Combining Bagging and Random Subspaces to
Create Better Ensembles

Panée Panov and Saso Dzeroski

Department of Knowledge Technologies
Jozef Stefan Institute
Ljubljana, Slovenia
{pance.panov,saso.dzeroski}@ijs.si

Abstract. Random forests are one of the best performing methods for
constructing ensembles. They derive their strength from two aspects:
using random subsamples of the training data (as in bagging) and ran-
domizing the algorithm for learning base-level classifiers (decision trees).
The base-level algorithm randomly selects a subset of the features at each
step of tree construction and chooses the best among these. We propose
to use a combination of concepts used in bagging and random subspaces
to achieve a similar effect. The latter randomly select a subset of the
features at the start and use a deterministic version of the base-level al-
gorithm (and is thus somewhat similar to the randomized version of the
algorithm). The results of our experiments show that the proposed ap-
proach has a comparable performance to that of random forests, with the
added advantage of being applicable to any base-level algorithm without
the need to randomize the latter.

1 Introduction

Random forests [I] are one of the best performing methods for constructing
ensembles of classifiers. They their strength from two aspects: using random
subsamples of the training data, on one hand, and randomizing the algorithm for
learning base-level classifiers (decision trees). The base-level algorithm randomly
selects a subset of the features at each step of tree construction and chooses the
best among these.

We propose to use a combination of bagging [2] and random subspaces [3] to
achieve a similar effect. In bagging, we sample the training set and generate ran-
dom independent bootstrap replicates [4] (random subsamples). The replicates
are then used for learning the base-level classifiers of the ensemble. In the random
subspace method [3], base-level classifiers are learned from random subspaces of
the data feature space. It randomly selects a subset of the features at the start
and uses a deterministic version of the base-level algorithm. This procedure is
somewhat similar to the randomized version of decision tree classifier used with
random forests.

The advantage of this approach over random forests is that it is applicable to
any base-level algorithm without the need to randomize the latter. We show that

M.R. Berthold, J. Shawe-Taylor, and N. Lavra¢ (Eds.): IDA 2007, LNCS 4723, pp. 118-[I29] 2007.
© Springer-Verlag Berlin Heidelberg 2007

Combining Bagging and Random Subspaces to Create Better Ensembles 119

in case of decision trees as base-level algorithm our approach archives comparable
results to random forests.

The rest of the paper is organized as follows. Section 2 gives an overview
of randomization methods for constructing ensembles of classifiers. In Section 3
we present our combined ensemble method. Section 4 describes the experimental
setup. Section 5 covers the results and the discussion and in Section 6 we present
the conclusions.

2 Overview of Randomization Methods for Constructing
Ensembles of Classifiers

Let us consider the standard supervised learning problem. A learning algorithm
is given training examples S of the form S = {(X1,Y1),..., (X, Yn)}, where n is
the number of training samples, for some unknown function Y = f (X). The X,
values are typically vectors of the form X; = (zj1,%j2,....%jp) (j = 1,2,...,n)
where z;, is the value of the k-th feature of example X; and p is the number of
features.

The Y values are typically drawn from a discrete set of classes {c1,...,ck } in
the case of classification or from the set of numbers in the case of regression. In
this work we consider only the task of classification.

The output of the learning algorithm is a classifier which is a hypothesis about
the true function f. Given new examples X it predicts the corresponding Y
values. An ensemble of classifiers is a set of classifiers whose individual decisions
are combined by using some voting scheme (typically by weighted or unweighted
voting) to classify new examples. We will denote the ensemble of classifiers by
E ={C,Cs,...,Cp}, where B is the number of classifiers.

Since there is no point in combining classifiers that always make similar de-
cisions, the aim is to be able to find a set of base-level classifiers that will differ
in their decisions so that they can complement each other. There are different
possibilities how this can be achieved.

One possibility is to have different training sets to train the different base-level
classifiers. This can be done randomly by creating random training sets from the
given sample as is the case of bagging [2] or by using a random subset of features
from the feature set as is the case in the random subspace method [3]. The
classifiers can also be trained in series so that instances on which the preceding
base-level classifiers are not accurate are given more emphasis in training the
next base-level classifiers, like in boosting [5].

Another possibility of inducing ensembles of classifiers is to use randomized
versions of the base-level algorithms or to use different algorithms all together
to train the base-level classifiers.

Also, combined approaches exist that introduce variations in the training set
(e.g bagging) and also use randomized versions of base-level learners (e.g decision
trees). This is the case with random forests introduced by Breiman [IJ.

In this work we focus on combining bagging and the random subspace method
to achieve comparable performance to random forests. In that context, in the

120 P. Panov and S. Dzeroski

remaining part of this section we present an overview of bagging, the random
subspace method and random forests.

2.1 Bagging

Bagging is based on the concepts of bootstrapping [4] and aggregating, and was
introduced by Breiman [2]. Bootstrapping is based on random sampling with re-
placement. Therefore, taking a bootstrap replicate S* = (X{, Xi .., X,ZL) of the
training set S = (X1, X3, ..., X;,), one can sometimes have less misleading train-
ing instances in the bootstrap training set. Consequently, a classifier constructed
on such a training set may have better performance. Aggregating actually means
combining of classifiers.

Often, an ensemble of classifiers gives better results than its individual base
classifiers because it combines the advantages of the base-level classifiers. Bag-
ging gives good results when unstable learning algorithms (e.g. decision trees)
are used as base-level classifiers, where small changes in the training set result
in largely different classifiers. The bagging algorithm is presented in Table [l

Table 1. Bagging

Input: Training examples S, Bag size B
Output: Ensemble F
E<=0
for i =1 to B do
St <= BootstrapSample(S)
C" < ConstructClassifier(S*)
E<EU{C"}
end for
return F

When bootstrapping the training set S = (X1, Xa, ..., X,,), the probability
that the training instance X is selected m times in a bootstrap sample S* is
given in Equation [I}

o) (@) () o

For large n, the binomial distribution can be approximated by the Poisson dis-
tribution, so that each instance has a probability of approximately % of being
left out of a bootstrap sample. Therefore, on average, approximately 37% of the
instances are not present in the bootstrap sample. This means that possible out-
liers in the training set sometimes do not show up in the bootstrap sample. By
that, better classifiers (with smaller error) may be obtained from the bootstrap
sample than from the original training set.

Combining Bagging and Random Subspaces to Create Better Ensembles 121

2.2 The Random Subspace Method

The random subspace method (RSM) is an ensemble construction technique
proposed by Ho [3]. In the RSM, the training set is also modified as in bag-
ging. However, this modification is performed in the feature space (rather than
example space).

Let each training example X in the training sample set S be a p-dimensional
vector X; = (zj1,%j2, ..., Zjp). In the RSM, we randomly select p* features from
the training set S, where p* < p. By this, we obtain the p* dimensional random
subspace of the original p-dimensional feature space. Therefore, the modified

training set S = (f(l, X5, ., Xn> consists of p*-dimensional training examples
Xj = (zj1,Tj2, ..., Tjp*) (j = 1,2, ...,n). Afterwards, base-level classifiers are con-
structed from the random subspaces S® (of the same size), i = 1,2, ..., B, and

they are combined by a voting scheme to obtain a final prediction. The RSM
algorithm is presented in Table

Table 2. Random subspace method

Input: Training examples S, Number of subspaces B, Dimension of subspaces p*
Output: Ensemble E
E<=0
for i =1 to B do
St < Select RandomSubspace(S,p*)
C' < ConstructClassifier(S?)
E«< EU{C'}
end for
return F

The RSM may benefit from using both random subspaces for constructing the
classifiers and aggregating the classifiers. When the number of training examples
is relatively small as compared with the data dimensionality, by constructing
classifiers in random subspaces one may solve the small sample problem. In this
case the subspace dimensionality is smaller than in the original feature space,
while the number of training objects remains the same. When the dataset has
many redundant features, one may obtain better classifiers in random subspaces
than in the original feature space. The combined decision of such classifiers may
be superior to a single classifier constructed on the original training set in the
complete feature space.

The RSM was originally developed for decision trees, but the methodology can
be used to improve the performance of other unstable classifiers (e.g. rules, neural
networks etc.). The RSM is expected to perform well when there is a certain
redundancy in the data feature space [3]. It is noticed that the performance of
the RSM is affected by problem complexity (feature efficiency, length of class
boundary etc.)[6]. When applied to decision trees, the RSM is superior to a
single classifier and may outperform both bagging and boosting [3].

122 P. Panov and S. Dzeroski

2.3 Random Forests

Random forests, introduced by Breiman [I], have been shown to be a powerful
classification and regression technique. In bagging, single models are induced over
bootstrap samples of the training data, and the classification is made by using
some voting scheme. Random forests is a particular implementation of bagging
in which each model is a random tree. A random tree is grown according to the
CART [7] algorithm with one exception: for each split, rather than considering all
possible splits, only a small subset of randomly selected splits is considered (e.g.
a random subset of input features), and the best split is chosen from this subset.
There are two random steps when inducing the trees: the bootstrap sample for
each tree, and random selection of features to split on at every node of the tree.

Let n be the number of training examples, and p the number of variables in the
classifier. Let f be the number of input variables to be used to determine the de-
cision at each node of the tree and f << p (usually f = \/por f = [log2(p) + 1]).
The algorithm for constructing random forests is presented in Table Bl

Table 3. Random forest

Input: Training examples S,Bag size B, Proportion of features considered f
Output: EnsembleE
E<=0
for i =1to B do
S* <= BootstrapSample(S)
C' <= BuildRandomTreeClassi fier(S:, f)
E«<EU{C'}
end for
return F

3 Combining Bagging and Random Subspace Method

In this section, we present an ensemble construction scheme in which new learn-
ing sets are generated on the basis of both bagging and random subspaces.

In this combined method, the training set is modified in two ways. First,
the modification is performed in the training set by taking bootstrap replicates
St = (X}, Xi,...,X}) of the training set S = (X1, X3, ..., X,,). After that, a mod-
ification is performed in the feature space (like in the RSM) on every bootstrap
replicate taken from the training set.

Let each example X} (=1,2,..,n;i =1,2,...B) of a bootstrap replicate S* =
(X{, Xi .., X}l) be a p-dimensional vector X]Z: = (:103'»1, $§»2, - x;p) We ran-
domly select p* < p features from every bootstrap replicate X*. By this, we
obtain the p* dimensional random subspace of the original p-dimensional fea-

ture space. Therefore, the modified training set S = (X% X3, ..., X}l) consists of
p*-dimensional training examples X; = (w§1,$§2, s ,’E;p*) (j=1,2,...,n), where
the p* components x;k (k=1,2,...,p*) are randomly selected from p components

Combining Bagging and Random Subspaces to Create Better Ensembles 123

Table 4. SubBag

Input: Training examples S, Bag size B, Dimension of the subspaces p*
Output: Ensemble E
E<«<0
for i =1 to B do
S* <= BootstrapSample(S)
Si = SelectRandomSubspacg(Si,p*)
C'" < ConstructClassifier(S?)
E<EU{C'}
end for
return F

2l (7 =1,2,...,p) of the training vector X} (the selection is the same for each
training vector). One then constructs base-level classifiers in the random sub-
spaces S’ (of the same size), i = 1,2,..., B, and combines them with a voting
scheme in the final prediction rule. We name this algorithm SubBag and it is
presented in Table [l

4 Implementation and Experimental Setup

For the experimental evaluation of the proposed method, we used the WEKA
[8] data mining environment. In the original implementation some of the en-
semble methods like bagging and random forests were already implemented. We
implemented the random subspace method and our proposed combined method
labeled as SubBag. The reason why the WEKA environment was chosen is that
it offers a variety of learning algorithms and a well defined framework for devel-
opment of new algorithms. The WEKA Experimenter was used for testing and
comparing the performances of different learning algorithms.

Experiments were performed on 19 datasets taken from the UCI repository
[9]. We selected datasets from the repository that have different number of train-
ing instances, different number of features, and different number of classes. A
summary of the datasets used is presented in Table

In this work, we compared four ensemble learning algorithms: SubBag, the
random subspaces method (RSM), bagging and random forests. Experiments
were conducted using three base-level algorithms: J48 which is WEKA’s imple-
mentation of C4.5 [I0] decision tree, JRip which is WEKA’s implementation of
the RIPPER [11] rule learner and the nearest neighbor algorithm IBk [12].

The comparisons of the ensemble algorithms were made with same number of
classifiers (B=50). For the random subspace method and SubBag 75% of the in-
put features were randomly selected for every classifier. With random forests, we
choose |loga(p) + 1| (where p is the number of input variables to the classifier)
variables to be randomly selected for determining the spliting attribute at every
node of the tree. Base-line algorithms were used with parameters as specified here:
J48 algorithm was used to induce unpruned trees, JRip was used to produce un-
pruned rules and IBk algorithm was used with 1 nearest neighbour and the search

124 P. Panov and S. Dzeroski

Table 5. Datasets used in the experiments

Dataset Training set Number of Number of
size features classes
arrhythmia 452 279 16
audiology 226 69 24
autos 205 25 7
cylinder-bands 540 39 2
dermatology 336 34 6
hepatitis 155 19 2
hypothyroid 3772 29 4
ionosphere 351 34 2
optdigits 5620 64 10
sick 3772 29 2
sonar 208 60 2
spambase 4601 57 2
kr-vs-kp 3196 36 2
lung-cancer 32 57 3
mfeat 2000 76 10
molecular-biology-promoters 106 58 2
mushroom 8124 22 2
splice 3190 61 3
sponge 76 45 2

was performed with linear nearest neighbour search algorithm with Eucilidian dis-
tance function. For all datasets a stratified 10-fold cross-validation was performed.
A paired T-test was employed for testing the difference in performances of the al-
gorithms on every dataset seperately. For testing whether the difference in predic-
tive perfomance between the different methods is statisticaly significant over all
datasets, we use the Wilcoxon test [13] that is sugested in [14].

5 Results and Discussion

In this section we present the results of the experiments. We first present the results
of using the J48 decision tree algorithm as base-level classifier then the the JRip
rule learner as a base-level classifier and nearest neighbor algorithm IBk.

In Table[f], we present the percentage of correctly classified instances using J48
as base-level classifier. A statistical comparison was performed with the SubBag
method. From the results we can see that the SubBag method is on average compa-
rable with random forests and performs better than random subspace method and
bagging. Random forests preform statistically better than SubBag for the cylinder-
bands and sonar datasets. Bagging performs statistically better than SubBag on
one dataset, kr-vs-kp. The last column shows the percentage of correctly classi-
fied instances for the baseline algorithm J 441, It is obvious from the results that all
ensemble methods improve the accuracy of the baseline classifier.

! The baseline algorithm was run with confidence parameter C=0.25 and minimum num-
ber of instances in a leaf parameter M=2.

Combining Bagging and Random Subspaces to Create Better Ensembles 125

Table 6. The accuracy of the methods using J48 as base-level classifier (the method
that has the best performance for a given dataset is marked in bold, results from the
performed T-test are marked with o if there is statistically significant improvement or
with e if there is statistically significant degradation with as compared to to SubBag
method)

Dataset SubBag Random Bagging Random J48
subspaces forest
arrhythmia 72.36 68.81 71.92 67.48 ¢ (64.38 @
audiology 86.23 86.70 84.45 80.04 e T7.87 e
autos 87.76 86.76 86.31 86.24 81.88
cylinder-bands 64.26 64.81 62.59 75.37T o0 57.78 e
dermatology 97.55 94.55 ¢ 95.65 96.46 94.00
hepatitis 84.46 81.96 83.21 84.54 83.79
hypothyroid 99.63 99.58 99.60 99.36 99.58
ionosphere 93.46 92.32 93.17 94.03 91.46
optdigits 97.70 97.38 96.23 ¢ 98.11 90.69 e
sick 98.67 98.99 99.05 98.41 98.81
sonar 80.79 76.93 7743 ¢ 87.550 T71.17
spambase 95.37 95.28 94.76 95.70 92.98 e
kr-vs-kp 99.44 99.34 99.72 o 99.25 99.44
lung-cancer 70.83 77.50 70.83 67.50 77.50
mfeat 84.45 82.15e 8215 83.55 75.25
molecular promoters 89.55 83.73 85.45 90.45 80.82
mushroom 100.00 100.00 100.00 100.00 100.00
splice 95.27 94.83 94.61 93.48 94.08
sponge 93.57 93.57 93.57 93.75 92.50

Table 7. Comparison of the predictive performance of ensemble methods using J48 as
base-level classifier with Wilcoxon test

SubBag > Random subspaces p = 0.040043

SubBag > Bagging p = 0.001324
SubBag > Random forests p = 0.489783
SubBag > J48 p =0.001713

In Table [[we present the results of applying the Wilcoxon statistical test
to the accuracies achieved using J48 as a base level classifier. We compared
our proposed method with random subspaces, bagging, random forests, and the
baseline method. In the results, M1 > M2 means that method M1 has better
predictive performance than method M2. The significance is reported by adding
the corresponding p-value. From the results we can see that SubBag archives
statistically significant improvement over random subspaces, bagging and the
baseline method. SubBag performs equally well on these datasets when compared
to random forests.

In Table [§, we present the percentage of correctly classified instances using
JRip as base-level classifier. In this case SubBag was statistically compared with

126 P. Panov and S. Dzeroski

Table 8. The accuracy of the methods using JRip as base-level classifier (for notation
see Table [l)

Dataset SubBag Random Bagging JRip
subspaces
arrhythmia 72.82 72.14 74.81 70.80
audiology 78.28 76.05 78.70 72.98
autos 83.86 83.86 85.83 73.10
cylinder-bands 78.15 79.07 79.26 65.19 o
dermatology 95.63 94.80 92.89 ¢ 86.88 @
hepatitis 83.88 83.21 80.63 78.00
hypothyroid 95.57 95.71 99.420 99340
ionosphere 94.03 93.46 92.89 89.75 e
optdigits 98.17 97.94 97.88 90.78
sick 95.97 96.24 98.670 98220
sonar 86.55 83.10 83.67 73.07 o
spambase 93.28 92.78 94.61 0 92.39
kr-vs-kp 93.74 93.09 99.470 99.190
lung-cancer 80.83 80.83 80.83 78.33
mfeat 83.60 83.75 83.60 73.15 e
molecular promoters 88.55 80.36 87.55 82.91
mushroom 100.00 100.00 100.00 100.00
splice 93.73 92.79 96.11 0 93.70
sponge 92.50 92.50 92.50 92.50

random subspace method and bagging as well as the baseline method JRi[H
From the results we can see that the SubBag method is comparable to the ran-
dom subspace method. Bagging performs statistically better on several datasets
(hypothyroid, sick, spambase, kr-vs-kp and splice) that have a large number
of training examples. The baseline method also performs statistically better on
three datasets (hypothyroid, sick and kr-vs-kp) possibly because of the included
phase of optimization and revision of the produced rules that is a part of the
RIPPER algorithm.

In Table [we present the results of applying the Wilcoxon statistical test
to the performance of ensemble methods using JRip as a base level classifier.
From the results we can see that SubBag achives statistically significant im-
provement over random subspaces and the baseline method. SubBag on these
datasets performs statistically worse than bagging.

In Table [I0, we present the percentage of correctly classified instances using
IBk as base-level classifier. In this case SubBag was statistically compared with
the random subspace method, bagging and the baseline method IBk B. From

2 The baseline algorithm was run with the following parameters: number of folds for
pruning F=3, minimum total weight of the instance in a rule N=2 and number of
optimizations O=2.

3 IBk algorithm was used with 1 nearest neighbor and the search was performed with
linear nearest neighbor search algorithm with Eucilidian distance function

Combining Bagging and Random Subspaces to Create Better Ensembles 127

Table 9. Comparison of ensemble methods using JRip as base-level classifier using
Wilcoxon test

SubBag > Random subspaces p = 0.008590
SubBag < Bagging p = 0.061953
SubBag > JRip p = 3.38454e 1

Table 10. The accuracy of the methods using IBk as base-level classifier (for notation
see Table [))

Dataset SubBag Random Bagging IBk
subspaces
arrhythmia 58.84 58.40 53.50 @ 52.88 e
audiology 80.04 78.26 76.94 77.81
autos 78.88 79.86 75.93 75.93
cylinder-bands 73.70 74.44 74.44 74.44
dermatology 96.72 95.65 94.54 94.54
hepatitis 85.13 83.88 80.63 80.63
hypothyroid 94.35 94.41 91.73 e 91.52 e
ionosphere 91.17 92.60 86.33 ¢ 86.33 e
optdigits 98.88 99.02 98.61 98.61
sick 96.29 96.58 96.24 96.18
sonar 88.50 89.48 86.10 86.57
spambase 94.07 93.91 91.26 ¢ 90.78 e
kr-vs-kp 96.81 96.62 96.62 96.28
lung-cancer 70.83 67.50 64.17 67.50
mfeat 82.25 82.20 80.10 ¢ 80.20 e
molecular promoters 87.82 85.73 86.09 82.27
mushroom 100.00 100.00 100.00 100.00
splice 92.04 91.82 7727 e 7467 @
sponge 95.00 95.00 93.57 92.14

Table 11. Comparison of ensemble methods using kNN as base-level classifier using
Wilcoxon test

SubBag > Random subspaces p = 0.331723
SubBag > Bagging p=2727le*
SubBag > kNN p=27271e?

the results we can see that the SubBag method is comparable to the random
subspace method.

In Table [[I] we present the results of applying Wilcoxon statistical test to
the performance of ensemble methods using IBk as a base level classifier. From
the results we can see that SubBag achieves statistically significant improve-
ment over bagging and the baseline method. SubBag on these datasets performs
comparably well to random subspaces.

128 P. Panov and S. Dzeroski
6 Conclusion and Further Work

In this work we present a new method for constructing ensembles of classifiers
in which new learning sets are generated on the basis of bagging and random
subspaces. This method was compared with other ensemble methods that use
randomization to induce classifiers (bagging, random subspace method and ran-
dom forests). Comparison was performed on 19 datasets from the UCI domain.
As base-level classifiers we used J48 decision tree, JRip rule learner and the IBk
nearest neighbor learner. By application of a paired T-test we investigated the
statistical differences between these methods in terms of classification accuracy
on every dataset separately. We also employed the Wilcoxon test to test the sta-
tistical significance of the methods over all datasets. The experimental results
obtained show that in the case of J48 as a base-level classifier, SubBag performs
comparably to random forests. The added advantage of this combination scheme
is that it is applicable to any base-level algorithm without the need to random-
ize the algorithm itself. In case of JRip as a base-level classifier our method is
statistically comparable to bagging and better than random subspace method.
For the case of IBk as a base level classifier it performs better than random
subspaces and bagging.

As further work, we plan to investigate the diversity of the members of the
ensemble of classifiers induced by our combined approach and compare it to
other ensemble methods in this respect. Another possibility to investigate is
using a different combination of bagging and random subspaces method (e.g.
bags of RSM ensembles and RSM ensembles of bags). Finally, a comparison of
bagged ensembles of randomized base-level classifiers (e.g. a randomized version
of JRip) would be of interest.

Acknowledgments. This work was supported by the EU FP6-516169 project
”Inductive Queries for Mining Patterns and Models”. The authors would like
to thank Dragi Kocev and Ivica Slavkov for providing valuable suggestions for
improving this manuscript.

References

1. Breiman, L.: Random forests. Mach. Learn. 45(1), 5-32 (2001)

2. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123-140 (1996)

3. Ho, T.K.: The random subspace method for constructing decision forests. IEEE
Transactions on Pattern Analysis and Machine Intelligence 20(8), 832-844 (1998)

4. Efron, B., Tibshirani, R.J.: An introduction to the Bootstrap. Monographs on
Statistics and Applied Probability, vol. 57. Chapman and Hall (1993)

5. Schapire, R.E.: The strength of weak learnability. Machine Learning 5, 197-227
(1990)

6. Ho, T.K.: Complexity of classification problems and comparative advantages of
combined classifiers. In: MCS ’00: Proceedings of the First International Work-
shop on Multiple Classifier Systems, London, UK, pp. 97-106. Springer, Heidelberg
(2000)

10.

11.

12.

13.

14.

Combining Bagging and Random Subspaces to Create Better Ensembles 129

Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression
Trees. Wadsworth and Brooks, Monterey, CA (1984)

Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques (Morgan Kaufmann Series in Data Management Systems), 2nd edn. Morgan
Kaufmann, San Francisco (2005)

Newman, D.J., Hettich, S., Blake, C., Merz, C.: UCI repository of machine learning
databases (1998)

Quinlan, J.R.: C4.5: programs for machine learning. Kaufmann Publishers Inc.,
San Francisco, CA, USA (1993)

Cohen, W.W.: Fast effective rule induction. In: Prieditis, A., Russell, S. (eds.) Proc.
of the 12th International Conference on Machine Learning, Tahoe City, CA, pp.
115-123. Morgan Kaufmann, San Francisco (1995)

Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach.
Learn. 6(1), 37-66 (1991)

Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80-83
(1945)

Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1-30 (2006)

	Introduction
	Overview of Randomization Methods for Constructing Ensembles of Classifiers
	Bagging
	The Random Subspace Method
	Random Forests

	Combining Bagging and Random Subspace Method
	Implementation and Experimental Setup
	Results and Discussion
	Conclusion and Further Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

