in E. coli and 8–16% for Staphylococcus

aureus. Strikingly, using the integration schemes can achieve at least

twice the coverage at the same FDR (36–43% and 28–34%, for E.

coli and S. aureus, respectively). Alternatively, combining classifiers

can increase the precision while achieving similar coverage as the in-

dividual methods. The various fusion schemes perform similarly in

this test, with the consensus and weighted voting having an edge at

very stringent (Pr�90%) thresholds. Of note, genes not included in

OGs cannot be annotated in our setup and contribute towards the

uncovered part of the genome.

Next, we quantified overlaps between methods in terms of par-

ticular genes in model organisms that received predictions at

various Pr thresholds. We observe that the overlap is very low at

high-stringency thresholds: at Pr�90%, 98% genes that received

any annotation in E. coli did so only by a single method (Fig. 4b);

Fig. 4. Coverage of genes for predicted functions in two example microbes

(a,b) and average IA per gene of known versus newly predicted functional an-

notations (c). Proportions of (a) and overlaps in (b) E. coli and S. aureus genes

that received at least one novel specific prediction (IC� 5) at several precision

(Pr) thresholds. Pr is equivalent to 1-FDR. Venn diagrams show approximate

overlap; complete data in Supplementary Table S1. (c) Three example gen-

omes are shown. Colors show an increase in predictions with decreasing

stringency (numbers denote Pr threshold). Method/scheme name is denoted

by the first letter of its name, except CGN¼G. Acronyms are explained in le-

gend of Fig. 2

3650 V.Vidulin et al.

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/32/23/3645/2525646
by guest
on 25 March 2018

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw532/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw532/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw532/-/DC1
Deleted Text: Methods
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw532/-/DC1
Deleted Text: Methods
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw532/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw532/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw532/-/DC1
Deleted Text:  &hx2013; 
Deleted Text: ,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw532/-/DC1
Deleted Text: M
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw532/-/DC1
Deleted Text: The individual and integrated GO predictions for the complete set of OGs and genes therein are available from <ext-link xmlns:xlink=
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw532/-/DC1
Deleted Text:  
Deleted Text: ,
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: s
Deleted Text:  
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw532/-/DC1


this percentage is 100%, 99% and 96% for S. aureus (Fig. 4b),

Bacillus subtilis and Streptomyces coelicolor (Supplementary Fig.

S5), respectively. However, as the stringency is relaxed, the overlap

between the covered genes increases, where at Pr�50% many of

the same genes receive predictions by multiple methods (Fig. 4b;

Supplementary Fig. S5 and Supplementary Table S1). Crucially, this

does not imply that the same GOs are assigned to those genes by the

different methods. Indeed, when quantifying the GO terms that

were annotated to at least one OG at Pr�50%, we observe consid-

erable differences between methods: 36% of the GO terms are as-

signed to at least one OG only by a single method, an additional

30% by two methods and only 6% by all five methods

(Supplementary Table S2). The complementarity is also evident (at

any Pr threshold) in the increased number of GO terms assigned to

any one OG upon applying a scheme to combine the annotations

(Supplementary Fig. S6). Overall, the high accuracy of the integrated

predictors stems both from the complementary in gene functions

each method can predict and in the sets of genes that it assigns a par-

ticular gene function to.

A part of the newly predicted annotations can be validated using

the CAFA 2 E. coli benchmark and so can the overlap of the anno-

tated GO terms for particular genes. We searched for examples of E.

coli genes that received validated annotations at Pr thresholds cor-

responding to Fmax (Supplementary Material S1). While the CAFA 2

E. coli set is not large enough to quantitate the overlap between vali-

dated predictions made by particular methods, we found individual

examples that support the trends observed previously in cross-

validation tests. For instance, the fruA/fruB genes had received cor-

rect predictions from multiple methods simultaneously, and the pre-

dictors for assigned GO terms had low levels of complementarity in

our analyses (max. excess AUPRC¼0.05; Supplementary Fig. S7).

On the other extreme, there are multiple examples of pronounced

complementarity for method-specific GOs (max. excess

AUPRC¼0.39) correctly predicted for the E. coli genes but un-

reachable to other methods, e.g. EKM-specific assignments to

mobB, TEP-specific to ung and BPS-specific to yciS (Supplementary

Fig. S7).

3.4 The present and future potential in function

prediction methods
Next, we turn to address the issue of how well the genes are covered

by novel annotations using different methodologies. In particular,

we measure the total amount of IA (Methods; Clark and Radivojac,

2013) that was contributed by different predictors. We estimate that

the E. coli genome has on average 29.2 bits/gene of currently known

functional annotations spanning all three GO domains (Fig. 4c).

Of that, 8.7 bits/gene is assigned directly from experimental data,

and the other 15.4 bits/gene is assigned using the commonly applied

electronic annotation methods, per the Uniprot-GOA database

(Camon et al., 2005); many of these annotations derive from

InterPro (Jones et al., 2014). We supplement this by a further 5.1

bits/gene obtained by transferring GO annotations across OG

groups (by sequence similarity). Given that the GO electronic anno-

tations are of comparable quality to the manually curated annota-

tions (�Skunca et al., 2012), they are used as input to our function

prediction algorithms. At a permissive threshold of Pr�50%, the

individual prediction methods can assign between 2.8 bits (TEP) and

5.5 bits (BPS) for E. coli genes, on average. Integrating the predic-

tions raises this to a total of 11 bits/gene of newly predicted func-

tions (Fig. 4c, ’consensus’ scheme) at Pr�50%. At a more stringent

threshold of Pr�70%, 3.9 new bits/gene are still available (Fig. 4c,

consensus). Interestingly, the novel annotations apply similarly well

to both the poorly and the well-annotated E. coli genes (10.7 versus

11.8 additional bits/gene for genes in the lower versus upper quartile

by the known bits/gene; Supplementary Fig. S9). This suggests that

there are still many undiscovered biological roles even in the cur-

rently well-annotated genes of a model organism. This trend is

observed consistently across the three GO domains (Supplementary

Fig. S9). For instance, in addition to the existing 108 bits of annota-

tions of the ftsI gene, we predict a further 23 bits, 13 of which were

from the Molecular function domain and the remainder from the

other two domains. The trends above hold also for other organisms,

meaning that AFP methods can also afford great gains in medically

important microbes: S. aureus has 18.4 bits/gene of known annota-

tions but 9.7 additional bits/gene are readily available from predic-

tions; for Streptococcus pyogenes this is 20.8 plus 11.3 bits/gene,

and for Mycobacterium tuberculosis (Supplementary Fig. S8) this is

17.7 plus 8.2 bits/gene (all given at Pr�50%).

Therefore, the established genome-based AFP methods can im-

mediately extend our knowledge of gene function using current

Fig. 5. Accuracy of classifiers increases with addition of genomic data. (a) X-

axes represent the number of randomly sampled genomes (of the 2071 total);

approx. log scale. Y-axes represent classifiers’ AUPRCs (in cross-validation)

averaged over the selected subset of GO terms from the Biological process

domain and error bars show the standard error of the mean. IC, information

content. (b) Slopes of the regression lines for prediction methods/integration

schemes, as average over the slopes of segments connecting adjacent points

in plot; complete table in Supplementary Table S3. Acronyms are explained

in legend of Fig. 2
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data. An important question is how much of this knowledge remains

to be gained in the future, as more genomes are sequenced. We ad-

dress this by sampling from our full set of 2071 genomes and exam-

ining how the accuracy changes with the number of available

genome sequences. Interestingly, for the majority of the tested meth-

ods and integration schemes, the average AUPRC scores increase

approx. linearly with the logarithm of the number of genomes.

Some saturation is evident in the individual methods with the cur-

rent set of �2000 genomes, mostly in the Cellular component GO

domain (Fig. 5a; Supplementary Fig. S10 and Supplementary Table

S3). Crucially, the fusion schemes display very little saturation in all

but the very general GO terms (IC<5) of the Biological process and

Molecular function domains; Fig. 5a; Supplementary Fig. S10 and

Supplementary Table S3). In summary, many AFP methodologies

stand much to gain from increases in size of genomic databases.

Importantly, the integrated predictions generally exhibit steeper

slopes than individual classifiers (Fig. 5b). This suggests that with

more genomes, the complementarities between methods grow more

pronounced and the relative benefit of integrating across many AFP

methods increases.

4 Discussion

Automated gene function prediction is a necessity: the numbers of

sequenced genomes are growing rapidly but the function annota-

tions are not keeping up. The methods that transfer known biolo-

gical roles to homologous genes via sequence similarity searches are

well-established and appear quite successful in community evalu-

ations (Hamp et al., 2013). Thus, they present a baseline that future

methods must build and improve upon, aiming to provide predic-

tions complementary to the commonly employed methods such as

PSI-BLAST or Pfam searches. To this end, we have evaluated five

existing methodologies that produce novel GO annotations from

data orthogonal to standard sequence similarity searches, while

being based exclusively on genome sequences. We find that the

methods are highly complementary: more than half (676/1227) of

examined GO functions are inaccessible to the majority of the AFP

methods, but only to one or two individual predictors. In particular,

the protein sequence-based methods tend to be more adept at cap-

turing general GO terms and those in the Molecular function do-

main, while genomic context methods better capture the specific

GO terms and the Biological process domain. Thus, the output of

various comparative genomics-based AFP approaches needs to be

combined to find functionally coherent groups of genes.

We find that, due to the pronounced complementarity, a simple

yet viable strategy for integrating predictions is to take the predic-

tion of the single most confident model, which performs similarly to

weighted voting schemes. Recent research in machine learning

explored various classifier combination techniques, concluding that

the simple late fusion schemes—not unlike the ones employed in this

work—can double the recall at high precision, if the near-

independence of feature families is properly exploited (Madani

et al., 2013). Consistently, our data also suggest that the benefit

gained from applying and subsequently integrating multiple AFP

methods increases when a higher stringency of predictions is desired

(Fig. 4b).

The scientific community has been painstakingly accumulating

knowledge about protein function by performing experiments in

model organisms, such as E. coli, throughout the past decades. We es-

timate that our current knowledge—to the extent it can be described

by the GO and covered in the available databases—amounts to 29.2

bits per E. coli gene, on average. Established AFP methods that

operate only on genomic data, if combined properly, can increase this

by a further 11 bits/gene. Finally, we show that various integration

schemes benefit from availability of additional genomes more than the

individual methods. This highlights the increasing importance of con-

sidering multiple complementary genomic AFP methods in future

work.
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