
Option Predictive Clustering Trees
for Hierarchical Multi-label Classification

Tomaž Stepǐsnik Perdih1,2(B), Aljaž Osojnik1,2, Sašo Džeroski1,2,
and Dragi Kocev1,2

1 Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia
{tomaz.stepisnik,aljaz.osojnik,saso.dzeroski,dragi.kocev}@ijs.si

2 Jožef Stefan International Postgraduate School, Ljubljana, Slovenia

Abstract. In this work, we address the task of hierarchical multi-label
classification (HMLC). HMLC is a variant of classification, where a single
example may belong to multiple classes at the same time and the classes
are organized in the form of a hierarchy. Many practically relevant prob-
lems can be presented as a HMLC task, such as predicting gene function,
habitat modelling, annotation of images and videos, etc. We propose to
extend the predictive clustering trees for HMLC – a generalization of
decision trees for HMLC – toward learning option predictive clustering
trees (OPCTs) for HMLC. OPCTs address the myopia of the standard
tree induction by considering alternative splits in the internal nodes of
the tree. An option tree can also be regarded as a condensed represen-
tation of an ensemble. We evaluate OPCTs on 12 benchmark HMLC
datasets from various domains. With the least restrictive parameter val-
ues, OPCTs are comparable to the state-of-the-art ensemble methods
of bagging and random forest of PCTs. Moreover, OPCTs statistically
significantly outperform PCTs.

1 Introduction

Supervised learning is one of the most widely researched areas of machine learn-
ing, where the goal is to learn, from a set of examples with known class, a function
that outputs a prediction for the class of a previously unseen example. The most
widely studied machine learning task is binary classification where the goal is to
classify the examples into two groups. The task where the examples can belong
to a single class from a given set of m classes (m ≥ 3) is known as multi-class
classification. The case where the output is a real value is called regression.

In many real life problems of predictive modelling the target is structured
(e.g., the target is a vector of values with dependencies between them, or a time
series). In this work, we focus on the task of hierarchical multi-label classification
(HMLC). HMLC is a variant of classification, where a single example may belong
to multiple classes at the same time and the classes are organized in the form of
a hierarchy. An example that belongs to some class c automatically belongs to all
super-classes of c: This is called the hierarchical constraint. Problems of this kind
can be found in many domains including text classification, functional genomics,
c© Springer International Publishing AG 2017
A. Yamamoto et al. (Eds.): DS 2017, LNAI 10558, pp. 116–123, 2017.
DOI: 10.1007/978-3-319-67786-6 9

Option PCTs for HMLC 117

and object/scene classification. Silla and Freitas [19] give a detailed overview of
the possible application areas and the different approaches to HMLC.

Decision tree based methods take a very notable place among approaches to
HMLC. When used as base predictive models in an ensemble, they can yield a
state-of-the-art performance [13,18]. A prominent global tree method for HMLC
is a predictive clustering tree (PCT) for HMLC [20]. PCTs for HMLC inherit
the properties of decision trees: they are interpretable models, but learning them
is greedy. The performance of the trees is significantly improved when they are
used in an ensemble setting [13]. However, the greediness of the tree construction
process can lead to learning sub-optimal models. One way to alleviate this is to
use a beam-search algorithm for tree induction [12], while another approach is
to introduce option splits in the nodes [5,14].

In this work, we propose to extend predictive clustering trees (PCTs) for
HMLC towards option trees, hence we propose to learn option predictive clus-
tering trees (OPCTs). An option tree can be seen as a condensed representation
of an ensemble of trees which share a common substructure. More specifically,
the heuristic function for split selection can return multiple values that are close
to each other within a predefined range. These splits are then used to construct
an option node. For illustration, see Fig. 1.

The remainder of this paper is organized as follows. Section 2 proposes the
algorithm for learning option PCTs for HMLC. Next, Sect. 3 outlines the design
of the experimental evaluation. Section 4 continues with a discussion of the
results. Finally, Sect. 5 concludes and provides directions for further work.

2 Option Predictive Clustering Trees

The predictive clustering trees framework views a decision tree as a hierarchy
of clusters. The top-node corresponds to one cluster containing all data, which
is recursively partitioned into smaller clusters while moving down the tree. The
PCT framework is implemented in the CLUS system [1], which is available at
http://clus.sourceforge.net.

Option predictive clustering trees (OPCT) extend the usual PCT framework,
by introducing option nodes into the tree building procedure. Option decision
trees were first introduced as classification trees by Buntine [5] and then ana-
lyzed in more detail by Kohavi and Kunz [14]. Ikonomovska et al. [10] analyzed
regression option trees in the context of data streams. We also evaluated OPCTs
for the multi-target regression task [16].

The major motivation for the introduction of option trees is to address
the myopia of the top-down induction of decision trees (TDIDT) algorithm [4].
Viewed through the lens of the predictive clustering framework, a PCT is a non-
overlapping hierarchical clustering of the whole input space. Each node/subtree
corresponds to a clustering of a subspace and prediction functions are placed
in the leaves, i.e., lowest clusters in the hierarchy. An OPCT, however, allows
the construction of an overlapping hierarchical clustering. This means that, at
each node of the tree several alternative hierarchical clusterings of the subspace

http://clus.sourceforge.net

118 T. Stepǐsnik Perdih et al.

can appear instead of a single one. When using TDIDT to construct a predic-
tive clustering tree, and in particular when partitioning the data, all possible
splits are evaluated by using a heuristic and the best one is selected. However,
other splits may have very similar heuristic values. The best partition could be
obtained with another split as a consequence of noise or of the sampling that
generated the data. In this case, selecting a different split could be optimal. To
address this concern, the use of option nodes was proposed [14].

The procedure of PCT learning for the HMLC task is presented in [13]. We
modify it by introducing an option node into the tree when the best splits have
similar heuristic values. Instead of selecting only the best split, we select several
of them. Specifically, we select splits s, that satisfy the condition:

Heur(s)
Heur(sbest)

≥ 1 − e · dl, (1)

where sbest is the best split, e determines how similar the heuristics must be,
d ∈ [0, 1] is a decay factor and l is the depth of the node we are attempting to
split. E.g., when e = 0.1, we are selecting only splits whose heuristics are within
10% of the best split at the top level. We define the depth of a node to be the
number of its ancestor nodes, excluding option nodes, as they do not split the
data. The use of a decay factor makes the selection criterion more stringent in
the lower nodes of the tree, where the impact of the split selection is also lower.
After we have determined the candidate splits, we introduce an option node
whose children are split nodes obtained by using the selected splits.

Introducing an option node with a large number of options is not advised [14]
as it can lead to the explosion of model sizes. Therefore, we limit the maximum
number of options for a single option node to 5 and also prohibit the induction
of option nodes on depth 3 and greater.

Fig. 1. An option tree (left) and the ensemble of its embedded trees (right). Oi are
option nodes, Sj split nodes and Lk leaf nodes.

Option PCTs for HMLC 119

Once an OPCT is learned, we use it for prediction. In a regular PCT an
example is sorted into a leaf (reached according to the tests in the nodes of
the tree) where a prediction is made using a prototype function. Traversing an
example through an OPCT is the same for split nodes and leaves. When we
encounter an option node, however, we traverse the example down each of the
options. This means that in an option node an example is sorted to multiple
leaves, where multiple predictions are produced. To obtain a single prediction in
an option node, we aggregate the obtained predictions.

An option tree is usually observed as a single tree, however, it can also be
interpreted as a compact representation of an ensemble. We can extract embedded
trees out of an option tree by replacing every option node with one of its options
(Fig. 1). A given OPCT is also an extension of the PCT learned on the same
data. By definition, whenever we introduce an option node, we include the best
split. Consequently, the PCT is an embedded tree in the OPCT, resulting from
replacing all option nodes with the best option.

3 Experimental Design

We evaluated the performance and efficiency of the proposed OPCT method with
different parameter values and compared it to the standard PCTs and ensembles
of PCTs. Evaluation was done on 12 datasets from biology, text classification and
image annotation domains. They are described in Table 1. The datasets came
pre-divided into training and testing sets and we used them in their original
format, for easier comparison of the results.

OPCTs are evaluated for various values of parameters e and d. For e we
consider values 0.1, 0.2, 0.5 and 1.0, while d takes values 0.5, 0.9 and 1.0. Notably,
different selections of parameters can produce the same OPCT, if for a given
dataset the same splits satisfy both criteria. Hereafter, the OPCT method with
specific parameter values is denoted OPCT eX dY (e.g., for e = 0.5, d = 0.9,
OPCT e0.5 d0.9). The border case OPCT e1 d1 always selects the 5 best options
regardless of their heuristic score, making this setting similar to ensembles.

For PCTs and OPCTs we use the F-test as a pruning mechanism. Specifically,
we check if a split results in a statistically significant improvement over the single
node. If no split satisfies the F-test, the learning in the node stops. The signifi-
cance level for the test was selected from the set of values {0.125, 0.1, 0.05, 0.01,
0.005, 0.001} using internal 3-fold cross validation on the training set.

For ensembles, we considered bagging [2] and random forests [3]. For both
methods we used 100 trees in the ensemble. Random forests algorithm also takes
as input the size of the feature subset randomly selected at each node. For this
we used the square root of the number of descriptive variables (�√|D| + |C|�).

Performance was measured using Area Under the Average Precision-Recall
Curve (AUPRC) [20]. For efficiency, we looked at the model size (number of
leaves in a tree/ensemble). For statistical comparison of the methods we adopted
the recommendations by Demšar [7]. Specifically, we used the Friedman test for
statistical significance and Nemenyi post-hoc test to detect between which algo-
rithms the significant differences occur. For both tests we selected confidence

120 T. Stepǐsnik Perdih et al.

Table 1. Descriptions of datasets used for the evaluation. The table shows the number
of examples in the training and testing sets (Ntr/Nte), number of descriptive attributes
(discrete/continuous, D/C), number of labels in the hierarchy (|H|), maximal depth of
the labels in the hierarchy (Hd) and average number of labels per example (L).

Ntr/Nte |D|/|C| |H| Hd L
Diatoms [9] 2065/1054 0/371 377 3.0 1.95

Enron [11] 988/660 0/1001 54 3.0 5.30

Expression–FunCat [6] 2494/1291 4/547 475 4.0 8.87

Exprindiv–FunCat [6] 2314/1182 1252 261 4.0 3.36

ImCLEF07A [8] 10000/1006 0/80 96 3.0 3.0

ImCLEF07D [8] 10000/1006 0/80 46 3.0 3.0

Interpro–FunCat [6] 2455/1264 2816 263 4.0 3.34

Reuters [15] 3000/3000 0/47236 100 4.0 3.20

SCOP-GO [6] 6507/3336 0/2003 523 5.5 6.26

Sequence-FunCat [6] 2455/1264 2/4448 244 4.0 3.35

WIPO [17] 1352/358 0/74435 183 4.0 4.0

Yeast-GO [6] 2310/1155 5588/342 133 6.3 5.74

level 0.05. The results of the statistical analysis are presented with average rank-
ing diagrams. They plot the average ranks of the algorithms and connect those
whose average ranks differ by less than the critical distance. The performance of
the algorithms connected with a line is not statistically significantly different.

4 Results and Discussion

We present our experimental results as graphs with size on the horizontal axis
and performance on the vertical axis. Figure 2 shows the results on four datasets.
The remaining graphs are very similar and are omitted for brevity. Notably, the
figures are on separate scales and on some figures the differences in performance
between the different models are very small, e.g., on the SCOP-GO dataset.

Observing the points representing the results of OPCTs, the trade-off
between size and performance is clearly visible. This trade-off is achieved as
a consequence of different choices of the parameter values. The models’ pre-
dictive performance generally rises with increasing model size, indicating that
even the largest OPCTs do not overfit the training set, or possibly, different
options overfit different parts of the input space. The increase in predictive per-
formance in terms of increasing size also appears to saturate at the higher val-
ues of the observed parameter settings. This indicates that learning even larger
less-restrictive OPCTs is not likely to provide a significant boost to predictive
performance.

Compared to a PCT, OPCTs generally produce more accurate models that
are mostly much larger. However, the increase in predictive performance is often

Option PCTs for HMLC 121

Fig. 2. Performances and sizes of models produced by different methods

noticeable even for the lowest parameter values when the difference in size is
relatively small. The comparison between OPCTs and ensembles of PCTs is more
varied. Bagging of PCTs is usually better than OPCTs (SCOP-GO), though
often very slightly (Enron) and sometimes worse (IMCLEF07D). However, the
size of a bagging ensemble can considerably surpass the size of even the largest
OPCTs. On the Enron dataset, random forests of PCTs outperform all other
methods by a solid margin. They also provide good performance on the SCOP-
GO dataset with relatively small trees, however, on the WIPO dataset they
produce the largest model which only outperforms a PCT.

We selected 3 parameter configurations as trade-off points between predic-
tive performance and model size: OPCT e1 d1, as it offers the best performance,
OPCT e1 d0.5, as its performance was similar to that of OPCT e1 d1 but it
often produced noticeably smaller models, and OPCT e0.5 d0.5, as it consis-
tently produced much smaller models than other two selected configurations,
albeit at the cost of some performance.

We compared the performance and size of these three configurations to that of
a PCT and their ensembles, using Friedman test to check if there is a significant
difference between the algorithms and the Nemenyi post-hoc test to show where
the differences occur. Results are presented in Fig. 3. The performance of a PCT
and its size is significantly lower than that of ensembles of PCTs, OPCT e1 d1
and OPCT e1 d0.5. Additionally, the size of OPCT e0.5 d0.5 is significantly
lower than that of the four aforementioned methods, but its performance is not.
We also observe that the average rank of OPCT e1 d0.5 in performance is on
par with ensembles of PCTs (it placed between bagging and random forests),
while its average rank in size is noticeably better. As expected, a PCT always
produced the smallest model with the worst performance.

122 T. Stepǐsnik Perdih et al.

Fig. 3. Average ranking diagrams of the performance and size of selected methods

5 Conclusions

In this work, we proposed an algorithm for learning option predictive clustering
trees (OPCTs) for the hierarchical multi-label classification task. The purpose
of OPCTs is to address the greediness of the standard algorithm for PCT learn-
ing. We experimentally evaluated the proposed method with various parameter
values and compared it to PCTs and ensembles of PCTs (bagging and random
forests). The results show that increasing the values of e and d increases the
model performance and size compared to PCTs. At the highest parameter val-
ues of e = 1, d = 1, OPCTs are comparable to the state-of-the-art ensemble
methods of bagging and random forest of PCTs.

We identified three interesting parameter selections for OPCTs and per-
formed statistical comparison of these three methods and regular PCTs and
their ensembles. The results show that regular PCTs have significantly lower
performance and size than other methods with the exception of OPCT e0.5 d0.5.
Additionally, OPCT e0.5 d0.5 produces significantly smaller models than bag-
ging of PCTs, random forests of PCTs and OPCT e1 d1. Average performance
ranks of bagging, random forests, OPCT e1 d1 and OPCT e1 d0.5 are very sim-
ilar, while average size rank of OPCT e1 d0.5 is noticeably lower than that of
the other three methods. Based on these results, we suggest the parameter values
of e ∈ {0.5, 1} and d ∈ {0.5, 1} for future analyses.

There are several avenues for further work. Notably, the OPCT method-
ology described in this paper can be easily applied to the task of multi-label
classification. In the future, we also plan to use the OPCT methodology as a
part of a guided process to produce regular PCTs though either input from a
domain expert, or through the use of additional validation data. Finally, we will
investigate the use of OPCTs for performing feature ranking and selection for
HMLC.

Acknowledgments. We acknowledge the financial support of the European Commis-
sion through the grants ICT-2013-612944 MAESTRA and ICT-2013-604102 HBP, as
well as the support of the Slovenian Research Agency through young researcher grants
and the program Knowledge Technologies (P2-0103).

Option PCTs for HMLC 123

References

1. Blockeel, H., Struyf, J.: Efficient algorithms for decision tree cross-validation. J.
Mach. Learn. Res. 3, 621–650 (2002)

2. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
4. Breiman, L., Friedman, J., Olshen, R., Stone, C.J.: Classification and Regression

Trees. Chapman & Hall/CRC, London (1984)
5. Buntine, W.: Learning classification trees. Stat. Comput. 2(2), 63–73 (1992)
6. Clare, A.: Machine learning and data mining for yeast functional genomics. Ph.D.

thesis, University of Wales Aberystwyth, Aberystwyth, Wales, UK (2003)
7. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.

Learn. Res. 7, 1–30 (2006)
8. Dimitrovski, I., Kocev, D., Loskovska, S., Dzeroski, S.: Hierarchical annotation of

medical images. Pattern Recogn. 44(10–11), 2436–2449 (2011)
9. Dimitrovski, I., Kocev, D., Loskovska, S., Dzeroski, S.: Hierarchical classification

of diatom images using ensembles of predictive clustering trees. Ecol. Inf. 7(1),
19–29 (2012)

10. Ikonomovska, E., Gama, J., Zenko, B., Dzeroski, S.: Speeding-up hoeffding-based
regression trees with options. In: Proceedings of the 28th International Conference
on Machine Learning, ICML 2011, pp. 537–544 (2011)

11. Klimt, B., Yang, Y.: The enron corpus: a new dataset for email classification
research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.)
ECML 2004. LNCS, vol. 3201, pp. 217–226. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-30115-8 22

12. Kocev, D., Struyf, J., Džeroski, S.: Beam search induction and similarity con-
straints for predictive clustering trees. In: Džeroski, S., Struyf, J. (eds.) KDID
2006. LNCS, vol. 4747, pp. 134–151. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-75549-4 9

13. Kocev, D., Vens, C., Struyf, J., Džeroski, S.: Tree ensembles for predicting struc-
tured outputs. Pattern Recogn. 46(3), 817–833 (2013)

14. Kohavi, R., Kunz, C.: Option decision trees with majority votes. In: Proceedings of
the 14th International Conference on Machine Learning, ICML 1997, pp. 161–169.
Morgan Kaufmann Publishers Inc., San Francisco (1997)

15. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: A new benchmark collection for
text categorization research. J. Mach. Learn. Res. 5, 361–397 (2004)

16. Osojnik, A., Džeroski, S., Kocev, D.: Option predictive clustering trees for multi-
target regression. In: Calders, T., Ceci, M., Malerba, D. (eds.) DS 2016. LNCS,
vol. 9956, pp. 118–133. Springer, Cham (2016). doi:10.1007/978-3-319-46307-0 8

17. Rousu, J., Saunders, C., Szedmak, S., Shawe-Taylor, J.: Kernel-based learning of
hierarchical multilabel classification models. J. Mach. Learn. Res. 7, 1601–1626
(2006)

18. Schietgat, L., Vens, C., Struyf, J., Blockeel, H., Kocev, D., Džeroski, S.: Predicting
gene function using hierarchical multi-label decision tree ensembles. BMC Bioin-
form. 11(2), 1–14 (2010)

19. Silla, C., Freitas, A.: A survey of hierarchical classification across different appli-
cation domains. Data Min. Knowl. Disc. 22(1–2), 31–72 (2011)

20. Vens, C., Struyf, J., Schietgat, L., Džeroski, S., Blockeel, H.: Decision trees for
hierarchical multi-label classification. Mach. Learn. 73(2), 185–214 (2008)

http://dx.doi.org/10.1007/978-3-540-30115-8_22
http://dx.doi.org/10.1007/978-3-540-30115-8_22
http://dx.doi.org/10.1007/978-3-540-75549-4_9
http://dx.doi.org/10.1007/978-3-540-75549-4_9
http://dx.doi.org/10.1007/978-3-319-46307-0_8

	Option Predictive Clustering Trees for Hierarchical Multi-label Classification
	1 Introduction
	2 Option Predictive Clustering Trees
	3 Experimental Design
	4 Results and Discussion
	5 Conclusions
	References

