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Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology, J. Plateaustraat 22, B-9000 Ghent, Belgium
Jozef Stefan Institute, Department Knowledge Technologies, Jamova cesta 39, SI-1000 Ljubljana, Slovenia

 r  t  i  c  l  e  i n  f  o

rticle history:
vailable online 16 September 2010

eywords:
rackish water
lassification tree
cological assessment
ammarus tigrinus
xotic species
otamopyrgus antipodarum

a  b  s  t  r  a  c  t

Polder  lakes  in  Flanders  are  stagnant  waters  that  were  flooded  by  the sea  in  the  past.  Several  of  these
systems  are  colonized  by exotic  species,  but  have  hardly  been  studied  until  present.  The  aim  of  the  present
study  was:  (1)  to assess  the  influence  of  exotic  macrobenthic  species  on  the  outcome  of the  Multimetric
Macroinvertebrate  Index  Flanders  (MMIF)  and  (2)  to  use classification  trees  for  evaluating  to  what  extent
physical–chemical  characteristics  affect  the  presence  of  exotic  species.

In  total,  27  mollusc  and  10  macro-crustacean  species  were  present  in  the  monitored  lakes  of which
respectively  five  and  four  were  exotic.  The  exclusion  of the  exotic  species  from  the  MMIF  resulted  in  a
significant  decline  of  this  ecological  index  (−0.03 ±  0.04;  p =  0.00).  This  elimination  often  resulted  into  a
lower  ecological  water  quality  class  and  more  samples  were  classified  into  the  bad  and  poor  ecological
water  quality  classes.

Single-target  classification  trees  for Gammarus  tigrinus  and  Potamopyrgus  antipodarum  were  con-
structed,  relating  environmental  parameters  and  ecological  status  (MMIF)  to the  occurrence  of  both
exotic  invasive  species.  The  major  advantages  of  using  single-target  classification  trees  are the  trans-
parency  of  the  rule  sets  and  the  possibility  to  use  relatively  small  datasets.  However,  this  classification
technique  only  predicts  a  single-target  attribute  and  the  trees  of  the  different  species  are  often  hard
to  integrate  and  use  for water  managers.  As a  solution,  a multi-target  approach  was  used  in the  present

study. Exotic  molluscs  and  crustaceans  communities  were  modelled  based  on  environmental  parameters
and the  ecological  status  (MMIF)  using  multi-target  classification  trees.  Multi-target  classification  trees
can  be  used  in  management  planning  and  investment  decisions  as  they  can  lead  to  integrated  decisions
for  the  whole  set of  exotic  species  and  avoid  the  construction  of many  models  for  each  individual  species.
These  trees  provide  general  insights  concerning  the occurrence  patterns  of individual  crustaceans  and

 way
molluscs  in  an  integrated

. Introduction

The European Water Framework Directive (WFD) forces EU
ember states to determine the ecological status of water bodies

EU, 2000). The goal of this directive is to ensure that the quality of
urface water and groundwater in Europe reaches a good ecological
tatus by the year 2015. The Flemish Environment Agency (VMM)
sed the Belgian Biotic Index (BBI) for more than two decades to
onitor the ecological water quality of Flemish rivers (De Pauw

nd Vanhooren, 1983). Despite the reliability and robustness of this
ndex, a number of technical shortcomings arose about the poten-

ial application of the BBI for WFD  implementation, in particular
he index was not useful for stagnant waters (Gabriels et al., 2010).
herefore, a new type-specific multimetric index, combining the

∗ Corresponding author. Tel.: +32 092643776; fax: +32 092644199.
E-mail address: gert.everaert@ugent.be (G. Everaert).

304-3800/$ – see front matter ©  2010 Elsevier B.V. All rights reserved.
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.
© 2010 Elsevier B.V. All rights reserved.

robustness of the BBI with the versatility of multimetric indices,
was developed. This new index, calculated from the taxonomic
composition and abundance of the macroinvertebrates, is called
the Multimetric Macroinvertebrate Index Flanders (MMIF) and is
currently used to assess the ecological water quality in Flanders
(Gabriels et al., 2010). The metrics comprised in the MMIF  are taxa
richness, number of Ephemeroptera, Plecoptera and Trichoptera
(EPT), number of other (i.e. non-EPT) sensitive taxa, the Shannon-
Wiener diversity index and the mean tolerance score. For each type
of river and lake, a set of reference values for all five metrics was
determined (Gabriels et al., 2010). Based on the references, a scor-
ing system was developed for each metric consisting of threshold
values needed for assigning a score ranging from zero to four (four
being nearest to the reference conditions). To obtain the final index,

ranging from zero for a very poor ecological quality to one for a
very good ecological quality, the five metric scores are summed
and subsequently divided by 20. The range of the MMIF  index can
be considered as an ecological quality ratio (EQR) because the max-

dx.doi.org/10.1016/j.ecolmodel.2010.08.013
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:gert.everaert@ugent.be
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mum MMIF  value of 1 can only be obtained when all metric values
re near the type-specific reference value for that metric (Gabriels
t al., 2010). In order to meet the target of the WFD  in 2015, aquatic
ystems should have a MMIF-score of 0.6 or 0.7, depending on the
ater type (Gabriels et al., 2010).

Macroinvertebrates are identified up to genus or family level
or the calculation of the MMIF. Because of this coarse taxonomic
dentification level, shifts in species composition between native
nd exotic species often remain hidden (Gabriels et al., 2005). The
ntroduction of exotic species might decrease the alpha diversity,

hich can be masked due the identification level (Gabriels et al.,
005). For example, the invader Dikerogammarus villosus might out-
ompete native gammarids (Bij de Vaate et al., 2002; Boets et al.,
010), but this will not influence the results of the index calcula-
ion at family level of a given sample, since Gammaridae are still
resent and tolerance classes are defined at family or genus level.
dditionally, the inclusion of the exotic invasive species, such as
orbicula, can lead to an increase of the ecological water quality

ndex depending on the tolerance class assigned to the invader.
revious examples suggest that the use of a standard list of taxa,
here tolerance classes are assigned at specific taxonomic levels

e.g. genus or family level), can result in altered assessment scores if
xotic species are present (Gabriels et al., 2005). Therefore, it is nec-
ssary to examine the influence of exotic species on the ecological
ssessment of aquatic ecosystems.

Freshwater exotic invasive species are an issue of growing
anagement concern (Vander Zanden and Olden, 2008). Invasive

pecies have one of the most harmful and least reversible impacts
n natural ecosystems as they may  change the local fauna and flora
ll around the world (Vitousek et al., 1996; Ricciardi and MacIsaac,
000). Exotic invasive species may  decrease the ecological qual-

ty through changes in biological, chemical and physical properties
f aquatic ecosystems (Olenin et al., 2007). These changes include:
limination of sensitive or rare species; alteration of native commu-
ities; algal blooms; modification of substrate conditions and the
hore zones; alterations of oxygen and nutrient content, pH and
ransparency of the water; accumulation of synthetic pollutants,
tc. (Olenin et al., 2007). For instance, Boets et al. (2009) indicated
hat the exotic macro-crustacean Procambarus clarkii predates on
ative benthic macroinvertebrates, spreads diseases and affects the
hysical habitat via burrowing activities. Our research focussed on
xotic molluscs and macro-crustaceans, because these have prob-
bly the highest impact among all aquatic freshwater invaders in
urope (Orendt et al., 2010).

Stimulated by the expansion of the global transport of goods
nd people, the numbers and costs of exotic species are rising at an
larming rate (Lovell and Stone, 2006). Exotic species may  be unin-
entionally imported by ships discharging their ballast water (Mills
t al., 1993; Lovell and Stone, 2006; Colautti et al., 2006). Leung et al.
2006) found that recreational boaters between lakes are an impor-
ant pathway of overland dispersal of exotic species. Pathogens
nd parasites have been introduced unintentionally into the USA
ia infected stock for aquaculture farms (Naylor et al., 2001). Pol-
cy makers spend a lot of money trying to control or remove
nvaders from our environment (Pimentel et al., 2000; Pimentel
t al., 2005). Many USA states have recently created exotic species
dvisory councils that bring together regulators, researchers and
ther stakeholders to address research, policy and management
eeds (Lodge et al., 2006). However, managers lack predictive tools
o help them prioritise invasion threats and to help them decide
here they should allocate the limited resources for prevention

nd mitigation most effectively (Ricciardi, 2003).

One of the methods applied by managers in the USA is the

ational Gap Analysis Program (GAP). This method identifies ‘gaps’
n the network of conservation land and water areas (Scott et al.,
993). The framework documents biogeographic information and
lling 222 (2011) 2202– 2212 2203

organizational cooperation in ways meaningful to their manage-
ment and can therefore be useful in the context of exotic species
(Jennings, 2000).

Other methods, such as data mining techniques, can be help-
ful because they allow accurate predictions of species preferences
and impacts. Classification trees can give insight in complex,
unbalanced, non-linear ecological data where commonly used
exploratory and statistical modelling techniques often fail to find
meaningful ecological patterns (De’ath and Fabricius, 2000). Clas-
sification trees have been applied in numerous ecological studies
(Dakou et al., 2007; Boets et al., 2010) and have proven to have a
high potential in macroinvertebrate habitat suitability analysis as
they combine reliable classifications with a transparent set of rules
(Hoang et al., 2009).

Classification trees are decision trees that predict the value of
a discrete-valued (nominal) target variable (Breiman et al., 1984).
Decision trees are hierarchical structures, where the internal nodes
contain tests on the input attributes. Each branch of an internal
test corresponds to an outcome of the test and the prediction for
the value of the target attribute is stored in a leaf. Each leaf of a
decision tree contains a prediction for the target variable. A single-
target approach learns a model for each target attribute separately,
whereas a multi-target approach builds one model for all target
attributes simultaneously (Kocev et al., 2009). Therefore, a single-
target approach can be used to predict the possible occurrence of
individual exotic species based on physical–chemical parameters,
while possible changes in species composition can be highlighted
using a multi-target approach.

Polder lakes, situated in the north of Flanders, are brackish, stag-
nant waters situated on the inland side of the dikes (Delaunois,
1982). They find their origin in history when, due to flooding by
the sea, dikes gave way  and land was  washed out. The salinity of
these lakes, determining the fauna and flora, depends on their age
and the possible influence of seepage water (van Puijenbroek et
al., 2004). The salinity of polder lakes in Flanders decreases from
north to south and from west to east (Delaunois, 1982). Many
of these shallow lakes are hypertrophic and dominated by algal
blooms. The eutrophication process became problematic in the
1950s due to run-off from agriculture and discharges from indus-
try and untreated household waste (van Puijenbroek et al., 2004).
In the mid-1980s, projects on lake restoration were started in the
Netherlands (Van Huet, 1992). In Flanders, apart from a study by
Dumont and Gysels (1971),  little research has been carried out on
these aquatic systems.

The aims of the present paper were (1) to assess the influence of
exotic species on the MMIF  and (2) to construct single- and multi-
target classification trees to predict the presence of exotic species
based on physical–chemical parameters and occurrence of other
species.

2. Materials and methods

2.1. Study area and data collection

The dataset contained 108 samples comprising biological and
physical–chemical information of 45 polder lakes (Fig. 1). The
polder lakes, all located in the Northern part of Flanders, can be
divided in three clusters. The first, most westerly oriented cluster
of lakes, is situated close to the city of Ostend, whereas the second,
most easterly oriented cluster, is located close to the river Scheldt
nearby the city of Antwerp. The remaining polder lakes, situated

between the first two clusters, are distributed along the Dutch bor-
der. Most polder lakes are exploited for recreational purposes: the
smaller polder lakes are frequently used for fishing, whereas the
bigger lakes are suitable for sailing and windsurfing.
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Fig. 1. Location of the monitored

Physical–chemical and biological data of 28 polder lakes from
he period 1992–2006 were provided by the Flemish Environment
gency (VMM). In 2009, 17 additional polder lakes, which were not
onitored by the VMM,  were sampled to enlarge the dataset. For

ach location, physical–chemical variables were recorded (Table 1)
nd a biological sample was taken. Conductivity (�S/cm), pH and
ater temperature (T, ◦C) of the polder lakes were measured in

he field using a pH (Metrohm 826 pH mobile) and conductivity
eter (WTW Cond. 315i). The dissolved oxygen (DO, mg/L) con-

entration was measured in the field using an oxygen electrode
WTW Oxi 330 oximeter). Chloride (Cl−, mg/L), nitrate (NO3

−-N, mg
/L) and orthophosphate (oPO4

3−-P, mg  P/L) concentrations were
uantified in the laboratory by means of a spectrophotometer using
he standard kit Merck spectroquant. In analogy with Costil et al.
2001) and because the VMM  provided limited data about the salin-
ty of the polder lakes, the conductivity was used as an indicator for
alinity.

All biological samples were taken according to the procedure
escribed by Gabriels et al. (2010).  Macroinvertebrates were sam-
led using a standard handnet. This handnet consisted of a metal
rame of approximately 0.2 m by 0.3 m to which a conical net is
ttached with a mesh size of minimum 300 and maximum 500 �m.
he frame was attached to a 2 m long shaft with two handles
nabling it to be handled in a similar way as a scythe. With the
andnet, all accessible aquatic habitats within a stretch of 10–20 m
ere sampled. This included the bed substrate (stones, sand or
ud), macrophytes (floating, submerged, emerged), immersed

oots of overhanging trees and all other natural or artificial sub-
trates, floating or submerged in the water. Each aquatic habitat
as explored in order to collect the highest possible diversity of
acroinvertebrates. For this purpose, kicksampling was  performed

y vertically positioning the handnet on the bed and turning over
ottom material located immediately upstream by foot or hand.
ampling effort was proportionally distributed over all accessible

quatic habitats during 5 min. Subsequently, the identification of
he organisms is carried out up to the taxonomic level as indi-
ated by Gabriels et al. (2010).  In the interest of the research,
he collected molluscs and macro-crustaceans were identified up

able 1
bserved physical–chemical characteristics in the Flemish polder lakes, based on 108 sam

Variable Abbreviation Unit Minimu

Chloride Cl− mg/L 4.5 

Conductivity – �S/cm 547 

Dissolved oxygen DO mg/L 1.44 

Nitrate NO3
−-N mg  N/L 0.08 

Orthophosphate oPO4
3−-P mg  P/L 0.04 

pH –  – 6.36 

Water temperature T ◦C 6.4 
er lakes (black dots) in Flanders.

to species level. In this way, it was possible to distinguish exotic
species from native ones and to evaluate their impact on the
MMIF.

The type-specific MMIF  was  calculated twice for each sample.
During the index calculation, polder lakes were regarded as ‘very
slightly brackish lakes’ (code Bzl). First, the MMIF was calculated
for the whole (native + exotic species) biological sample. Second,
the MMIF  was recalculated exclusively based on the native species
found in the sample. Both calculations were included in the final
dataset.

Seasonality may  not be neglected when monitoring aquatic
ecosystems (Gabriels et al., 2010). Using a constraining time frame
for sampling may  result in missing information on the overall com-
munity at a site (Linke et al., 1999), but it can be assumed that a
large timeframe is sufficient for water quality assessment purposes
(Gabriels et al., 2010). Constraining the sampling period to spring,
summer and autumn is recommended to avoid extreme hydro-
logical regimes and temperatures in winter and to minimize the
variability of the species detection efficiency among different sam-
pling campaigns. Therefore, all the biological samples were taken
in spring.

Biocontamination of sampling sites was  assessed using the inte-
grated biocontamination index (IBCI) derived from two metrics:
abundance contamination index (ACI) and richness contamination
index (RCI) at ordinal rank (Arbačiauskas et al., 2008). The IBCI could
be used because multiple calculation of ACI and RCI were available
for the same ecosystem (i.e. samples were collected in polder lakes).
The IBCI was  derived by averaging ACI and RCI per sampling year
and ranking IBCI based on the thresholds for the five classes of bio-
contamination. These classes range from 0 (‘no’ contamination) to 4
(‘severe’ contamination). The threshold for the lowest quality limit
(‘bad’ class) is based on the assumption that when exotic species
represent more than half the detected orders or when their abun-
dance exceeds 50% of the individuals, the community/assemblage

has developed as a consequence of the occurrence of exotic species
(Arbačiauskas et al., 2008).

The final dataset comprised per sample: (1) the sampling loca-
tion and year; (2) the presence/absence of different mollusc and

ples.

m Maximum Mean Standard deviation

1330.0 359.7 329.5
8700 2110 1483

25.30 8.33 4.63
9.82 1.64 2.03
4.00 0.70 0.80
9.32 8.10 0.54

26.9 16.4 4.1
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Table  2
Correlation coefficients between physical–chemical properties observed in the polder lakes.

Variable Cl− Conductivity DO NO3
−-N oPO4

3−-P pH T

Cl− –
Conductivity 0.77a –
DO 0.08 0.15 –
NO3

−-N −0.13 −0.14 0.12 –
oPO4

3−-P 0.24 0.26 −0.42a −0.22 –
pH  0.22 0.29a 0.66a −0.16 −0.25 –
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a Correlation is significant at the level 0.05.

acro-crustacean species; (3) the quantified physical–chemical
ariables; (4) the IBCI and (5) the MMIF  of the sample.

.2. Statistical data processing

The data were first processed using the Statistical Package for
he Social Sciences 16.0 (SPSS, 2008). The statistical analyses with
PSS were performed as follows:

First, the relations between physical–chemical characteristics
were explored using the non-parametric Spearman correlation
coefficient (Table 2).
Second, the possible difference between the two ways of
calculating the MMIF  was evaluated using a non-parametric
Kruskal–Wallis test.
Third, species preferences concerning the physical–chemical con-
ditions of the polder lakes were visualised by Box-and-Whisker
plots. These plots were made in SPSS using default settings and
comprise upper, median and lower quartiles and upper and lower
fences (excluding outliers which were unusually distant from the
median).

.3. Modelling field data

.3.1. Construction of single-target classification trees
Classification trees are data driven methods that are particu-

arly useful to develop ecological models based on small datasets
Goethals et al., 2007). The outcome is noteworthy for users, as
ften relatively reliable models are generated in a very short cal-
ulation time and the models are transparent and easy to interpret
Hoang et al., 2009). Classification trees were built through applying
he Waikato Environment for Knowledge Analysis (WEKA; Witten
nd Frank, 2005 version 3.6.1). Rules relating the presence/absence
f Hippeutis complanatus, Gammarus tigrinus and Potamopyrgus
ntipodarum with physical–chemical conditions, sample character-
stics and the occurrence of other species were created by means
f single-target classification trees using the J48 algorithm (a Java
mplementation of the C4.5 algorithm) (Witten and Frank, 2005).

.3.2. Construction of multi-target classification trees
The simultaneous occurrence of exotic molluscs and macro-

rustaceans was predicted using multi-target classification trees.
e used the CLUS system for constructing multi-target decision

rees (Blockeel and Struyf, 2002). The resulting trees are an instan-
iation of the predictive clustering trees (PCTs) framework (Blockeel
t al., 1998). In this framework, a tree is viewed as a hierarchy of
lusters: a node corresponds to a cluster. PCTs have been used to
andle different types of targets: multiple target variables, both
iscrete and continuous (Struyf and Džeroski, 2006), time series
Džeroski et al., 2007) and hierarchies of classes, with multiple

lass-labels per example (Vens et al., 2008).

Multi-target classification trees generalize classification trees
or the prediction of several discrete-valued target attributes simul-
aneously (Blockeel et al., 1998; Struyf and Džeroski, 2006). The
−0.33a −0.39a 0.11 –

leaves of a multi-target classification tree store a vector of class
values, instead of storing a single class value like single-target clas-
sification trees do. This means that each component of the vector
is a prediction for one of the target attributes.

Multi-target classification trees were constructed with a recur-
sive partitioning algorithm from a training set of records. This
algorithm is known as TDIDT (top-down induction of decision
trees) (Quinlan, 1986). The records include measured values of the
descriptive and the target attributes. The tests in the internal nodes
of the tree refer to the descriptive, while the predicted values in the
leaves refer to the target attributes.

The TDIDT algorithm starts by selecting a test for the root node.
Based on this test, the training set is partitioned into subsets accord-
ing to the test outcome. In the case of binary trees, the training set
is split into two subsets: one containing the records for which the
test succeeds (typically the left subtree) and the other contains the
records for which the test fails (typically the right subtree). This
procedure is recursively repeated to construct the subtrees. The
partitioning process stops when a stopping criterion is satisfied,
then the prediction vector is calculated and stored in a leaf. The
F-test stopping criterion has been used; a node was  split if a statis-
tical F-test indicated a significant (at level 0.1) reduction of variance
inside the subsets.

One of the most important steps in the tree induction algorithm
is the test selection procedure. For each node a test is selected using
a heuristic function computed on the training data. The goal of
the heuristic is to guide the algorithm towards smaller trees with
good predictive performance. The performance of the produced
trees improved based on a heuristic function called SSreduction,
which reduced the variance between the observations and the cor-
responding predictions.

2.4. Evaluation of classification trees

Classification trees can be built using a relatively small dataset.
In such cases, when all available data should be used for training
and validating the model, cross-validation is useful (Goethals et
al., 2007). This technique estimates the generalization error of a
given model and uses all data to construct and test the model.
The stability of both types of classification trees was maximized
using a 10-fold cross-validation (Witten and Frank, 2005). In 10-
fold cross-validation, the original data are randomly partitioned
into 10 subsamples of approximately equal size. Of the 10 subsam-
ples, a single subsample is retained as the validation data for testing
the model, and the remaining nine subsamples are used as training
data. The cross-validation process is then repeated 10 times (the
folds), with each of the 10 subsamples used exactly once as the
validation data, and the results from the 10-folds are averaged to
produce a single estimation.

Several single- and multi-target classification trees were built

using multiple combinations of physical–chemical variables (Cl−,
DO, NO3

−-N, oPO4
3−-P, pH, T and conductivity), sample charac-

teristics and occurrence of other species. Combinations resulting
in sufficiently reliable models were selected based on the Cohen’s
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Fig. 3. Multimetric Macroinvertebrate Index Flanders (MMIF) (as described by
Gabriels et al. (2010)) plotted versus the MMIF  calculated after exclusion of exotic
species (a) and Multimetric Macroinvertebrate Index Flanders (MMIF) ecological
ig. 2. Evolution of the yearly average conductivity (a) and the ecological status
uantified by the Multimetric Macroinvertebrate Index Flanders (MMIF) (b) of the
older lakes between 1992 and 2009.

appa statistic (�) (Cohen, 1960) and the percentage of correctly
lassified instances (CCI). CCI is calculated as the percentage of
he true positive and true negative predictions. However, CCI is
ffected by the prevalence of the taxon being modelled (Fielding
nd Bell, 1997; Manel et al., 2001). Various authors prefer the use
f � because it is more reliable than CCI. � measures the proportion
f all possible cases of the presence or absence that are predicted
orrectly by a model after accounting for chance predictions
Hoang et al., 2009). Models with CCI higher than 70% and � higher
han 0.4 were considered reliable (D’heygere et al., 2006; Dakou
t al., 2007; Gabriels et al., 2007; Goethals et al., 2007). However,
im and Wright (2005) suggest that the use of a confidence
nterval around the sample estimate of � is better than focussing
n the 0.4 threshold. Earlier, Landis and Koch (1977) attempted
o indicate the degree of agreement that exists when the Cohen’s
appa is found to be in various ranges: ≤0 (poor); 0–0.2 (slight);
.2–0.4 (fair); 0.4–0.6 (moderate); 0.6–0.8 (substantial) and 0.8–1
almost perfect).

. Results

.1. Environmental variables
The conductivity of the polder lakes, used as an indica-
or for their salinity, fluctuated between 1996 and 2009. The
volution of the yearly mean conductivity of the polder lakes
s illustrated in Fig. 2a. The conductivity was positively cor-
water quality classes including exotic species (black) and excluding exotic species
(white) (b).

related with pH (r = 0.29; p = 0.004) and chloride concentration
(r = 0.77; p = 0.000), whereas the oxygen concentration was  pos-
itively correlated with pH (r = 0.66; p = 0.000) and negatively
correlated with the orthophosphate concentration (r = −0.42;
p = 0.002). The water temperature was  negatively correlated with
the chloride concentration (r = −0.33; p = 0.011), the nitrate concen-
tration (r = −0.33; p = 0.008) and the orthophosphate concentration
(r = −0.39; p = 0.004) (Table 2).

3.2. Identified macroinvertebrates

In total, 27 mollusc species were found, of which five exotic
species: P. antipodarum, Physella (Costatella) acuta, Ferrissia (Pet-
tancylus) clessiniana,  Lithoglyphus naticoides and Cerastoderma
glaucum. Ten macro-crustaceans were found four of which are
exotic species: G. tigrinus, Proasellus coxalis,  Proasellus meridianus
and Crangonyx pseudogracilis.  The most frequently found invaders
were P. acuta (found in 66% of the samples), G. tigrinus (59%)
and P. antipodarum (48%). The most frequently found native mol-
lusc species were Radix ovata (55%), Gyraulus (Armiger) crista
(33%), Bithynia tentaculata (31%), Bithynia leachii (27%) and Valvata

piscinalis (27%). The most regularly encountered native macro-
crustaceans were Asellus aquaticus (50%), Palaemonetes varians
(24%) and Neomysis integer (19%).
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v  = Palaemonetes varians, Ni = Neomysis integer, Gt = Gammarus tigrinus, Pc = Proasel

.3. Influence of exotic species on the ecological status of the
older lakes

In Flanders, the ecological water quality is evaluated based on
he MMIF. From the years 1992 to 2006, the mean ecological quality

f the polder lakes increased significantly from 0.42 to 0.72 (r = 0.31;

 = 0.00) (Fig. 2b). Between 1992 and 2009, the IBCI of the polder
akes fluctuated between high and severe biocontamination, but no
rend could be derived from the data.
otic species are underlined. Av = Anisus vortex,  Bl = Bithynia leachii,  Gc = Gyraulus
siniana,  Pac = Physella acuta, Pan = Potamopyrgus antipodarum, Aa = Asellus aquaticus,
alis,  Pm = Proasellus meridianus.

Although the exclusion of invaders resulted in a significant drop
in MMIF  (p = 0.02), the index increased for two samples when exotic
species were excluded from the calculation (Fig. 3a). The differ-
ence between the two  ways of calculation varied from −0.15 to
+0.05, with the mean difference being −0.03 ± 0.04. The number of

samples classified in the moderate, good and high biological water
quality categories decreased when exotic species were excluded
from the calculation, while more samples were categorized in the
bad and poor classes (Fig. 3b).
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.4. Single-species prediction

Classification trees were build using several combinations
f input variables. According to this method, conductivity was
he only environmental variable containing valuable information
or predicting the occurrence of exotic molluscs and macro-
rustaceans. The other physical–chemical variables like Cl−, DO,
O3

−-N, oPO4
3−-P, pH and T were not selected by the algorithms.

part from the conductivity, inclusion of information about the
MIF of the sample, sampling year and presence of other species

n the sample, resulted in reliable models.
Native species like B. leachii and H. complanatus typically occur

n freshwater (Fig. 4a). Based on a single-target classification tree,
he MMIF  had to reach at least a value of 0.75 for the presence of
. leachii (CCI = 87%; � = 0.6), which is also reflected in the Box-and-
hisker plot (Fig. 4b). Similarly, H. complanatus was absent as long

s the MMIF  did not reach 0.6, while in waters with a score above
.9 it was present in all seven cases (Fig. 5a). The occurrence of this
ollusc in the range between 0.6 and 0.9 depended upon the pres-

nce of P. acuta: if this exotic invasive species lived in the considered

older lakes, H. complanatus was absent (CCI = 84%; � = 0.5).

The occurrence of two dominant exotic species, G. tigrinus and
. antipodarum, was predicted. Predicting the possible occurrence
f G. tigrinus was interesting due to its invasive behavior. Based on
e of Hippeutis complanatus (a) and Gammarus tigrinus (b).

the year of sampling, the conductivity and the MMIF of the sam-
pling site, it was possible to predict the occurrence of G. tigrinus
by means of a single-target classification tree (Fig. 5b) with a fair
reliability (CCI = 71%; � = 0.4). The root of this classification tree con-
firms that the invader remained absent in the polder lakes until
1997. The second division was based on the conductivity of the
polder lakes.

The occurrence of P. antipodarum was predicted with moderate
reliability using the presence of P. acuta. If P. acuta was  found, P.
antipodarum was also predicted as present (CCI = 69%; � = 0.4).

3.5. Multi-target analysis of the exotic subgroup

From our dataset, two multi-target trees predicting the exotic
macro-crustacean and mollusc communities were developed
(Fig. 6a and b). The leaves of the resulting trees represent the prob-
ability of occurrence of the selected species. An exotic species was
predicted as present if the probability of occurrence was greater
than 50%, these species are indicated in bold. The tree predicting the
exotic macro-crustacean community had the following reliabilities

per species: C. pseudogracilis (CCI = 98%, � = 0), G. tigrinus (CCI = 64%,
� = 0.2), P. meridianus (CCI = 91%, � = 0), P. coxalis (CCI = 86%, � = 0).
The model predicting the mollusc invaders had subsequent per-
formances per species: C. glaucum (CCI = 99%, � = 0), F. clessiniana
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etween brackets. Cp = Crangonyx pseudogracilis,  Gt = Gammarus tigrinus, Pm = Proase
n  = Lithoglyphus naticoides,  Pac = Physella acuta, Pan = Potamopyrgus antipodarum.

CCI = 98%, � = 0), L. naticoides (CCI = 96%, � = 0), P. acuta (CCI = 69%,
 = 0.3), P. antipodarum (CCI = 74%, � = 0.5).

. Discussion

Between 1992 and 2006, the overall ecological water quality
f the polder lakes changed from moderate (0.50 < MMIF  < 0.69) to
ood (0.70 < MMIF  < 0.89). During this period, a new exotic species
ppeared in the polder lakes. G. tigrinus was first found in Flemish
aters in the year 1991 (Messiaen et al., 2010), but identification

f the samples taken in the polder lakes revealed that G. tigrinus
ccurred in the polder lakes since 1997. Although species belonging
o the genus Gammarus were originally evaluated as quite sensitive
o pollution in our region (De Pauw and Vanhooren, 1983), Koop
nd Grieshaber (2000),  Normant et al. (2007) and Wijnhoven et al.
2003) concluded that G. tigrinus was more tolerant to fluctuations
n abiotic conditions than native Gammarus species. More gener-
lly, Devin and Beisel (2007) and Karatayev et al. (2009) found that
nvaders can generally live and reproduce in a wider range of envi-
onmental conditions than native species. Although it is generally
ccepted that exotic species can have direct and indirect negative
ffects on ecosystems (Olenin et al., 2007; Boets et al., 2009) and

hat they are more tolerant towards pollution than native species
Wijnhoven et al., 2003, Devin and Beisel, 2007 and Normant et
l., 2007), in the MMIF  calculation they are still evaluated in the
ame way as native species are. Therefore the increase of the MMIF
d the mollusc community (b). The probability of occurrence is indicated per species
eridianus, Pc = Proasellus coxalis,  Cg = Cerastoderma glaucum, Fc = Ferrissia clessiniana,

between 1992 and 2006 can be related to the colonization of the
lakes with exotic species.

Most ecological indices have difficulties dealing with exotic
species, mainly due to the level of identification and the fixed
species list. Excluding exotic species from the ecological water
quality assessment (MMIF) resulted in a significant decline of the
ecological index, which often resulted in a lower ecological water
quality class. One of the reasons for this is that the MMIF does not
explicitly attribute a negative role and scoring to exotic species, but
assumes that negative impacts are indirectly reflected by changes
in the community metrics. Indices like the MMIF  that are based on
coarse identification levels assume that all species within a given
taxon have a similar sensitivity towards pollution, so the tolerance
classes are assigned to all species that belong to the corresponding
taxa. Gabriels et al. (2005) found a similar drop of the ecological
water quality, based on the BBI, after the exclusion of the exotic
invasive mollusc Dreissena polymorpha: the index reduced in 23.8%
of the cases after recalculation. As a solution, tolerance classes
should be revised if new exotic species are identified (MacNeil and
Briffa, 2009). Similarly, Walley and Hawkes (1996) suggested that
the Biological Monitoring Working Party score (BMWP) for Gam-
maridae should be downgraded from 6 to 4, due to the presence

of pollution-tolerant exotic invasive amphipods such as G. tigrinus
(Karatayev et al., 2009).

It is clear that invaders should be more carefully considered in
ecological water quality assessment because of their influence on
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he ecological water quality evaluation. In this context, it should be
oted that different countries have dissimilar approaches to eco-

ogical assessment of surface waters. In the Netherlands, where
cological assessment is based on species-level identifications,
xotic species are excluded from the assessment scoring sys-
ems (Orendt et al., 2010). However, several researchers consider
xotic species as an integral part of the aquatic species community
Gabriels et al., 2005; Cardoso and Free, 2008; Arndt et al., 2009;

acNeil and Briffa, 2009). In Germany, the German Saprobic Index
GSI), used to reflect the organic impact from wastewaters, is also
ased on species-level data. For a large majority of the sites, exotic
pecies were so dominant that eventual differences in GSI often
emained hidden (Arndt et al., 2009). As a solution, an additional
etric was defined evaluating the native species composition in

elation to the dominance of invaders (Arndt et al., 2009). An exam-
le of such kind of metric is the IBCI described by Arbačiauskas et
l. (2008) and is used for a similar analysis by MacNeil et al. (2010).
tarting from the relative abundance of exotic species within a
ommunity and the proportion of exotic species within a commu-
ity at ordinal taxonomic rank the authors developed an index to
easure the biocontamination of aquatic communities. Calculat-

ng the IBCI for the different samples originating from the polder
akes revealed that the index remained relatively constant between
992 and 2006: the polder lakes are always evaluated as highly or
everely biocontaminated. With the arrival of G. tigrinus in the year
997, the IBCI did not change significantly. This can be explained
y the fact that the dominant exotic molluscs P. acuta and P. antipo-
arum have been abundant in the polder lakes for decades, which
esulted in a high IBCI since the start of the monitoring.

Most polder lakes are connected through small watercourses
Delaunois, 1982) so discharges of ballast water from ships in
earby harbours can be an important vector for invaders (Lovell
nd Stone, 2006). Additionally, due to fish stockings, exotic species
re probably unintentionally spread by fisherman (Naylor et al.,
001). Other possible vectors such as recreational activities (water
ports or boat trips) should be followed up, because some invaders
an disperse through surfboards and boats (Leung et al., 2006). In
his context classification trees can be applied to identify polder
akes where the physical–chemical conditions are favourable for
nvaders. Suitable lakes that remained free of exotic species should
e protected.

Classification trees relate species occurrences with environmen-
al variables and/or occurrences of other species. Illustratively, a

odel was shown predicting the presence of H. complanatus. The
ccurrence of this native species depended upon the occurrence
f P. acuta. Both species occupy the same type of water and can
herefore compete (Gittenberger et al., 1998). This type of single-
arget classification tree can also be used to predict the occurrence
f exotic species. The constructed single-target model predicting
he occurrence of G. tigrinus confirms what is generally known
bout this species in Flanders. The first observation of G. tigrinus
n Flanders was in 1991 (Messiaen et al., 2010), but currently it is
pread all over Flanders (Boets et al., unpublished data). The first
pecimen of G. tigrinus in the polder lakes was found in a sam-
le from 1997, but currently, it is a common species in Flemish
older lakes. This information is clearly reflected in the root of
he model. Adriaenssens et al. (2006) found that conductivity was
n important factor for the distribution of Gammarus.  Piscart et
l. (2005) observed that G. tigrinus was more abundant at higher
alinity sites in the Meurthe River in north-eastern France, which
uggest that rising salinity concentrations affected the species com-
osition and favoured invaders. These findings are reflected in the

econd division of the constructed classification tree. If the con-
uctivity, which is related to the salinity, was sufficiently high, G.
igrinus was predicted as present, if this was not the case, its occur-
ence depended upon the MMIF. Comparing the second rule of the
lling 222 (2011) 2202– 2212

single-target classification tree with the Box-and-Whiskers plots
confirms that G. tigrinus occurs in a wider range of conductivity
than the native Gammarus duebeni. However, in five samples, at
the highest conductivities, both the exotic invasive and the native
gammarid were present. Based on our results, it was impossible to
predict which equilibrium between both species will be reached.
However, in Poland, Grabowski et al. (2006) found that G. tigri-
nus outcompeted G. duebeni. In polder lakes with a low to high
conductivity (salinity), G. tigrinus was  often the dominant represen-
tative of the gammarids. At even higher conductivities (salinities),
G. duebeni was also present. At the bottom of the classification tree,
the last rule was related to the ecological water quality. This final
step indicated that, if conductivity was  low, G. tigrinus preferred
at least moderate water quality. In general, the combination of the
classification tree and the Box-and-Whisker plots confirmed that
G. tigrinus can live in a wide range of physical–chemical conditions.

P. acuta and P. antipodarum, with first observations in Belgium
in 1869 (Adam, 1960) and in 1927 (Keppens and Keppens, 1996),
respectively, are widely distributed in Flanders. The presence of
the mud  snail P. antipodarum was related to the presence of P.
acuta. Similarly, Cope and Winterbourn (2004) found both species
together in many streams, ponds and lakes in New Zealand, where
P. antipodarum is a native and P. acuta an exotic invasive species.
They concluded that the growth and reproductive output of both
snail species were influenced more by the density of conspecifics
than by the presence and density of the other species. According
to Gittenberger et al. (1998),  both exotic invasive molluscs are able
to live in water with salinities up to 8‰ and are tolerant to pollu-
tion. Only their feeding habits differ: whereas P. antipodarum only
needs detritus to grow and reproduce, P. acuta also feeds on carrion.
The constructed Box-and-Whisker plots confirm that both species
prefer water with a relatively high conductivity and a poor or mod-
erate ecological status. Leppäkoski and Olenin (2000),  Gérard et al.
(2003) and Alonso and Castro-Diez (2008) obtained similar con-
clusions: P. antipodarum tolerates a wide range of environmental
conditions. These findings are also reflected in the multi-target clas-
sification tree predicting the exotic mollusc community: at higher
conductivities and if the ecological water quality was  poor, both
species were predicted as present.

Predicting the occurrence of one species can be relevant in cer-
tain cases, but river managers are, inspired by the WFD, interested
in the evolution of the whole macroinvertebrate community. In
our research, multi-target classification trees were built to predict
the presence of multiple exotic species at once based on envi-
ronmental conditions. This promising technique replaces a set of
different single-target classification trees with a single tree that is
easier to interpret for decision makers. However, the multi-target
classification tree predicting the exotic macro-crustacean commu-
nity resembled the single-target tree for G. tigrinus,  which was
the most abundant species. Species like P. coxalis and P. meridanus
occurred in few samples and consequently, they were predicted as
absent (probability <50%). For the exotic mollusc community, simi-
lar results were found: only the most dominant species (P. acuta and
P. antipodarum) were predicted as present. Models with knowledge
rules relevant for all species can be obtained if all species have the
similar prevalences (e.g. 50%). However, the construction of such
a dataset was not convenient as it would lead to a small number
of records. Alternatively, the predictive ability of the model can be
optimized, manipulating the threshold of probability of occurrence
from 50% to 10% for example, so that less frequently encountered
species can also be predicted as present. This manipulation would
lead to better model performances for less frequently encountered

species and would not affect the predictive ability of the model
towards widespread invaders.

The reliability of the trees could be possibly further improved
by the application of optimization techniques like genetic algo-
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ithms (D’heygere et al., 2003, 2006) as well as boosting and bagging
ethods (Dakou et al., 2007). However this was in this stage not

elevant due to the relatively small dataset. Additionally, models
nd their derived analyses could be improved by the inclusion of
ther environmental variables. Dedecker et al. (2005) illustrated for
nstance that the ammonium concentration and the chemical oxy-
en demand were important variables to predict Gammarus pulex
n rivers. Other methods for the improvement of the models are
elated to the integration of knowledge-based methods (Mouton
t al., 2009), information from laboratory experiments (Boets et
l., 2010) or data about extra environmental variables obtained via
ater quality and other models (Merckx et al., 2009). Addition-

lly, more data points and eventually the application of modelling
echniques that can deal with a lot of zero points, such as the
ero-inflated count models, can be beneficial in terms of mod-
lling performances (Lambert, 1992). Lee and Jin (2006) proposed a
ecision tree for zero-inflated count data, using a maximum of zero-

nflated Poisson likelihood as the split criterion and found this tree
ore efficient than a classically grown tree. Implementing these

ptimizations will lead to useful multi-target classification trees as
hey integrate decisions for the whole set of exotic species. Multi-
arget classification trees are an interesting tool to create a clear
uridical framework for dealing with aquatic invaders. They can
elp to convince stakeholders by showing the potential risks of
everal activities and the related impacts and they can be used for
anagement planning and investment decisions.

. Conclusions

Ecological indices based on coarse identification levels (such as
he MMIF) assume that all species within the identification level
ave a similar sensitivity towards pollution. Since the introduction
f pollution-tolerant invaders, this hypothesis is often violated and
ne has to be aware that this can lead to an overestimation of the
cological quality. As a solution, tolerance classes should be revised
n case new invaders are identified in Flemish waters.

Based on a relatively small amount of data, data driven mod-
lling techniques, such as classification trees, can be constructed
ith reasonable model performances. Predicting the occurrence of

ndividual exotic species was possible by means of single-target
lassification trees. These models gave insight in the particular
references of an exotic invasive species, whereas multi-target
pproaches gave an integrated insight in the potential exotic
acroinvertebrate community subgroup, what is in particular rel-

vant for water managers to protect and restore surface waters.
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Vens, C., J. Struyf, J., Schietgat, L., Džeroski, S., Blockeel, H.,  2008. Decision trees for
hierarchical multi-label classification. Mach. Learn. 73, 185–214.

Vitousek, P.M., D’Antonio, C.M., Loope, L.L., Westbrooks, R., 1996. Biological invasions
as global environmental change. Am.  Sci. 84, 468–478.

Walley, W.J., Hawkes, H.A., 1996. A computer-based reappraisal of the biological
monitoring working party scores using data from 1990 river quality survey of
England and Wales. Water Res. 9, 2086–2094.
Wijnhoven, S., van Riel, M.C., Van der Velde, G., 2003. Invasive and indigenous
freshwater gammarid species: physiological tolerance to water temperature in
relation to ionic content of water. Aquat. Ecol. 37, 151–158.

Witten, I.H., Frank, E., 2005. Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann, San Francisco, 560 pp.


	Using classification trees to analyze the impact of exotic species on the ecological assessment of polder lakes in Flander...
	1 Introduction
	2 Materials and methods
	2.1 Study area and data collection
	2.2 Statistical data processing
	2.3 Modelling field data
	2.3.1 Construction of single-target classification trees
	2.3.2 Construction of multi-target classification trees

	2.4 Evaluation of classification trees

	3 Results
	3.1 Environmental variables
	3.2 Identified macroinvertebrates
	3.3 Influence of exotic species on the ecological status of the polder lakes
	3.4 Single-species prediction
	3.5 Multi-target analysis of the exotic subgroup

	4 Discussion
	5 Conclusions
	Acknowledgements
	References


