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Abstract. Constrained based inductive systems are a key component
of inductive databases and responsible for building the models that sat-
isfy the constraints in the inductive queries. In this paper, we propose
a constraint based system for building multi-objective regression trees.
A multi-objective regression tree is a decision tree capable of predicting
several numeric variables at once. We focus on size and accuracy con-
straints. By either specifying maximum size or minimum accuracy, the
user can trade-off size (and thus interpretability) for accuracy. Our ap-
proach is to first build a large tree based on the training data and to
prune it in a second step to satisfy the user constraints. This has the ad-
vantage that the tree can be stored in the inductive database and used for
answering inductive queries with different constraints. Besides size and
accuracy constraints, we also briefly discuss syntactic constraints. We
evaluate our system on a number of real world data sets and measure
the size versus accuracy trade-off.

1 Introduction

The idea behind inductive databases [13, 7] is to tightly integrate databases with
data mining. An inductive database not only stores data, but also models that
have been obtained by running mining algorithms on the data. By means of a
query language, the end user can retrieve particular models. For example, the
user could query the system for a decision tree that is smaller than 20 nodes, has
an accuracy above 80%, and with a particular attribute in the top node. If the
database does not include a model satisfying the constraints, then an induction
algorithm is called to construct it.

In this paper we propose a constraint based induction algorithm for multi-
objective regression trees (MORTSs). MORTSs are regression trees [6] capable of
predicting several numeric variables at once [2]. This has two main advantages
over building a separate regression tree for each target: (1) a single MORT is
usually much smaller than the total size of the individual trees for all variables,
and (2) a MORT explicitates dependencies between the different target variables.



The approach that we propose is to first build a large tree based on the
training data and then to prune it in a second step to satisfy the user constraints.
This has the advantage that the tree can be stored in the inductive database
and used for answering inductive queries with different constraints. The pruning
algorithm that we propose is an extension to MORTSs of the pruning algorithm
for classification trees developed by Garofalakis et al. [12], which in turn is based
on earlier work by Bohanec and Bratko [3] and Almuallim [1]. It is a dynamic
programming algorithm that searches for a subtree of the given tree that satisfies
the size and accuracy constraints. It can either minimize tree size and return the
smallest tree satisfying a minimum accuracy constraint or maximize accuracy
and return the most accurate tree satisfying a maximum size constraint.

After extending the pruning algorithm to MORTS, we present an extensive
empirical evaluation measuring the size versus accuracy trade-off of MORTSs
on several real world data sets. Our evaluation shows (1) that the accuracy of
MORTs is close to that of a set of single-objective regression trees of the same
size, and (2) that in many cases tree size can be reduced significantly (thereby
increasing interpretability) at the expense of only a small accuracy loss.

The rest of this paper is organized as follows. In Section 2, we briefly discuss
MORTSs and their induction algorithm. Section 3 reviews the pruning algorithm
by Garofalakis et al. and Section 4 extends it to MORTSs. Accuracy and syn-
tactic constraints are discussed in Section 5. The empirical evaluation follows in
Section 6. Future work is discussed in Section 7 and Section 8 states the main
conclusions.

2 Multi-Objective Regression Trees (MORTS)

MORTSs are regression trees [6] capable of predicting several numeric target
variables at once. An example of a MORT is depicted in Fig. 1. Each leaf stores
a vector with as components the predictions for the different target variables.

yes no

~

B € {b1,ba}| [0.1,0.1]
/yes no\
[0.9,0.85]  [0.1,0.93]

Fig.1. A MORT predicting two numeric variables.

MORTSs have been introduced as a special instance of predictive clustering
trees [2]. In this framework, a tree is viewed as a hierarchy of clusters: the top-
node corresponds to one cluster containing all data, which is recursively parti-
tioned into smaller clusters while moving down the tree. MORT's are constructed
with a standard top-down induction algorithm similar to that of CART [6] or



procedure ComputeError(N, k)

procedure PruneToSizeK(N, k)

1: if Tree[N, k].computed 1: ComputeError(N, k)
2: return Tree[N, k].error 2: PruneRecursive(N, k)
i %22{%: Z}:f;r;)r :zlleaf,error(N) procedure PruneRecursive(N, k)
5: if £k > 3 and N is no leaf L if N is a leaf
6: for k1 :=1to k—2 2: return
7 o=k —ky —1 3: if k < 3 or Tree[N, k].k1 = —1
S e := ComputeError(Ny, k1) 4 remove children of N
9: +ComputeError(Na, k2) 5: else
10: if e < Tree[N, k].error 6: ki := Tree[N, k].k1
11: Tree[N, k].error := e T kyi=k—ki—1
12: Tree[N, k|.k1 = ki 8 PruneRecursive(N1, k1)
9 PruneRecursive(N2, k2)

13: Tree[N, k|.computed := true
14: return Tree[N, k].error

Fig. 2. The constraint-based decision tree pruning algorithm.

C4.5 [15]. The heuristic used in this algorithm for selecting the attribute tests
in the internal nodes is intra-cluster variation summed over the subsets induced
by the test. Intra-cluster variation is defined as N - Zthl Var[y], with N the
number of examples in the cluster, 7' the number of target variables, and Var[y;]
the variance of target variable ¢ in the cluster. Minimizing intra-cluster variation
results in homogeneous leaves, which in turn results in accurate predictions (the
predicted vector in a leaf is the vector mean of the target vectors of the training
examples belonging to it). More details about MORT's can be found in [2].

3 Constraint-Based Decision Tree Pruning

Fig. 2 defines the pruning method proposed by Garofalakis et al. [12] for comput-
ing for a given maximum tree size k a subtree of the given tree (rooted at node
N) with maximum accuracy (minimum error). First ComputeError is called to
find out which nodes are to be included in the solution and then PruneRecursive
is called to remove the other nodes.

ComputeError employs dynamic programming to compute in Tree[N, k].error
the error of the minimum-error subtree rooted at N containing at most k nodes.
This subtree is either the tree in which N is pruned to a leaf or a tree in which
N has two children (we only consider binary trees) N7 and Na such that N;
(N3) is a minimum error subtree of size at most ky (k2) and k1 + ks = k—1. The
algorithm computes the minimum over these possibilities in the for-loop starting
on line 6. The possibility that NV is pruned to a leaf is taken into account by
initializing the error to leaf_error(N) in line 4. The flag Tree[V, k].computed is
used to avoid repeated computation of the same information.

After ComputeError completes, Tree[N, k|.k; stores the maximum size of
the left subtree in the minimum-error subtree of at most k nodes rooted at N.
Note that if Tree[N, k].k; = —1, then this subtree consists of only the node



N. PruneRecursive is called next to prune nodes that do not belong to the
minimum-error subtree.

The time and space complexity of the algorithm(s) are both O(nk) with n
the size of the tree and k the maximum tree size parameter [12].

4 Size Constraints for MORT's

The pruning algorithm discussed in the previous section was originally devel-
oped in a classification setting with as error measure the number of misclassified
examples or the minimum description length cost. It is however not difficult to
see that the algorithm can be used in combination with any error measure that
is additive, i.e., a measure for which it holds that if a data set is partitioned into
a number of subsets, the error computed on the whole set is equal to the sum of
the errors computed on the subsets in the partition.

Definition 1 (Additive error measure). An error measure f is additive iff
for any data set D and for any partition of D into subsets D; it holds that

f(D) =32 f(Dy).

The additivity property of the error measure is used in lines 8-9 of the Com-
puteError algorithm.

Examples of error measures in the multi-objective regression setting that
satisfy the additivity property are squared error and absolute error.

Definition 2 (Squared and absolute error). Given a data set with N ex-
amples and T targets, squared error is defined as SE = Ef\il ZtT:l(yt,i — ;L/ﬁi)2

and absolute error as AE = vazl EZ;I [Yt.i — Ypil, with ysi the actual and yy
the predicted value for target variable t of example i.

Obviously, the pruning algorithm can also be used to minimize these er-
ror measures by just plugging them in at line 4. Note that minimizing squared
error implicitly also minimizes error measures that are a monotonically increas-
ing function of the former, such as mean squared error (MSE) and root mean
squared error (RMSE). The same holds for absolute error and mean absolute
error (MAE)!. Therefore, the pruning algorithm can be trivially extended to all
these error measures. In the empirical evaluation (Section 6), we will use the
pruning algorithm in combination with squared error (Definition 2).

We end this section with a number of remarks.

— To obtain good results, it is required that the heuristic used for building
the tree is “compatible” with the error measure, i.e., the heuristic should
be designed to optimize the same error measure as is used in the pruning
algorithm. In our case, one might say that this requirement holds because
the intra-cluster variation heuristic locally optimizes squared error. Locally

1
! Or for any error measure based on a Minkowski distance d(z,y) = (3_ |zx — yi|?) 7.



optimizing the error measure is however not always the best choice, e.g.,
in the context of classification trees, one should use information gain as
heuristic and not accuracy [6].

— Some error measures that are used in regression tasks, such as Pearson cor-
relation, are neither additive nor a monotonically increasing function of an
additive measure. These error measures cannot be minimized with the prun-
ing algorithm of Fig. 2.

— Garofalakis et al. [12] also propose a method for pushing the constraints into

the tree building phase. While this makes tree building more efficient, it has
the disadvantage that the resulting tree is specific to the constraints in the
given query and that it cannot be used anymore for answering queries with
other constraints.
Pushing constraints in the case of MORTSs is more difficult than in the case
of classification trees. The reason is that the constraint pushing algorithm
requires the computation of a lower bound on the error of a partially built
tree. To our knowledge, such a lower bound has not yet been defined for
regression trees or MORTS.

— In this paper, we focus on MORTS, but a similar approach is also possible
for predictive clustering trees [2] in general, as long as the error measure
has the additivity property. For example, one could consider multi-objective
classification trees (MOCTSs) with as error measure the number of misclassi-
fied examples summed over the different target variables. For multi-objective
trees with both numeric and nominal target variables one could define an
additive error measure as the (weighted) sum of the measure on the nominal
variables and that on the numeric variables.

5 Maximum Error and Syntactic Constraints

The pruning algorithm can be used to find a subtree with minimum error given
a maximum size constraint. The same algorithm can also be used for solving the
following, dual problem: given a maximum error constraint, find the smallest
tree that satisfies this constraint. To accomplish this, one constructs a sequence
of pruned trees using the algorithm of Fig. 2 for increasing values of the size
constraint k, i.e., k1 =1, ko = 3, ..., k,,, = 2m — 1, until a tree that satisfies the
maximum error constraint is found. The resulting tree is the smallest tree having
an error less than the maximum error constraint. (Computing the sequence of
trees is computationally cheap because the pruning algorithm does not access the
data; leaf_error(N) can be computed and stored for each node before running
the pruning algorithm. Moreover, the Tree[N, k| values of small trees can be
reused when constructing larger trees.)

In the multi-objective regression setting, one approach is to specify the max-
imum error summed over all target variables. Another approach is to specify a
bound for each individual target variable. The latter can be useful if an appli-
cation demands that some target variables are predicted more accurately than
others.



Besides size and error constraints, syntactic constraints are also important
in practice. Although they are not the focus of this paper, we discuss them
briefly. Syntactic constraints can be used as follows in the context of decision
trees. Suppose that a domain expert knows which attributes are important for a
given application. A syntactic constraint can then be used to mine for a decision
tree with such an attribute in the top node. Although other trees with different
attributes in the top node might be equally accurate, the one with the attribute
selected by the expert will probably be more easy to interpret.

CLus, the system that we will use in the empirical evaluation, supports this
type of syntactic constraints. The idea is that the user can specify a partial
tree (a subtree including the root node) in the inductive query. The induction
algorithm is then initialized with this partial tree and the regular top-down
induction method is used to complete it.

The ability to use syntactic (partial tree) constraints allows for a greater
involvement of the user in the construction of the decision tree and a greater
user influence on the final result. Some domain knowledge of the user can be
taken into account in this way.

6 Empirical Evaluation

The goal of our empirical evaluation is two-fold. First we would like to evaluate
the size versus error trade-off that is possible by using the size constraints in
real world applications. Second, we compare single-objective and multi-objective
regression. The hypothesis that we test is that a single multi-objective tree of size
s is equally accurate as a set of single-objective trees, one for each target variable,
each one of the same size s. Having one single small multi-objective model that
is equally accurate is advantageous because it is easier to interpret than a set of
trees. Moreover, it can explicitly represent dependencies between the different
targets. E.g., the tree in Fig. 1 shows that A > 3.1 has a negative influence on
both targets, while (A < 3.1) A (B ¢ {b1,b2}) has a negative influence on the
first target, but a positive effect on the second.

6.1 Experimental Setup

The size, error and syntactic constraints have been implemented in CLUS?. CLUS
is a system for building clustering trees [2] in general and MORTS in particular.

The data sets that we use are listed, together with their properties, in Table 1.
Most data sets are of ecological nature. Each data set represents a multi-objective
regression problem and the number of target variables T varies from 2 to 39. A
detailed description of the data sets can be found in the references included in
Table 1.

For each data set, we run CLUS in single-objective mode for each target
variable and in multi-objective mode. We use 10-fold cross-validation to estimate

2 CLUS is available from the authors upon request.



Table 1. Data set properties: domain, number of instances (IN), number of input
attributes (Attr), and number of target attributes (|T).

Domain Task N Attr |T|
E, Sigmea real [8] 817 4 2
E, Sigmea simulated [11] 10368 11 2
E3 Soil quality 1 [9] Acari/Coll./Biodiv. 1944 139 3
Ey Acari groups 7 7 4
Es Coll. groups ” ” 5
FEs Coll. species ? ” 39
E; Soil quality 2 [14] 393 48 3
Es Water quality [10] Plants 1060 16 7
Ey Animals ? ” 7
Evo Chemical 1060 836 16

the performance of the resulting trees. For each run, we build one large tree,
store it, and then generate subtrees of this tree using the pruning algorithm
discussed in Section 3 for different values of the size constraint k. We set the
pruning algorithm to minimize squared error on the training set. (Le., we follow
the approach proposed in [12]. Note that the algorithm can also be used in
combination with a separate validation set.)

We also include results obtained with the M5’ system from the Weka toolkit
[17]. Note that M5’ only supports single-objective regression.

6.2 Results

Fig. 3 and Fig. 4 present the results. For each experiment, the mean squared
error (MSE) and the average squared Pearson correlation r2 (averaged over the
T target variables) is reported. For most data sets, the results for the multi-
objective tree are close to these of the set of single-objective trees (SORTS),
especially for large tree sizes. Most results are slightly in favor of the SORTSs.
Hence, the increased interpretability offered by MORTSs comes at the price of a
small increase in error. One exception is Soil quality 2, where MORTSs perform
a little better than SORTs. This effect can be explained by the fact that the
target variables are highly correlated in this data set.

The largest performance difference is obtained on Soil quality 1, Collembola
species. Here SORTSs perform clearly better than MORTs. But the number of
target variables (39) is also high. Note that this also implies that the total size of
the SORTSs is 39 times the size of the MORT. To investigate this effect further,
we have plotted the results with total model size on the horizontal axis in Fig. 5
and Fig. 6. These results show that for a given total size, the error obtained
with a MORT is in 6 out of 10 data sets clearly smaller than that of the set of
SORTSs. (For the other 4, the measured error is similar.)

Observe that the error curves are typically flat for a large size-interval. There-
fore, tree size can in most cases be kept small without loosing much accuracy.
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Fig. 3. Comparing the MSE and average squared correlation r2 of SORTs and MORTs
for different values of the size constraint k.
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Fig. 4. Comparing the MSE and average squared correlation r2 of SORTs and MORTs
for different values of the size constraint k.

Based on graphs as in Fig. 3 and Fig. 4 the domain expert can easily select a tree
that has a good trade-off between size (and thus interpretability) and accuracy.

It is interesting to note that no overfitting occurs, except in Soil quality 2.
I.e., for most data sets, the error decreases with tree size to a constant value and
does not increase again for larger trees.

The graphs also include results for M5’ in regression tree mode. Accuracy-
wise, the results of M5’ are close to the results obtained with CLUS. The size of
the M5’ trees is always situated in the flat part of the error curve. For some data
sets M5’ generates trees that are rather large. The most extreme case is Sigmea
Simulated where it generates a tree with 77 nodes. By setting a size constraint,
unnecessarily large trees can be easily avoided.

To summarize, MORTSs together with size constraints are a good choice if
interpretability is important and a small loss in accuracy can be tolerated. If
accuracy is more important, then a larger MORT might still be preferable over
a set of SORTSs, of which the total size will be even larger.

7 Further Work

As we already noted in Section 4, the size and error constraints can also be
extended to multi-objective classification and multi-objective prediction with
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Fig. 6. MSE and average squared correlation 72 versus total model size.

both nominal and numeric targets. We would like to experimentally evaluate
these settings as well.

We are also planning to compare the MORT and SORT settings in more
detail. Currently, we have compared the extreme case where each target attribute
is predicted by a single regression tree to the other extreme case where all target
attributes are predicted by one single MORT. An in-between approach could be
to partition the target attributes into subsets and construct a MORT for each
subset. Target attributes that depend in a similar way on the input attributes
should be combined in the same subset. Clearly, constructing sets of MORT's for
all possible partitions and picking the partition that minimizes a given trade-
off between error and complexity would be too expensive. Therefore, we would
like to investigate heuristic approaches. One method could be to construct the
partition by clustering the attributes using correlation as similarity measure,
i.e., to put highly correlated attributes in the same cluster. Note that we already
observed in the experiments in Section 6 that MORTSs perform good if the target
attributes are highly correlated.

We would also like to investigate the effect of several parameters of the input
data on the relative performance of a MORT compared to a set of SORTSs, such
as training set size or the effect of noise.

Furthermore, we would like investigate the use of MORT'Ss in ensemble meth-
ods. This has already been explored to some extent by Sain and Carmack [16],



who propose a boosting approach with MORTSs. Similarly, MORTSs could be used
for bagging [4] and in random forests [5].

8 Conclusion

In this paper, we have proposed a system for constrained based induction of
multi-objective regression trees (MORTS). It supports size, error and syntactic
constraints and works in two steps. In a first step, a large tree is built that
satisfies the syntactic constraints. This tree is stored in the inductive database
and used in a second step to generate trees that satisfy particular size or er-
ror constraints. To accomplish this, we have extended the pruning algorithm
introduced by Garofalakis et al. to MORTSs. Two modes of operation are sup-
ported: (1) given a maximum size constraint, return a subtree with the smallest
error, and (2) given a maximum error constraint, return the smallest subtree
that satisfies this constraint.

While we have focused on MORTS, the pruning algorithm can also be ex-
tended to predictive clustering trees in general. E.g., it can also be used for
multi-objective classification and multi-objective prediction with both nominal
and numeric targets.

In an empirical evaluation, we have tested our approach on a number of real
world data sets. Our evaluation shows (1) that the accuracy of MORTS is close
to that of a set of single-objective regression trees, each of the same size, and
(2) that in many cases tree size can be reduced significantly (thereby increasing
interpretability) at the expense of only a small accuracy loss. MORTSs together
with size constraints are thus a good choice if interpretability is important and
a small loss in accuracy can be tolerated. Moreover, if we consider total size
instead of average tree size, we observe that for a given total size, the error
obtained with a MORT is smaller than or similar to that of a set of SORTs.
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