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Abstract

New microbial genomes are sequenced at a high pace, allowing insight into the genetics of not only cultured microbes, but
a wide range of metagenomic collections such as the human microbiome. To understand the deluge of genomic data we
face, computational approaches for gene functional annotation are invaluable. We introduce a novel model for
computational annotation that refines two established concepts: annotation based on homology and annotation based on
phyletic profiling. The phyletic profiling-based model that includes both inferred orthologs and paralogs—homologs
separated by a speciation and a duplication event, respectively—provides more annotations at the same average Precision
than the model that includes only inferred orthologs. For experimental validation, we selected 38 poorly annotated
Escherichia coli genes for which the model assigned one of three GO terms with high confidence: involvement in DNA
repair, protein translation, or cell wall synthesis. Results of antibiotic stress survival assays on E. coli knockout mutants
showed high agreement with our model’s estimates of accuracy: out of 38 predictions obtained at the reported Precision of
60%, we confirmed 25 predictions, indicating that our confidence estimates can be used to make informed decisions on
experimental validation. Our work will contribute to making experimental validation of computational predictions more
approachable, both in cost and time. Our predictions for 998 prokaryotic genomes include ~400000 specific annotations
with the estimated Precision of 90%, ~19000 of which are highly specific—e.g. “penicillin binding,” “tRNA aminoacylation
for protein translation,” or “pathogenesis”—and are freely available at http://gorbi.irb.hr/.
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possibly involving a machine learning framework [e.g., 4-6]. Rows
in the phyletic profile can stand for genes or groups of genes [e.g.,
1,7,8]; functional annotation can be assigned using a range of
vocabularies, e.g., UniProt controlled vocabulary of keywords [9],
Enzyme Commission numbers [10], or arguably the most

Introduction

Many computational methods for functional annotation of
genes are based on a search for sequences with common
evolutionary descent—homologs. One possible encoding of

homology is the use of phyletic profiles: each row in the phyletic
profile represents one gene, and the columns represent the
presence or absence of homologs in sequenced genomes [1,2].
There are two main ways in which phyletic profiles can be used
for annotation of gene function. Both of them involve propagating
the annotation label. First, one could create phyletic profiles and
propagate the annotation label within the profile—from genes
with known function to their homologs included in the profile.
This is homology-based annotation, and many schemes for doing
so are possible [3]. Second, one could propagate labels between
the profiles by finding similar profiles: assuming that genes that are
inherited together tend to work together, one transfers annotation
from a better-studied group of homologs to a profile that is similar
but contains genes that are not as well studied. Again, this can be
done in many ways. For example, phyletic profiles can be grouped
by similarity using a variety of distance measures [e.g., 1,4]
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widespread vocabulary, the Gene Ontology [11]. In addition,
one could employ some hybrid between the first two approaches,
e.g., when the evidence in favour of within-profile label
propagation is used to improve the confidence of between-profile
propagation and vice versa.

Refinements of homology-based annotation include making a
distinction between two types of homologous relationships:
orthologs—sequences derived from the same gene in the last
common ancestor, and paralogs—sequences derived from a
duplication event [12]. Because orthologous pairs are expected
to keep the same function [13-15] and paralogous pairs are
expected to diverge in function [16], the canonical approach to
functional annotation relies on transfer of function between
orthologs. However, the latest evidence suggests that, relative to
pairs of paralogs, the conservation of function between pairs of
orthologs is not as strong as the standard model would imply [17].
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Author Summary

While both the number and the diversity of sequenced
prokaryotic genomes grow rapidly, the number of specific
assignments of gene functions in the databases remains
low and skewed toward the model prokaryote Escherichia
coli. To aid in understanding the full set of newly
sequenced genes, we created a computational model for
assignment of function to prokaryotic genomes. The result
is an innovative framework for orthology and paralogy-
aware phyletic profiling that provides a large number of
computational annotations with high predictive accuracy
in train/test evaluations. Our predictions include annota-
tions for 1.3 million genes with the estimated Precision of
90%; these, and many more predictions for 998 prokaryotic
genomes are freely available at http://gorbi.irb.hr/. More
importantly, we show a proof of principle that our
functional annotation model can be used to generate
new biological hypotheses: we performed experiments on
38 E. coli knockout mutants and showed that our
annotation model provides realistic estimates of predictive
accuracy. With this, our work will contribute to making
experimental validation of computational predictions
more approachable, both in cost and time.

Our goal was to create a functional annotation model that
learns to associate gene function with specific patterns in phyletic
profiles—the presence and absence of different types of homologs
in different organisms. To create the phyletic profiles, we
combined ortholog cliques—fully interconnected groups of
orthologs—with both additional orthologs and additional paralogs.
We found that, instead of reducing the predictive accuracy,
paralogs provide valuable information: compared to the model
that includes only orthologs, the model that includes both
orthologs and paralogs gave more predictions at the same average
correctness.

In addition, we performed experimental assays in the model
organism FEscherichia coli, showing that the annotation model
provides a realistic assessment of confidence for the predicted
annotations: a growth phenotype screen on E. coli knockout
mutants indicated an overall Precision of 66%—out of 38 tested
genes, we confirmed predictions for 25—agreeing with the
expected Precision of 60%.

We predict Gene Ontology annotations at various levels of
specificity for about 1.3 million poorly annotated genes in 998
prokaryotes at a stringent threshold of 90% Precision: about 19000
of those are highly specific functions. In addition to these, we
provide many more predictions at less stringent cut-offs in a Web
resource GORBI (http://gorbi.irb.hr/).

Results

We created our functional annotation models in three steps: 1)
constructing the phyletic profiles, 2) functionally annotating them
where possible, and 3) using a decision tree-based classifier to find
groups of profiles that are similar or dissimilar. We detail these
steps below.

The first step is constructing the phyletic profiles; in fact, this
step 1s what differentiates between models proposed in this work.
To choose among these models for functional annotation, we
constructed four kinds of phyletic profiles (Figure 1). First, phyletic
profiles of OMA cliques of orthologs: each profile represents the
pattern of presence/absence of an OMA clique member among
909 Bacterial and 89 Archaeal genomes. Second, we added the
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Phyletic Profiles with Both Orthologs and Paralogs

presence patterns for all orthologs inferred by the OMA algorithm
that did not participate in the ortholog clique; these orthologous
pairs include inferred one-to-one, one-to-many, many-to-one, and
many-to-many orthologs. Third, we added presence patterns for
all paralogs inferred by the OMA algorithm; these are in fact
inferred between-species paralogs—broken pairs in the OMA
algorithm. The within-species paralogs are accounted for implic-
itly: if an OMA clique member is connected to a within-species
paralog, the binary phyletic profile does not change. Fourth, we
made a separate set of phyletic profiles that only include clique
members and paralogs, but not the orthologs outside of the clique.

The second step is annotating the phyletic profiles with a GO
term if at least half of clique members had the respective GO term
assigned to them. We determined this threshold empirically (see
Materials and methods) in order to maximize functional consis-
tency of known annotations within OMA cliques. The additional
orthologs and paralogs were not considered in GO term
annotation, even when their presence/absence was used in
creating the profile. In other words, the difference between the
functional annotation models is in the pattern of presence/absence
of different types of homologs, and not in the functional
annotations assigned to the phyletic profile.

The final step is measuring the (dis)similarity between profiles.
We presented both the annotated and the poorly annotated
phyletic profiles to a machine learning algorithm based on decision
trees. In the decision tree algorithm, the groups of phyletic profiles
are recursively divided into subsets based on their presence/
absence patterns. In fact, the similarity measure is not defined a
priori, but is instead inferred from the data: those homologs whose
presence/absence best discriminates between GO terms are used
to determine which profiles are more similar. In the final step of
the decision tree algorithm, the most similar phyletic profiles are
placed in leaves: this allows us to propagate the GO term
annotation across profiles within these leaves.

Here, we used an algorithm based on decision trees, Clus-
HMC-Ens [18]. Clus-HMC-Ens is based on combining multiple
decision trees in a Random Forest-like setting [19], and can handle
multiple labels—here, GO terms—for each phyletic profile.
Furthermore, Clus-HMC-Ens is aware of the hierarchical
relationships between the multiple labels and uses this information
to improve predictive accuracy [18].

We report three performance measures: Precision, Recall, and
Area Under the Precision-Recall Curve (AUPRC). Precision
stands for the fraction of predictions that are known to be true,
Recall stands for the fraction of known annotations that were
successfully predicted, and AUPRC summarizes both Precision
and Recall at all possible stringency thresholds of the annotation
model. Formal definitions of these measures and the machine-
learning algorithm’s train/test procedure used to obtain them are
detailed in the Materials and methods section.

Both orthologs and paralogs contribute to predictive
accuracy of phyletic profiles

In one OMA clique, inferred orthologous relations connect each
protein to every other protein, so it is not surprising that they
group proteins with mostly the same function (see Materials and
methods). However, OMA cliques leave out many of the existing
orthologous relations. Consequently, phyletic profiles of OMA
cliques are incomplete, leading to poor performance in our
classification model: many of the true orthologous relations are
missing, and the model can successfully annotate using only the
most general GO terms (Figure 2, model a; Figure S1 in Text S1:
panels A, B, and C). If we compensate for the missing orthologous
relations in OMA cliques by adding all inferred one-to-one,
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Figure 1. Constructing phyletic profiles with the relations inferred by the OMA algorithm. A) One OMA group and the possible relations
used in constructing phyletic profiles: members of an OMA group are all connected by orthologous relations and they form a clique (red); some
orthologous proteins were left out in the process of forming cliques because they lack an orthologous connection to at least one group member
(blue); a witness to non-orthology infers paralogs (green) [35] B) Constructing phyletic profiles: presence of the corresponding homolog is shown
with the colours and their combinations. For example, when constructing the phyletic profile that accounts for OMA clique members (red) and all left
out orthologs (blue), the cell in the 1st column and 1st row will have ‘1": ‘Species 1’ has an ‘OMA 1’ clique member (red) and at least one more protein
in an orthologous relationship with at least one protein from ‘OMA 1’ (blue); the cell in the 998th column and 2nd row will have ‘0": ‘Species 998’ only
has protein(s) in a paralogous relationship to ‘OMA 2" members. In the Function column, the Gene Ontology annotations are assigned when at least
half of the OMA clique members have the respective annotation. This figure is featured on the GORBI web site: http://gorbi.irb.hr/en/method/oma-

cliques-in-phylogenetic-profiling/.
doi:10.1371/journal.pcbi.1002852.g001

one-to-many, many-to-one, and many-to-many orthologs left out
when constructing the cliques, the model improves: the mean
AUPRC is 0.8 (Figure 2, model b; Figure S1 in Text S1: panels D,
E, and F). We also tested whether adding paralogs to phyletic
profiles of OMA cliques improves the mean AUPRC: it does,
showing that the functional information we obtain from paralogs is
far from useless (Figure 2, model ¢; Figure S1 in Text S1: panels G,
H, and I). Still, the mean AUPRC is 0.65—lower than if we enrich
phyletic profiles with orthologous relationships. However, it is the
combined information from orthologs and paralogs that provides
us with the best model for functional annotation (Figure 2, model
d; Figure S1 in Text SI: panels J, K, and L): the mean AUPRC
increases to 0.85.

In the above experiments, adding only orthologs improved
AUPRC more than adding only paralogs (Figure 2, models b and
¢, respectively). To test whether accounting for the ortholog/
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paralog distinction would further increase AUPRC, we encoded
the phyletic profiles with three levels: presence of an OMA clique
member or another ortholog (2), presence of a paralog (1), or
absence of any of these (0). We found a small gain in AUPRC
resulting from the ortholog/paralog distinction (Figure S2 in Text
S1, panel B), but we also found that increasing the number of
levels in the dataset from the original two to the above-described
three decreases the AUPRC (Figure S2 in Text SI, panel A).
Taken together, accounting for the ortholog/paralog distinction
did not yield an overall gain in AUPRC in the current machine
learning setup (Figure S2 in Text S1, panel C), so we chose the
binary model as our principal result.

Consistent gains in accuracy across GO terms

In this binary model that includes both orthologs and paralogs,
most of the general GO terms have high AUPRC. More specific
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Figure 2. Predictive performance of the four analysed models for the three Gene Ontologies. A) Biological Process, B) Cellular
Component, and C) Molecular Function. The x axis represents the models: phyletic profiles are based on (a) OMA cliques of orthologs; (b) OMA cliques
of orthologs and OMA inferred orthologs; (c) OMA cliques of orthologs and OMA inferred paralogs; and (d) OMA cliques of orthologs, OMA inferred
orthologs, and OMA inferred paralogs. The y-axis represents the Area Under the Precision-Recall Curve (AUPRC). Each disc represents one GO term; its
colour represents the ontology, while the area of the disc is proportional to the generality of the GO term: the frequency of the GO term among all
annotations available in 07-02-2012 UniProt-GOA release. Each boxplot summarizes AUPRC for the dataset indicated on the x-axis. Lower, mid, and
upper horizontal lines denote the first quartile, median and the third quartile, respectively; vertical lines reach 1.5 interquartile range from the

respective quartile or the extreme value, whichever is closer.
doi:10.1371/journal.pcbi.1002852.g002

GO terms span a wide range of AUPRC (Figure S3 in Text S1).
Nevertheless, both specific and general GO terms benefit from the
inclusion of orthologs and paralogs. Specific GO terms such as
“lysine biosynthetic process via diaminopimelate,” ‘“organic
acid:sodium symporter activity,” or “bacterial-type flagellum basal
body” are used in less than 0.1% of annotations in the 07-02-2012
UniProt-GOA release (their Information Content is higher than
10): the mean AUPRC of this subset of specific GO terms rises
from 0.78 in the model that includes orthologs (Figure 2, model b)
to 0.83 in the model that includes both orthologs and paralogs
(Figure 2, model d). For the general GO terms such as “protein
transport,” “kinase activity,” or “plasma membrane,” each used
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in more than 3% of annotations in the 07-02-2012 UniProt-GOA
release (their Information Content is lower than 5), the
corresponding change in AUPRC is from 0.80 to 0.88.
Intuitively, phyletic profiling should perform best for the Biological
Process (BP) GO terms: proteins with similar profiles are expected to
be involved in the same BP but not necessarily to have the same
Molecular Function (MF). For example, one kinase and one
glucosidase may be involved in the same process of sporulation despite
having different MF. As a result, one would expect phyletic profiling to
be more appropriate for assigning BP GO terms than MF GO terms.
Here, we report high predictive accuracy for all three ontologies
(Figure 2, model d). In fact, among the best performing and most
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specific predictions are those for Molecular Function (MF) GO
terms “acyl-CoA dehydrogenase activity,” “transposase activity,”
“organic acid:isodium symporter activity” and its parent term
“solute:sodium symporter activity,” “penicillin binding” and its
parent term “drug binding” (Figure S3 in Text S1).

Model that includes paralogs provides more predictions
with the same correctness

The AUPRC provides us with a view on predictive accuracy
that values both the comprehensiveness of predicted annotations
for a given GO term (Recall) and their correctness (Precision)
across the entire range of model stringency cut-offs. To further
explore the relationship between Precision and Recall at specific
levels of model stringency, we chose three cut-offs—0.1 (permissive
cut-off), 0.3 (medium cut-off), and 0.7 (stringent cut-off), for the
two best models—the model including orthologs (corresponding to
AUPRC values in Figure 2, model b) and the model including
both orthologs and paralogs (corresponding to AUPRC values in
Figure 2, model d). The combination of data and cut-offs resulted
in six plots (Figure 3).

For any of the cut-offs, the mean Precision for GO terms
between the two models is similar (Figure 3, horizontal lines
between A and D; B and E; C and F). However, there is a
difference for Recall, in particular for the more stringent cut-offs
(Figure 3, vertical lines between B and E; C and F). It is this
increase in Recall that increases AUPRC, as we observed before
(Figure 2). For example, at the most stringent cut-off the model
including only orthologs predicts annotations with 414 GO terms

Phyletic Profiles with Both Orthologs and Paralogs

for at least 50 poorly characterized genes in the 998 genomes,
while the model including both orthologs and paralogs predicts
annotations with 573 GO terms for at least 50 genes.

To each unnannotated OMA clique, the model assigned a cut-
off that indicates the probability of being annotated with a GO
term. To have an interpretable measure of confidence for each
prediction, we transformed this cut-off to the corresponding
Precision (see the Materials and methods section). We then
propagated the function of each OMA clique to the member genes
and obtained the functional annotations, along with the estimates
of Precision for each annotation.

As a consequence of the increased Recall, the model that
includes both orthologs and paralogs provides more annotations at
the same Precision (Figure 4A). The increased Recall allows us to
assign specific annotations at a very stringent threshold of 90%
Precision. For example, we predict new annotations for E. colz,
both using the most general, as well as many specific GO terms
(Figure 4B, Figures S4 and S5 in Text SI).

Experimental validation of the model’s accuracy
estimates

In the comparisons above, we obtained the best predictive
performance for the model based on cliques of orthologs enhanced
by both inferred orthologs and paralogs. We evaluated the ability
of each model to generalize to novel data, the poorly characterized
genes, with an out-of-bag method for testing predictive perfor-
mance: we measured accuracy on a random subset of the
annotated phyletic profiles left out when inferring the functional
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Figure 3. The relationship between Precision and Recall for GO terms, at various model stringency cut-offs. Predictions for each GO
term are evaluated at one of three cut-offs: (A), (B), and (C) show results at cut-offs 0.1, 0.3, and 0.7 respectively, for the model including OMA cliques
of orthologs and OMA inferred orthologs; (D), (E), and (F) show results at model cut-offs 0.1, 0.3, and 0.7 respectively, for the model including OMA
cliques of orthologs, OMA inferred orthologs, and OMA inferred paralogs. Each disc represents one GO term; the colour denotes the ontology, and
the area of the disc reflects the frequency of the GO term in the 07-02-2012 UniProt-GOA release. The coloured lines correspond to the mean values
for the respective axes, for the respective ontology. The model made at least 50 predictions for each visualized GO term.

doi:10.1371/journal.pcbi.1002852.g003
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Figure 4. Existing and predicted annotations for the representative prokaryotes. A) The number of our model’s predictions at Precision
90% compared to the available curated Gene Ontology (GO) annotations. Each bar summarizes the data for one prokaryote: Escherichia coli K-12,
Listeria monocytogenes serotype 4b str. F2365, Mycobacterium tuberculosis H37Ra, Pseudomonas aeruginosa UCBPP-PA14, Staphylococcus aureus
subsp. aureus NCTC 8325, and Streptococcus pneumoniae R6. For both our predictions and the available GO annotations we show GO term
annotations that have Information Content higher than 3. The colour of the bar denotes the source of the annotations: yellow for the model that
includes all inferred one-to-one, one-to-many, many-to-one, and many-to-many orthologs, blue for the model that includes both these orthologs and
the paralogs, and green for the curated annotations available in the 07-02-2012 UniProt-GOA release. B) Biological Process (BP) annotations that the
model including both orthologs and paralogs assigned to E. coli genes at Precision 90%. Apart from the most general terms in the BP ontology, we

highlight some more specific annotations.
doi:10.1371/journal.pcbi.1002852.9004

annotation model. This method was shown to give unbiased
estimates of predictive performance [20].

To validate how realistic are these out-of-bag performance
estimates, we chose annotations for 38 genes in Escherichia coli K-12
having at least 60% expected Precision, for three GO terms that
were straightforward to investigate experimentally using readily
available antibiotics: “DNA damage response,” “translation,” and
“peptidoglycan-based cell wall biogenesis.”” The 38 E. coli strains,
each with the deletion of one among the 38 selected genes, were
grown in the presence of antibiotics that target the above
Biological Processes: nalidixic acid (causes severe DNA damage,
including double-strand breaks), kasugamycine (inhibitor of
translation initiation), and ampicillin (inhibitor of cell wall
synthesis) (Figure 5).

To each of the 38 genes the model assigned a Precision, as
explained in the Materials and methods section. For example,
Precision associated with the E. coli gene yfgl for “DNA damage
response’” was 62%; for “translation” and “peptidoglycan-based
cell wall biogenesis™ it was lower than 1%. We would therefore
predict this gene to be involved in “DNA damage response’ with a
probability of being a false positive of 38% (100-62). For the other
two GO terms the probability of being a false positive would be
over 99%: the annotation model inferred that these are unlikely
functions for this gene.

To experimentally evaluate a predicted annotation, we used the
E. coli mutant deleted in the gene whose function we predicted. We
compared the mutant to the £. coli wild type when grown in the
presence of the antibiotic that inhibits the predicted function. If the
gene is indeed involved in the predicted function, the survival of
the mutant is expected to be lower than the survival of the wild
type. For example, we predicted “DNA damage response” for the
E. coli yfel gene, so the corresponding mutant and the wild type
were grown in the presence of DNA-damaging nalidixic acid; we
expect the mutant to have lower survival than the wild type
because its DNA repair capabilities are diminished.

We might predict a particular function, such as “DNA damage
response,” for an important gene that is indirectly involved in
many biological processes. Deleting such a gene may lower
survival non-specifically and thus appear to validate our predic-
tion. To control for this, we also grew each mutant in the presence
of the two additional antibiotics. For the above example of the yfg/
gene, if our prediction is correct, the survival of the mutant should
not be different from the survival of the wild type when grown on
kasugamycin or ampicillin.

Therefore, we considered a prediction confirmed only if both of
the following criteria were satisfied: 1) the survival of a mutant was
lower than 25% of the wild type when grown with the addition of
the antibiotic inhibiting the process predicted by our model, and 2)
the survival of the mutant was higher than 50% of the wild type
when grown on the other two antibiotics.

For example, we predicted “DNA damage response” for the E.
coli yfel gene: when grown on DNA-damaging nalidixic acid, the
fel mutant had 7% survival of the wild type, but when grown on
kasugamycine or ampicilin, the survival was much higher: 98%
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and 74% of the wild type, respectively (Table S1). We therefore
consider the prediction for the involvement of the yfg/ gene in
DNA repair processes confirmed: the yfg/ mutant is sensitive to a
DNA-damaging agent, while exhibiting wild type-like resistance to
other stresses.

With these criteria, 25 out of 38 genes had confirmed
predictions, which is equivalent to the experimental Precision of
66% (Figure 5). Since the selected genes had an expected Precision
of 60%, the experiments show that the estimates of accuracy
provided by the model are realistic. In fact, 14 of the 38 tested
genes have Precision =85%. For these genes, the experiments
have shown 11 out of 14 (79%) to be correct, approximately
matching the expected precision of 85%.

Consequently, these estimates can be used to guide decisions
when prioritizing genes for an in-depth experimental investigation
of function in the wet lab.

Examples of novel functions for Escherichia coli genes

supported by literature evidence

In addition to the systematic experimental verification of novel
annotations in three GO categories as described above, here we
highlight individual predictions for which we found supporting
evidence in the publicly available databases. This information was
not available to the classifiers at the time when the models were
constructed. The following examples are for E. coli K12, as this is
by far the best-studied model prokaryote [21].

We predict genes fypC and hybG to have “nickel cation
binding.” These genes had no GO terms assigned in the 07-02-
2012 UniProt-GOA release (http://www.uniprot.org/uniprot/
POAAMS3 and http://www.uniprot.org/uniprot/ POAAM7), and
we therefore considered them unannotated. In the meantime, iypC
was annotated with “metal ion binding” using experimental
evidence: this is a parent GO term of our prediction. Moreover,
when examining the literature, we found evidence that these two
genes are involved in the biosynthesis of the [NiFe] cluster [22].

Another prediction is for gltL: we predicted it is annotated with
“ATP-binding cassette (ABC) transporter complex.” In line with
our predictions, PortEco, a portal that includes information from
14 different E. coli data resources [23], labels the gene as “ATP-
binding component of ABC superfamily.” Note that more general
electronic GO annotations were available for this gene, e.g. “ATP
binding,” “ATPase activity,” and “ATP catabolic process”
(http://www.uniprot.org/uniprot/ POAAG3).

A similar prediction of a more detailed function is for ybgl,
where we predict GO terms from both BP and MF ontologies.
This gene 1s known to be a conserved metal-binding protein [24],
having an electronic GO annotation “metal ion binding”; we
predict it is annotated with the BP GO term “Mo-molybdopterin
cofactor metabolic process.” Based on the structure of the protein,
Ladner et al. hypothesize this protein is a hydrolase-oxidase
enzyme [24]; we predict this protein is annotated with the MF GO
term “hydrolase activity, acting on acid anhydrides, in phosphorus-
containing anhydrides.”
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Figure 5. Experimental validation of predictions. A) Genes predicted to be annotated with “peptidoglycan-based cell wall biogenesis,” B)
genes predicted to be annotated with “translation,” C) genes predicted to be annotated with “DNA damage response,” D) genes predicted to be
annotated with both “translation” and “DNA damage response,” and E) a gene predicted to be annotated with both “translation” and “
peptidoglycan-based cell wall biogenesis.” The x-axis denotes the Escherichia coli knockout mutant. The y-axis represents the percentage of survival
of the mutant strain normalized to the wild type. Coloured bars represent the survival when the antibiotic disrupts the biological process we predict
for the genes; here, the correctly annotated mutants are expected to survive less than the wild type (w. t.). Coloured lines represent the survival when
we predict no effect of the antibiotic on the survival rate; here, deletion mutants were expected not to differ from the wild type. Error bars show the

variation in the results among the four replicates.
doi:10.1371/journal.pcbi.1002852.g005

Predictions available to browse or download from the
GORBI website

Because we showed our functional annotation model gives realistic
estimates of predictive accuracy, we made our predictions freely
available in a Web site GORBI (http://gorbiirb.hr/). Our
predictions can be queried either using GO accession number,
NCBI taxonomy ID, or gene/protein ID (Figure 6). For example, one
can focus on more general or more specific GO terms, depending on
their position in the “Gene Ontology DAG” (Figure 6, insert A). In
addition, an experimenter can tune the search parameters to get a
small number of high-confidence candidates, or a larger number of
candidates that potentially have more false predictions, depending on
the availability of annotations for the desired function and the
available resources for experimental validation.

Discussion

Phyletic profiles in functional annotation
The intuition of phyletic profiling is that corresponding genes
gained and lost together in different genomes are likely to share
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function: they could be involved in the same metabolic pathway,
which is therefore incomplete without all the members in a
genome [1]. Additionally, even if the two genes are parts of
separate pathways and don’t strictly require each other for
function, they could both share a role beneficial for survival in a
particular environment [25].

The standard way of finding corresponding genes in different
genomes is via sequence homology: in addition to inferring
function via homology, a phyletic profile allows to infer function
based on the presence or absence of the corresponding genes in a
range of organisms.

Orthologs and paralogs in functional annotation

In functional annotation, we often differentiate between two
subtypes of homologs, orthologs and paralogs [e.g., 26]. According
to the standard model of genome evolution, paralogs—pairs of
genes diverged through a duplication event—could obtain a new
function [e.g., 27]. Conversely, orthologs are pairs of genes
diverged through a speciation event and should be more likely to
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retain function; they are therefore expected to be more
informative in functional annotation [15].

However, the exact quantification of the functional divergence
in a pair of orthologs and a pair of paralogs is not fully resolved. It
was observed that the search for homologs using the best
bidirectional hit approach, without explicitly distinguishing
orthologs from paralogs, produces a higher level of functional
compactness via Gene Ontology (GO) terms [28] than is present in
the ortholog databases Homologene [29] and OMA [30]. In
addition, Studer and Robinson-Rechavi list scenarios where the
standard model—predicting that paralogs diverge in function
more than orthologs—is invalid; for example, cases where paralogs
share function, and orthologs do not [31].

A recent large-scale study further challenged the veracity of the
standard model: the authors compared mouse and human ortholog
and paralog pairs and surprisingly found that paralogs tend to
conserve function more than orthologs [32]. This finding caused a
stir in the community—demonstrating the relevance of the topic—
but was subsequently challenged in two publications [17,33].

Nevertheless, a recent systematic survey showed that the
divergence in function between paralogs is not as strong as the
standard model would imply [17]. In addition, we know that
homologs—orthologs and paralogs combined—are useful in
functional annotation, especially when their sequence similarity
is above the “twilight zone” [34]. Further, orthologs and paralogs
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share a common ancestor: paralogs, as well as orthologs, could
carry functional information useful for annotation.

Paralogs enrich phyletic profiles

In line with the recent research [17], our results show that the
standard model, when viewed in the functional annotation
context, tends to draw too strong of a line between orthologs
and paralogs. When we enriched clique-only annotation models
with additional orthologs and additional paralogs, we obtained a
model that outperformed both the model that was enriched only
with orthologs and the model that was enriched with refined
homologs at different evolutionary distances (Figure S6 in Text
S1). The improvement is most notable in the number of new
annotations we were able to assign: while keeping the Precision at
the same high level, our best model increases Recall (Figure 3), and
consequently gives us more predictions at the same level of
correctness (Figure 4A).

Even so, our results do not contradict the standard model in two
major points: 1) cliques of orthologs—groups where all genes are
connected with orthologous relations—are indeed functionally
very similar (Figure 7), and 2) our results support the current
widespread annotation efforts that use homology: even when we
disregard the orthology/paralogy relationships to enhance cliques,
we obtain high predictive accuracy (Figure S6 in Text S1).
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Orthologs-only model outperforms paralogs-only model

The OMA algorithm infers paralogs (i.e., non-orthologs) among
genes linked as the best bidirectional hits in the respective
genomes: a witness to non-orthology breaks the link between two
genes [35]. Because only one witness is enough to break the
orthologous relationship, the OMA algorithm produces ortholo-
gous groups with high specificity [36]. As a trade-off, the set of
inferred paralogs might contain pairs whose orthologous link was
erroneously broken; the probability for this to happen increases
with the addition of new genomes (A. Altenhoff, personal
communication). Therefore, our set of paralogs might contain
orthologs that were misclassified as paralogs.

Even so, when we enriched clique-only annotation models with
the inferred paralogs, predictive accuracy increased less than when
we enriched clique-only annotation models with the missing
orthologs (Figure 2, models ¢ and b, respectively). We obtained
these results despite enriching with a larger number of paralogous
pairs than orthologous pairs: it is not the number of added pairs
that improves the predictive accuracy, but the genome they are
located in.

Experimental validation shows that the model’s
performance estimate is realistic

An important output of any computational annotation model is
an estimate of confidence for the annotations: it can subsequently
be used to guide decisions about experimental validation. In fact,

Phyletic Profiles with Both Orthologs and Paralogs

one project that provides a framework for the exchange of
information between the computational and experimental com-
munities is COMBREX [37,38]. To meaningfully contribute to
growing resources such as COMBREX, we wanted to evaluate
whether our annotation model provides realistic estimates of
confidence for the individual annotations.

Probing growth profiles of knockout E. coli mutants with sub-
lethal concentrations of antibiotics is an established method of
functional annotation [39,40]. Here, we experimentally validate
whether a gene is involved in the predicted Biological Process by
growing the respective knockout F. ¢oli mutant in a medium
containing the antibiotic that targets the Biological Process we
predicted. The experimental results support the estimates of
Precision obtained from a cross-validation procedure, serving as a
proof of principle that our phyletic profiling-based model is useful
when searching for novel functions of poorly annotated genes in a
microbiology lab.

Our annotation model assigns GO terms from across the GO
hierarchy, for both general and specific terms. Overall, more
general terms tend to have a higher cross-validation Area Under
the Precision-Recall Curve (AUPRC) (Figure S3 in Text S1) and
consequently the annotations assigned with these terms are more
likely to be correct.

The AUPRC scores such as the one we use serve as a test of the
internal consistency of the model. On the one hand, the model
captures the similarities of the phyletic profiles of the OMA cliques
(and the enriched OMA cliques) of orthologs; on the other hand,
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Figure 7. Functional coherence of GO annotations. Each panel presents the results of evaluation for the annotations inferred from A) 30%, B)
50%, C) 70%, and D) 90% of OMA members. We propagated the annotations available for the OMA group members in the 2008-01-16 UniProt-GOA
release to unannotated group members, and evaluated the predictions with the newly arrived annotations in the more recent 17-10-2011 UniProt-

GOA release.
doi:10.1371/journal.pcbi.1002852.9g007
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the model captures the GO terms assigned to the OMA cliques of
orthologs. For a given GO term, the AUPRC scores will be low if
the phyletic profiles’ features cannot be used to transfer the
function between the profiles. Thus, we make no prior assump-
tions whether a GO term at a certain level of specificity can be
transferred across profiles, but rather infer this from the data itself
in a systematic manner.

An experimenter can focus on more general or more specific
GO terms depending on the trade-off of reported Precision and
the cost/time required of experiments; when using the GORBI
Web site, GO terms can be selected depending on their position in
the Gene Ontology hierarchy (Figure 6, insert A).

To facilitate the use of the generated computational annotations,
we provide them in a Web site GORBI (http://gorbi.irb.hr/) where
each prediction is accompanied by the annotation model’s estimate
of confidence.

Conclusions

We contribute a solution for computational annotation of genes
that utilizes a distinction between two types of homologs—
orthologs and paralogs—to yield an innovative annotation model:
phyletic profiles derived from cliques of orthologs enriched with
both orthologs and paralogs have shown the best predictive
accuracy. Our results are in line with related recent research: while
it is generally accepted that pairs of orthologs have a lower rate of
functional divergence, the divergence in paralogous pairs is not as
strong as the standard model would imply [17].

In addition, we performed validation experiments in knockout
mutants of E. coli, showing that our annotation model reports
realistic measures of predictive performance. The agreement with
the experimental results implies that our functional annotations—
and the corresponding confidence estimates—can be used to
narrow the search space for potential function candidates and
thereby help to bridge the widening gap between the sequenced
and characterized proteins.

For successful annotation of newly sequenced proteins, we need
contributions from both the computational community—a large
number of credible annotations—and the experimental commu-
nity—validating the most interesting computational annotations.
In turn, the validated findings from the wet-lab can be fed into the
computational annotation pipelines, helping to propel a virtuous
circle that increases the number of experimentally annotated
genes.

Our research aims to contribute to the understanding of the
deluge of data we face, whether from complete microbial genomes
for which we provide annotation predictions (http://gorbi.irb.hr/),
or from the metagenomics projects, in particular the emerging
human microbiomes, to which we can apply our annotation model.

Materials and Methods

Annotation data

We downloaded all annotation data from the FTP site of the
UniProt-GOA database [41].

We used the Gene Ontology (GO) vocabulary for functional
annotation [28]. We included all annotations assigned by a curator
(evidence codes EXP, IMP, IGI, IPI, IEP, IDA, ISS, RCA, IC,
NAS, TAS), and from the non-curated annotations (evidence
code IEA), we included those inferred from UniProtKB key-
words, UniProt Subcellular Location terms, Enzyme Commission
numbers, and InterPro (reference codes GO_REF:0000004,
GO_REF:0000023, GO_REF:0000003, and GO_REF:0000002,

respectively). Despite not being curated, a recent report showed
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these electronic annotations are of high quality, in particular for
the only analysed Prokaryote, E. coli [42 and Figure S7 in Text S1]

We express the specificity (opposite of generality) of a GO term
GO; with respect to its Information Content:

Information Content(GO;)= —log,(freq(GO;)),

where freq(GO;) is the frequency of GO; among all annotations for
the twelve Reference genomes [43].

The OMA algorithm and the OMA database

The OMA algorithm is a graph-based method of orthology
inference [35]. Roth et al. provide full details of the algorithm, and
we summarize the main points relevant to our work. The
algorithm starts with an all-against-all sequence alignment:
proteins from two species are connected if they are best
bidirectional hits, within a confidence interval, in the compared
species. The connections between a pair of proteins are broken
when one of them is the best bidirectional hit with one of the
proteins in a connected pair in some third species, and the other is
the best bidirectional hit with the second protein in the same pair;
the broken pairs are inferred paralogs. The remaining connections
are inferred orthologs. Finally, OMA cliques of orthologs are sub-
graphs where all proteins are connected by orthologous relation-
ships (Figure 1).

In this work, we only use OMA cliques that group at least 10
members.

The OMA algorithm is available as a stand-alone version; the
results can also be browsed on the OMA web site [44].

Annotating OMA cliques of orthologs

Because one essential component of our work is annotating
OMA cliques of orthologs based on the proteins they contain, we
first checked whether OMA cliques contain proteins with the same
function. First, unannotated OMA members were labelled with
the GO terms of annotated OMA members at four thresholds: if
30, 50, 70, or 90% of OMA members have the respective function.
To assign these labels, we used only annotations available in the
16-01-2008 UniProt-GOA release.

Next, we checked the annotations in the more recent 17-10-
2011 UniProt-GOA release. For each unannotated protein, we
consider the labelled function to be confirmed if the protein holds
the respective annotation in the more recent release; we consider
the labelled function to be rgected if the protein holds the same
annotation alongside a ‘NOT” qualifier (explicit rejection) or a new
annotation that is not the propagated one (implicit rejection). To
make a more robust measure, we summarize the confirmed and
rejected annotations for each GO term. We named this measure
‘Coherence of a GO term.” More formally,

Coherence = A
|Cgo;|+|Rao;|

where Cgo, is the set of confirmed annotations associated with
term GO; and Rgo, is the set of rejected annotations associated
with term GO;. We account for the definition of the GO: the
assignment of any GO annotation assumes the assignment of all
the GO parent terms.

This is a conservative estimate of Coherence: we consider as
rejected an annotation that might not have been added to the
database yet. Annotations are continuously being added to
UniProt-GOA database, and the annotation update interval for
a gene can be as long as 12 years [42]. To compensate for this bias,
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we evaluated coherence on a three-year interval, as most genes in
E. coli are updated within that time frame.

For each GO term, the functional coherence depends on the
imposed annotation threshold (Figure 7): when a larger fraction of
OMA members in 2008 supported the GO annotation, we found
more newly annotated proteins that support this propagated GO
annotation in 2011. The drawback of the increasing threshold was
a smaller number of GO terms that can be used in annotation and
consequently a smaller number of annotated OMA groups used in
training the annotation model. We chose the threshold of 50% as a
compromise: for most GO terms, the newly annotated proteins are
in accordance with the propagated functions—fraction of correctly
predicted newly arrived annotations is greater than 0.9—and we
are left with enough specific GO terms for functional annotation
(Figure 7, panel C): 422 GO terms from the Biological Process
ontology, 48 GO terms from the Cellular Component ontology,
and 264 GO terms from the Molecular Function ontology. We use
the 50% threshold throughout this work.

Phyletic profiles

The phyletic profile of an OMA clique of orthologs is encoded
as a vector of binary values. The vector’s length is 998 items—the
number of prokaryotic genomes included in our work. Each
position in the vector indicates the presence or absence of an
OMA clique member in the respective genome. There are 64052
annotated and unannotated OMA phyletic profiles in our dataset
(Figure 1).

We enriched the phyletic profiles, first by connecting the
missing orthologs to OMA clique members (Figure 1, full lines),
and second by connecting the paralogs (Figure 1, dashed lines) to
OMA clique members. Orthologs include one-to-one orthologs,
one-to-many orthologs, many-to-one orthologs, and many-to-
many orthologs.

Machine learning algorithms

The Clus-HMC [7] algorithm builds decision trees for
hierarchical multi-label classification (HMC). In contrast to
ordinary classification trees [45], which can be used for single-
label annotation, Clus-HMC is able to deal with multiple,
hierarchically organized class labels, such as terms from the Gene
Ontology. It builds decision trees for HMC by extending the
standard decision tree learning algorithm: It splits the training data
into subsets based on attribute values, in order to minimize the
weighted sum of variances for all class labels within the subsets
resulting after the split [7].

In this weighted sum, a parameter w can be used to place more
weight on either the more specific, or the more general GO terms.
The default value of this parameter is 0.75, which places more
weight on more general terms. Changing the default value of the
wo parameter to place more weight on the specific terms will
favour them, possibly trading off the accuracy of the more general
terms for a gain in accuracy of the more specific terms. To test for
possible gain, we experimented with different values of the wy
parameter to place higher weight on either the more general GO
terms (default value, wy=10.75; wy=0.5) or on the more specific
GO terms (wo=1/0.75=1.33; wy=1.75; wp=2.0; wo=23.0).
Clus-HMC-Ens proved to be robust to the value of the wy
parameter (Figure S8 in Text S1): we did not record a significant
change in the AUPRC values (p-value was not lower than 0.28 in
the five tested values of the wy parameter, Wilcoxon signed-rank
test), and we therefore used the default value in all our
computational experiments.

In addition, the hierarchy of class labels introduces dependen-
cies between the classes: Clus-HMC is aware of the hierarchical
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relationships between the multiple labels and uses this information
to improve predictive performance.

The Clus-HMC algorithm was extended to an ensemble setting
(Clus-HMC-Ens) [18], where a forest of decision trees for HMC is
learned: The predictions of the individual trees are combined to
obtain the overall prediction of the ensemble. ClussHMC-Ens
implements, among other methods, the Random Forest (RF)
ensemble [19] approach, where the individual trees are construct-
ed by using a randomized version of Clus-HMC. Each tree is
constructed from a different sample of the training dataset: The
bagging (Bootstrap aggregating) methodology of resampling the
dataset [46] is used to construct the different samples. One
bootstrap sample consists of the same number of examples as the
original dataset, but they are randomly drawn with replacement,
consequently a bootstrap sample contains about two thirds of
unique examples. A model—Clus-HMC decision tree—is pro-
duced from each of the bootstrap samples.

When estimating the classification error, out-of-bag estimates
are calculated. The examples that were omutted from the bootstrap
sample—one third of the original dataset—are used in calculating
Precision, Recall, and Area Under the Precision-Recall Curve
(AUPRC). The estimates are based on the random sample, and
the measures are therefore unbiased. To check whether adding
paralogs improves the functional annotation model regardless of
the machine learning algorithm used, we inferred functional
annotation models with the standard approach used in phyletic
profiling: transfer of function via pairwise distance measures
between phyletic profiles, as implemented in a kNN classifier
(Figure S9 in Text S1). The conclusions presented above do not
change: the model that includes both orthologs and paralogs
outperforms the model that includes only orthologs. Because Clus-
HMC-Ens outperforms kNN in computational efficiency and
predictive accuracy, we used Clus-HMC-Ens throughout this
work.

Evaluating the functional annotation models

We compare models of functional annotation using Precision-
Recall curves: in the Precision-Recall space, Recall is on the x-axis,
and Precision is on the y-axis. Traditionally, Precision and Recall
are defined for binary classification: an instance either has or does
not have the label; in our case, each OMA clique either has or
does not have a GO annotation. Precision and Recall are defined
for each GO term:

|TPgo,l
|TPGo,|+|FPgo;|’

|TPgo,l

Recall= ———"~-——
|TPgo;|+|FNgo,]

Pr ecision=

where TPgo, is the number of correctly predicted true annotations
(“True Positives”), FPgo, is the number of incorrectly predicted
true annotations (“False Positives”), and FNgo, is the number of
missed true annotations (“False Negatives™).

Precision stands for the fraction of correctly predicted examples
out of all the predictions, and Recall stands for the fraction of
correctly predicted examples out of all known to be true.

Here, we are dealing with a multi-class problem: each OMA
clique can be annotated with multiple GO terms. The classifier we
are using is adapted for such a problem and assigns a probability
that each OMA group is assigned each of the GO terms. By
varying a cut-off for the probability form 1.0 to 0.0, we are
relaxing the stringency of the predictions: an increasing number of
OMA groups are assigned an increasing number of GO terms.
Fixing this cut-off at the three values and calculating Precision and
Recall for each GO term created visualizations in Figure 3.
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The probabilities allow us to have a ranking of GO annotation
predictions for OMA cliques and proteins therein. In addition to
the ranking, we wanted to have an intuition for the number of
candidates we need to experimentally examine in order to get
confirmed annotations. Therefore, we translated the probabilities
to Precision for each GO term. Similarly as above, we varied the
cut-off for the probability, and calculated the corresponding
Precision for each GO term at each probability cut-off: out of all
the OMA clique annotations that pass the threshold, we counted
the number of true positives, and the number of false positives.

To compare models in Figure 2, we used a single measure of
performance that combines Precision and Recall: Area Under the
Precision-Recall Curve (AUPRC). To calculate AUPRC, we first
varied the probability cut-off from 1.0 to 0.0 and obtained the
Precision-Recall curve. We then calculated the area that is
enclosed between the Recall axis and the curve. The closer
AUPRC is to 1.0, the better the model.

Bacterial strains, growth conditions, and antibiotic
treatments

All deletion mutants used herein were derived from wild-type
sequenced Escherichia coli MG1655 by P1 transduction. P1 phage
was grown on a series of Keio collection deletion mutants listed in
Table S1. Successfully transduced mutants were selected on LB
plates supplemented with kanamycine.

Bacteria were grown in LB broth at 37°C, to the exponential
phase (OD600 = 0.2-0.3). Viable cell counts were estimated by
plating serial dilutions on LB plates, as well as LB plates
supplemented with 400 ug/mL kasugamycine (inhibitor of trans-
lation initiation), 4 ug/mL nalidixic acid (causes severe DNA
damage, including double strand breaks), and 3 ug/mL ampicillin
(inhibitor of cell wall synthesis). Plates were incubated overnight at
37°C.. The concentrations of antibiotics used in this study were
selected as the concentrations that lead to ~10% survival of the
wild type E.coli.

Sources of data and software

1. The orthology and paralogy data from the OMA database,
May 2011 version was kindly provided by A. Altenhoff.

2. The cross-references for the various gene/protein identifiers
(UniProt, GenBank, Entrez GenelD) were downloaded from
the NCBI FTP site [http://www.ncbinlm.nih.gov/Ftp/].

3. GO annotations were downloaded from the UniProt-GOA
FTP site. We used the 2008-01-16 and the 2011-10-17
UniProt-GOA releases to evaluate the consistency of OMA
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