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Abstract. Among predictive models, ‘if-then’ rule sets are one of the most ex-
pressive and human readable model representations. Most of the existing ap-
proaches for rule learning focus on predicting a single target attribute/class. In
practice, however, we encounter many problems where the task is to predict not
one, but several related target attributes. We employ the predictive clustering ap-
proach to learn rules for simultaneous prediction of multiple target attributes. We
propose a new rule learning algorithm, which (unlike existing rule learning ap-
proaches) generalizes to multiple target prediction. We empirically evaluate the
new method and show that rule sets for multiple target prediction yield compa-
rable accuracy to the respective collection of single target rule sets. The size of
the multiple target rule set, however, is much smaller than the total size of the
collection of single target rule sets.

1 Introduction

Traditionally, inductive machine learning focuses on problems where the task is to pre-
dict a value of a single target attribute. However, there exist many real life problems
where the task is to predict not one, but several related target attributes. Of course,
this problem can easily be solved by constructing separate models for each target at-
tribute. If our only goal is to achieve high predictive accuracy, the resulting collection
of (single target) models should be sufficient, provided that we have selected a suit-
able method for single target prediction. On the other hand, if, besides the predictive
accuracy, the interpretability of induced models is also important, the collection of sin-
gle target models is far less understandable than a single model that jointly predicts all
target attributes. Therefore, the research on extending machine learning methods that
produce interpretable models (such as decision trees and rules) towards multiple target
prediction is justified.

One of the possible approaches to multiple target prediction is predictive clustering,
which was originally applied to decision trees. The goal of this paper is to adopt the
predictive clustering approach in order to design a method for learning rules for multiple
target prediction; we call it predictive clustering rules.1 We focus on classification tasks
only, though the method can also be extended to regression problems.

1 An initial solution to the problem of learning predictive clustering rules has been presented in
[17]. The algorithm presented here includes an updated search heuristic, a new error weighted
covering algorithm, and extended experimental evaluation.



The rest of the paper is organized as follows. Section 2 summarizes predictive clus-
tering. The algorithm for learning predictive clustering rules is presented in Section 3.
Section 4 describes the evaluation methodology, and Section 5 presents the experimen-
tal results. Last section concludes and gives some directions for further work.

2 Predictive Clustering

The predictive clustering approach [1, 2] builds on ideas from two machine learning
areas, predictive modeling and clustering [9]. Predictive modeling is concerned with
the construction of models that can be used to predict some object’s target property
from the description of this object (attribute-value representation is most commonly
used for describing objects and their properties). Clustering, on the other hand, is con-
cerned with grouping of objects into classes of similar objects, called clusters; there is
no target property to be predicted, and usually no symbolic description of discovered
clusters, (though a symbolic descriptions can be added to already constructed clusters
as in conceptual clustering [13]). Both areas are usually regarded as completely differ-
ent tasks. However, predictive modeling methods that partition the example space, such
as decision trees and rules are also very similar to clustering [10]. They partition the set
of examples into subsets in which examples have similar values of the target variable,
while clustering produces subsets in which examples have similar values of all descrip-
tive variables. Predictive clustering builds on this similarity. As is common in ‘ordinary’
clustering, predictive clustering constructs clusters of examples that are similar to each
other, but in general taking both the descriptive and the target variables into account. In
addition, a predictive model is associated with each cluster which describes the cluster,
and, based on the values of the descriptive variables, predicts the values of the target
variables. Methods for predictive clustering enable us to construct models for predict-
ing multiple target variables which are normally simpler and more comprehensible than
the corresponding collection of models, each predicting a single variable.2 So far, this
approach has been limited to the tree learning methods. The method described in the
next section extends predictive clustering towards methods for learning rules.

3 Predictive Clustering Rules

Predictive clustering rules (PCRs) include ideas from rule learning and clustering. The
learning algorithm itself is a generalization of existing rule learning approaches. The
rule evaluation function which serves as a search heuristic, however, employs tech-
niques commonly used in clustering. We start with a description of the top level of
the algorithm, while specific aspects of the algorithm, such as learning single rules and
modification of the learning set between subsequent iterations of the algorithm, are dis-
cussed in separate sections.

2 Related to multiple target prediction is Multi-Task learning [3], where a single model (neural
network) is trained for multiple target attributes (learning tasks) with a presumption that a set
of hidden submodels will emerge that are used for modeling of all learning tasks.



Table 1. The algorithm for learning predictive clustering rules. a) ‘LearnRuleSet’, b) ‘FindCan-
didateRule’, and c) ‘ModifyLearningSet’ procedures.

a) LearnRuleSet()
Input: learning set E
R = ∅ {rule set}
Ec = E {current learning set}
repeat

ri = FindCandidateRule(Ec)
R = R ∪ {ri}

Ec = ModifyLearningSet(Ec, ri)
until ((ri = ∅) or (||Ec|| = 0))
R = R ∪ DefaultRule(E)
return R

c) ModifyLearningSet()
Input: current learning set Ec, newly added
rule ri

case (Mmod = “Std-Covering”) do
for all (ei ∈ Ec) do

if (ri covers ei) then
wei = 0

return Ec

case (Mmod = “Err-Weight-Covering”) do
for all (ei ∈ Ec) do

if (ri covers ei) then
wei = wei · g(ei, ri)

if (wei < ε) then
wei = 0

return Ec

b) FindCandidateRule()
Input: current learning set Ec

clast = “true”
C = Cbest = {clast}

while (C , ∅) do
Cnew = ∅

for all (c ∈ C) do
for all (t ∈ Tp ∧ t < c) do

cnew = c ∧ t
if (h(cnew) > h(clast)) then

Cnew = Cnew ∪ {cnew}

Cbest = Cbest ∪ {cnew}

if (|Cnew| > bw) then
Cnew = Cnew \ arg minc′∈Cnew h(c′)

if (|Cbest | > bw) then
Cbest = Cbest \ arg minc′∈Cbest h(c′)

clast = arg minc′∈Cbest h(c′)
C = Cnew

cbest = arg maxc′∈Cbest h(c′)
return (cbest, pbest)

3.1 Learning Algorithm

Most of existing approaches to rule learning are based on the covering algorithm
[12]. Its main problem, however, is that it was originally designed for two-class (bi-
nary) classification problem domains. In addition, the rule sets produced by the original
covering algorithm are by nature ordered, unless rules for only one class value are con-
structed. Our algorithm is based on the CN2 method [5, 4], which uses a version of the
covering algorithm that can learn ordered or unordered rules, and is also applicable to
(single target) multi-class problems.

The algorithm for learning predictive clustering rules is presented in Table 1. Top
level procedure ‘LearnRuleSet’ (Table 1.a) starts with an empty rule set R and a set
of learning examples E. In each iteration we learn a candidate rule ri and add it to
the rule set. Next, we modify the current learning set Ec and, unless some stopping
criterion is met, repeat the loop. There are two stopping criteria; we stop adding rules
if the ‘FindCandidateRule’ procedure could not find any non-empty rule, and when the
||Ec|| becomes zero (||Ec|| is the number of examples with non-zero weights). Before the
learning procedure is finished, we add the default rule. The default rule is a rule with



an empty condition and is used for examples that are not covered by any other rule. Its
prediction part is a cluster prototype of the complete learning set E.

The interpretation of PCRs is the same as that of CN2 rules: ordered rules are
scanned and the first one that covers the example is used; predictions of all unordered
rules that cover the example are combined into the final prediction via weighted voting,
where the weights are equal to the number of covered examples on the training data.

3.2 Learning Single Rule

The ‘FindCandidateRule’ procedure is given in Table 1.b, and is a general-to-specific
beam search algorithm, which is very similar to the one implemented in the CN2. The
input to the procedure is the learning set of examples Ec. The width of the beam bw

determines the number of partial rules maintained during the search. A set of bw best
rules (or actually conditions) found so far as evaluated by the heuristic function h is
denoted as Cbest. We start with the most general condition (“true”) that is satisfied by
all examples in the learning set Ec. Now we begin specialization of all conditions in
the current set of conditions C by conjunctively adding an extra test. Here we consider
all possible tests (Tp) that are not already in the condition that we are specializing.
Here we only consider conditions that cover at least a predefined minimal number of
examples µ. Every specialization is evaluated using the heuristic function h. If any spe-
cialization is better than the worst condition in the set Cbest, we add it to this set and to
set Cnew. We remove the worst conditions if the sizes of these sets increase over their
predefined maximum sizes. When all specializations of the current set of conditions C
are examined, the set C becomes set Cnew, and the search is continued until no better
specializations can be found. At the end, the best condition from the set Cbest is coupled
with the prototype of target attributes of examples that it covers (pbest), and returned as
a candidate rule.

Search Heuristic. The crucial part of the algorithm is the search heuristic h. The
heuristic is used for the evaluation of rules under construction and basically leads the
search procedure towards rules of the desired quality. Therefore, the heuristic should
reflect the qualities we expect from each individual rule in the rule set. Typically, we
want the rules to be accurate and, at the same time, general, i.e., we want the rules to
cover as many examples as possible. More generalization means that the rule covers
more examples and in the end, it also means that the final rule set will have fewer rules
and will be more comprehensible. Unfortunately, more generalization most often also
means larger error in the model, and a compromise between the two must be found.

Normally, the accuracy measures are tailored to single target prediction, while for
predictive clustering rules we need a measure that also works for multiple target pre-
diction. We define such a measure, we call it dispersion, as follows. Let E′ be the set
of N examples that are covered by a specific rule, and each example ei is represented
as a vector of K attribute values x ji, where x ji stands for the value of the attribute a j of
the example ei. The dispersion of a set of examples E′ is an average of the dispersions
along each attribute

disp(E′) =
1
K

K∑
j=1

disp(E′, a j). (1)



Here we take into account only the target attributes, although in principle, we could
include also the non-target attributes [17].

The definition of dispersion along a single nominal attribute is the average distance
of a single example from a set to the prototype of this set. Let the attribute a j have L
possible values with labels l1 to lL. The prototype of a set of examples E′ of an attribute
a j is a vector of relative frequencies fk of possible values within the set

pE′ = p(E′; a j) = [ f1, f2, . . . , fL]; fk =
nk

N
, (2)

where nk stands for the number of examples in the set E′ whose value of attribute a j

equals lk. Accordingly, (the prototype of) a single example ei with the value of attribute
a j equal to lk is

pei = [ f ′1 , f ′2 , . . . , f ′L]; f ′k =
{

1, if x ji = lk,
0, otherwise. (3)

The distance between the two prototypes can be measured using any of the distance
measures defined on vectors; we have decided to use the Manhattan distance. Now
the distance between an example ei with the value of attribute a j equal to lk (i.e., the
prototype pei ) and prototype of the entire set E′ is

d(pei ,pE′ ) = |1 − fk | +
L∑

m=1
m,k

| fm| = 2(1 − fk); (4)

where we have taken into account that fk < 1 and
∑

fm = 1. Finally, the dispersion of
the set of examples E′ along the nominal attribute a j is the normalized average distance

disp(E′, a j) =
1

2N
L

L − 1

N∑
i=1

d(pei ,pE′ ). (5)

The normalization factor normalizes the value of dispersion to the [0, 1] interval which
is necessary, if we want the dispersions between different attributes to be comparable.

The rule’s generality is typically measured by its coverage, which is defined as the
proportion of covered examples, i.e., the number of examples covered by a rule divided
by the number of all examples. This definition assumes that all examples are equally
important, i.e., they all have equal weight. As we will see later, sometimes it is useful to
introduce example weights that are not uniform. Each example ei then has an associated
weight wei. The relative coverage of rule r in this case is simply the sum of weights of
the examples covered by r divided by the sum of weights of all examples

cov(r; E,w) =
∑

ei∈E′ wi∑
eei∈E wei

. (6)

Now, we have to combine the two measures into a single heuristic function. Analo-
gously to the WRAcc heuristic [11], we do this as follows. Let c be the condition of rule
r that we are evaluating, and E be the set of all learning examples. Er is the subset of
E with examples that satisfy condition c (i.e., are covered by rule r). we is the example



weight vector. By means of example weights we can give preference to selected exam-
ples, which should more likely lead to the construction of rules covering these examples
(more on this later). The heuristic function is

h∗(c) = [ddef − disp(Er)] · cov(r; E,we)α. (7)

The parameter α enables us to put more (or less) emphasis on coverage w.r.t. to dis-
persion; by default (like in WRAcc) it is set to 1. ddef is the default dispersion, i.e., the
dispersion of the entire learning set E, and the first factor of Equation 7 can be regarded
as the relative dispersion loss. Rules with larger heuristic function values are better.

3.3 Modifying the Learning Set

Within the main loop of the ‘LearnRuleSet’, the current learning set Ec must be mod-
ified, otherwise the ‘FindCandidateRule’ procedure would continuously find the same
rule. Learning set modification is done by the ‘ModifyLearningSet’ procedure presented
in Table 1.c.

The most common approach to modifying the learning set is the covering algo-
rithm [12]. The idea is that we put more emphasis on the learning examples that have
not yet been adequately covered. This should force the ‘FindCandidateRules’ procedure
to focus on these examples and find rules to describe them. In the original covering al-
gorithm (Mmod = “Std-Covering”), examples that are already covered by a rule are
removed from the current learning set. Rule learning in the next iteration will there-
fore focus only on examples that have not yet been covered. This approach is used by
the CN2 algorithm [5, 4] for the induction of ordered rules, and ordered PCRs are also
induced in this manner.

The weighted covering algorithm [8], on the other hand, assigns a weight to each
learning example. Instead of removing the covered example completely, weighted cov-
ering only decreases its weight. It does this, however, only for examples that have been
correctly classified by the newly added rule. The notion of ‘correctly classified exam-
ple’ unfortunately only makes sense for single target classification problems. To over-
come this limitation, we develop a more general covering scheme, which we call error
weighted covering, that is applicable to single and multiple target prediction problems
(Mmod = “Err-Weight-Covering”). Error weighted covering is similar to ‘ordinary’
weighted covering, except that the amount by which example’s weight is reduced is
proportional to the error the newly added rule makes when predicting the example’s
target attributes’ values. The exact weighting scheme is as follows.

Let every learning example ei have an assigned weight wei. At the beginning, the
weights of all examples are set to one. Then, whenever a new rule r is added to the rule
set, the weight of each covered example ei is multiplied by the value of g(ei, r), which
is defined as

g(ei, r) = 1 + (ζ − 1)k(ei, r), (8)

where k(ei, r) is the proportion of correctly classified target attributes of example ei by
rule r

k(ei, r) =
nb. corr. pred. tar. atts of ei by r

nb. all tar. atts
, (9)



and ζ is the covering weight parameter, which enables us, together with the covering
weight threshold parameter ε, to control the pace of removing covered examples from
the current learning set. It should take values between 0 and 1. Setting ζ to 0 means
that examples, whose target attributes are correctly predicted by rule r, are immediately
removed from the current learning set, i.e., their weights are set to zero. The parameter
ε defines the threshold under which the example weights are considered to be too small
to be still included in the learning set; when the example weight falls below this value,
it is set to zero.

4 Experimental Setup

In the experiments, we investigate two issues. First, we compare the performance of
predictive clustering rules (PCRs) to some existing rule learning methods for single
target classification in order to show that PCRs are comparable to existing methods on
this type of problems, and can be used as a baseline in the second part of the evaluation.
For comparison we selected the CN2 rule learner [5, 4] and a modification of CN2,
the CN2-WRAcc [15], because our approach is a generalization of these algorithms.
Additionally, we compare PCRs to Ripper [6] which is a more advanced rule learner;
we used the JRip implementation from the Weka data mining suite [16] which only
learns ordered rules.

Second, we compare the PCRs for single target prediction to PCRs for multiple
target prediction. The main benefit of multiple target prediction is that a collection of
models (rule sets) each predicting one target attribute can be replaced by just one model
that predicts all target attributes at once. The task of the second part of experimental
evaluation is to investigate this issue.

4.1 Data Sets

In order to evaluate the performance of PCRs, we perform experiments on single target
and on multiple target problems. For single target problems, we have selected a collec-
tion of 15 data sets from the UCI Machine Learning Repository [14] which are widely
used in various comparative studies.

Multiple target classification is a relatively new machine learning task and conse-
quently there are few publicly available data sets. Nevertheless, some data sets from
the UCI Repository can also be regarded as multiple target problems (, ,
-, and -0387). In addition, we use the following five data sets.

The  is a data set on electrical discharge machining with 154 examples, 16
descriptive attributes and two target attributes. The  data set consists of 7953
questionnaires on the Slovene media space, has 79 descriptive attributes and 5 target at-
tributes. The - is a data set on a field study of a genetically modified oilseed
rape. It comprises 817 examples, 6 descriptive, and 2 target attributes. The -
data set is also concerned with genetically modified oilseed rape, however, the data
are produced by a simulation model. The data consists of 10368 examples with 11 de-
scriptive and 2 target attributes. The - data set comprises biological and
chemical data that were collected through regular monitoring of rivers in Slovenia. The
data consists of 1060 examples with 16 descriptive and 14 target attributes.



4.2 Evaluation Methodology

When evaluating the newly developed method, we are interested in the predictive error
of the learned rule sets and their size, i.e., the number of rules within the rule sets. The
CN2 and CN2-WRAcc as well as PCR algorithms can induce ordered or unordered
rules, therefore we perform experiments for both. JRip can only learn ordered rules.
All error rates are estimated using 10-fold cross-validation. The folds for a specific
data set are the same for all experiments. As recommended by [7], significance of the
observed differences in error rates and rule set sizes of two algorithms was tested with
the Wilcoxon signed-rank test.

Unless otherwise noted, all algorithm parameters were set to their default values.
CN2 can use significance testing for rule pruning, while there is no need for significance
testing in CN2-WRAcc, since the number of induced rules by this algorithm is already
much smaller. We use the p-value of 0.99 for significance testing in the CN2 algorithm.

The default parameter values for the PCR algorithm are as follows: beam width
bw=10, minimal number of examples µ=2, coverage heuristic weight α=1, covering
weight ζ=0, and covering weight threshold ε=0.1. These are set so as to emulate the
CN2 and CN2-WRAcc algorithms as closely as possible and were not tuned in any
way. Ordered rules were induced with the learning set modifying method (Mmod) set to
“Std-Covering”, while for unordered rules it was set to “Err-Weight-Covering”.

The comparison of PCRs used for multiple target prediction and PCRs used for
single target prediction is performed as follows. For each data set, we have learned
one multiple target PCR model and compared it to a collection of single target PCR
models. This collection consists of the same number of models as is the number of
target attributes in a given domain. The sizes of the single target PCR rule sets for
each target attribute are summed and compared to the size of the multiple target PCR
rule set. The overall significance of differences is again estimated using the Wilcoxon
signed-rank test; each target attribute of each data set corresponds to one data point.

5 Experimental Results

5.1 Comparison to Existing Methods

First, we present the results of the comparison of predictive clustering rules (PCRs) to
the CN2, CN2-WRAcc, and JRip methods. Table 2.a gives the significances of differ-
ences for pairs of algorithms for ordered rules and unordered rules. Except for the JRip,
we also compared ordered vs. unordered rules. Due to space limits, we have left out the
table with complete results for each data set.

For ordered rules, we can see that there are no significant differences between the
CN2, CN2-WRAcc, and PCR algorithms in terms or error, but rule sets induced by
CN2-WRAcc have a significantly smaller number of rules. JRip rules are better in terms
of error than ordered PCRs, but the difference is below the significance threshold. Next,
if we compare unordered rules, we see that PCRs have a significantly smaller error
than the two CN2 algorithms. However, the PCR rule sets are much larger than the
CN2-WRAcc rule sets. There is no significant difference between (ordered) JRip rules
and unordered PCRs in terms of error, but JRip tends to produce significantly smaller



Table 2. Significances (p-values) of differences in error rates and rule set sizes for the pairs of
algorithms: CN2, CN2-WRAcc (2), JRip, and PCR for ordered () and unordered () rules.
The sign < (>) right of a p-value means that the first (second) algorithm tends to induce rule
sets with smaller error rate or size. Significant differences are typeset in bold. a) Single target
classification, b) Single target vs. multiple target classification.

a)
C   

- -
2  : 2  0.188 < <0.001 >
2  :   0.978 < 0.151 >
2  :   0.359 > 0.003 <
  :   0.073 < 0.934 >

2  : 2  0.762 < <0.001 >
2  :   0.002 > 0.804 <
2  :   0.003 > <0.001 <
  :   0.847 > 0.007 <
2  : 2  0.144 < 0.359 <
2  : 2  0.524 < 0.804 >
  :   0.018 > <0.001 <

b)
C   

 :  - -
  0.066 < <0.001 >
  0.067 > <0.001 >

rule sets than the latter. Finally, if we compare ordered and unordered rules induced by
each algorithm, the only significant difference is in the case of PCRs; unordered PCRs
have a significantly smaller error, but this accuracy comes at a price, since their size
is much larger. From these results, we can conclude that the performance of PCRs on
single target problems is comparable to the performance of the CN2 and CN2-WRAcc
algorithms for ordered rules, and better for unordered rules. In terms of error, ordered
PCRs are somewhat worse than JRip, while unordered PCRs are comparable to JRip.

5.2 Comparison of Single to Multiple Target Prediction

The significances of differences between single target and multiple target PCRs are
given in Table 2.b, while error rates and rule set sizes are presented in Table 3.

From the Table 2.b we can conclude that ordered multiple target prediction models
tend to be less accurate than the single target prediction models. In the case of unordered
rules, however, the situation is reversed: multiple target prediction models are better
than the single target prediction models. In both cases the difference is almost significant
(p-value ' 0.07). The difference in the rule set sizes, however, is very significant; the
size of single target rule sets is roughly twofold in the case of unordered rules, and
more than threefold in the case of ordered rules. These results suggest that the multiple
target PCRs indeed outperform single target PCRs in terms of rule set size, while the
accuracy of both types of models is comparable. In addition, multiple target prediction
setting somewhat improves the accuracy of unordered rule sets.

6 Conclusions and Further Work

A new method for learning rules for multiple target classification, called predictive
clustering rules, is proposed in this paper. The method combines ideas from supervised



Table 3. Comparison of error rates of ordered () and unordered () PCRs used for single
target and multiple target classification. For each data set, the average error rate over all target
attributes is given first, and then for each target attribute separately. Sizes of single target predic-
tion rule sets and summed and compared to multiple target prediction rule set. In each row, the
smallest error rate of ordered and unordered rules is typeset in bold. The final row (next page)
gives the average error rate over all target attributes of all data sets and the average rule set size
over all data sets.

             

. . %  #  %  #  %  #  %  # 
 35.0 34 40.5 7 37.3 36 32.2 12
-- 19.4 ±14.1 4 24.7 ±0.0 19.4 ±14.1 4 10.6 ±8.7
 21.6 ±13.5 6 20.0 ±10.1 26.5 ±17.8 6 18.8 ±10.4
 31.8 ±14.9 6 43.5 ±11.3 35.2 ±13.3 6 40.0 ±11.0
- 47.5 ±21.5 7 44.7 ±0.0 46.5 ±20.6 8 35.3 ±15.7
 54.9 ±17.2 11 69.4 ±0.0 58.8 ±12.7 12 56.5 ±0.0
 24.7 17 25.0 9 28.2 16 29.2 11
- 13.6 ±15.5 7 11.7 ±8.1 16.2 ±15.2 7 12.3 ±9.0
- 35.7 ±11.8 10 38.3 ±8.2 40.3 ±0.0 9 46.1 ±13.4
 18.2 1297 17.2 271 20.1 1505 16.6 685
- 23.1 ±0.9 306 22.0 ±1.5 24.0 ±1.3 353 21.7 ±1.2
- 21.9 ±1.2 436 16.6 ±1.4 20.4 ±1.7 493 15.4 ±0.9
- 9.2 ±0.9 296 7.1 ±0.8 7.4 ±0.9 362 6.3 ±0.8
-- 26.3 ±1.4 100 28.8 ±1.1 38.0 ±4.6 100 29.2 ±0.9
- 10.3 ±1.7 159 11.6 ±0.9 10.5 ±1.1 197 10.4 ±1.0
 3.3 39 21.7 4 17.5 40 23.5 10
-1 0.0 ±0.0 7 30.1 ±9.1 11.1 ±4.9 7 17.6 ±7.3
-2 10.0 ±6.4 28 33.1 ±8.0 33.3 ±13.1 29 35.9 ±5.9
-3 0.0 ±0.0 4 1.9 ±3.0 8.1 ±7.2 4 17.1 ±5.4
- 24.8 76 24.9 38 24.5 91 24.9 72
 26.1 ±5.4 52 24.5 ±5.2 26.2 ±5.8 60 25.1 ±4.6
 23.5 ±6.1 24 25.3 ±3.8 22.8 ±5.3 31 24.6 ±3.3
- 0.7 14 2.1 3 1.2 15 2.1 4
- 1.4 ±0.4 12 4.3 ±0.7 2.4 ±0.7 13 4.3 ±0.7
- 0.0 ±0.0 2 0.0 ±0.0 0.0 ±0.0 2 0.0 ±0.0
- 11.1 58 11.0 23 13.1 79 10.4 39
- 15.8 ±7.6 25 15.2 ±6.7 18.3 ±8.2 36 13.6 ±6.9
- 13.0 ±3.7 19 14.6 ±4.7 15.8 ±4.0 27 14.9 ±4.6
- 4.6 ±4.1 14 3.1 ±3.2 5.3 ±5.3 16 2.8 ±3.4
-0387 1.8 666 2.4 497 2.1 727 2.5 560
- 2.0 ±0.5 107 2.5 ±0.6 1.7 ±0.5 115 2.5 ±0.5
- 0.9 ±0.4 53 3.1 ±0.8 2.4 ±0.7 40 3.7 ±0.5
- 2.9 ±0.8 135 3.2 ±0.8 3.0 ±0.6 157 3.4 ±0.6
- 2.6 ±0.8 125 3.6 ±0.6 3.0 ±0.7 134 2.7 ±0.9
- 2.1 ±0.5 129 2.1 ±0.4 2.2 ±0.7 148 3.0 ±0.8
- 0.3 ±0.2 24 0.3 ±0.2 0.4 ±0.2 24 0.4 ±0.2
- 1.6 ±0.3 93 2.0 ±0.5 2.1 ±0.6 109 2.0 ±0.6

Continued on the next page.



Table 3. Continued from the previous page.

             

. . %  #  %  #  %  #  %  # 
- 32.1 736 33.3 89 33.9 788 31.8 153
- 38.5 ±3.7 31 39.5 ±5.6 39.9 ±4.9 28 40.4 ±4.9
- 34.4 ±4.2 64 29.5 ±3.6 39.2 ±6.6 77 28.4 ±3.2
- 29.8 ±3.6 62 29.7 ±4.5 30.9 ±4.7 78 29.9 ±5.1
- 25.1 ±2.6 80 23.2 ±4.6 23.9 ±4.8 83 20.8 ±2.4
- 34.2 ±4.0 30 41.7 ±4.8 38.9 ±3.3 27 41.4 ±3.7
- 29.6 ±3.0 23 31.3 ±2.3 30.0 ±4.8 25 30.6 ±4.3
- 30.5 ±5.0 88 29.3 ±5.0 30.8 ±5.9 90 24.2 ±5.2
- 31.7 ±3.7 75 29.0 ±2.6 32.7 ±4.3 79 26.5 ±3.3
- 32.3 ±3.8 27 38.1 ±4.5 33.0 ±5.9 23 37.8 ±3.7
- 32.0 ±4.8 49 31.8 ±3.1 33.5 ±5.4 57 32.5 ±2.4
- 34.9 ±4.5 29 39.1 ±4.6 39.1 ±4.2 33 38.2 ±4.9
- 29.1 ±4.4 59 36.1 ±5.5 32.8 ±4.2 69 30.8 ±6.8
- 37.6 ±4.5 59 38.5 ±5.5 39.3 ±4.6 55 37.3 ±4.7
- 29.2 ±3.8 60 28.8 ±4.0 31.0 ±3.9 64 27.1 ±3.1

A 20.3 326.3 22.6 104.6 22.7 366.3 21.4 171.8

and unsupervised learning and extends the predictive clustering approach to methods
for rule learning. In addition, it generalizes rule learning and clustering.

The newly developed method is empirically evaluated in terms of error and rule set
size on several single and multiple target classification problems. First, the method is
compared to some existing rule learning methods (CN2, CN2-WRAcc, and JRip) on
single target problems. These results suggest that PCRs’ performance on single target
classification problems is good, and they can be used as a baseline in the next part of
the evaluation.

The comparison of multiple target prediction PCRs to the corresponding collection
of single target prediction PCRs on multiple target classification problems shows that in
the case of ordered rules, the single target prediction models are better, while in case of
unordered rules, the multiple target prediction PCRs are better. The differences in both
cases are almost (but not quite) significant. The difference in the rule set sizes, on the
other hand, is very significant. Multiple target prediction ordered and unordered rule
sets are much smaller than the corresponding single target prediction rule sets.

The new method therefore compares favorably to existing methods on single target
problems, while multiple target models (on multiple target problems) offer comparable
performance and drastically lower complexity than the corresponding collections of
single target models.

Let us conclude with some guidelines for further work. We have only discussed clas-
sification problems in this paper. By defining the dispersion measure used in the search
heuristic for numeric attributes, it should be possible to extend the presented algorithm
towards regression problems also. Since there are not many methods for learning re-
gression rules, we see this as a worthwhile direction for further research. In addition,
there exist several newer methods, e.g., Ripper [6]; incorporating the ideas from these
methods into predictive clustering rules could lead to improved performance.
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