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In biology, analyzing time course data is usually a two-step process, beginning with clustering of

similar temporal profiles. After the initial clustering, depending on the expert’s knowledge,

descriptions of the clusters are elucidated (e.g., Gene Ontology terms that are enriched in the

clusters). In this paper, we investigate the application of so-called predictive clustering trees

(PCTs) for the analysis of time series data. PCTs are a part of a more general framework of

predictive clustering, which unifies clustering and prediction. Their advantage over usual

clustering approaches is that they partition the time course data into homogeneous clusters while

at the same time providing symbolic descriptions of the clusters. We evaluate our approach on

multiple yeast microarray time series datasets. Each dataset records the change over time in the

expression level of yeast genes as a response to a specific change in environmental conditions. We

demonstrate that PCTs are able to cluster genes with similar temporal profiles, yield a predictive

model of the temporal profiles of genes based on a cluster prototype, and provide cluster

descriptions, all in a single step.

1. Introduction

Gene expression is a temporal process that is highly regulated.

Much work in bioinformatics studies this process in order to

better understand the function of individual genes and to gain

insight into complete biological systems. The task most

commonly addressed in this context is the task of clustering

time series of gene expression data, where the aim is to

discover groups of genes with similar temporal profiles of

expression and to find common characteristics of the genes in

each group. Clustering genes by their time expression pattern

is important, because genes that are co-regulated or have a

similar function will have similar temporal profiles under

certain conditions.

The purpose of our research is to develop a clustering

approach that is well suited for analyzing short time series,

and to demonstrate its usefulness on time series expression

data. Besides finding clusters, e.g., groups of genes, we also

aim to find descriptions/explanations for the clusters. Instead

of first clustering the expression time series and elucidating the

characteristics of the obtained clusters later on (as done in,

e.g., ref. 1), we perform so-called constrained clustering, which

yields both the clusters and their symbolic descriptions all in

one step.

The constrained clustering is performed by using predictive

clustering trees (PCTs), which are a part of a more general

framework, namely predictive clustering. This general framework

of predictive clustering combines clustering and prediction.2

Predictive clustering partitions a given dataset into a set of

clusters such that the instances in a given cluster are similar to

each other and dissimilar to the instances in other clusters.

In this sense, predictive clustering is identical to regular

clustering.3 The difference is that predictive clustering associates

a predictive model to each cluster. This model assigns instances

to clusters and provides predictions for new instances. So far,

decision trees2,4 and rule sets5 have been used in the context of

predictive clustering.

This paper investigates how predictive clustering can be

applied to cluster time series,6 i.e., sequences of measurements

of a continuous variable that changes over time. For example,

Fig. 1a shows eight time series partitioned into three clusters:

cluster C1 contains time series that increase and subsequently

decrease, C2 has mainly decreasing time series and C3 mainly

increasing ones. Fig. 1b shows a so-called predictive clustering

tree (PCT) for this set of clusters. The tree represents a

hierarchical clustering of the time series, where each leaf

corresponds to one of the three clusters. At each leaf, a

prototype is given for the cluster. This is the predictive model

associated with the cluster. Finally, each cluster is described by

a set of conditions. For example, cluster C1 includes all genes

that are annotated with the Gene Ontology terms

‘‘GO:0043232’’ and ‘‘GO:0000313’’.

We first propose an extension of the general PCT induction

algorithm2 to the task of time series clustering. We use the

name ‘‘Clus-TS’’ (Clustering-Time Series) for this extension.

From a computational viewpoint, applying the PCT induction

algorithm to time series clustering is non-trivial because the

general algorithm requires computing a centroid for each

cluster and for most distance measures suitable for time series

clustering, no closed algebraic form centroid is known.
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We also demonstrate the usefulness of Clus-TS on several

time series datasets generated by microarray expression

profiling.7 Each dataset records the change over time in the

expression level of yeast genes in response to a different type of

change in environmental conditions. There has been significant

research related to clustering this type of short time series gene

expression data,1,8–13 using several different distance measures.

Our approach uses an alternative distance measure (that

mainly takes the shape of the time series into account) and

constructs clusters together with their explanations in terms of

a given set of descriptive features. Here, as descriptive features,

we consider terms from the Gene Ontology (GO),14 but this

can be extended to any other type of gene descriptions (e.g.,

KEGG pathways,15 regulatory motifs). The GO terms appear

in the internal nodes of the PCT (Fig. 1b) and provide a

symbolic description of the clusters.

In the remainder of the paper, we first give an overview of

related work. We next present our methodology in more detail:

this includes a description of the predictive clustering framework,

the PCT induction algorithm, the distance measure used for

clustering, and the methodology for evaluating predictive error.

We then present the results of our analysis of the yeast gene

expression time profiles, where we evaluate our approach in

terms of predictive error and the usefulness of the descriptions

derived from the PCTs. We conclude the paper with a discussion

in light of the presented results and methodology.

2. Related work

A large body of work has been devoted to the task of

analyzing expression time series data. Bar-Joseph16 presents

an overview of the most important aspects that are relevant

when analyzing expression time series data. This includes

experimental design, data preprocessing (dealing with differences

in sampling rates, missing values, and noise), finding significant

genes, modeling gene interaction, and clustering expression

time series.

Many different clustering algorithms3 have been used to

cluster expression time series data. The most well-known

algorithm is probably UPGMA, which was proposed by Eisen

et al. in 199817 and performs hierarchical clustering based on

correlation. More recently, several advanced time series

clustering methods have been presented. These model the time

series, for example, using spline curves,8,10 an autoregressive

model,11,13 or a mixture of hidden Markov models.12

Datta and Datta9 compare six clustering algorithms for

expression time series data experimentally. Their comparison

includes two hierarchical clustering algorithms (among which

UPGMA), divisive clustering (Diana), fuzzy clustering (Fanny),

a model based clustering method, and k-means. They found

Diana to be a solid and robust performer across different

evaluation measures. A review of the most common evaluation

measures for clustering is provided by Handl et al.18

Often, the clustering methods are not applied to all genes,

but only to genes that do respond to the change in environ-

mental conditions or treatment. A gene responds to the

treatment if the null hypothesis stating that its expression over

time is constant can be rejected.19 Several methods have been

proposed to identify such genes and a comparison can be

found in Mutarelli et al.20 An advantage of our method is that

it detects such genes during the clustering process itself by

assigning confidence values to genes.

Due to the cost of microarray analysis and of obtaining

samples, most expression time series are relatively short

(r8 points). Ernst et al.1 propose a clustering method designed

for such short time series. Their method creates all possible

expression profiles under the constraint that the maximal

expression change between subsequent time points is bounded

by a fixed number of units. It then assigns time series to the

closest profile (in terms of correlation) thereby forming clusters.

Our method is also tailored to short time series, but instead of

using correlation, we opt for a qualitative distance measure that

can be reliably estimated from short time series.

After clustering, Ernst et al.1 label the clusters by finding

GO categories that are significantly enriched in the clusters.

Our method also provides a description for each cluster in

terms of GO categories, but finds these during the constrained

clustering process itself. As a result, all genes in a cluster

are guaranteed to belong to the GO categories from the

description. This is closely related to the constrained clustering

method by Sese et al.21 The main difference is that their

method deals with static gene expression data and not with

time series, and that their cluster descriptions are restricted to

item-sets.

3. Methodology

3.1 Prediction, clustering, and predictive clustering trees

Predictive modeling aims at constructing models that can

predict a target property of an object from a description of

Fig. 1 (a) A set of time series clustered into three clusters. (b) A predictive clustering tree associated with this clustering. Each leaf of the tree

corresponds to one cluster and stores the cluster’s prototype which is used for prediction.
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the object. Predictive models are learned from sets of exam-

ples, where each example has the form (D,T), with D being an

object description and T a target property value. For example,

D can be the measured gene expression levels of a certain

sample, and T whether the corresponding tissue is cancerous

or healthy. While a variety of representations, ranging from

propositional to first order logic, have been used for D, T is

almost always a single target attribute called the class, which

is discrete for classification problems or continuous for

regression problems.

Clustering,3 on the other hand, is concerned with grouping

objects into subsets of objects (called clusters) that are similar

with respect to their description D: this is called distance based

clustering. There is no target property defined in clustering

tasks. In conventional clustering, the notion of a distance (or

conversely, similarity) is crucial: examples are considered to be

points in a metric space and clusters are constructed such that

examples in the same cluster are close according to a particular

distance defined on the descriptive space D. A centroid (or

prototypical example) may be used as a representative for a

cluster. The centroid is the point with the lowest average

(squared) distance to all the examples in the cluster, i.e., the

mean or medoid of the examples. Hierarchical clustering and

k-means clustering are the most commonly used algorithms

for this type of clustering.3

Predictive clustering2 combines elements from both

prediction and clustering. As in clustering, we seek clusters

of examples that are similar to each other. The distance

measure is defined on D , T, taking both the descriptive part

and the target property into account. In addition, a predictive

model must be associated to each cluster. The predictive model

assigns new instances to clusters based on their description

D and provides a prediction for the target property T. A

well-known type of model that can be used to this end is the

decision tree.22 A decision tree that is used for predictive

clustering is called a predictive clustering tree (PCT,

Fig. 1b). Each node of a PCT represents a cluster. The

conjunction of conditions on the path from the root to that

node gives a description of the cluster. Essentially, each cluster

has a symbolic description in the form of a rule (IF conjunction

of conditions THEN cluster)z, while a tree structure represents
the hierarchy of clusters. Clusters that are not on the same

branch of a tree do not overlap.

In Fig. 1, the description D of a gene consists of GO terms

with which the gene is annotated, and the target property T is

the time course expression recorded for that gene. In general,

we could include both D and T in the distance measure.

We are, however, most interested in the time course part.

Therefore, we define the distance measure only on T. We

consider the so-called qualitative distance measure (QDM),24

described in section 3.5. The resulting PCT (Fig. 1b) represents

a clustering that is homogeneous w.r.t. T and the internal

nodes of the tree provide a symbolic description of the clusters.

Note that a PCT can also be used for prediction: we can use

the tree to assign a new instance to a leaf and take the centroid

(denoted with ci in Fig. 1b) of the corresponding cluster as a

prediction.

3.2 Building predictive clustering trees

The generic algorithm for constructing PCTs2 is presented in

Table 1. It is a variant of the standard greedy recursive

top-down decision tree induction algorithm used in ref. 22.

It takes as input a set of instances I; in our case these are genes

described by GO terms and their associated time course

measurements. The algorithm calls the procedure BestTest

(Table 1, right) to search for the best acceptable test (GO

term) that can be put in a node. If such a test t* can be found

then the algorithm creates a new internal node labeled t*, splits

the instances into several subsets (partition P*) according to

the outcome of the test for each instance, and calls itself

recursively to construct a tree for each of the subsets in P*.

If no acceptable test can be found, then the algorithm creates a

leaf, and the recursion terminates. The procedure ‘‘Acceptable’’

defines the stopping criterion of the algorithm, e.g., specifying

maximum tree depth or a minimum number of instances in

each leaf. We enforce different constraints on the size of the

tree by means of the post pruning method proposed by

Garofalakis et al.,25 which employs dynamic programming

to find the most accurate subtree no larger than a given

number of leaves.

Up till here, the algorithm is identical to a standard decision

tree learner. The main difference is in the heuristic that is used

for selecting the tests. For PCTs, this heuristic is the reduction

in variance (weighted by cluster size, see line 6 of BestTest).

Maximizing variance reduction maximizes cluster homo-

geneity. The next section discusses how cluster variance can

be defined for time series.

An implementation of the PCT induction algorithm is

available in the Clus system, which can be obtained at

http://www.cs.kuleuven.be/~dtai/clus.

3.3 Computing cluster variance

The PCT induction algorithm requires a measure of cluster

variance in its heuristics. The variance of a cluster C can be

defined based on a distance measure as

VarðCÞ ¼ 1

jCj
X
X2C

d2ðX ; cÞ; ð1Þ

Table 1 Pseudo-code for the algorithm Clus that induces predictive
clustering trees (PCTs). The two key subroutines of the algorithm are
BestTest(I) and Centroid(I). The first selects the best test t* among the
possible tests, according to the heuristic h, which for each test
t measures the reduction of variance between the dataset I and the
partition P = I1, I2 produced by the test. The second procedure
calculates the cluster centroid

z This idea was first used in conceptual clustering.23
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with c the cluster centroid of C. To cluster time series, d should

be a distance measure defined on time series, such as the QDM

defined in section 3.5.

The centroid c can be computed as argminq
P

XAC d2(X, q).

We consider two possible representations for c: (a) the

centroid is an arbitrary time series, and (b) the centroid is

one of the time series from the cluster (the cluster prototype).

In representation (b), the centroid can be computed with |C|2

distance computations by substituting q with each time series

in the cluster. In representation (a), the space of candidate

centroids is infinite. This means that either a closed algebraic

form for the centroid is required or that one should resort to

approximative algorithms to compute the centroid. No closed

form for the centroid is known in representation (a) for the

QDM distance.

An alternative way to define cluster variance is based on the

sum of the squared pairwise distances (SSPD) between the

cluster elements, i.e.,y

VarðCÞ ¼ 1

2jCj2
X
X2C

X
Y2C

d2ðX ;YÞ: ð2Þ

The advantage of this approach is that no centroid is required.

It also requires |C|2 distance computations. This is the

same time complexity as the approach with the centroid in

representation (b). Hence, using the definition based on a

centroid is only more efficient if the centroid can be computed

in time linear in the cluster size. This is the case for the

Euclidean distance in combination with using the pointwise

average of the time series as centroid. For QDM no such

centroids are known. Therefore, we choose to estimate cluster

variance using the SSPD.

A second advantage is that (2) can be easily approximated

by means of sampling, e.g., by using,

VarðCÞ ¼ 1

2jCjm
X
X2C

X
Y2 sampleðC;mÞ

d2ðX ;YÞ

0
@

1
A; ð3Þ

with sample(C, m) a random sample without replacement of m

elements from C, instead of (2) if |C| Z m. The computational

cost of (3) grows only linearly with the cluster size. In the

experimental evaluation, we only use (3), as a previous

experimental comparison shows only small differences

between (2) and (3) (results not shown).

The PCT induction algorithm places cluster centroids in its

leaves, which can be inspected by the domain expert and used

as a prediction. For these centroids, we use representation (b)

as discussed above.

3.4 Estimating the predictive error of PCTs

PCTs make predictions just like regular decision trees.22 They

sort each test instance into a leaf and assign as prediction the

label of that leaf. PCTs label their leaves with the training set

centroids of the corresponding clusters.

To evaluate the predictive performance of PCTs, we first

need an error measure and also a method to estimate it. For an

error measure we use the root mean squared error (RMSE),

which is defined as:

RMSEðI ;TÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jI j
X
X2I

d2ðTðXÞ; seriesðXÞÞ
s

; ð4Þ

with I the set of test instances, T the PCT that is being tested,

T(X) the time series predicted by T for instance X, series(X) the

actual series of X, and d the qualitative time course distance

measure (described in section 3.5).

For estimating the predictive performance of the PCTs we

use k fold cross-validation. In cross-validation the dataset D is

first split into k random subsets {D1, D2, . . .Dk}. We then use

k � 1 subsets to build the predictive model (in this case the

PCT) and we record its error (i.e., RMSE) on the left-out

subset(fold). We repeat this k times, each time leaving out a

different subset for testing the error. We obtain the final error

estimate by averaging the errors obtained for all of the n

instances of the dataset D.

err ¼ 1

n

X
i2D

errðPCTðD�iÞ;DiÞ ð5Þ

3.5 Qualitative distance measure

Several distance measures have been defined for time series. If

all time series have the same length then one can represent

them as real valued vectors and use standard vector distance

measures such as the Euclidean or Manhattan distance. It is

also possible to use a correlation based measure to determine

the degree of linear dependence between two time-series.17

Dynamic Time Warping (DTW)26 is appropriate to capture

non-linear distortion along the time axis and it is suitable if the

time series are not properly synchronized (this is useful if one

is delayed, or if the two time series are not of the same length).

These measures are, however, not always appropriate for

time course clustering, and in particular not for analyzing the

short time courses of expression data. The simple Euclidean or

the DTW distance mainly capture the difference in scale and

baseline. If a given time series is identical to a second time

series, but scaled by a certain factor or offset by some constant,

then the two time series will be distant (Fig. 2). Correlation is

difficult to properly estimate if the number of observations is

small (i.e., short time course data) and it only captures the

linear dependencies between the time series.

For our application (i.e., clustering short time course gene

expression data), the differences in scale and size are not of

great importance; only the shape of the time series matters.

Namely, we are interested in grouping together time-course

profiles of genes that react in the same way to a given

condition, regardless of the intensity of the up- or down-

regulation.

For that reason, we use the qualitative distance measure

proposed by Todorovski et al.24 It is based on a qualitative

comparison of the shape of the time series. Consider two time

series X and Y (Fig. 2). Then choose a pair of time points i and

j and observe the qualitative change in the value of X and Y at

these points. There are three possibilities: increase (Xi > Xj),

no-change (Xi E Xj), and decrease (Xi o Xj). dqual is obtained
y The factor 2 in the denominator of (2) ensures that (2) is identical to
(1) for the Euclidean distance.
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by summing the difference in qualitative change observed for

X and Y for all pairs of time points, i.e.,

dqualðX ;YÞ ¼
Xn�1
i¼1

Xn
j¼iþ1

2 �Diff ðqðXi;XjÞ; qðYi;YjÞÞ
N � ðN � 1Þ ; ð6Þ

with Diff(q1,q2) a function that defines the difference between

different qualitative changes (Table 2, Fig. 2). Roughly

speaking, dqual counts the number of disagreements in change

of X and Y.

QDM does not have the drawbacks of correlation based

measures. First, it can be computed for very short time series,

without decreasing the quality of the estimate. Second, it

captures the similarity in shape of the time series, regardless

of whether their dependence is linear or non-linear (Fig. 2).

4. Results

In this section, we present and evaluate the results of the

analysis of time course gene expression data with PCTs. The

expression data measures the response of yeast genes to

different types of environmental stress and we first give a brief

description of it. We then show how the produced PCT models

can be interpreted in order to obtain biologically meaningful

knowledge. We also discuss the similarity of the biological

processes that are involved in the response to different types

of stress. We finally present the results of experiments

performed for assessing the predictive performance of the

constructed PCTs.

4.1 Dataset description

For our experiments, we use the time-series expression data

from the study conducted by Gasch et al.,7 which are publicly

available. The purpose of the study is to explore the changes in

expression levels of yeast (Saccharomyces cerevisiae) genes

under diverse environmental stresses. The gene expression

levels of around 5000 genes are measured at different time

points using microarrays. The data is log-transformed and

Table 2 The definition of Diff(q1,q2)

Diff(q1,q2) Increase No-change Decrease

Increase 0 0.5 1
No-change 0.5 0 0.5
Decrease 1 0.5 0

Fig. 2 Comparison of four distance measures for time series. Time series (a) are linearly related resulting in dr(X, Y) = 0. Time series (b) are

non-linearly related, but still have a similar shape, resulting in dqual(X, Y) = 0.

Fig. 3 On the left-hand side, we show a sample PCT with 5 leaves, produced for the diamide treatment dataset. The GO terms that appear in the

nodes are used as descriptions for clusters C1 to C5, found at the leaves of the tree. On the right-hand side, we show each predicted cluster

prototype, and its related cluster size and RMSE. Clusters C1 to C3 show significant temporal changes in gene expression and have a relatively low

error. Cluster C1 includes genes that have an immediate and very significant down-regulation during diamide exposure. C3 shows the same

tendency, except the genes are less down-regulated and there is a short time-lag in their response. Cluster C2 contains genes that are up-regulated

during stress. All three cluster prototypes show that changes in gene expression levels are transient. If we just follow the ‘‘no’’ branch of the tree we

reach the cluster C5. Its size indicates that the bulk of genes fall into this cluster. We believe that most of the genes that do not have a coordinated

stress response fall into this cluster. Indicative of this is the cluster prototype, which shows no major changes in gene expression and has a large

error.
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normalized based on the time-zero measurement of yeast cells

under normal environmental conditions.

Various sudden changes in the environmental conditions are

tested, ranging from heat shock to amino acid starvation for a

prolonged period of time. We used a total of 10 datasets

(different stress conditions) for our analysis. We perform

a comparative analysis of the obtained descriptions from all

of the datasets in section 4.4. For a more detailed discussion of

the obtained descriptions (section 4.3) we considered four

representative datasets, for different types of stressful conditions

(temperature, chemical and starvation). Namely, we consider

heat shock (from 25 to 37 1C), diamide treatment, DTT

(dithiothreitol) exposure and nitrogen starvation.

From these original time series datasets, we construct

extended datasets by including gene descriptions. We obtained

the GO term annotations for each yeast gene from the Gene

Ontology14 (version June, 2009). As the GO terms are

structured in a hierarchy, we use both the part_of and is_a

relations to include all relevant GO terms for each gene. To

limit the number of features, we set a minimum frequency

threshold: each included GO termmust appear in the annotations

for at least 50 of the 5000 genes.

4.2 Interpretation of PCTs for time course profiles

As explained in section 1, a PCT represents a hierarchical

clustering of the time course data, where each leaf corresponds

to one cluster. In Fig. 3, we present a sample PCT. For

practical purposes, we show a small tree with just 5 leaves,

obtained when yeast is exposed to diamide. We also show the

cluster centroids for each of the leaves. By following the path

from the root of the tree to a leaf, we can obtain the

description for each of the clusters.

For example, if we want to derive the description of cluster

C2, we begin from the root GO term ‘‘GO:0044085’’, we follow

the ‘‘no’’ branch, obtaining the description ‘‘GO:0044085 =

no’’. We then add the ‘‘GO:0006412= yes’’ and ‘‘GO:0044429=

yes’’ by following the ‘‘yes’’ branches ending up at cluster

C2. So, the final description of cluster C2 is the following

conjunction: ‘‘GO:0044085 = no AND GO:0006412 = yes

AND GO:0044429 = yes’’. This can be interpreted as follows:

genes that are annotated by both ‘‘GO:0006412’’ and

‘‘GO:0044429’’, but not by ‘‘GO:0044085’’ are contained in

cluster C2 and have a temporal profile represented by the

prototype of cluster C2.

It should be noted here that for our application only the

positive branches of the tree are semantically meaningful. In a

biological context, the description ‘‘GO:0044085 = no’’ is not

very meaningful because it simply tells us that the genes in

cluster C2 are not annotated by that term. Therefore, to

describe a cluster we only take the positive ‘‘yes’’ terms, which

means that for describing C2 we would only use ‘‘GO:0006412 =

yes AND GO:0044429 = yes’’.

After deriving the descriptions from all of the clusters

(except for cluster C5), we represent them using a heatmap

(Fig. 4). Each row in the heatmap represents a cluster

prototype, the more intense the colours, the larger the up-

or down-regulation of the genes contained in that cluster.

Accompanying the rows, on the right-hand side, is the error of

Fig. 4 Heatmap of the cluster prototypes and their accompanying descriptions from the PCT in Fig. 3. The first number on the right-hand side of

the heatmap is the cluster’s RMS error, the number in brackets is the cluster’s size, the cluster’s descriptions follow after the colon. ‘‘Cluster 2’’

contains genes that are involved in translation and whose protein products are a part of the mitochondria. These genes are significantly up-

regulated. Cellular component biogenesis is strongly repressed, as evident on ‘‘Cluster 1’’. All of the clusters show a transient response to diamide,

except ‘‘Cluster 5’’ which shows almost a constant temporal expression profile.
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each cluster (RMSE, described in section 3.4), the cluster size and

the cluster description. Note that the heatmap ordering of the

cluster prototypes does not match the ordering produced by the

PCTs, but it is a permutation of it. This is for visualization

purposes, in order to have all of the up- and all of the

down-regulated cluster prototypes grouped together.

Fig. 6 Under nitrogen starvation conditions, there is more of a steady down-regulation of genes, rather than a transient pattern. Genes involved

in nitrogen metabolism are slowly down-regulated as well as genes coding for ribosomal proteins.

Fig. 5 When yeast is exposed to heat shock, several clusters of genes show significant, but transient changes in expression levels. According to the

heatmap intensity, genes involved in response to temperature stimulus are most strongly induced. Down-regulated are genes involved in

biosynthesis processes and genes that code for ribosomal proteins.
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4.3 Descriptions of yeast stress response clusters

We apply the procedure for deriving cluster descriptions from

the previous section, on PCTs constructed for several datasets

taken from a study of yeast stress response.7 While PCTs were

applied on all 10 datasets we only present in detail the results

for four different stress conditions (heat shock, nitrogen

starvation, diamide and DTT exposure). We present the final

descriptions by using heatmaps given in Fig. 5–8.

Fig. 7 DTT treatment of yeast interferes with proper protein folding and changes the cellular redox state. Therefore, an up-regulation of genes

involved in heat response and electron carrier activity is evident. More general biosynthetic processes and ribosomal proteins synthesis (nucleolus)

are inhibited, i.e., these genes are down-regulated.

Fig. 8 Exposure to diamide causes a response similar to DTT treatment and heat shock, in terms of response to protein folding inhibition. Also

oxidation of organic compounds is strongly up-regulated, while the down-regulation of biogenesis and ribosomal genes is also apparent.
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We first consider the heatmap for the Heat Shock dataset,

presented in Fig. 5. One can quickly identify two groups of

temporal profiles in this figure: one that shows significant

up-regulation and another one that shows significant

down-regulation of genes. These significant changes are only

transient in nature, meaning that genes first quickly react to

the heat shock and then after an adaptation period go back to

normal expression levels. This is an expected behavior,

also noted in ref. 7, which shows that the predicted cluster

prototypes are consistent with the biological reality.

From the induced genes, those involved in cellular response

to stimulus, specifically temperature stimulus, show the most

notable changes. In the repressed genes group, we can notice

two slightly different groups with respect to the delay of

response to heat shock. The first group that is quick to

react, consists of genes involved in biogenesis and different

biosynthetic and metabolitic processes. A slight delay in down-

regulation is exhibited by genes coding for ribosomal proteins,

which is consistent with general stress response (ref. 7).

In contrast to heat shock, when yeast is subjected to

nitrogen starvation, there is no transient temporal pattern

present but more of a steady down-regulation of genes, as

evident in Fig. 6. Genes involved in nitrogen metabolism

slowly decrease their activity, while genes involved in cell

growth are most significantly repressed. There is also a slight

increase in the activity of autophagy genes.

The elicited response of yeast to DTT (dithiothreitol) is

presented in Fig. 7. There is a small group of genes that is

repressed over time. These are involved in general biosynthetic

processes and genes that code for ribosomal proteins found in

the nucleolus. Genes that were most induced are involved in

electron carrier activity and genes that are a part of the general

response of heat. This is the cell’s response to the changed

cellular redox state and to the inhibition of protein folding

caused by DTT.7

Diamide exposure caused a response that can be seen as a

combination between the response to heat shock and DTT.

Genes involved in the heat shock response were induced

(due to protein folding inhibition) as were genes involved in

oxidation of organic compounds. As part of the general stress

response, genes involved in cell component biogenesis were

strongly repressed, as well as (with a small time-lag) genes

coding for ribosomal proteins.

Note that we present descriptions derived from PCTs (in

Fig. 5–8) from trees of size 60 (with 30 leaves/clusters). These

usually consist of GO terms referring to general cell processes or

locations. We chose this size as an optimal tree size, appropriate

for viewing and with an acceptably low error (RMSE)

(Fig. 10(a), (c), (e) and (g)). For obtaining clusters with more

specific descriptions, one might consider larger trees.

4.4 Semantic similarity of biological processes involved

in different types of stress

In the previous section, we presented the GO descriptions of

the clusters of gene expression time profiles for four different

stress conditions. We briefly discussed their similarities and

differences in terms of the kind of cellular processes involved

in stress response. Here, we focus on a more quantitative

analysis of the derived GO descriptions, where we also include

a whole range of stress conditions.

To quantitatively compare the GO descriptions of the

different clusterings, we use the semantic similarity measure

between GO terms proposed by Wang et al.27 Given two GO

terms, this measure quantifies their functional similarity, by

considering their common ancestors information from the

Gene Ontology. By using the semantic similarity measure,

we first determine the similarity between pairs of groups of GO

terms, corresponding to pairs of descriptions of PCTs/clusterings

of yeast genes for different stressful conditions. We proceed by

performing hierarchical clustering of the different stress types,

in order to determine to which stressful conditions the yeast

genes respond in the most functionally similar way (Fig. 9).

In Fig. 9, we can see that the cell response to heat shock is

most similar to the response to DTT exposure and to the

response when yeast is undergoing diauxic shift. This is due

primarily to the response of genes to protein unfolding, which

is the initial response to heat shock and DTT exposure. It is

also due to the induction of genes involved in alternative

carbon source utilization, which happens during diauxic shift

and also as an aftermath of the heat shock.

Hyper and hypo osmotic shock are also grouped together,

which is expected because they involve the response of the

same set of biological processes, but they respond in an

temporally inverse manner.7

Diamide is grouped with AA starvation and at a later stage

with H2O2 exposure, which is expected due to its response

being very similar to the response of these.7 Overall, we can

Fig. 9 In this figure, we present a dendrogram constructed according

to the semantic similarity of the biological processes involved in

response to different types of environmental stress. Heat shock is most

similar to DTT exposure, which can be attributed to the protein

unfolding which initially occurs in both types of stress. The other

similarity to diauxic shift appears as a result of activation of processes

for utilizing alternative carbon sources in the aftermath of heat shock.

Hyper and hypo osmotic conditions are grouped together as they

involve the same processes in response to the shock. Diamide is most

similar to AA starvation and then to H2O2 exposure. Overall there is

high similarity of all biological processes involved in different stress

responses, which is indicative of the existence of a general stress

response mechanism.
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notice that the similarity (i.e., distance) between the different

stress conditions is relatively high (low), which implies that

there is a commonality of cell responses to different types of

stress, i.e., a general stress response mechanism.7

4.5 Predicting time series with PCTs

We compare the PCTs built by Clus-TS (section 3.2) to a

default predictor DEF that always predicts the overall training

set centroid. We estimate the RMSE of these predictions by

using 10 fold cross-validation, as described in section 3.4. This

means that when estimating the error for each fold, the

training set contains approximately 4500 genes and the testing

fold approximately 500 genes.

We first perform experiments for different maximum PCT

sizes and we measure the respective RMSE of the corresponding

PCTs. In Fig. 10((a), (c), (e) and (g)), we present the results for

different values of the size upper bound. From the results,

Fig. 10 A comparison of predictive error (RMSE) of PCTs for different number of clusters ((a), (c), (e) and (g)) and percentage of data classified

((b), (d), (f) and (h)). When increasing the maximum tree size (number of leaves) the RMSE decreases until the size of the tree reaches 20–30 leaves

(i.e., clusters). The maximal improvement in the overall RMSE, as compared to the default (DEF) error, is about 15%. This small decrease in the

error is problem specific, i.e., has a biological background: not all genes have a coordinated response to the different stresses. Therefore, the PCTs

are only able to correctly predict the time-course profile of a limited number of genes. This is evident in (b), (d), (f) and (h). For about 5% of the

genes, PCTs are able to correctly predict their time-course profile with a relatively low RMSE as compared to the default (DEF). DEF is the

default predictor that always predicts the overall training set centroid.
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we can see that the optimal tree size for the PCTs is around

30 leaves. But, as one can notice, the overall RMSE is still

relatively high. We hypothesize that the overall high error

(RMSE) is domain specific, i.e., there is a biological explanation

for it.

Namely, the PCTs cluster genes that are annotated by

similar GO terms and have a similar response in expression

level to a certain change in environmental conditions. One

problem is that, as noted by Gasch et al.,7 only a subset of the

genes (about 900) have a stereotypical response to environ-

mental stress. That is, only a subset of the genes can

be accurately clustered, whereas the other genes have an

uncorrelated response. As a result, we hypothesize that the

PCTs are able to accurately predict the time series of only a

subset of the genes. We therefore perform the following

experiment. Besides recording the predicted time series for

each test set gene, we also record a confidence value for each

prediction. We then sort the genes by confidence value and

compute the RMSE of the top n percent most confident

predictions. We use the training set RMSE of the leaf that

made the prediction as a confidence estimate. This is similar to

the approach used for generating a ROC curve for a decision

tree.28 We present the results in Fig. 10((b), (d), (f) and (h)).

PCTs are obtained with the same parameters as before, except

that we use validation set based pruning instead of specifying a

size constraint on the PCTs. Clus-TS now uses 1000 genes of

the original training set for pruning and the rest for the tree

construction (as suggested by ref. 29). Simply selecting a PCT

from Fig. 10((a), (c), (e) or (g)) is unfair; it corresponds to

optimizing the size parameter on the test set. The results show

(Fig. 10) that more accurate predictions are obtained if we

restrict the test set based on the confidence of the predictions.

For example, if time course profiles are predicted for the 5% of

genes with highest confidence then the RMSE decreases to

about 50% of that of DEF. This is also shown in Fig. 3.

5. Conclusions

The typical approach to analyzing time-course expression data

is to first group together genes with similar temporal profiles

into clusters, which are then subsequently explained in terms

of gene properties (such as GO annotations). We present a

novel methodology for clustering time course profiles of gene

expression data, which unifies the two steps of clustering and

inferring a cluster description. The methodology produces a

hierarchical clustering, called a predictive clustering tree,

where each cluster is described by a conjunction of gene

properties (such as GO terms).

There are several advantages of our approach over other

analysis methods. First, we perform clustering and provide

cluster explanations in a single step. The descriptions can use

practically any gene-related information, although for our

experiments we only included Gene Ontology terms. Second,

in contrast to the usual distance measure used for clustering

(typically correlation based), our approach uses a qualitative

distance measure (QDM), which was specifically designed to

deal with short time course data. This measure explicitly takes

into account the temporal nature of the gene expression

profiles, and captures mostly the similarity in the shape of

the time course data, which is very important for the application

at hand. Third, the PCTs also enable the prediction of gene

expression time profiles for genes based on their annotations

(functions), which is usually not possible with other mainstream

clustering approaches.

We apply the proposed methodology to cluster time course

data representing yeast gene response to environmental stress.

This is repeated for different types of stress producing different

PCTs, thus producing different clusters and cluster explanations

in terms of GO annotations. Upon close inspection, the

explanations of the clusters were consistent with previously

published biological results.7 Furthermore, clusters with

similar descriptions under different stress conditions were

identified, mainly related to biosynthesis and ribosomal

proteins. The results demonstrate the usefulness of our method

for analyzing time-course expression data.

Several directions for further work remain to be explored.

We consider first and foremost extending our approach to a

so-called multi-target approach. Instead of considering a

single time course at a time, for different (stress) conditions,

we can consider the responses to different kinds of environ-

mental conditions simultaneously. The application of this

would be, for example, discovering a common stress response

pattern.30 Instead of producing a separate PCT for each

condition, we would obtain just one PCT model for all.

Another direction of further research includes the identification

of groups of genes with coordinated response. Namely, the

hierarchical nature of the PCTs, besides producing compact

clusters of ‘‘stress’’ response genes, also produces some clusters

that contain genes without a coordinated response. To focus

on clusters of genes with coordinated response, we plan to

further investigate the use of the so-called predictive clustering

rules5 for analyzing short time course data. Finally, we would

like to apply the proposed approach to other time course gene

expression data from different biological domains.
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