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In biology, analyzing time course data is usually a two-step process, beginning with clustering of
similar temporal profiles. After the initial clustering, depending on the expert’s knowledge,
descriptions of the clusters are elucidated (e.g., Gene Ontology terms that are enriched in the
clusters). In this paper, we investigate the application of so-called predictive clustering trees
(PCTs) for the analysis of time series data. PCTs are a part of a more general framework of

predictive clustering, which unifies clustering and prediction. Their advantage over usual
clustering approaches is that they partition the time course data into homogeneous clusters while
at the same time providing symbolic descriptions of the clusters. We evaluate our approach on
multiple yeast microarray time series datasets. Each dataset records the change over time in the
expression level of yeast genes as a response to a specific change in environmental conditions. We

demonstrate that PCTs are able to cluster genes with similar temporal profiles, yield a predictive
model of the temporal profiles of genes based on a cluster prototype, and provide cluster

descriptions, all in a single step.

1. Introduction

Gene expression is a temporal process that is highly regulated.
Much work in bioinformatics studies this process in order to
better understand the function of individual genes and to gain
insight into complete biological systems. The task most
commonly addressed in this context is the task of clustering
time series of gene expression data, where the aim is to
discover groups of genes with similar temporal profiles of
expression and to find common characteristics of the genes in
each group. Clustering genes by their time expression pattern
is important, because genes that are co-regulated or have a
similar function will have similar temporal profiles under
certain conditions.

The purpose of our research is to develop a clustering
approach that is well suited for analyzing short time series,
and to demonstrate its usefulness on time series expression
data. Besides finding clusters, e.g., groups of genes, we also
aim to find descriptions/explanations for the clusters. Instead
of first clustering the expression time series and elucidating the
characteristics of the obtained clusters later on (as done in,
e.g., ref. 1), we perform so-called constrained clustering, which
yields both the clusters and their symbolic descriptions all in
one step.

The constrained clustering is performed by using predictive
clustering trees (PCTs), which are a part of a more general
framework, namely predictive clustering. This general framework
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of predictive clustering combines clustering and prediction.”
Predictive clustering partitions a given dataset into a set of
clusters such that the instances in a given cluster are similar to
each other and dissimilar to the instances in other clusters.
In this sense, predictive clustering is identical to regular
clustering.® The difference is that predictive clustering associates
a predictive model to each cluster. This model assigns instances
to clusters and provides predictions for new instances. So far,
decision trees™* and rule sets® have been used in the context of
predictive clustering.

This paper investigates how predictive clustering can be
applied to cluster time series,® i.e., sequences of measurements
of a continuous variable that changes over time. For example,
Fig. 1a shows eight time series partitioned into three clusters:
cluster C; contains time series that increase and subsequently
decrease, C» has mainly decreasing time series and C; mainly
increasing ones. Fig. 1b shows a so-called predictive clustering
tree (PCT) for this set of clusters. The tree represents a
hierarchical clustering of the time series, where each leaf
corresponds to one of the three clusters. At each leaf, a
prototype is given for the cluster. This is the predictive model
associated with the cluster. Finally, each cluster is described by
a set of conditions. For example, cluster C; includes all genes
that are annotated with the Gene Ontology terms
“G0:0043232” and “GO0O:0000313”.

We first propose an extension of the general PCT induction
algorithm? to the task of time series clustering. We use the
name “Clus-TS” (Clustering-Time Series) for this extension.
From a computational viewpoint, applying the PCT induction
algorithm to time series clustering is non-trivial because the
general algorithm requires computing a centroid for each
cluster and for most distance measures suitable for time series
clustering, no closed algebraic form centroid is known.
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Fig. 1 (a) A set of time series clustered into three clusters. (b) A predictive clustering tree associated with this clustering. Each leaf of the tree
corresponds to one cluster and stores the cluster’s prototype which is used for prediction.

We also demonstrate the usefulness of Clus-TS on several
time series datasets generated by microarray expression
profiling.” Each dataset records the change over time in the
expression level of yeast genes in response to a different type of
change in environmental conditions. There has been significant
research related to clustering this type of short time series gene
expression data,’® 1% using several different distance measures.
Our approach uses an alternative distance measure (that
mainly takes the shape of the time series into account) and
constructs clusters together with their explanations in terms of
a given set of descriptive features. Here, as descriptive features,
we consider terms from the Gene Ontology (GO),'* but this
can be extended to any other type of gene descriptions (e.g.,
KEGG pathways,' regulatory motifs). The GO terms appear
in the internal nodes of the PCT (Fig. 1b) and provide a
symbolic description of the clusters.

In the remainder of the paper, we first give an overview of
related work. We next present our methodology in more detail:
this includes a description of the predictive clustering framework,
the PCT induction algorithm, the distance measure used for
clustering, and the methodology for evaluating predictive error.
We then present the results of our analysis of the yeast gene
expression time profiles, where we evaluate our approach in
terms of predictive error and the usefulness of the descriptions
derived from the PCTs. We conclude the paper with a discussion
in light of the presented results and methodology.

2. Related work

A large body of work has been devoted to the task of
analyzing expression time series data. Bar-Joseph'® presents
an overview of the most important aspects that are relevant
when analyzing expression time series data. This includes
experimental design, data preprocessing (dealing with differences
in sampling rates, missing values, and noise), finding significant
genes, modeling gene interaction, and clustering expression
time series.

Many different clustering algorithms® have been used to
cluster expression time series data. The most well-known
algorithm is probably UPGMA, which was proposed by Eisen
et al. in 1998'7 and performs hierarchical clustering based on
correlation. More recently, several advanced time series
clustering methods have been presented. These model the time
series, for example, using spline curves,®'® an autoregressive
model,'"!3 or a mixture of hidden Markov models.'?

Datta and Datta® compare six clustering algorithms for
expression time series data experimentally. Their comparison
includes two hierarchical clustering algorithms (among which
UPGMA), divisive clustering (Diana), fuzzy clustering (Fanny),
a model based clustering method, and k-means. They found
Diana to be a solid and robust performer across different
evaluation measures. A review of the most common evaluation
measures for clustering is provided by Handl et al.'®

Often, the clustering methods are not applied to all genes,
but only to genes that do respond to the change in environ-
mental conditions or treatment. A gene responds to the
treatment if the null hypothesis stating that its expression over
time is constant can be rejected.'® Several methods have been
proposed to identify such genes and a comparison can be
found in Mutarelli et al.>® An advantage of our method is that
it detects such genes during the clustering process itself by
assigning confidence values to genes.

Due to the cost of microarray analysis and of obtaining
samples, most expression time series are relatively short
(<8 points). Ernst ez al.' propose a clustering method designed
for such short time series. Their method creates all possible
expression profiles under the constraint that the maximal
expression change between subsequent time points is bounded
by a fixed number of units. It then assigns time series to the
closest profile (in terms of correlation) thereby forming clusters.
Our method is also tailored to short time series, but instead of
using correlation, we opt for a qualitative distance measure that
can be reliably estimated from short time series.

After clustering, Ernst er al.' label the clusters by finding
GO categories that are significantly enriched in the clusters.
Our method also provides a description for each cluster in
terms of GO categories, but finds these during the constrained
clustering process itself. As a result, all genes in a cluster
are guaranteed to belong to the GO categories from the
description. This is closely related to the constrained clustering
method by Sese er al.*' The main difference is that their
method deals with static gene expression data and not with
time series, and that their cluster descriptions are restricted to
item-sets.

3. Methodology

3.1 Prediction, clustering, and predictive clustering trees

Predictive modeling aims at constructing models that can
predict a target property of an object from a description of
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the object. Predictive models are learned from sets of exam-
ples, where each example has the form (D,T), with D being an
object description and T a target property value. For example,
D can be the measured gene expression levels of a certain
sample, and 7 whether the corresponding tissue is cancerous
or healthy. While a variety of representations, ranging from
propositional to first order logic, have been used for D, T is
almost always a single target attribute called the class, which
is discrete for classification problems or continuous for
regression problems.

Clustering,® on the other hand, is concerned with grouping
objects into subsets of objects (called clusters) that are similar
with respect to their description D: this is called distance based
clustering. There is no target property defined in clustering
tasks. In conventional clustering, the notion of a distance (or
conversely, similarity) is crucial: examples are considered to be
points in a metric space and clusters are constructed such that
examples in the same cluster are close according to a particular
distance defined on the descriptive space D. A centroid (or
prototypical example) may be used as a representative for a
cluster. The centroid is the point with the lowest average
(squared) distance to all the examples in the cluster, i.e., the
mean or medoid of the examples. Hierarchical clustering and
k-means clustering are the most commonly used algorithms
for this type of clustering.’

Predictive clustering® combines elements from both
prediction and clustering. As in clustering, we seek clusters
of examples that are similar to each other. The distance
measure is defined on D U T, taking both the descriptive part
and the target property into account. In addition, a predictive
model must be associated to each cluster. The predictive model
assigns new instances to clusters based on their description
D and provides a prediction for the target property 7. A
well-known type of model that can be used to this end is the
decision tree.”> A decision tree that is used for predictive
clustering is called a predictive clustering tree (PCT,
Fig. 1b). Each node of a PCT represents a cluster. The
conjunction of conditions on the path from the root to that
node gives a description of the cluster. Essentially, each cluster
has a symbolic description in the form of a rule (IF conjunction
of conditions THEN cluster)i, while a tree structure represents
the hierarchy of clusters. Clusters that are not on the same
branch of a tree do not overlap.

In Fig. 1, the description D of a gene consists of GO terms
with which the gene is annotated, and the target property 7' is
the time course expression recorded for that gene. In general,
we could include both D and T in the distance measure.
We are, however, most interested in the time course part.
Therefore, we define the distance measure only on 7. We
consider the so-called qualitative distance measure (QDM),>*
described in section 3.5. The resulting PCT (Fig. 1b) represents
a clustering that is homogeneous w.r.t. T and the internal
nodes of the tree provide a symbolic description of the clusters.
Note that a PCT can also be used for prediction: we can use
the tree to assign a new instance to a leaf and take the centroid
(denoted with ¢; in Fig. 1b) of the corresponding cluster as a
prediction.

1 This idea was first used in conceptual clustering.?

3.2 Building predictive clustering trees

The generic algorithm for constructing PCTs? is presented in
Table 1. It is a variant of the standard greedy recursive
top-down decision tree induction algorithm used in ref. 22.
It takes as input a set of instances /; in our case these are genes
described by GO terms and their associated time course
measurements. The algorithm calls the procedure BestTest
(Table 1, right) to search for the best acceptable test (GO
term) that can be put in a node. If such a test r* can be found
then the algorithm creates a new internal node labeled #*, splits
the instances into several subsets (partition P*) according to
the outcome of the test for each instance, and calls itself
recursively to construct a tree for each of the subsets in P*.
If no acceptable test can be found, then the algorithm creates a
leaf, and the recursion terminates. The procedure “Acceptable”
defines the stopping criterion of the algorithm, e.g., specifying
maximum tree depth or a minimum number of instances in
each leaf. We enforce different constraints on the size of the
tree by means of the post pruning method proposed by
Garofalakis et al.,”> which employs dynamic programming
to find the most accurate subtree no larger than a given
number of leaves.

Up till here, the algorithm is identical to a standard decision
tree learner. The main difference is in the heuristic that is used
for selecting the tests. For PCTs, this heuristic is the reduction
in variance (weighted by cluster size, see line 6 of BestTest).
Maximizing variance reduction maximizes cluster homo-
geneity. The next section discusses how cluster variance can
be defined for time series.

An implementation of the PCT induction algorithm is
available in the Clus system, which can be obtained at
http://www.cs.kuleuven.be/~dtai/clus.

3.3 Computing cluster variance

The PCT induction algorithm requires a measure of cluster
variance in its heuristics. The variance of a cluster C can be
defined based on a distance measure as

Var(C) :%Zd%x, ¢), (1)

XeC

Table 1 Pseudo-code for the algorithm Clus that induces predictive
clustering trees (PCTs). The two key subroutines of the algorithm are
BestTest(7) and Centroid(Z). The first selects the best test 1* among the
possible tests, according to the heuristic 4, which for each test
t measures the reduction of variance between the dataset / and the
partition P = I,, I, produced by the test. The second procedure
calculates the cluster centroid

procedure PCT(I)
1: t* = BestTest(I)
2: if t* # none then

procedure BestTest(])
1: (%, h*, P*) = (none, 0,0)
2: for each possible test ¢ do

3: for each I, € P* do 3 I ={elee I Ni(e) = true}

1: tree, = PCT(Iy) A: I,=1NI\I

5: return node(t*, |J,{trees}) 5 P={h,1}

6: else 6 h="Var(l)=3, .p \,Tk\‘ Var (1)
7 return leal(Centroid(I)) 7: if (b > h*) A Acceptable(t, P)

then (#*,h*, P*) = (t,h, P)
8: return t*

procedure Centroid(7)

return argming Y., o, d*(x,q)
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with ¢ the cluster centroid of C. To cluster time series, d should
be a distance measure defined on time series, such as the QDM
defined in section 3.5.

The centroid ¢ can be computed as argmin, > yec P(X, q).
We consider two possible representations for c¢: (a) the
centroid is an arbitrary time series, and (b) the centroid is
one of the time series from the cluster (the cluster prototype).
In representation (b), the centroid can be computed with |C|?
distance computations by substituting ¢ with each time series
in the cluster. In representation (a), the space of candidate
centroids is infinite. This means that either a closed algebraic
form for the centroid is required or that one should resort to
approximative algorithms to compute the centroid. No closed
form for the centroid is known in representation (a) for the
QDM distance.

An alternative way to define cluster variance is based on the
sum of the squared pairwise distances (SSPD) between the
cluster elements, i.e.,§

Var(C) = ﬁ SN &, y). )

XeCYyeC

The advantage of this approach is that no centroid is required.
It also requires |C|> distance computations. This is the
same time complexity as the approach with the centroid in
representation (b). Hence, using the definition based on a
centroid is only more efficient if the centroid can be computed
in time linear in the cluster size. This is the case for the
Euclidean distance in combination with using the pointwise
average of the time series as centroid. For QDM no such
centroids are known. Therefore, we choose to estimate cluster
variance using the SSPD.

A second advantage is that (2) can be easily approximated
by means of sampling, e.g., by using,

ax,Y) |, (3)

1
Var(C) = 3[Clm Z Z

XeC \ Yesample(C,m)

with sample(C, m) a random sample without replacement of m
elements from C, instead of (2) if |C| > m. The computational
cost of (3) grows only linearly with the cluster size. In the
experimental evaluation, we only use (3), as a previous
experimental comparison shows only small differences
between (2) and (3) (results not shown).

The PCT induction algorithm places cluster centroids in its
leaves, which can be inspected by the domain expert and used
as a prediction. For these centroids, we use representation (b)
as discussed above.

3.4 Estimating the predictive error of PCTs

PCTs make predictions just like regular decision trees.2? They
sort each test instance into a leaf and assign as prediction the
label of that leaf. PCTs label their leaves with the training set
centroids of the corresponding clusters.

To evaluate the predictive performance of PCTs, we first
need an error measure and also a method to estimate it. For an

§ The factor 2 in the denominator of (2) ensures that (2) is identical to
(1) for the Euclidean distance.

error measure we use the root mean squared error (RMSE),
which is defined as:

RMSE(I, T) = \/ﬁzcﬂmn series(X)),  (4)

Xel

with 7 the set of test instances, 7" the PCT that is being tested,
T(X) the time series predicted by T for instance X, series(X) the
actual series of X, and d the qualitative time course distance
measure (described in section 3.5).

For estimating the predictive performance of the PCTs we
use k fold cross-validation. In cross-validation the dataset D is
first split into k random subsets {D,, D,, ...D,}. We then use
k — 1 subsets to build the predictive model (in this case the
PCT) and we record its error (i.e., RMSE) on the left-out
subset(fold). We repeat this k times, each time leaving out a
different subset for testing the error. We obtain the final error
estimate by averaging the errors obtained for all of the n
instances of the dataset D.

err = %Z err(PCT(D_;), D;) (5)

i€eD

3.5 Qualitative distance measure

Several distance measures have been defined for time series. If
all time series have the same length then one can represent
them as real valued vectors and use standard vector distance
measures such as the Euclidean or Manhattan distance. It is
also possible to use a correlation based measure to determine
the degree of linear dependence between two time-series.'’
Dynamic Time Warping (DTW)?® is appropriate to capture
non-linear distortion along the time axis and it is suitable if the
time series are not properly synchronized (this is useful if one
is delayed, or if the two time series are not of the same length).

These measures are, however, not always appropriate for
time course clustering, and in particular not for analyzing the
short time courses of expression data. The simple Euclidean or
the DTW distance mainly capture the difference in scale and
baseline. If a given time series is identical to a second time
series, but scaled by a certain factor or offset by some constant,
then the two time series will be distant (Fig. 2). Correlation is
difficult to properly estimate if the number of observations is
small (i.e., short time course data) and it only captures the
linear dependencies between the time series.

For our application (i.e., clustering short time course gene
expression data), the differences in scale and size are not of
great importance; only the shape of the time series matters.
Namely, we are interested in grouping together time-course
profiles of genes that react in the same way to a given
condition, regardless of the intensity of the up- or down-
regulation.

For that reason, we use the qualitative distance measure
proposed by Todorovski er al.* It is based on a qualitative
comparison of the shape of the time series. Consider two time
series X and Y (Fig. 2). Then choose a pair of time points i and
j and observe the qualitative change in the value of X and Y at
these points. There are three possibilities: increase (X; > X)),
no-change (X; & X)), and decrease (X; < X)). dqua is obtained
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by summing the difference in qualitative change observed for 4. Results

X and Y for all pairs of time points, i.e., ) )
In this section, we present and evaluate the results of the

analysis of time course gene expression data with PCTs. The

dgual (X, Y) Z Z 2 Diff(q Xf’ Xj).a(¥s, Y/))7 (6) expression data measures the response of yeast genes to
N-(N-1) different types of environmental stress and we first give a brief
description of it. We then show how the produced PCT models

with Diff(q1.¢>) a function that defines the difference between can be interpreted in order to obtain biologically meaningful
different qualitative changes (Table 2, Fig. 2). Roughly knowledge. We also discuss the similarity of the biological
speaking, dyy, counts the number of disagreements in change processes that are involved in the response to different types

i=1 j=i+1

of Xand Y. of stress. We finally present the results of experiments
QDM does not have the drawbacks of correlation based performed for assessing the predictive performance of the
measures. First, it can be computed for very short time series, constructed PCTs.

without decreasing the quality of the estimate. Second, it
captures the similarity in shape of the time series, regardless

. o . - 4.1 Dataset description
of whether their dependence is linear or non-linear (Fig. 2).

For our experiments, we use the time-series expression data
Table 2 The definition of Diff(¢1.q2) from the study conducted by Gasch ef al.,” which are publicly
available. The purpose of the study is to explore the changes in

Difftq1.q2) Increase No-change Decrease  oxpression levels of yeast (Saccharomyces cerevisiae) genes
Increase 0 0.5 1 under diverse environmental stresses. The gene expression
No-change 0.5 0 0.5 levels of around 5000 genes are measured at different time
Decrease 1 0.5 0 . . . .
points using microarrays. The data is log-transformed and
(a) T T T T (b) T T T T
5 I dBucnia(X,Y) = 2.45 § 5F dBucna(X,Y) = 2.65 .
(v!]_)']‘\\'(‘\'. Y) = 0.63 r {f[_) W ( \ Y ) = 0.75
4 d (X, Y)=0 - 4 =0.1 -
(’!r;n;a](‘\—\ Y)=0
3 b - 3k :
2+ - 2+ .
1+ . 1 .
0 1 s 3 0 1 2 3
Time Time

Fig. 2 Comparison of four distance measures for time series. Time series (a) are linearly related resulting in d.(X, Y) = 0. Time series (b) are
non-linearly related, but still have a similar shape, resulting in dq, (X, ¥) =

G0O:0044085
yes no /-\._\ h\’.‘)ﬂ
/
C GO:0006412

yes no |Cy| = 532 Cy| =125 Cs| = 251
RMSE = 0.26 RMSE = 0.21 RMSE = 0.31
[GO:0044429]  [GO:0009451]

yes 1o yes 1o "'\k./-"/._' i
s N s N
Cy Cs (4 Cs

Cy| = 96 5| = 4204
RMSE = 0.34 RMSE = 0.47

Fig. 3 On the left-hand side, we show a sample PCT with 5 leaves, produced for the diamide treatment dataset. The GO terms that appear in the
nodes are used as descriptions for clusters C; to Cs, found at the leaves of the tree. On the right-hand side, we show each predicted cluster
prototype, and its related cluster size and RMSE. Clusters C; to C3 show significant temporal changes in gene expression and have a relatively low
error. Cluster C, includes genes that have an immediate and very significant down-regulation during diamide exposure. C; shows the same
tendency, except the genes are less down-regulated and there is a short time-lag in their response. Cluster C, contains genes that are up-regulated
during stress. All three cluster prototypes show that changes in gene expression levels are transient. If we just follow the “no” branch of the tree we
reach the cluster Cs. Its size indicates that the bulk of genes fall into this cluster. We believe that most of the genes that do not have a coordinated
stress response fall into this cluster. Indicative of this is the cluster prototype, which shows no major changes in gene expression and has a large
error.
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0.21 (125):Cluster 2: "GO:0006412 AND GO:0044429" (translation AND mitochondrial part)

0.47 (4204).Cluster 5

0.34 (96):Cluster 4: "G0:0009451" (RNA modification)

0.31 (251):Cluster 3: "GO:0006412" (translation)

0.26 (532):Cluster 1: "G0:0044085" (cellular component biogenesis)

Fig. 4 Heatmap of the cluster prototypes and their accompanying descriptions from the PCT in Fig. 3. The first number on the right-hand side of
the heatmap is the cluster’s RMS error, the number in brackets is the cluster’s size, the cluster’s descriptions follow after the colon. “Cluster 2”
contains genes that are involved in translation and whose protein products are a part of the mitochondria. These genes are significantly up-
regulated. Cellular component biogenesis is strongly repressed, as evident on “Cluster 1”. All of the clusters show a transient response to diamide,
except “Cluster 5 which shows almost a constant temporal expression profile.

normalized based on the time-zero measurement of yeast cells
under normal environmental conditions.

Various sudden changes in the environmental conditions are
tested, ranging from heat shock to amino acid starvation for a
prolonged period of time. We used a total of 10 datasets
(different stress conditions) for our analysis. We perform
a comparative analysis of the obtained descriptions from all
of the datasets in section 4.4. For a more detailed discussion of
the obtained descriptions (section 4.3) we considered four
representative datasets, for different types of stressful conditions
(temperature, chemical and starvation). Namely, we consider
heat shock (from 25 to 37 °C), diamide treatment, DTT
(dithiothreitol) exposure and nitrogen starvation.

From these original time series datasets, we construct
extended datasets by including gene descriptions. We obtained
the GO term annotations for each yeast gene from the Gene
Ontology'* (version June, 2009). As the GO terms are
structured in a hierarchy, we use both the part_of and is_a
relations to include all relevant GO terms for each gene. To
limit the number of features, we set a minimum frequency
threshold: each included GO term must appear in the annotations
for at least 50 of the 5000 genes.

4.2 Interpretation of PCTs for time course profiles

As explained in section 1, a PCT represents a hierarchical
clustering of the time course data, where each leaf corresponds
to one cluster. In Fig. 3, we present a sample PCT. For
practical purposes, we show a small tree with just 5 leaves,
obtained when yeast is exposed to diamide. We also show the

cluster centroids for each of the leaves. By following the path
from the root of the tree to a leaf, we can obtain the
description for each of the clusters.

For example, if we want to derive the description of cluster
C,, we begin from the root GO term “G0:0044085”, we follow
the ““no” branch, obtaining the description “GO:0044085 =
no”. We then add the “G0:0006412 = yes” and “GO:0044429 =
yes” by following the “yes” branches ending up at cluster
C>. So, the final description of cluster C, is the following
conjunction: “GO0:0044085 = no AND GO:0006412 = yes
AND GO:0044429 = yes”. This can be interpreted as follows:
genes that are annotated by both “GO:0006412” and
“G0:0044429”, but not by “GO:0044085” are contained in
cluster C, and have a temporal profile represented by the
prototype of cluster Cs.

It should be noted here that for our application only the
positive branches of the tree are semantically meaningful. In a
biological context, the description “G0:0044085 = no” is not
very meaningful because it simply tells us that the genes in
cluster C, are not annotated by that term. Therefore, to
describe a cluster we only take the positive “yes” terms, which
means that for describing C, we would only use “GO:0006412 =
yes AND GO:0044429 = yes”.

After deriving the descriptions from all of the clusters
(except for cluster Cs), we represent them using a heatmap
(Fig. 4). Each row in the heatmap represents a cluster
prototype, the more intense the colours, the larger the up-
or down-regulation of the genes contained in that cluster.
Accompanying the rows, on the right-hand side, is the error of
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0.31 (38): "nucleus" AND "response to temperature stimulus"

0.33 (76): "cellular response to stimulus”

0.36 (129). "protein catabolic process"

0.37 (10): "regulation of cellular protein metabolic process"

0.36 (96): "nucleus" AND "cellular macromolecule catabolic process”

0.42 (124). "establishment of protein localization"

0.42 (82): "cellular biosynthetic process"

0.37 (14): "mitochondrion” AND "regulation of biosynthetic process" AND "cell fraction”

0.43 (264) "membrane part"

0.39 (345). "mitochondrion”

0.42 (30): "lytic vacuole"

0.32 (20): "mitochondrion” AND "regulation of biosynthetic process"

0.45 (26): "nucleus" AND "cellular macromolecule catabolic process” AND "RNA catabolic process
0.44 (655). "nucleus”

0.45 (31): "ribonucleoprotein complex"

0.28 (47): "mitochondrion” AND "structural molecule activity"

0.42 (37): "nucleus" AND "cell communication”

0.37 (66): "membrane part' AND "biopolymer madification”

0.42 (40): “intracellular signaling cascade"

0.43 (24): "mitochondrion” AND "regulation of biosynthetic process" AND "mitochondrial part”
0.38 (111): "regulation of cellular protein metabolic process" AND "regulation of biosynthetic process"
0.24 (408). "cellular component biogenesis"

0.43 (19): "mitochondrion" AND "amine biosynthetic process"

0.33 (165). "ncRNA metabolic process"

0.44 (19): "protein folding"

0.15 (18): "nucleus" AND "DNA-directed RNA polymerase complex"

0.26 (41): "ribonucleoprotein complex" AND "cellular protein metabolic process"

0.15 (23): "ncRNA metabolic process” AND "ribosome”

0.12 (56):

"cytosolic large ribosomal subunit”
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Fig.5 When yeast is exposed to heat shock, several clusters of genes show significant, but transient changes in expression levels. According to the
heatmap intensity, genes involved in response to temperature stimulus are most strongly induced. Down-regulated are genes involved in
biosynthesis processes and genes that code for ribosomal proteins.

each cluster (RMSE, described in section 3.4), the cluster size and PCTs, but it is a permutation of it. This is for visualization
the cluster description. Note that the heatmap ordering of the purposes, in order to have all of the up- and all of the
cluster prototypes does not match the ordering produced by the down-regulated cluster prototypes grouped together.

0.44 (142): "intracellular part" AND "nuclear part"

0.37 (71): "ribosomal subunit"

0.38 (225); "autophagy"”

0.41 (288): "intracellular part" AND "response to stress”

0.45 (910): "intracellular part"

0.35 (101): "intracellular part" AND "modification-dependent macromolecule catabolic process"

0.47 (350): "intracellular part" AND "biosynthetic process" AND "cellular biopolymer biosynthetic process"
0.47 (157): "intracellular part" AND "response to stress" AND "DNA repair”

0.43 (153): "intracellular part" AND "ncRNA metabolic process"

0.43 (79): "intracellular part" AND "protein catabalic process"

0.35 (22): "intracellular part" AND "cellular bud neck"

0.39 (26): "intracellular part" AND "mitochondrial outer membrane"

0.46 (246): "intracellular part" AND "ribonucleotide binding"

0.35(91): "intracellular part" AND "cell cortex part"

0.4 (91): "intracellular part” AND "Golgi apparatus part"

0.42 (238): "intracellular part" AND "endoplasmic reticulum membrane"

0.44 (386): "cell part"

0.33 (38): "intracellular part" AND "ncRNA metabolic process" AND "cellular nitrogen compound metabolic process"
0.33 (60): "intracellular part" AND "biosynthetic process" AND "nitrogen compound biosynthetic process"

0.19 (11): "intracellular part" AND "nuclear part" AND "transposition RNA-mediated"

0.34 (28): "cell part' AND "site of polarized growth"

0.36 (525): "ribonucleoprotein complex biogenesis"

0.39 (32): "intracellular part" AND "biosynthetic process" AND "cellular biopolymer biosynthetic process" AND "nuclectidyltransferase activity"
0.36 (18): "intracellular part" AND "nuclear part" AND "nucleolus"

0.14 (110): "ribosomal subunit" AND "cytosolic part"

0.38 (378): "regulation of translation™

0.47 (148): "intracellular part" AND "biosynthetic process"

0.3 (16): "intracellular part" AND "regulation of protein kinase activity"

0.33 (24): "intracellular part" AND "nuclear import"
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Fig. 6 Under nitrogen starvation conditions, there is more of a steady down-regulation of genes, rather than a transient pattern. Genes involved
in nitrogen metabolism are slowly down-regulated as well as genes coding for ribosomal proteins.
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0.14 (116). "cellular macromolecule biosynthetic process" AND "cytosolic part"

0.19 (12): “intracellular part’ AND "nucleolus”

0.31 (19): "intracellular part" AND "protein export from nucleus”

0.41 (255): "regulation of translation"

0.42 (62): "intracellular part" AND "peptidyl-amino acid modification”

0.38 (257): “cellular macromolecule biosynthetic process" AND "translation”

0.43 (30): “intracellular part" AND "protein folding"

0.44 (21): "intracellular part’ AND "microtubule organizing center”

0.36 (67): "intracellular part" AND "protein catabolic process"

0.37 (165): “intracellular part" AND "modification-dependent macromolecule catabolic process"
0.42 (125). "intracellular part" AND "Golgi apparatus”

0.41 (42): "intracellular part" AND "DNA repair"

0.35 (19): “cellular macromolecule biosynthetic process" AND "regulation of translation”
0.44 (278). "cellular macromolecule biosynthetic process" AND "“protein complex"

0.47 (88): "intracellular part" AND "negative regulation of biological process"

0.46 (158). "intracellular part” AND "RNA metabolic process”

0.29 (37): "intracellular part" AND "RNA metabolic process" AND "rRNA processing”
0.22 (31): "cellular macromolecule biosynthetic process" AND "DNA-directed RNA polymerase activity"
0.27 (530). "cellular component biogenesis" AND "ribonucleoprotein complex biogenesis"
0.45 (60): "cellular macromolecule biosynthetic process" AND "RNA metabolic process"
0.4 (58): "intracellular part" AND "RNA metabolic process" AND "RNA maodification”

0.42 (76): "intracellular part" AND "nuclear division"

0.41 (35): "intracellular part" AND "electron carrier activity"

0.27 (122). "intracellular part" AND "cellular response to heat"

0.44 (208): "cellular macromolecule biosynthetic process"

0.38 (15): "cellular component biogenesis"

0.38 (35): "intracellular part" AND "regulation of biosynthetic process"

0.46 (1302): "intracellular part"

0.39 (280): "intracellular part" AND "cellular catabolic process"

r~
iy

Fig. 7 DTT treatment of yeast interferes with proper protein folding and changes the cellular redox state. Therefore, an up-regulation of genes
involved in heat response and electron carrier activity is evident. More general biosynthetic processes and ribosomal proteins synthesis (nucleolus)
are inhibited, i.e., these genes are down-regulated.

4.3 Descriptions of yeast stress response clusters

applied on all 10 datasets we only present in detail the results

We apply the procedure for deriving cluster descriptions from
the previous section, on PCTs constructed for several datasets
taken from a study of yeast stress response.” While PCTs were

for four different stress conditions (heat shock, nitrogen
starvation, diamide and DTT exposure). We present the final
descriptions by using heatmaps given in Fig. 5-8.

0.37 (56): "energy derivation by oxidation of organic compounds”

0.31 (143): "cellular response to heat"

0.32 (30): "translation” AND "membrane-bounded organelle”

0.22 (125): "translation” AND "mitochondrial part"

0.39 (301): "mitochondrial part"

0.37 (23): "primary metabalic process" AND “protein amino acid phosphorylation”

0.42 (564): "catabolic process"

0.34 (12): "energy derivation by oxidation of organic compounds" AND "aerobic respiration”
0.47 (351): "primary metabolic process"

0.11 (12): "catabolic process" AND "endoribonuclease activity"

0.34 (96): "RNA modification”

0.38 (38):
0.48 (82): "primary metabolic process" AND "establishment of localization”

0.29 (18): "establishment of cell polarity” AND "membrane organization”

0.29 (18): "ATP-dependent helicase activity"

0.44 (176): "primary metabolic process” AND "regulation of cellular process”

0.33 (23): "translation” AND "membrane—bounded organelle” AND "regulation of cellular protein metabolic process”
0.38 (39): "translation”

0.26 (33): "mitochondrial part" AND "cation transmembrane transporter activity"

0.25 (507): "cellular component biogenesis”

0.13 (136): "translation” AND "ribosome"

0.29 (25): "cellular component biogenesis" AND “ribosomal subunit"

0.45 (265): "nuclear part”

0.44 (124): "RNA metabolic process" AND "regulation of biosynthetic process”

0.46 (230): "RNA metabolic process”

0.45 (127): "response to DNA damage stimulus"

0.29 (23): "translation" AND "ligase activity forming aminoacyl-tRNA related compounds"”

"catabaolic process" AND "generation of precursar metabolites energy”

0.42 (261); "posttranscriptional regulation of gene expression"
0.41 (45): "establishment of cell polarity"

Fig. 8 Exposure to diamide causes a response similar to DTT treatment and heat shock, in terms of response to protein folding inhibition. Also
oxidation of organic compounds is strongly up-regulated, while the down-regulation of biogenesis and ribosomal genes is also apparent.

736 | Mol. BioSyst., 2010, 6, 729-740

This journal is © The Royal Society of Chemistry 2010



We first consider the heatmap for the Heat Shock dataset,
presented in Fig. 5. One can quickly identify two groups of
temporal profiles in this figure: one that shows significant
up-regulation and another one that shows significant
down-regulation of genes. These significant changes are only
transient in nature, meaning that genes first quickly react to
the heat shock and then after an adaptation period go back to
normal expression levels. This is an expected behavior,
also noted in ref. 7, which shows that the predicted cluster
prototypes are consistent with the biological reality.

From the induced genes, those involved in cellular response
to stimulus, specifically temperature stimulus, show the most
notable changes. In the repressed genes group, we can notice
two slightly different groups with respect to the delay of
response to heat shock. The first group that is quick to
react, consists of genes involved in biogenesis and different
biosynthetic and metabolitic processes. A slight delay in down-
regulation is exhibited by genes coding for ribosomal proteins,
which is consistent with general stress response (ref. 7).

In contrast to heat shock, when yeast is subjected to
nitrogen starvation, there is no transient temporal pattern
present but more of a steady down-regulation of genes, as
evident in Fig. 6. Genes involved in nitrogen metabolism
slowly decrease their activity, while genes involved in cell
growth are most significantly repressed. There is also a slight
increase in the activity of autophagy genes.

The elicited response of yeast to DTT (dithiothreitol) is
presented in Fig. 7. There is a small group of genes that is
repressed over time. These are involved in general biosynthetic
processes and genes that code for ribosomal proteins found in
the nucleolus. Genes that were most induced are involved in
electron carrier activity and genes that are a part of the general
response of heat. This is the cell’s response to the changed
cellular redox state and to the inhibition of protein folding
caused by DTT.”

Diamide exposure caused a response that can be seen as a
combination between the response to heat shock and DTT.
Genes involved in the heat shock response were induced
(due to protein folding inhibition) as were genes involved in
oxidation of organic compounds. As part of the general stress
response, genes involved in cell component biogenesis were
strongly repressed, as well as (with a small time-lag) genes
coding for ribosomal proteins.

Note that we present descriptions derived from PCTs (in
Fig. 5-8) from trees of size 60 (with 30 leaves/clusters). These
usually consist of GO terms referring to general cell processes or
locations. We chose this size as an optimal tree size, appropriate
for viewing and with an acceptably low error (RMSE)
(Fig. 10(a), (c), (e) and (g)). For obtaining clusters with more
specific descriptions, one might consider larger trees.

4.4 Semantic similarity of biological processes involved
in different types of stress

In the previous section, we presented the GO descriptions of
the clusters of gene expression time profiles for four different
stress conditions. We briefly discussed their similarities and
differences in terms of the kind of cellular processes involved
in stress response. Here, we focus on a more quantitative

analysis of the derived GO descriptions, where we also include
a whole range of stress conditions.

To quantitatively compare the GO descriptions of the
different clusterings, we use the semantic similarity measure
between GO terms proposed by Wang et al.>’ Given two GO
terms, this measure quantifies their functional similarity, by
considering their common ancestors information from the
Gene Ontology. By using the semantic similarity measure,
we first determine the similarity between pairs of groups of GO
terms, corresponding to pairs of descriptions of PCTs/clusterings
of yeast genes for different stressful conditions. We proceed by
performing hierarchical clustering of the different stress types,
in order to determine to which stressful conditions the yeast
genes respond in the most functionally similar way (Fig. 9).

In Fig. 9, we can see that the cell response to heat shock is
most similar to the response to DTT exposure and to the
response when yeast is undergoing diauxic shift. This is due
primarily to the response of genes to protein unfolding, which
is the initial response to heat shock and DTT exposure. It is
also due to the induction of genes involved in alternative
carbon source utilization, which happens during diauxic shift
and also as an aftermath of the heat shock.

Hyper and hypo osmotic shock are also grouped together,
which is expected because they involve the response of the
same set of biological processes, but they respond in an
temporally inverse manner.’

Diamide is grouped with AA starvation and at a later stage
with H,O, exposure, which is expected due to its response
being very similar to the response of these.” Overall, we can

Height
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Hypo Osmotic —I

Menadione

Diauxic
]
N depletion —J

DTT
Hyper Osmotic —|
AA starvation
Diamide

_|
Heat Shock —I
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Fig. 9 In this figure, we present a dendrogram constructed according
to the semantic similarity of the biological processes involved in
response to different types of environmental stress. Heat shock is most
similar to DTT exposure, which can be attributed to the protein
unfolding which initially occurs in both types of stress. The other
similarity to diauxic shift appears as a result of activation of processes
for utilizing alternative carbon sources in the aftermath of heat shock.
Hyper and hypo osmotic conditions are grouped together as they
involve the same processes in response to the shock. Diamide is most
similar to AA starvation and then to H,O, exposure. Overall there is
high similarity of all biological processes involved in different stress
responses, which is indicative of the existence of a general stress
response mechanism.
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notice that the similarity (i.e., distance) between the different set centroid. We estimate the RMSE of these predictions by
stress conditions is relatively high (low), which implies that using 10 fold cross-validation, as described in section 3.4. This
there is a commonality of cell responses to different types of means that when estimating the error for each fold, the
stress, i.e., a general stress response mechanism.’ training set contains approximately 4500 genes and the testing
fold approximately 500 genes.

We first perform experiments for different maximum PCT
sizes and we measure the respective RMSE of the corresponding
We compare the PCTs built by Clus-TS (section 3.2) to a PCTs. In Fig. 10((a), (c), (¢) and (g)), we present the results for

4.5 Predicting time series with PCTs

default predictor DEF that always predicts the overall training different values of the size upper bound. From the results,
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Fig. 10 A comparison of predictive error (RMSE) of PCTs for different number of clusters ((a), (c), () and (g)) and percentage of data classified
((b), (d), (f) and (h)). When increasing the maximum tree size (number of leaves) the RMSE decreases until the size of the tree reaches 20-30 leaves
(i.e., clusters). The maximal improvement in the overall RMSE, as compared to the default (DEF) error, is about 15%. This small decrease in the
error is problem specific, i.e., has a biological background: not all genes have a coordinated response to the different stresses. Therefore, the PCTs
are only able to correctly predict the time-course profile of a limited number of genes. This is evident in (b), (d), (f) and (h). For about 5% of the
genes, PCTs are able to correctly predict their time-course profile with a relatively low RMSE as compared to the default (DEF). DEF is the
default predictor that always predicts the overall training set centroid.
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we can see that the optimal tree size for the PCTs is around
30 leaves. But, as one can notice, the overall RMSE is still
relatively high. We hypothesize that the overall high error
(RMSE) is domain specific, i.e., there is a biological explanation
for it.

Namely, the PCTs cluster genes that are annotated by
similar GO terms and have a similar response in expression
level to a certain change in environmental conditions. One
problem is that, as noted by Gasch et al.,” only a subset of the
genes (about 900) have a stereotypical response to environ-
mental stress. That is, only a subset of the genes can
be accurately clustered, whereas the other genes have an
uncorrelated response. As a result, we hypothesize that the
PCTs are able to accurately predict the time series of only a
subset of the genes. We therefore perform the following
experiment. Besides recording the predicted time series for
each test set gene, we also record a confidence value for each
prediction. We then sort the genes by confidence value and
compute the RMSE of the top n percent most confident
predictions. We use the training set RMSE of the leaf that
made the prediction as a confidence estimate. This is similar to
the approach used for generating a ROC curve for a decision
tree.”® We present the results in Fig. 10((b), (d), (f) and (h)).
PCTs are obtained with the same parameters as before, except
that we use validation set based pruning instead of specifying a
size constraint on the PCTs. Clus-TS now uses 1000 genes of
the original training set for pruning and the rest for the tree
construction (as suggested by ref. 29). Simply selecting a PCT
from Fig. 10((a), (c), (e) or (g)) is unfair; it corresponds to
optimizing the size parameter on the test set. The results show
(Fig. 10) that more accurate predictions are obtained if we
restrict the test set based on the confidence of the predictions.
For example, if time course profiles are predicted for the 5% of
genes with highest confidence then the RMSE decreases to
about 50% of that of DEF. This is also shown in Fig. 3.

5. Conclusions

The typical approach to analyzing time-course expression data
is to first group together genes with similar temporal profiles
into clusters, which are then subsequently explained in terms
of gene properties (such as GO annotations). We present a
novel methodology for clustering time course profiles of gene
expression data, which unifies the two steps of clustering and
inferring a cluster description. The methodology produces a
hierarchical clustering, called a predictive clustering tree,
where each cluster is described by a conjunction of gene
properties (such as GO terms).

There are several advantages of our approach over other
analysis methods. First, we perform clustering and provide
cluster explanations in a single step. The descriptions can use
practically any gene-related information, although for our
experiments we only included Gene Ontology terms. Second,
in contrast to the usual distance measure used for clustering
(typically correlation based), our approach uses a qualitative
distance measure (QDM), which was specifically designed to
deal with short time course data. This measure explicitly takes
into account the temporal nature of the gene expression
profiles, and captures mostly the similarity in the shape of

the time course data, which is very important for the application
at hand. Third, the PCTs also enable the prediction of gene
expression time profiles for genes based on their annotations
(functions), which is usually not possible with other mainstream
clustering approaches.

We apply the proposed methodology to cluster time course
data representing yeast gene response to environmental stress.
This is repeated for different types of stress producing different
PCTs, thus producing different clusters and cluster explanations
in terms of GO annotations. Upon close inspection, the
explanations of the clusters were consistent with previously
published biological results.” Furthermore, clusters with
similar descriptions under different stress conditions were
identified, mainly related to biosynthesis and ribosomal
proteins. The results demonstrate the usefulness of our method
for analyzing time-course expression data.

Several directions for further work remain to be explored.
We consider first and foremost extending our approach to a
so-called multi-target approach. Instead of considering a
single time course at a time, for different (stress) conditions,
we can consider the responses to different kinds of environ-
mental conditions simultaneously. The application of this
would be, for example, discovering a common stress response
pattern.’® Instead of producing a separate PCT for each
condition, we would obtain just one PCT model for all.
Another direction of further research includes the identification
of groups of genes with coordinated response. Namely, the
hierarchical nature of the PCTs, besides producing compact
clusters of “‘stress’ response genes, also produces some clusters
that contain genes without a coordinated response. To focus
on clusters of genes with coordinated response, we plan to
further investigate the use of the so-called predictive clustering
rules® for analyzing short time course data. Finally, we would
like to apply the proposed approach to other time course gene
expression data from different biological domains.
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