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We present OntoDT, a generic ontology for the representation of scientific knowledge about
datatypes. OntoDT defines basic entities, such as datatype, properties of datatypes, specifica-
tions, characterizing operations, and a datatype taxonomy. We demonstrate the utility of On-
toDT on several use cases. OntoDT was used within an Ontology of core data mining entities
for constructing taxonomies of datasets, data mining tasks, generalizations and data mining
algorithms. Furthermore, we show how OntoDT can be used to annotate and query dataset

I];?:;Vf;gi repositories. We also show how OntoDT can improve the representation of datatypes in the
Data mining BioXSD exchange format for basic bio-informatics types of data. The generic nature of On-
Ontology toDT enables it to support a wide range of other applications, especially in combination with
Knowledge representation other domain specific ontologies: the construction of data mining workflows, annotation of

software and algorithms, semantic annotation of scientific articles, etc. OntoDT is open source
and is available at http://www.ontodt.com.

© 2015 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Data processing is at the heart of science. Scientific research workflows rely heavily on datatype representations. Especially in
data mining research it is impossible to efficiently (semi-) automatically connect parts of workflows, such as data preprocessing
and data mining, perform analysis of the research results and communicate the research outputs, without machine process-
able representation of datatypes and their properties. There is a need for a standardized semantically-defined and machine
amenable representation of scientific datatypes to support cross-domain applications. Unfortunately, the existing representa-
tions of datatypes do not fully address such a need.

In the literature, there exist different definitions of datatypes. In computer science, a datatype is usually defined as a “clas-
sification that identifies various types of data, such as boolean, integer, discrete and others, that determines the possible values
for that type, operations on the values of the data, and the way the values of that type can be stored” [56]. Nell and Walker [8]
discuss the difference between a data structure and datatype in the sense that “data structure refers to the study of data and
how to represent data objects within a program; that is, the implementation of structured relationships” while a datatype de-
fines “the properties of classes of objects in addition to how these objects might be represented in a program”. Martin [36] also
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discusses the difference between data structures and datatypes and states that “depending on the point of view, a data object is
characterized by its type (for the user) or by its structure (for the implementer)”.

In this paper, we present OntoDT, a generic ontology of datatypes. OntoDT defines the semantics, i.e., meaning of the key
entities and represents the knowledge about datatypes in a machine friendly way. The OntoDT ontology is based on the latest
revised version of the ISO/IEC 11404 standard for datatypes [23].

This paper is organized as follows. In Section 2, we present the background related to the development of the OntoDT on-
tology. In Section 3, we review and discuss the related work. Next, in Section 4, we present the ontology design principles and
implementation, and in Section 5 we present the key OntoDT classes. In Section 6, we present the OntoDT datatype taxonomy.
Finally, we present the ontology evaluation (Section 7), and three use cases of the ontology (Section 8). We conclude the paper
with a discussion (Section 9) and a summary of contributions and points for further work (Section 10).

2. Background

The OntoDT development started within the frame of an ontology for data mining (OntoDM) [44]. The main idea of using a
formalized description of datatypes for the domain of data mining was to characterize the types of data contained in a dataset,
the applicability of a data mining task on data from a given datatype, and the applicability of a data mining algorithm on a
dataset. Due to generality and reuse purposes, OntoDT has evolved to become an independent ontology.

The OntoDT ontology aims to address the need for a machine-friendly standard representation of general-purpose datatypes.
It is based on the International Standard ISO/IEC 11404 for representing datatypes in computer systems [23]. The standard spec-
ifies the terminology and the semantics for a collection of data types commonly occurring in programming languages and soft-
ware interfaces. The datatypes defined in the standard are general in nature and serve a wide variety of information processing
applications. The standard specifies both primitive datatypes, being defined without a reference to other datatypes, and non-
primitive datatypes, which are completely or partially defined in terms of other datatypes.

The ISO/IEC 11404 standard includes a list of 62 definitions of datatype related terms. It also specifies the conditions that
have to be fulfilled by an information processing entity in order to conform to the standard directly or indirectly. The standard
describes fundamental notions such as a definition of a datatype, a value space, datatype properties, a datatype generator, char-
acterizing operations, etc. We extracted the key terms from the standard, organized these terms into a logically consistent 1s-A
hierarchy of ontological classes, defined their properties and relations to other entities, re-used suitable textual definitions from
the standard, where possible, and added new ontological definitions, where necessary.

3. Related work

The problem of data typing is an important problem that has been addressed from different aspects and in different forms.
For example, the research data alliance (RDA) [50], whose major goal is to speed up the international data-driven innovation
and discovery by facilitating research data sharing and exchange, has identified that the problem of data typing is an important
problem that deserves attention. For this purpose, the RDA formed a data type registy (DTR) working group [11] with the goal to:
compile a set of use cases for datatype use and management, formulate a data model and expression for datatypes (prototype
registry available at [10]), design a functional specification for type registries, and propose a federation strategy among multiple
type registries.

Meek [37] discussed a proposal for a taxonomy of datatypes using as a base the first version of the ISO 11404 standard [22].
The taxonomy starts with a number of primitive datatypes that are then used to construct others. The proposed taxonomy is
given only in the form of an overview and a discussion, without any formal representation.

The W3C XML Schema Definition Language (XSD) [67] is widely used for the recording of data on the semantic web, and it
is also based on the ISO 11404 standard [23]. XSD supports simple, complex, and custom-defined datatypes. It is a simple and
flexible language, but it is not based on a formal model and consequently many aspects are left to interpretation. XSD terms are
not formally defined. For example, a definition of the term attribute (‘Defines an attribute’) is circular and does not explain how
an attribute is different from e.g. an element [68].

XSD is flexible and does not strictly regulate the custom-defined datatypes; it also does not enforce the separation of data
and its semantic meaning. A side effect of those features is an unnecessary proliferation of custom-defined datatypes. The issue
is that different users may create different data models for the same data, and it may be hard to reconcile those models. For
example, users can define datatypes such as start of the project, beginning of the project, start date. All these datatypes are of the
same type date datatype and the data encoded with these custom datatypes have the same semantic meaning. A formal ontology
can serve as a reference model and resolve such an issue.

The RDF data cube vocabulary is focusing on the publication of multidimensional data on the web [51]. It enables the exchange
and sharing of statistical data encoded in a tabular form. The adopted cube model has a set of properties for the description of
statistical datasets composed of observations. These include dimensions (e.g. time, age, sex), attributes (e.g. unit measure), and
measures (values of observations). A dataset can have reference metadata (e.g. a SPARQL endpoint where it can be accessed, its
publisher). This purpose-specific vocabulary is well defined and sufficient for recoding of statistical information. However, its
strict statistic-oriented model prevents the extension of this vocabulary for other non-tabular datatypes.

An attractive feature of this vocabulary is a distinction between the semantic meaning of observations, the measurement units
used, and the data structure specification. The dimension property links observations to other resources, i.e. Simple Knowledge
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Organization System (SKOS) [57], which defines the semantics of the data. The attribute property is used to record information
about the units. OntoDT adopts a similar approach for the defining semantic meaning of the data and also for modeling units. Un-
fortunately, the RDF Data Cube Vocabulary does not have a clear separation between operational information (e.g. if a data item
is an estimate or an accurate measurement) and the specification of datatypes. A better approach would be to capture the infor-
mation about data pre-processing, processing and post-processing separately and then link it to the data items (observations)
[45].

Several ontologies that include data-related aspects have been developed in various domains, but they are typically too do-
main specific and do not have representations of arbitrary complex datatypes. Below we briefly discuss some of such ontologies.

The EMBRACE Data and Methods (EDAM) is an ontology of bioinformatics operations, types of data, formats, and topics
[13,24,46]. The data branch of EDAM has the following key classes: core data, identifier, parameter, report, search and retrieval.
These terms do not correspond to conventional datatypes and are rather labels for the capturing the semantic meaning of the
data. There is also no clear distinction between data and knowledge items. The core data class has subclasses that correspond
to what is conventionally considered as knowledge, e.g., biological model, ontology, workflow, schema. It also includes subclasses
such as data index, experimental measurement, structure that are more relevant to datatypes, and are intended to be used for data
annotation. One cannot apply data mining algorithms to the data of the type experimental measurement without specifying the
datatype (e.g., numerical datatype).

Linked Models is a web resource for publishing RDF/OWL models of commonly used industry and government standards
[33]. The work is motivated by the desire to use semantic web technologies for interoperability, information aggregation and
validation of specifications created with UML and/or XML schema tools. Linked Models include the Dtype ontology that specifies
datatypes required for dealing with OWL representations of data structures based on the XML schema.

Several ontologies have been produced for sensor observation services [53]. For example, the Semantic Sensor Network Ontol-
ogy (SSN) describes sensors in terms of capabilities, measurement processes, observations and deployments [6,55]. SSN focuses
mainly on tabular data, i.e. Sensor Data Sheet, and considers Observation as a social construct (a subclass of the class Situation). An
ontology for ecological observational data (OBOE) defines the notion of scientific observation as a unifying concept for capturing
the basic semantics of ecological data [34]. Observations are distinguished at the level of the entity (e.g., location, time), and the
characteristics of an entity (e.g., height, name, color) are classified as data.

Many biomedical ontologies available at BioPortal include a class named datatype [4]. These include: the NanoParticle On-
tology (NPO) [65], the Health Level Seven Reference Implementation Model [17], the Syndromic Surveillance Ontology [64],
the Microarray and gene expression data ontology (MO) [38], the Phylogenetic ontology [47], and the National Cancer Institute
Thesaurus [39]. Unfortunately, the representations and semantic meanings of the term datatype across these resources are not
consistent. For example, MO defines DataType as “Primitive data types found in computing languages such as float, boolean, etc.”
Image and Data Quality Assessment Ontology (IDQA) [21] defines Data Type as “Superclass for different type of data: data itself
and images (TS)”. Such representations are very domain-specific and not always accurate.

Finally, ontologies designed to support data mining studies, e.g., the Data Mining OPtimization ontology (DMOP) [9,19,28] and
Data Mining Workflow ontology (DMWF) [29], include representation of datatypes only on a basic level. Thus there is a limited
number of formal representations of data types and these representations are not sufficiently generic to ensure cross-domain
interoperability required by data mining research, and particularly mining of complex biomedical data. We have developed
OntoDT to address the need for a consistent representation of datatypes across various domains.

4. Design and implementation

The design of the OntoDT ontology follows best practices in ontology engineering, such as the OBO Foundry principles, which
are widely accepted in the biomedical domain [60]. These include ontology completeness, the absence of multiple inheritance,
the absence of orphan classes, extensibility, the use of formally defined relations, the use of upper-level ontology, orthogonality
with other ontologies, version management, a unique identifier space, and others. OntoDT is developed to be complementary to
and integrated with state-of-the-art ontologies for representing scientific knowledge. This ensures interoperability with other
resources and facilitates cross-domain reasoning.

We used the information artifact ontology (IAO) as the upper level ontology [20]. IAO has been designed to support the rep-
resentation of information entities, and it is compliant with the basic formal ontology (BFO) [3] and the OBO relational ontology
(RO) [52,61]. There are several other upper level ontologies, i.e. SUMO [40,62], DOLCE [12], but they are focused on modeling
primarily real world entities. In contrast, OntoDT aims to represent information content entities, such as datatypes. Such entities
have different properties compared to the real world objects. They do not occupy a physical space and they do not have physi-
cal dimensions. Therefore, we adopted the IAO framework for the representation of information content entities that stay in a
relation of aboutness with the corresponding real world entities. This framework enables a formally defined representation of
data (as information content entities) and its semantic meaning (what entity this data is about). In this way, we achieve a firm
ontological foundation for the proposed representation of datatypes, operations on datatypes and datatype properties.

The use of an upper level ontology and a set of widely accepted formally defined relations eases the interoperability of OntoDT
with other external ontologies, e.g., the Software Ontology [63], where possible. OntoDT re-uses existing ontological resources,
such as Open Biomedical Ontologies [42]. For example, it reuses the OBI ontology [41], i.e., the class OBI:0000658: data repre-
sentational model. Classes that are reused in OntoDT are imported following the Minimum Information to Reference an External
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Table 1
OntoDT competency questions.
Qn Query
1 What is the set of characterizing operations for a datatype X?
2 What is the set of datatype qualities for a datatype X?
3 What is the value space for a datatype X?
4 What is the set of datatypes that have a datatype quality X?
5 What is the set of datatypes that have a characterizing operation X?
6 What is the set of datatypes that have a datatype quality X and characterizing operation Y?
7 What are the aggregated datatypes that have an aggregate generator property X?
8 What is the set of aggregate properties for an aggregate datatype X?
9 What are the field components for a tuple datatype X?
10 What is the base datatype for a set/bag/sequence datatype X?
11 What is the base datatype for an extended datatype X?
12 What is the subtype generator for an extended datatype X?
13 What is the set of extended datatypes that have datatype X as their base datatype?
14 What is the set of extended datatypes that are generated by a subtype generator X?

Ontology Term (MIREOT) principle [7]. The ontology is developed in the OWL ontology language using the Protégé tool [48].
OntoDT is open source and is available at http://www.ontodt.com.

For the design and evaluation of OntoDT, we followed a methodology proposed by Griiniger and Fox [16]. Their method-
ology proposes first to define the ontology’s requirements in a form of informal questions (or queries). Next, the terminology
of the ontology (its classes and relations) is specified using some first order logical language (e.g., description logics). The
language must provide the necessary terminology to formally restate the informal competency questions. This allows us to
formulate the competency questions as an entailment queries with respect to the axioms in the ontology. In this way, one can
evaluate the ontology and claim that it is adequate.

The design of OntoDT has been governed by a set of competency questions. Examples of such questions is as follows: “What
is the set of characterizing operations for a datatype X?” and “What is the set of datatypes that have a datatype quality X and
characterizing operation Y?” (see Table 1 for a full list). In order to support the formulated competency questions, OntoDT in-
cludes information on datatypes, datatype properties, characterizing operations, datatype generators, properties of generators
and other support specification entities.

5. The key OntoDT classes

In this section, we describe the key entities for the representation of datatypes. In addition, we discuss the most important
representational issues identified in the process of modeling.

5.1. Datatype and value space

In the OntoDT ontology, the datatype class is modeled as a subclass of the OBI: data representational model class. It defines
the type of data, with the set of distinct values that the data can take, the properties of those values, and the operations on
those values. The datatype class is represented with the HAS-MEMBER relation to the value space specification class and the HAs-
OPERATION relation to the characterizing operation class. In addition, OntoDT models datatype properties as subclasses of the quality
class and connects them using the HAs-QUALITY relation. In Fig. 1a, we present the structure of the datatype class and in Fig. 1b
the OWL Manchester syntax of the class definition.

The value space specification class is modeled in OntoDT as a subclass of the OntoDM: specification entity class. It specifies the
collection of values for a given datatype. The value space of a given datatype can be defined in different ways: by enumerating the
values; with axioms using a set of fundamental notions; as a subset of values defined in another value space with a given set of
properties; or as a combination of arbitrary values from some other defined value space by specifying a construction procedure
[23].

5.2. Characterizing operations

A characterizing operation is defined as IAO: directive information entity that specifies those operations on the datatype that
distinguish it from other datatypes having identical value spaces. The characterizing operation of a datatype can be: niliadic,
monadic, dyadic and n-adic (see Fig. 1a). A niliadic operation specifies an operation that yields values of a given datatype. A
monadic operation specifies an operation that maps a value of a given datatype into a value of the given datatype, or into a value
of the boolean datatype. A dyadic operation specifies an operation that maps a pair of values of a given datatype into a value of
the given datatype, or into a value of the boolean datatype. An n-adic operation specification specifies an operation that maps an
ordered n-tuple of values (n > 2), each of which is of a specific datatype, into values of a given datatype. Finally, all characterizing
operation classes have defined subclasses, which represent datatype specific operations.
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OBl:data
representational
model

Class: datatype
Annotations:
definition "set of distinct values,
characterized by properties
of those values, and by
operations on those values",
label "datatype",
’definition source’ "ISO/IEC 11404:2007(E)"
SubClass0f:
’data representational model’,
has_quality some ’datatype property’,
has_operation some ’characterizing
operation’,
has_attribute some ’value space’

value space

specification

characterizing
operation

monadic
operation

h/a

niliadic
operation

dyadic
operation

(a) The datatype class.

| characterizing

(b) OWL Manchester syntax

I
i operations Class: ’integer datatype’
I
i _________ (I Ja;&_c Annotat::Lor'lsE Ny ) )
! operation definition "integer is the mathematical
numeric ordered ! datatype comprising the
___________ primitive datatype 1 exact integral values.",
datatype h/o— label "integer datatype"Qen,
qualities Operation 'definition source’ "ISO/IEC 11404:2007(E)"

SubClass0f:
’numeric ordered

ordered [<+h/q

i "

I

! .
o Equal.lntlege
i operation

I

i .

— primitive datatype’,
L h/q h/o- Multiply:integer has_quality some unbounded,
integer f operation has 14 i
H _quality some numeric,
-h/q daatype) hi Add:integer has_quality some exact,
MCMEre o operation has_quality some ordered,
_______________ has_operation some Equal:integer,
S — ] has_operation some Add:integer,
- monac_hc has_operation some Multiply:integer,
integer operation has_operation some InOrder:interger,
value space

some
some

has_operation
has_operation

Negate:integer,

Negate:integer NonNegative:integer,

h/o- .

operation has_attribute some ’integer value space’
NonNegative: . .
1h/o- integer DisjointWith:
operation ’real datatype’,

’rational datatype’,
’scaled datatype’

(c) Integer datatype class. (d) OWL Manchester syntax

Fig. 1. Representation of datatypes in OntoDT. The rectangular boxes represent ontology classes. Unlabeled arrows represent 1s-A relations, while labeled arrows
have the following meaning: h/o represents HAS-OPERATION relation, h/q represents HAS-QUALITY, h/a represents HAS-ATTRIBUTE, and h/m represents HAS-MEMBER.
Full lines denote existential relations.

5.3. Datatype properties

A datatype property is defined as a quality that specifies the intrinsic properties of the data units represented by the datatype,
regardless of the properties of their representations in computer systems. Each datatype has a set of unique datatype properties.
These include property classes such as: order, numericalness, cardinality, exactness ,equality, and boundedness (see Fig. 1a).

Order is a datatype property that denotes whether there exists an order relation defined on its value space. Numericalness
denotes whether the values in the value space are quantities expressed in a mathematical numbering system. Cardinality denotes
the notion of cardinality of the value space. Exactness denotes whether every value from the value space is distinguishable from
every other value in the value space. Finally, boundedness is a property that denotes the boundaries of the value space.

All datatype property classes have defined subclasses. For example, the boundedness class has the following subclasses:
bounded (bounded below, bounded above) and unbounded (unbounded below, unbounded above).!

5.4. Example of a datatype class: integer datatype

In Fig. 1c, we present the representation of the integer datatype in OntoDT and in Fig. 1d we present OWL Manchester syntax
of the integer datatype class definition. The integer datatype is a subclass of the numeric ordered primitive datatype class and

1 See the OntoDT ontology for the definitions.
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value space hia extended him
specification datatype

subtype generators

excluding
generator

explicit
generator

subtype
generator

extending
generator

selection
generator

(a) The extended datatype class.

integer
base type

integer
datatype

h/q
r/lo hiq
bounded
bellow

extended
datatype

Class: ’extended datatype’
Annotations:
definition "datatype derived from another
datatype by restricting the
value space to a subset whilst
maintaining all characterising
operations.",
comment "synonym - subtype',
label "extended datatype",
’definition source’ "ISO/IEC 11404:2007(E)"

SubClassOf :
’data representational model’,
has_member some ’base type’,
has_member some ’subtype generator’,
has_quality some ’datatype property’,
has_attribute some ’value space’
Class: ’base type’
Annotations:
definition "base type denotes the role of a
datatype as a parametric datatype
on which a generator operates
to produce a new datatype."
label "base type",

SubClassOf:

’datatype role’,

role_of some datatype,

is_member_of some
(’array datatype’ or
’sequence datatype’ or
’bag datatype’ or
’set datatype’ or
’extended datatype’)

(b) OWL Manchester syntax.

positive

integer

/q

A positive positive .
integer h/m integer h/m e
range range
h/m generator lower bound

hiq ha positive
integer
h value space

(c) The positive integer extended datatype instance.

Fig. 2. Representation of extended datatype in OntoDT. The rectangular boxes represent ontology classes. Unlabeled arrows represent 1s-A relations, while
labeled arrows have the following meaning: r/o represents ROLE-OF relation, h/q represents HAS-QUALITY, h/a represents the HAS-ATTRIBUTE, and h/m represents
HAS-MEMBER. Full lines denote existential relations.

represents a mathematical datatype, whose value space is composed of exact integral values. It is ordered, unbounded, and exact,
and its values are numeric. Furthermore, the integer datatype is characterized by a set of monadic and dyadic operations. The
monadic operations include the following operations: Equal, InOrder, Add, and Multiply; while the dyadic operations include
the operations: NonNegative and Negate. Finally, we explicitly state that the integer datatype is disjoint with the other numeric
ordered primitive datatypes (real datatype, rational datatype, and scaled datatype).

5.5. Extended datatype

In OntoDT, an extended datatype (named ‘subtype’ in the ISO standard) is defined as a IAO: data representational model that is
derived from an existing datatype by restricting the value space to a subset of the base datatype, while maintaining all operations
(see Fig. 2a and b). The base type denotes the role of a datatype as a parametric datatype on which a generator operates to produce
a new datatype (see Fig. 2b). An extended datatype is defined by a subtype generator that represents the relationship between
the value spaces of the base type and the extended datatype.

In OntoDT, we define the following classes of subtype generators: range generator, selection generator, exclusion generator, size
generator, extension generator, and explicit subtype generator. Subtype generators can change the set of datatype properties valid
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for the base datatype, and this is the reason we do not represent them simply as subclasses of the datatype class. For example,
applying the range generator to an unbound datatype will make it bounded.

Using these notions, we can represent an extended datatype of any previously defined type. For example, by using a range
subtype generator we can place a new upper and/or lower bound on the value space of a chosen base datatype. The positive
integer datatype is an extended datatype of the integer datatype obtained by limiting the value space with a lower bound of zero
(see Fig. 2c).

5.6. Querying OntoDT

OntoDT can be queried using the Description Logic (DL) [1] query plug-in available in the Protégé software. For the purpose
of querying, we classified the ontology using the HermiT 1.3.8 reasoner [18]. The DL queries have the form of class expressions.
It is possible to run various queries that concern the datatypes, datatype components, properties and operations, e.g. “Find all
subclasses of datatype that have as part aggregate generator”; “Find all characterizing operations of integer datatype”; “Find all
datatype qualities of ordinal datatype”; “Find all datatypes that have non-numeric datatype quality and one dyadic operation”.
Below we analyze several queries in more detail.

Example 1. “Find all datatypes that have dyadic arithmetic operations.”

N . . . N /
has_operation some ‘dyadic aritmetic operation

The dyadic arithmetic operation class contains subclasses of arithmetic operations that require two operands. The query
execution returns 5 datatypes that have such operations. These include: complex datatype, integer datatype, rational datatype,
and scaled datatype.

Example 2. “Find all generated datatypes whose generators have a direct access property.”

has_member some (has_quality some ‘direct access property/)

The direct access property is an access type property which determines how component values can be extracted from a given
aggregate-values directly. It has two subclasses: index access and key access. The query execution returns 3 datatypes that have
this property: array datatype, class datatype and record datatype.

Example 3. “Find all datatypes that have dyadic comparison operations and are bounded”.

has_operation some 'dyadic comparison operation/ and has_quality some bounded

The dyadic comparison operation class contains subclasses of comparison operations that require two operands. The bounded
class is a datatype property that characterizes bounded datatypes and has two subclasses. The query execution returns 2
datatypes that have this property: enumerated datatype and ordinal datatype.

6. The OntoDT datatype taxonomy

In the OntoDT ontology, we define a taxonomy of datatypes (see Fig. 3). The top-level ontology classes include primitive
datatypes, generated datatypes, and user defined datatypes. Primitive datatypes are defined by explicit specification and are in-
dependent of other datatypes. Generated datatypes are syntactically and semantically dependent on other datatypes, and are
specified implicitly with datatype generators. User defined datatypes are defined by a datatype declaration and allow defining
additional identifiers and refinements to both primitive and generated datatypes. At the lower levels, the datatypes are distin-
guished with respect to their datatype properties. In this section, we describe in more detail all three major classes of datatypes.

6.1. Primitive datatype

A primitive datatype 1s-A datatype whose value space is defined either axiomatically or by enumeration [23]. All primitive
datatypes are conceptually atomic and therefore are defined in terms of well defined abstract notions. According to the definition
of a datatype, each primitive datatype class has a set of datatype properties, a set of characterizing operations, and a value space
specification.

The I1SO 11404 standard defines twelve primitive datatypes, some of which are defined as datatype families.> In the OntoDT
ontology, we model all primitive datatypes from the standard as classes (see Fig. 3). The classes of primitive datatypes can be
further instantiated by specifying additional parameters that are different for each class of primitive datatypes. For example, to
define an instance of the real datatype, we additionally need to specify the radix and the factor, which taken together, describe
the precision to which values of the datatype are distinguishable. Both radix and factor are represented as subclasses of the value
expression class.

2 The discrete (or state), enumerated, character, date-and-time, scaled, real, and complex datatypes are defined as datatype families, while the mathematical
datatypes (boolean, ordinal, integer, and rational) and the void datatype are defined atomically.

Please cite this article as: P. Panov et al, Generic ontology of datatypes, Information Sciences (2015),
http://dx.doi.org/10.1016/j.ins.2015.08.006



http://dx.doi.org/10.1016/j.ins.2015.08.006

JID: INS [m3Gsc;August 27, 2015;7:35]

8 P. Panov et al. / Information Sciences 000 (2015) 1-21

primitive
datatype
\

generator
datatype

user

datatype

7 o defined
numeric inon-numeric| aggregate
: i on-aggregate
primitive ’ ‘{0:5 primitive datatype] e non-aggreg
atatype

datatype datatype

numeric - : = 5
e complex | | hon-numeric non-numeric heterogenous homogenous pointer | | choice | |procedure
- datatype ordered unordered
primitive N P aggregate aggregate datatype] | datatype | | datatype
primitive primitive datatype datatype
datatype datatype datatype S B

homogenous
aggregate

datatype with

variable size

da::al . d';‘::Qe"e dr:::?tnale dsa(:lede ordinal ||enumerated| G2 racted (boolean) [ discrete |[ table class tuple array
aA datatype](_datatype J|yatatype | ldatat datatype || datatype || datatype || datatype | | datatype

homogenous
unordered
aggregate

datatype with

variable size

bag set
datatype datatype

Fig. 3. The OntoDT datatype taxonomy. The rectangular boxes represent ontology classes. Unlabeled arrows represent 1s-A relations.

Example. InFig. 4, we present an example of representation of one subclass of primitive datatype - the discrete datatype. The dis-
crete datatype has the following datatype properties: unordered, non-numeric and exact (see Fig. 4a). Additionally, this datatype
has one characterizing operation (equal). The instances of the discrete datatype differ between each other in the discrete-value-list
specification. It is specification entity that specifies the discrete-value identifiers for the datatype.

For example, if we want to describe, formally represent and reason about datasets, we would need to represent the datatypes
describing the data examples contained in the datasets. If we take the well known Iris dataset® from the UCI repository [2], we
can formally represent datatypes describing the Iris data examples by defining instances of OntoDT datatype classes.

Here, we show a representation of the datatype representing the Iris-class attribute, as an instance of the discrete datatype
class (see Fig. 4a). It has as member a discrete-value-list specification, which includes three discrete-value identifiers: ‘Iris Setosa’,
‘Iris Versicolour’, and ‘Iris Virginica'. Finally, in Fig. 4b, we present the OWL Manchester syntax of the Iris class datatype instance.

6.2. Taxonomy of primitive datatypes

We propose a taxonomy of primitive datatypes,* with respect to the datatype properties (see Fig. 3). At the first level, with
respect to the numeric property, we distinguish between numeric primitive datatype and non-numeric primitive datatype. In addi-
tion, we define the void datatype class as a primitive datatype representing an object whose presence is required, but carries no
information.

On one hand, at the second level of the taxonomy with respect to the order property, we distinguish between numeric ordered
primitive datatype and complex datatype.” Numeric ordered primitive datatype has four subclasses: real datatype, scaled datatype,
integer datatype, and rational datatype.

On the other hand, we distinguish between non-numeric ordered primitive datatype and non-numeric unordered primitive
datatype. Non-numeric ordered primitive datatype has three subclasses: date-and-time datatype, enumerated datatype, and ordi-
nal datatype. Non-numeric unordered primitive datatype has three subclasses: character datatype, discrete datatype, and boolean
datatype.

6.3. Generated datatype

A generated datatype is a datatype that is defined with a datatype generator. A datatype generator is an IAO:directive information
entity, which specifies the conceptual operation on one or more datatypes which yields a datatype [23]. It specifies the criteria
for the number and properties of datatypes to be operated upon. Next, it defines a construction procedure which creates a
new value space from the value space of the element datatypes. Finally, it specifies the set of characterizing operations for the
resulting datatype.

3 Iris dataset: https://archive.ics.uci.edu/ml/datasets/Iris, accessed 7.12.2014.
4 Definitions of all primitive datatype classes, presented in this section, are given in the ontology.
5 A complex datatype represents complex numbers and is an unordered datatype.
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(a) Discrete datatype class and instance. (b) OWL Manchester syntax.

Fig. 4. Representation of the discrete datatype class and instance in OntoDT. The rectangular boxes represent ontology classes. The rectangular boxes with
dashed lines represent instances. Unlabeled arrows represent 1s-A relations, while labeled arrows have the following meaning: h/o represents HAS-OPERATION
relation, h/q represents HAS-QUALITY, i/o represents INSTANCE-OF, and h/m represents HAS-MEMBER. Full lines denote existential relations. Dashed lines denote
relations between instances.

Each of the datatypes from a collection of datatypes, to which the datatype generator is applied, is called a paramet-
ric datatype. An important characteristic of all datatype generators is that they can be applied to many different parametric
datatypes. Parametric (or component) datatypes in OntoDT are modeled as roles of datatypes.

In general, we distinguish between two groups of generators: aggregate generators and non-aggregate generators. Aggregate
generators generate datatypes whose values can be decomposed, while non-aggregate generators generate datatypes whose values
are atomic. This leads to two main groups of generated datatypes: aggregate datatypes and non-aggregate datatypes.

6.3.1. Aggregate datatypes

An aggregate datatype (or a structured datatype) is a generated datatype, each of whose values is made up of values of other
datatypes (parametric or component datatypes) joined together by an aggregate generator. An aggregate generator is a datatype
generator that specifies the algorithmic procedure applied to the value spaces of the component datatypes to yield the value
space of the aggregate datatype, and a set of characterizing operations specific to the generator. The component values of an
aggregate value are accessible through characterizing operations.

Subclasses of aggregate generator in OntoDT include: the record generator (or tuple generator), the class generator, the set
generator, the bag generator, the sequence generator, the array generator, and the table generator. Every aggregate generator defines
a separate aggregate datatype class®: record datatype, class datatype, set datatype, bag datatype, sequence datatype, array datatype,
and table datatype.

Aggregate datatypes are distinguished by properties that describe the relationships among the component datatypes, the
relation between each component and the aggregate, and the sets of characterizing operations. The aggregate specific properties
are independent of the component datatype properties. They are defined as qualities of the aggregate generator. The aggre-
gate specific properties include the following quality classes: homogenity, aggregate size, uniqueness, aggregate-imposed identifier
uniqueness, aggregate-imposed ordering, access type, recursiveness, structurness, and component mandatoriness.

Example. In Fig. 53, we present an example of the record datatype (also called a tuple datatype). The record generator specifies
the procedure for generating the record datatype and has a set of aggregate generator properties. These include properties such

6 See OntoDT for the definitions of all aggregate datatypes.
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Fig. 5. The record datatype in OntoDT. The rectangular boxes represent ontology classes. The rectangular boxes with dashed lines represent instances. Unla-
beled arrows represent 1s-A relations, while labeled arrows have the following meaning: h/o represents HAS-OPERATION relation, h/q represents HAS-QUALITY, i/0
represents INSTANCE-OF, h/m represents HAS-MEMBER, h/i represents HAS-IDENTIFIER, and r/o represents ROLE-OF. Full lines denote existential relations.

as: heterogenous, unordered aggregate,non-unique values, fixed size, and key access. The values of the record datatype are hetero-
geneous aggregations of values of the component datatypes. Each aggregation has one value for each component datatype. The
component datatypes are keyed by an identifier and are organized in a field-list. Each field component contains a unique identifier
of the component and its datatype. Finally, in Fig. 5b, we present the OWL Manchester syntax of the record datatype class.

In Section 6.1, we presented an example of datatype representation of the class attribute of the Iris dataset, which is an
instance of a primitive datatype. Here, we present an example of a record datatype instance, describing data examples from
the Iris dataset (see Fig. 5a). The Iris-record instance inherits all the characterizing operations, and datatype qualities from the
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Table 2
Statistical metrics for the OntoDT ontology.
Metrics Value
Class count 417
Axioms count 3086
Disjoint classes axioms count 115
Equivalent classes axioms 27
SubClassOf axioms 761
Object properties count 14
Annotation axioms count 1606
DL expressivity ALCHOIQ(D)

parent class. Additionally, the Iris-tuple datatype has a specification of the component datatypes. For example, the Iris field-list
contains Iris-field-component instances for each component datatype. Each component specification includes an identifier (e.g.,
‘sepal length’) and denotes the datatype of the component (e.g., real(f:def,r:def), where f:def and r:def represent the fraction and
radix parameters needed to define an instance of a real datatype class). Finally, the class component is described by the Iris-class
datatype instance discussed in Section 6.1.

6.3.2. Non-aggregate datatypes

A non-aggregate datatype is a generated datatype that is specified by a non-aggregate generator. Examples of non-aggregate
datatypes include: the choice datatype, the pointer datatype, and the procedure datatype. A choice datatype is a non-aggregate
datatype, each of whose values is a single value from any of a set of alternative datatypes. A pointer datatype is a non-aggregate
datatype, each of whose values constitutes a means of reference to values of another datatype and are atomic. A procedure
datatype is a non-aggregate datatype, each of whose values is an operation on values of other datatypes and is atomic.

6.4. Taxonomy of generated datatypes

We propose a taxonomy of generated datatypes (see Fig. 3), by using datatype properties and properties of aggregate gen-
erators.” At the first level, we distinguish between non-aggregate datatypes and aggregate datatypes. At the second level, if we
focus only on the aggregate datatypes, with respect to the homogenity property, we distinguish between a heterogenous aggregate
datatype and a homogenous aggregate datatype. Heterogenous aggregate datatype has three subclasses: a tuple datatype, a class
datatype, and a table datatype.

At the third level, if we focus only on a homogenous aggregate datatype, with respect to the size property, we distinguish
between a homogenous aggregate datatype with variable size and an array datatype (which has fixed size). At the next level, with
respect to the aggregate ordering property, we distinguish between a homogenous unordered aggregate datatype with variable
size and a sequence datatype (which is ordered). Finally, homogenous unordered aggregate datatype with variable size has two
subclasses: a bag datatype and a set datatype.

6.5. User defined datatypes

A user defined datatype is a datatype that is defined by a type specification [23]. A type specification defines a new datatype that
refers to an existing datatype or a datatype generator. This specification can be used to rename an existing datatype, to define
a new datatype and to define a new datatype generator. It includes a type identifier, a type-parameter list and a type definition.
Examples of defined datatypes in OntoDT include the labeled graph class and its two subclasses: a tree datatype and a Directed
Acyclic Graph (DAG) datatype, a natural number datatype, a modulo datatype, a bit datatype and others.

7. Ontology evaluation

We assess the quality of OntoDT from three different aspects. We analyze a set of ontology metrics; assess how well the
ontology meets a set of predefined design criteria and ontology best practices; and assess the ontology with respect to a set of
competency questions.

A variety of ontology metrics is available for assessing ontologies [15]. We used statistical ontology metrics from the Protégé
software [48] and the BioPortal web service [4], such as the number of classes, the number of axioms, the number of disjoint
classes, the number of equivalent classes, the number of annotation axioms, and others. The values of these statistical ontology
metrics for the OntoDT ontology are presented in Table 2. The Description Logics (DL) expressivity [1] of the ontology language
defined by the ontology is ALCHOIQ(D).

7 Definitions of all generated datatype classes are given in the ontology.
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In the design and implementation phases of ontology development, we used a set of predefined ontology best practices and
design criteria. After the ontology was constructed, we assessed it against these principles in order to see how the finalized on-
tology fits them. We concluded that OntoDT fits to the assessment criteria from the OBO Foundry and other commonly accepted
ontology engineering criteria. The results of the evaluation are summarized in Tables A.1-A.4 of the Appendix A.

Following the methodology for the design and evaluation of ontologies proposed by Griiniger and Fox [16], we specified a set
of competency questions in the design phase. We evaluated the ontology after the implementation phase against the competency
questions as an entailment queries with respect to the axioms in the ontology and concluded that the ontology is adequate. In
Section 5.6, we showed examples of formalized queries expressed as Description Logic class expressions.

8. Use cases

In this section, we present three use cases of the OntoDT ontology. The first use case is about the use of OntoDT as a mid-level
ontology by the ontology of core data mining entities (OntoDM-core). In the second use case, we present how OntoDT is used for
annotating and querying dataset repositories. Finally, in the third use case we discuss the use of OntoDT for representation and
annotation of bio-informatics datatypes.

8.1. Use of OntoDT as a mid-level ontology by the OntoDM-core ontology

In data mining, the data used for analysis are organized in the form of a dataset. Every dataset consists of data examples. An
individual data example has its own structure described with a datatype. The datatype describes the type of data contained in the
data examples, with the set of distinct values they can take, their properties and operations. The task of data mining is to produce
some type of a generalization from a given dataset (i.e., predictive model, set of patterns, clustering, probability distribution). A
data mining task is solved by using a data mining algorithm, which is implemented as a computer program and when executed
takes as input a dataset and gives as output a generalization. In this use case, we show how the OntoDT ontology can be used in
context of describing the domain of data mining.

8.1.1. The OntoDM-core ontology

OntoDM-core is a domain ontology that defines the most essential data mining entities such as dataset, data mining task, gen-
eralizations, data mining algorithms, and constraints [45]. It provides a representational framework for the description of mining
structured data, and in addition provides taxonomies of datasets, data mining tasks, generalizations, data mining algorithms and
constraints, based on the type of data. For this purpose, OntoDM-core uses the OntoDT ontology as a mid-level® ontology for the
representation of datatypes.

8.1.2. The role of OntoDT in OntoDM-core

The OntoDT ontology has a key role in OntoDM-core [45, see Fig. 2]. In OntoDM-core, the data is modeled using a data
specification entity. It describes the datatype of the underlying data and is connected to the OntoDT datatype class via the
I1S-ABOUT relation. In this way, the OntoDM-core ontology exploits the OntoDT mechanism for representing arbitrary complex
datatypes, in the context of representing the mining of structured data.

In the case of datasets, the datatype information is needed to specify the type of data contained in the dataset. For the case of
data mining tasks (predictive modeling, pattern discovery, probability distribution estimation, clustering), the information about
a datatype is needed to specify on which type of data the data mining task at hand is applicable. For the case of generalizations
(patterns, models, probability distributions, clusterings), the information about a datatype is needed to specify on which type of
data the generalization is defined. Finally, a datatype information is important in order to provide a recommendation of a set of
applicable data mining algorithms given a specific dataset.

8.1.3. Data mining datatypes

For the data mining domain, the OntoDT ontology provides a set of data mining specific datatypes which are derived from
the OntoDT basic datatypes by subclassing. These include: tuple of primitives (record of primitive components), set of discrete
datatype, sequence of real (time series), labeled graph with boolean edges and discrete datatype nodes, tree of discrete datatype
nodes, Directed Acyclic Graph (DAG) of discrete datatype nodes and others. Furthermore, OntoDT provides a flexibility to define
an arbitrary datatype, that can later be used to define a specific data mining task, applicable only to that datatype. For example,
the hierarchical classification task [58] can be only applied to data having a record of primitive components on the descriptive
side and a labeled graph (or tree) with boolean edges and discrete datatype nodes on the target side. Consequently, a set of
applicable algorithms on a dataset are all algorithms that can solve a data mining task on that dataset.

8 A mid-level ontology serves as a bridge between more general entities defined in the upper level ontology and the low-level domain entities from the domain
ontology.
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Fig. 6. OntoDM-core dataset taxonomy obtained by using the OntoDT datatype taxonomy. The labels on the arrows denote the datatypes used to define the
dataset types. The meaning of the labels is presented in the legend.

8.1.4. Taxonomy of datasets

In Fig. 6, we show the taxonomy of datasets from OntoDM-core that was obtained by using the OntoDT taxonomy of datatypes.
At the first level of the taxonomy of datasets, we have the unlabeled dataset (a dataset that has only descriptive data and is usually
used for clustering and pattern discovery tasks) and the labeled dataset (a dataset that has both descriptive and output/target data
and is usually used for predictive modeling tasks).

At the second level of the unlabeled dataset taxonomy, we distinguish between a feature-based unlabeled dataset and a
structure-based unlabeled dataset. A feature-based unlabeled dataset is a dataset that has record of primitives as the underly-
ing descriptive datatype. A structure-based unlabeled dataset is a dataset that has some aggregate datatype (other than record
of primitives) as the underlying descriptive datatype.

At the second level of the labeled dataset taxonomy, we distinguish between a labeled dataset with primitive output and a
labeled dataset with structured output. The first type can have any primitive datatype as its output data specification, while the
second type can have an aggregate datatype on the output side. Both dataset types can have an arbitrary datatype on the de-
scriptive side.

If we focus only on labeled datasets, the taxonomy can be further extended based on the datatypes on the descriptive and
output part of the data. The labeled dataset with a primitive output class is extended with two subclasses: feature-based labeled
dataset with primitive output and structure-based labeled dataset with primitive output. The first subclass has a record of primitives
on the descriptive side, while the second subclass can have any aggregate datatype (other than record of primitives) on the
descriptive side. Feature-based labeled datasets with primitive output are further extended based on the type of primitive output.
This includes the following subclasses: regression dataset (having a real datatype as output), binary classification dataset (having
a boolean datatype as output), and multi-class classification dataset (having a discrete datatype as output).

In analogy, the labeled dataset with structured output class is extended with two subclasses: feature-based labeled dataset with
structured output and structure-based labeled dataset with structured output. The first subclass has a record of primitives on the
descriptive side, while the second subclass can have any aggregate datatype (other than record of primitives). Feature-based
labeled datasets with structured output are further extended based on the type of structured output. This includes the following
subclasses: multi-target prediction dataset (having as output datatype a record of primitives), multi-label classification dataset
(having as output datatype a set of discrete), feature-based time series prediction dataset (having as output datatype a sequence of
reals), and hierarchical classification dataset (having as output datatype a labeled graph with boolean edges and discrete nodes).
Finally, a multi-target prediction dataset is further extended depending on the primitive datatypes that compose the record. This
includes the following subclasses: multi-target regression dataset, multi-target binary dataset, and multi-target multi-class dataset.

To summarize, in this use case we showed how the OntoDT ontology is used by a domain ontology of data mining. Further-
more, OntoDT has a key role in data specification, which is then base for specifying datasets, data mining tasks, generalizations,
and data mining algorithms. OntoDT supports the retrieval of suitable DM algorithms for a dataset with the specified datatype
properties. Finally, we showed how the structure of the OntoDT taxonomy of datatypes can be used to produce a taxonomy of
datasets.
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8.2. Annotation and querying machine learning dataset repositories using OntoDT

There is a large number of datasets, used for different machine learning and data mining tasks, available on-line. The best
known dataset repository for machine learning is the UCI Machine Learning Repository® [2]. It stores more than 300 datasets
used for the empirical analysis of machine learning algorithms. The datasets in the repository are annotated with several de-
scriptors, including: machine learning task (classification, regression, clustering, other), attribute type (categorical, numerical,
mixed), and datatype (multivariate, univariate, sequential, time series, text, domain-theory, other). The descriptors used in this
repository are not based on any taxonomy (or ontology) of machine learning tasks, nor taxonomy of datatypes, which limits their
applicability and interoperability. For example, one cannot describe a multi-target prediction dataset, whose data examples have
as target/class part a tuple of values instead of just one value, as is the case for a traditional predictive modeling dataset. Here,
we show how OntoDT can be used for annotation of datasets with datatype information, and show how the annotations can be
used to query dataset repositories.

8.2.1. Annotation scheme

We propose a scheme for annotating machine learning and data mining datasets with information about datatypes using
classes from the OntoDM-core and the OntoDT ontology. From the OntoDM-core ontology, we use the class for representing
datasets (OntoDM-core: DM-dataset) and the class that contains the specification of the dataset (OntoDM-core: dataset specifica-
tion), which is connected to the DM-dataset class via the 1s-ABoUT relation. A dataset specification includes information about
the datatype of the data examples by using relations to the classes from OntoDT. The OntoDT taxonomy of datatypes was used to
produce a taxonomy of datasets (see Section 8.1).

To show the benefit of using the OntoDT ontology, we annotated 193 instances of labeled datasets,'° used in predictive mod-
eling experiments by Kocev et al. [30, see Tables 3-5] and Madjarov et al. 35, see Table 1]. In the experiments, one dataset was
used for several different learning tasks. We represented each variant of a dataset in a concrete learning setting as a dataset
instance. All different variants of the same dataset were grouped under the same dataset class (as instances of that class). For
example, the EDM dataset [27] has 16 continuous descriptive attributes and 2 continuous target attributes. This dataset was
used for the tasks of multi-target regression, multi-target classification (using the discretized target attributes), and traditional
regression and classification for both target attributes separately. We represent all 6 variants of this dataset as separate dataset
instances of the EDM dataset class, as each dataset instance is characterized by a different datatype.

In Fig. 7, we present an example annotation of one dataset instance of the EDM dataset, which has continuous descriptive
attributes and two continuous target attributes. Each labeled dataset instance is described by a labeled dataset record datatype,
which is a subclass of the record datatype with the distinctive feature that it contains only two field components, one describing
the datatype on the description side and one the datatype on the target side. In that sense, the dset:EDM-MCT dataset instance is
described by the labeled dataset record datatype instance containing an instance of the record of real datatype in both descriptive
and target field components.

8.2.2. Inferred ontology

After annotating the dataset instances with OntoDT terms, we imported the annotations in the ontology using the Populous
tool [25]. Next, we performed reasoning using the HermiT reasoner version 1.3.8 [18] and produced an inferred ontology that
was used for running queries about datasets and datatypes.!! By using reasoning, some of the knowledge that was implicitly
encoded in the ontology was made explicit. The transitivity of the 1s-A relation is one example of the implicit knowledge built
inside the ontology. This allows us to ask queries about datatypes that are higher in the taxonomy and the result would include
all of its subclasses as well. For example, if we would query for datasets that have some homogenous aggregate datatype on the
output/target side, by using the inferred ontology, we would get all datasets that contain target datatypes that are subclasses of
the homogenous aggregate datatype class to the lowest levels as answer of our query. In this case, this would include the set
datatype, the bag datatype, the sequence datatype, and the array datatype.

8.2.3. Querying annotated dataset repositories

We queried OntoDT by using the OWL2Query Protégé plug-in [43], which employs SPARQL-DL [59]. The OWL2Query plug-in
is a conjunctive query, meta-query and a visualization engine that facilitates the creation of SPARQL queries using an intuitive
graph based syntax and evaluates them by using an OWL-API compliant reasoner [31]. In addition, we also used the built-in
SPARQL Protégé engine to run SPARQL queries.

For example, a query “Give me all labeled datasets that have a record datatype on the output/target side” can be encoded in
SPARQL-DL as follows:

Q(datasetClass) : —PV(is—about, ?datasetSpecInstance, ?datasetInstance),

PV(has—member, ?datasetSpecInstance, ?datasetDtypeInstance),

9 URL: http://archive.ics.uci.edu/ml/datasets.html, accessed 02.12.2014.
10 The annotations of the datasets are available on the ontology web page.
11 The inferred ontology is available on the ontology web page.
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Fig. 7. Annotation of datasets using OntoDT. An example of a EDM dataset instance. The rectangular boxes represent ontology classes. The rectangular boxes with
dashed lines represent instances. Unlabeled arrows represent 1s-A relations, while labeled arrows have the following meaning: i/o represents the INSTANCE-OF
relation, h/m represents HAS-MEMBER, h/i represents HAS-IDENTIFIER, i/a represents 1s-ABOUT, and r/o represents ROLE-OF. Full lines denote existential relations.
Dashed lines denote relation between instances.

PV(has-member, ?datasetDtypelnstance, ?fieldListInstance),
PV(role-of, ?fieldComponent, ?targetFieldDatatypelnstance),
PV(has-member, ?fieldListInstance, ?fieldComponent),
T(‘labeled dataset record datatype/, ?datasetDtypeInstance),
T(‘field list’, ?fieldListInstance),

T(‘labeled dataset target field component/, ?fieldComponent),
T(‘record datatype/, ?targetFieldDatatypeInstance),
T(?datasetClass, ?datasetInstance),

sc0(?datasetClass, ‘DM-dataset’).

where PV is a property value query atom, T is a type query atom, and SCO is a subclass of query atom. The result of executing
this query is a list of 18 dataset classes, which have instances with a record datatype on the output side. Without the OntoDT
annotations, and the inferred ontology axioms, provided by the reasoner, it would be difficult to retrieve datatype information
about labeled datasets from the repository.

This use case demonstrates that OntoDT provides logically consistent descriptors for annotating machine learning datasets
and facilitates information retrieval about the datasets. This approach can be generalized and extended to annotate and query
arbitrary datasets, learning tasks, and algorithms with datatype information (e.g., for semantical annotation in the OpenML
platform'?[66]). Furthermore, by using the ontology one can search the annotated datasets depending on the datatype. OntoDT
can thus serve as a reference model for the consistent annotation of dataset repositories with datatype information.

8.3. The representation of bioinformatics datatypes

OntoDT is a generic ontology and it allows easy extensions to represent domain specific datatypes. This can be done by directly
extending the OntoDT datatype taxonomy and defining the semantic meaning of the domain datatypes by linking them to the
corresponding entities in domain ontologies. For example, we can define an amino-acid sequence datatype as a subclass of the
character sequence datatype class (which is a sequence datatype having characters as its base type). Its semantic meaning can be

12 OpenML is a collaboration platform through which scientists can share, organize and discuss machine learning experiments, data, and algorithms.
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(b) OWL Manchester syntax.

Fig. 8. Representation of bio-sequence and bio-sequence record datatypes from BioXSD in OntoDT. The rectangular boxes represent ontology classes. Unlabeled
arrows represent 1s-A relations, while labeled arrows have the following meaning: r/o represents ROLE-OF RELATION, i/a represents 1S-ABOUT relation, and h/m
represents HAS-MEMBER relation. Full lines denote existential relations, while dashed lines denote universal relation.

defined via the 1s-ABOUT relation to the amino acid sequence entity provided by the National Cancer Institute Thesaurus [39]. In

this way, OntoDT can be used for representation of bioinformatics datatypes.

Currently, BioXSD is used to define the basic bio-informatics types of data [26], but it inherits the limitations of XSD (see
Section 2). BioXSD does not support arbitrary datatypes and it does not provide a clear framework for the representation of the
semantic meaning of the data. We propose to enhance the representation of bioinformatics datatypes by exploiting the rigorous
taxonomy of datatypes defined in OntoDT and the framework for the representation of semantic meanings adopted by OntoDT
following the RDF data cube vocabulary [51]. OntoDT is fully interoperable with OBO bio-ontologies because it was developed by
following the OBO Foundry recommendations (see Section 4) and therefore it fully supports the representation of the semantic
meaning of the data by the corresponding entities defined in domain-specific bio-ontologies.

For example, the BioXSD datatype sequence represents a string of 1-letter coded nucleotides or amino-acids. A sequence record
is a datatype containing a sequence, and optionally some metadata about the sequence (for the purpose of identification). The
semantic meanings of the terms sequence and nucleotide are curtail for the capturing of the semantic meaning of the data of
the datatype sequence. However, this datatype sequence is not explicitly linked to the classes nucleotide and amino-acid defined
in the ChEBI ontology [5], which is recommended by OBO Foundry as a reference ontology.

In Fig. 8, we present the extension of OntoDT to represent the bio-sequence and bio-sequence record datatypes from
BioXSD. We represent the bio-sequence datatype class as a subclass of the character sequence datatype class with the defined
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semantic meaning in the NCI Thesaurus [39] and EDAM ontology [13] (see Fig. 8a). In order to define the nucleotide and amino
acid sequences datatypes, we define two subclasses of the character datatype class: nucleotide character datatype and amino acid
character datatype. In order to define their semantic meaning, we explicitly link them to the nucleotide and amino acid classes
from the ChEBI ontology [5]. Consequently, the bio-sequence datatype class has two subclasses: nucleotide sequence datatype and
amino acid sequence datatype. Furthermore, both datatypes have two subclasses, depending on whether they include ambiguous
bases (in the case of nucleotides) or ambiguous and additional residues (in the case of amino acids). For example, the nucleotide
sequence datatype class has two subclasses: nucleotide sequence with ambiguous bases (relates to general nucleotide sequence in
BioXSD) and nucleotide sequence without ambiguous bases (relates to nucleotide sequence in BioXSD).

We represent the bio-sequence record datatype class as a subclass of the record datatype class (see Fig. 8b). This datatype
is defined by a record generator and the bio-sequence-field-list. As defined in BioXSD, the datatype contains a bio-sequence as
a mandatory component and a set of metadata (such as name, note, species, translationalData, reference, inlineBaseQuality) as
non-mandatory components. In OntoDT, we model the bio-sequence field component class is as a role of the bio-sequence datatype
(defined previously).

Having in mind that we can have sequences of nucleotides and amino acids, bio-sequence record datatype has two subclasses:
nucleotide sequence record datatype and amino acid sequence record datatype. Both datatypes have two subclasses, depending
on whether they include ambiguous bases (in the case of nucleotides) or ambiguous and additional residues (in the case of
amino acids). For example, nucleotide sequence record datatype has two instances, nucleotide sequence record with ambiguous
bases (relates to general nucleotide sequence record in BioXSD) and nucleotide sequence record without ambiguous bases (relates
to nucleotide sequence record in BioXSD). In a similar way, we can define other datatypes from BioXSD as subclasses or instances
of the OntoDT datatypes.

This use case demonstrates that OntoDT provides logically consistent representation of bioinformatics datatypes from BioXSD
and enables an accurate representation of the semantic meanings of the data of the specified datatypes. OntoDT has been de-
signed as a generic and comprehensive ontology of datatypes and consequently any datatype from other resources can also be
represented by OntoDT. We suggest that OntoDT can serve as a reference model for the consistent representation of datatypes
used within biomedical domains and wider.

9. Discussion

In this section, we discuss several aspects of OntoDT that concern its integration with other ontological resources and the
potential application areas and in e-science. First, we discuss the integration of OntoDT with other ontologies. Next, we focus
on a discussion of how OntoDT can be used to enrich BioXSD annotations. Finally, we discuss the prospects of using OntoDT for
web-services, cloud computing and laboratory automation.

Integration of OntoDT with other ontologies. OntoDT adopts a modular approach where not only the information about
units of measurements but also other operational information and the semantic meaning of the underlying data is captured and
maintained separately. Following best practices, OntoDT clearly separates the semantic meaning of the data from the data itself
and its structure. Data processing becomes increasingly complex and accurate recording of how the data have been processed is
vital for data analysis. A modular approach for the recording of information is flexible, extensible, and also reduces the complexity
of the underlying representational model. The employed designing approach (see Section 4) facilitates a seamless integration of
the relevant resources. For example, OntoDT can be easily linked with ontologies of quantities and units (e.g. [32,49]) and also
with ontologies defining operations on the data, e.g. OntoDM-core [45].

Using OntoDT annotations in BioXSD. BioXSD uses a combined approach of a pure XML Schema annotated by a data-type
ontology using Semantic Annotations for Web Services Description Language (WSDL) and XML Schema [54]. SAWSDL defines a
set of extension attributes for the WSDL and XML Schema definition languages. Application of attributes allows the description
of additional semantics by using references to conceptual semantic models, e.g., ontologies. BioXSD datatypes are annotated
with terms from the EDAM ontology [24] using SAWSDL. In the same way, BioXSD datatypes can be annotated with OntoDT
terms. By adding OntoDT annotations to BioXSD, we would allow the web services (such as MaxAlign, ProP, NetNES, BLAST and
others) that use BioXSD as representational formalism, to utilize the information about datatypes, their properties and operations
that can be performed on them, which is not available when using only EDAM ontology annotations.

For example, by annotating the datatype bio-sequence record from BioXSD with terms from the OntoDT ontology, the web
services would have the information that bio-sequence record is in fact a record datatype that is heterogenous and has com-
ponents (in this case sequence as mandatory, and other non-mandatory ones), its values are unordered, it has fixed size, and
each component can be accessed by keying. In addition, web services can also get information about the possible operations on
that datatype (in this case equality operation, field select operation and field replace operation). Finally, web services could also
get information about the properties and operations on the component datatypes. For example, for the mandatory component
bio-sequence, web services can get the information that it is a homogeneous ordered datatype with variable size where each
element can be accessed by its position.

Service oriented architectures. With the increasing complexity of scientific workflows, where different web services and
other computer programs have to exchange data, there is a need for a reference model of data and datatypes. An ontology of
datatypes is a step towards such a model. The ontology could be used to enhance various IT solutions, for example the orches-
tration in service oriented architecture, cloud computing and laboratory automation. Orchestration describes the automated
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arrangement, coordination and management of complex computer systems and services [ 14]. In order to identify what software
components or services are capable of performing a required task, the orchestration module needs to know the functionality
of the software, it inputs and outputs, including datatypes it can operate with. The OntoDT ontology, we propose in this paper,
could provide more structured information about the datatypes and consequently can improve the orchestration of software
components and services.

Cloud computing. Another application area for OntoDT is cloud computing. Cloud computing is a network-based service that
involves a large number of computers connected through a communication network, i.e., the Internet.'> The popular models of
cloud computing service include software as a service and infrastructure as a service. It is vital for the functioning of such ser-
vices to specify the available resources, including what datatypes they can work with. Therefore, the sophisticated description
of datatypes provided by OntoDT could contribute to the improvement of cloud computing. There are a number of open stan-
dards under development, with the aim of delivering interoperability and portability of cloud software.'* OntoDT can contribute
towards the representation of datatypes within those standards.

Laboratory automation. Finally, another potential application domain for OntoDT is laboratory automation. Laboratory au-
tomation typically comprises many different automated laboratory instruments, devices, software and methodologies to expe-
dite the efficiency and effectiveness of scientific research in laboratories. Unfortunately, those laboratory instruments, devices
and software often do not communicate with each other and with the users effectively. One of the reasons is that they operate
with different and sometimes proprietary datatypes that other components of the laboratory workflow cannot input directly. A
reference model of datatypes would contribute to the solution of this serious problem. OntoDT could thus be used to improve
the communication between various pieces of equipment and software in a biological laboratory.

10. Conclusions

In this paper, we have presented OntoDT, a proposal for a generic ontology of datatypes. The ontology is based on the ISO/IEC
11404 standard for datatypes in computer systems. It defines the key entities for representation of datatypes, such as datatype,
extended datatype, datatype properties, datatype characterizing operations, datatype value space. In addition, it defines also
the support entities needed for representing specific datatypes. The ontology has been constructed by following best practices
in ontology design so that it is complementary and can be easily integrated with other state-of-the-art ontologies for science.
Finally, the ontology has been evaluated from several different aspects, such as ontology metrics, assessment in terms of design
principles, and assessment in terms of competency questions.

The contributions of this paper are as follows. First, we propose a taxonomy of datatypes based on the properties of datatypes
and their structure. Second, we show the suitability of OntoDT for querying about datatypes. Next, we demonstrate how OntoDT
is crucial in defining the key entities in the domain of data mining such as data specification, data mining task, generalization
and implicitly data mining algorithm, and we show how the OntoDT taxonomy of datatypes is used to produce a taxonomy of
datasets. Finally, we demonstrate how OntoDT is used for annotation of dataset repositories and for representing bioinformatics
datatypes.

We envision several dimensions of further development of OntoDT that would overcome the current limitations of the on-
tology. First, we want to further establish the connection with domain ontologies and represent domain dependent semantic
datatypes for different domains (e.g., biology, ecology, economics) using the OntoDT ontology and the semantics of the domain
entities from domain ontologies. Next, we want to populate the OntoDT ontologies with more complex datatypes such as text,
audio, images, video, and to include their specific operations and properties. Finally, we would like to link the representation of
data formats and datatypes by re-using the ontologies that deal with different data formats (e.g., EDAM) and integrating them
with OntoDT.
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Appendix A

See Tables A.1-A.4

13 http://www.netlingo.com/word/cloud-computing.php, accessed 18.12.2014.
4 http://www.infoworld.com/d/cloud-computing/openstack-foundation-launches-202694, accessed 18.12.2014.

Please cite this article as: P. Panov et al, Generic ontology of datatypes, Information Sciences (2015),
http://dx.doi.org/10.1016/j.ins.2015.08.006



http://dx.doi.org/10.13039/501100000266
http://www.netlingo.com/word/cloud-computing.php
http://www.infoworld.com/d/cloud-computing/openstack-foundation-launches-202694
http://dx.doi.org/10.1016/j.ins.2015.08.006

JID: INS [m3Gsc;August 27, 2015;7:35]
P. Panov et al. / Information Sciences 000 (2015) 1-21 19
Table A1
Scope and structure assessment.
# Principle Assessment

1 Coverage

2 Upper-ontology
3 Relations

4 Ontology reuse
5 Modularity

6 Use of disjoint classes

7 Use of single inheritance

8 1s-A completeness

9 Domains and ranges for
relations

10 Inverse relations

1 Orthogonality with other
ontologies

12 Instantability

OntoDT provides a representation of datatypes commonly used in programming languages and software. It is
based on the ISO/IEC 11404:2007 standard for datatypes.

OntoDT uses the classes from IAO, which has the BFO ontology as an upper-level ontology.

OntoDT uses relations defined in RO, IAO and OBL. The relations defined in IAO and OBI are candidates for
inclusion into RO.

OntoDT reuses classes and relations from OBI and IAO.

OntoDT is part of the OntoDM ontology, which contains also the OntoDM-core and the OntoDM-KDD
subontologies. It can be used independently.

In OntoDT, we extensively use disjoint class axioms.

In OntoDT, each class has only one superclass. This reduces the potential inconsistency and errors in reasoning
processes.

All OntoDT classes are connected via the 1s-A relation. There are no orphan classes.

Imported relations from RO, IAO and OBI have defined ranges and domains.

Most of the imported relations from RO, OBI, and IAO have defined inverse relations.
OntoDT is orthogonal to other ontologies already lodged within OBO.

More extensive population of the ontology with instances is planned for the future.

Table A.2
Naming and vocabulary assessment.

# Principle

Assessment

1 Ontology language
2 Use of annotation properties

w

Label annotations
4 Ontology namespace

5 Ontology term IDs

6 Multi-lingual capabilities

OntoDT is expressed in the W3C standard Web Ontology Language OWL-DL.

We reuse the OBI consortium defined meta-data (http://obi-ontology.org/page/OBI_Minimal_metadata) to
provide additional semantic annotation of the classes and relations.

We use label annotations to provide human readable names of classes and relations in the ontology.

OntoDT has its own namespace http://www.ontodm.com/OntoDT#. The classes and relations that are
imported from other ontologies have kept their source ontology namespace and ID.

The IDs of the ontology terms include a combination of an ontology module ID and a multiple digit code. For
the OntoDT we use OntoDT_xxxxx.

At this moment the OntoDT ontology does not provide multi-lingual capabilities.

7 Naming conventions The ontology uses set of naming conventions provided by the OBO Foundry.
8 Referencing external classes The external classes are referenced by using the MIREOT principle.
Table A.3

Documentation and collaboration assessment.

# Principle

Assessment

1 Definitions Most of the OntoDT classes have textual definitions that are taken from the ISO/IEC 11404. They are regularly
updated and revised. The source of the definitions is properly referenced in the annotations.
2 Documentation The ontology is documented on its dedicated web page.
3 Collaboration efforts OntoDT still does not participate in any collaboration effort.
Table A4

Availability, maintenance and use assessment.

# Principle

Assessment

1 Use of reasoners

2 Openness and availability

3 Versioning

4 Users of the ontology

5 Maintenance

6 Handling of obsolete classes

We use the HermiT reasoner to test the class and relations consistency and for producing the inferred ontology.

OntoDT is open and is available in its web page http://www.ontodt.comand additionally at BioPortal
(http://bioportal.bioontology.org/).

For tracking the changes in the ontology we use the industry standard Subversion tool.

The ontology is reused by the OntoDM-core ontology.

The ontology has a dedicated person that cares about its maintenance.

Deleted classes in the OntoDT class hierarchy are listed under the obsolete class, so that applications based on
them can still use the terms. The domain terms that have been collected so far but are still not represented
in the ontology are listed under the non-curated class in the OntoDT class hierarchy.
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