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Abstract. In this work, we address the task of feature ranking for multi-
target regression (MTR). The task of MTR concerns problems where
there are multiple continuous dependent variables and the goal is to
learn a model for predicting all of the targets simultaneously. This task is
receiving an increasing attention from the research community. However,
performing feature ranking in the context of MTR has not been studied.
Here, we propose three feature ranking methods for MTR: Symbolic,
Genie3 and Random Forest. These methods are then coupled with three
types of ensemble methods: Bagging, Random Forest, and Extremely
Randomized Trees. All of the ensemble methods use predictive cluster-
ing trees (PCTs) as base predictive models. PCTs are a generalization
of decision trees capable of MTR. In total, we consider eight different
ensemble-ranking pairs. We extensively evaluate these pairs on 26 bench-
mark MTR datasets. The results reveal that all of the methods produce
relevant feature rankings and that the best performing method is Genie3
ranking used with Random Forests of PCTs.

Keywords: Multi-target Regression + Feature ranking - Feature impor-
tance - Ensembles - Predictive Clustering Trees

1 Introduction

Single target regression (STR) is a subfield of predictive modelling, where the
goal is to learn a model able to predict the values of a single numeric target
variable. STR, can be generalized to multi-target regression (MTR), where the
goal is to learn a model that predicts T' > 2 targets. The STR and MTR tasks
can be formalized as described below.

We are given a set of examples @ from the input domain X C X} x - -+ X Xp,
D > 1 being the number of descriptive attributes (features). We assume that
the domain X; of the i-th descriptive attribute x; is either a subset of R or
an arbitrary finite set, i.e., x; is either numeric or nominal. Each example x is
associated with a target value y(x) from the target domain ) C Yy X -+ x Yp C
RT, T being the number of target attributes (targets). STR considers domains
where T' = 1, while MTR considers domains with 7" > 2. In the latter case,
the j-th component of the target vector y(«) is denoted by y;(x). The true
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mapping y : « — y(x) (STR) or y : & — y(x) (MTR) is unknown and the goal
of regression is to find its approximation, given a dataset Z C X x ).

STR is a well established research topic, while MTR is recently attracting
interest in the research community [22,23]. MTR is a structured output predic-
tion task with applications in a wide range of real life problems where we are
interested in simultaneously predicting multiple continuous variables. Prominent
examples come from ecology and include predicting the abundance of different
species living in the same habitat [12] and predicting properties of forests [21].

A possible way to approach a MTR, problem is problem transformation, which
transforms one MTR. problem to several STR problems and build one predictive
model for each target separately. Another way to approach the problem is by
algorithm adaptation, i.e., to change STR methods in such a way they are able
to exploit the potential relatedness between the multiple targets. For example,
regression trees can be generalized so that the heuristic function considers the
multiple targets and the leaves make predictions for all targets. For an overview
of the different MTR, we refer the reader to Borchani et al. [5].

Another important task in machine learning is feature ranking, which is typ-
ically seen as a data preprocessing step. Here, the importances of descriptive
attributes (features) are estimated and an ordering (or ranking) of the features
is made, based on the estimated importances. There are two main reasons for
doing this. First, we may want to reduce the dimensionality of the input space, so
that only the features that contain the most information about target(s) are kept
in the dataset. By doing this, we decrease the amount of memory/time needed
to build a predictive model, while the performance of the model is not degraded.
Second, dimensionality reduction typically results in models that are easier to
understand, which comes in handy when a machine learning expert works in
collaboration with a domain expert. Predictive models, such as decision trees,
are easier to interpret when a small number of the most relevant features are
used to learn them.

There is a plethora of feature ranking methods for the machine learning tasks
of single target regression and classification. For an overview, see Stanczyk and
Jain [24]. However, in the case of MTR, the task of feature ranking has not been
studied to a great extent. To the best of our knowledge, there is no previous
work from the machine learning community.

In the field of statistics, a few such methods can be found. Their main draw-
back is that they allow only for numeric features, since they typically assume
a (generalized) linear model y = Ax + e, where A is a T' x D matrix and e is
a random noise vector. One such method is forward selection. It starts with a
constant model y(x) = ¢ € R, and repeatedly adds the most significant feature
that improves the model. The sooner the feature is included in the model, the
greater the importance. For on overview of these methods, see Brobbey [9].

In this work, we propose three feature ranking methods based on ensembles
of predictive clustering trees (PCTs) [4,22]. PCTs are generalization of decision
trees able to handle various types of structured output prediction tasks, including
MTR. The proposed feature ranking methods can handle both numeric and
nominal features.
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The proposed methods exploit different properties of the ensemble learning
mechanism to estimate feature importances. More specifically, two of the meth-
ods are adaptations of the feature importance measures already known from the
single target regression task: Genie3 [18] and Random Forest ranking [7]. Genie3
uses the variance reduction at each tree node as a proxy for the importance of
the feature that is used in the test at a given node. Random Forest ranking
permutes the values of a feature on the out-of-bag set of data to estimate how
much worse performance this will yield as compared to the original data. This
decrease of predictive performance is then taken as a proxy for the feature’s
importance. Finally, the third method named Symbolic counts how often a fea-
ture appears in the nodes of the trees from an ensemble. These appearances can
be also weighted with the nodes’ depth at which a given feature appears. This
is a general method that is applicable to an arbitrary machine learning task for
which tree-based models can be learned.

Furthermore, these three ranking methods can be coupled with three ensem-
ble learning methods: Bagging [6], Random Forests [7] and Extremely random-
ized trees [14]. Note that Random Forests ranking cannot be coupled with
Extremely randomized trees because the latter do not perform bootstrapping
of the examples. This yields in total 8 pairs of ensemble learning method and
feature ranking method.

We extensively evaluate the proposed methods on 26 benchmark MTR
datasets. The evaluation is performed by comparing the performance of the
standard 5NN (5 nearest neighbors) prediction method with a 5NN prediction
method that uses the obtained feature importances as weights during distance
calculation. The experiments investigate the relevance of the obtained feature
rankings and look for the optimal combination of ensemble learning and feature
ranking method.

The remainder of this paper is organized as follows. Section 2 presents the
PCT approach to MTR. Ensembles of PCTs for MTR and feature ranking meth-
ods based on these are described in Sect. 3. Section 4 outlines the experimental
design, while Sect. 5 discusses the results of the experimental evaluation. Finally,
the conclusions and a summary are given in Sect. 6.

2 Predictive Clustering Trees for Multi-target Regression

PCTs generalize decision trees and can be used for a variety of learning tasks,
including clustering and different types of prediction. The PCT framework views
a decision tree as a hierarchy of clusters: The root of a PCT corresponds to one
cluster containing all data, which is recursively partitioned into smaller clusters
while moving down the tree. The leaves represent the clusters at the lowest level
of the hierarchy and each leaf is labeled with its cluster’s prototype (prediction).

PCTs are induced with the standard top-down induction of decision trees
algorithm presented in Table1 [8]. It takes as input a set of examples F and
outputs a tree. The heuristic h that is used for selecting the tests is the reduc-
tion of variance caused by partitioning the instances (see line 4 of the BestTest
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Table 1. The top-down induction algorithm for PCTs.

procedure PCT(F) returns tree  procedure BestTest(F)

1: (t*,h*,P*) = BestTest(E) 1: (t*,h*,P*) = (none,0,0)

2: if t* # none then 2: for each candidate test ¢ do

3: for each E; € P* do 3: P = partition induced by t on E

4: tree; = PCT(E;) 4 h=Var(E) =Y g cp ||E7|| Var(E;)
5: return node(t”, J,{tree;}) 5: if (h > h") /\Acceptable(t P) then
6: else 6: (t*,h",P*) = (t,h,P)

7 return leaf(Prototype(E)) 7: return (t*,h*, P*)

procedure in Table 1). By maximizing the variance reduction, the cluster homo-
geneity is maximized: The algorithm is thus guided towards small trees with
good predictive performance. If no acceptable test can be found (line 6 of the
PCT procedure), i.e., no test reduces the variance significantly, then a leaf is
created and the prototype of the instances belonging to that leaf is computed.
The main difference between the algorithm for learning PCTs and other
algorithms for learning decision trees is that the former considers the variance
function and the prototype function (that computes predictions in leaves) as
parameters that can be instantiated for a given learning task. In this work, we
focus on the task of MTR and define the variance function as follows. First, we
define the average y; and variance of the target y; over subset 2 C ZTraIN as

)= Lwle) awd Ven(B) = 2 3 @) -HER )

xzcE xzcl

We then compute the weights w; = Varj(@TRAIN) and use them as normaliza-
tion factors in the definition of variance function:
aNy|
Var(E) = = — Var;j(E).

i=1 Wi

In a leaf L, the prototype function returns a vector (g1(EL),...,¥r(EL)),
where F7, denotes the set of all examples that fall into the leaf L. For a detailed
description of PCTs for MTR, we refer the reader to Blockeel [4] and Kocev [22].
The PCT framework is implemented in the CLUS system (available at http://
clus.sourceforge.net).

3 Feature Ranking via Ensembles of PCTs

We use PCTs as the base models in three types of ensembles [22] that are
constructed to calculate the variable importance, i.e., the feature ranking. In the
following, we first present the ensemble methods and then describe the feature
ranking methods.


http://clus.sourceforge.net
http://clus.sourceforge.net
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3.1 Ensembles of PCTs

An ensemble is a set of base predictive models constructed with a given algo-
rithm. The prediction for each new example is made by combining the predictions
of every model from the ensemble. This can be done by taking the average in
regression tasks, and the majority or probability distribution vote in classifica-
tion tasks [6]. For the task of MTR, we consider ensembles of PCTs [22], where
the predictions are the average values for each target.

A necessary condition for an ensemble to be more accurate than any of its
individual members, is that the members are accurate and diverse models [16].
This means that they perform better than random guessing. On the other hand,
it means that they make different errors on new examples.

There are several ways to introduce diversity among the base predictive mod-
els in an ensemble. We describe how this is done in Random Forests [7], Bagging
[6] and Extra Trees ensembles [14].

Random Forest (RF) and Bagging. A Random Forest is an ensemble of
trees where diversity among the predictive models is obtained in two ways. First,
instead of being learned from the original dataset ZTgra1N, each tree is built from
a different bootstrap replicate B. The chosen examples from such a replicate form
a so called bag B, while the rest are called out-of-bag examples (OOB). Hence,
we perform a call PCT(B) rather than PCT(Zrrain) as we would do in the case
when a single PCT is to be grown.

Additionally, we modify the line 2 of the BestTest procedure (see Table 1), to
change the feature set during learning. More precisely, at each node in a decision
tree, a random subset of the input attributes is taken, and the best test is selected
from the splits defined on these. The number of attributes that are retained is
given as a function of the total number of descriptive attributes D, e.g., [v/D],
[logy(D)], D/4, etc. In the special case when we keep all attributes, we obtain
the Bagging procedure, where the only source of diversity is the difference in the
bootstrap replicates of the data.

Extra trees ensemble (ET). The source of diversity in ET comes from the
extreme randomization of the tree learning procedure. Here, at each node all
attributes are considered (as in Bagging), but we do not evaluate all tests that
the attributes yield. Rather, we choose randomly only one per attribute. Among
these D tests, we choose the best one, hence the only difference compared to
standard top-down PCT induction, is that a modified line 2 of the BestTest
procedure is used. Note that ET uses the initial dataset ZTrain for learning the
base predictive models and does not make bootstrap replicates.

3.2 Ensemble Feature Ranking Methods

Feature ranking of the descriptive variables can be obtained either by exploiting
the ensemble structure of the learning algorithm or the mechanism of Random
Forests. For its simplicity, we first describe symbolic ranking. Then, we discuss
Genie3 and Random Forest ranking.
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In the following, we denote a tree by 7, whereas .#* € 7 denotes a node.
Trees form a forest F. Its size (the number of trees in the forest) is denoted by
|F|. The set of all internal nodes of a tree 7 in which the attribute x; appears
as part of the test, is denoted by 7 (x;).

Symbolic ranking (Symb). Let d(./#") denote the depth of A € T. The
depth is defined recursively: if 4 is the root of 7, then d(.#") = 0. Otherwise,
d(A4") = 1+ d(parent(.4")). In the basic version of symbolic ranking, we simply
count how many times a given attribute occurs in the tests in the internal nodes
of the trees in the forest. Since the attributes that appear at lower depths (i.e.,
closer to the root) are intuitively more important than those that appear deeper
in the trees, we introduce the parameter w € (0, 1] and define the importance of
the attribute x; as

importancegyyp (€ Z Z (2)

Te]—'ﬂeT 5)

Note that symbolic ranking is applicable to all three ensemble methods that we
use, and that the basic version of the ranking corresponds to the choice w = 1.

Genie3. The main motivation for Genie3 ranking is that splitting the current
subset £ C Z1raIN, according to a test where an important attribute appears,
should result in high variance reduction. As in the symbolic ranking case, greater
emphasis is put on the attributes higher in the tree, i.e., on the splits where |E|
is larger. The Genie3 importance of the attribute z; is defined as

importancecpnigs (i) = Z Z AN RN,

Te}' NET (z)

where E(.A4) is the set of examples that come to the node .47, and h*(.4") is the
value of the variance reduction function described in the BestTest procedure.
Genie3 ranking is applicable to all three ensemble methods that we use.

Random Forest (RF). This feature ranking method tests how much does noise
in a given descriptive attribute decrease the predictive performance of the trees
in the forest. The greater the performance degradation, the more important the
attribute. This feature ranking algorithm uses the internal out-of-bag estimates
of the error, therefore it cannot be used with ensembles of extra trees.

Once a tree 7 is grown, the algorithm evaluates the performance of the tree
by using the corresponding OOB7 examples. This results in the predictive error
Err(OOB7) > 0. Here, we assume that lower error value corresponds to better
predictions. To assess the importance of the attribute z; for the tree 7, we
randomly permute the values of this attribute in the set OOBs and obtain the
set OOBY-. Then, the error Err(OOBY) is computed and the importance of the
attribute x; for the tree 7 is defined as the relative increase of error after noising
the attribute. The Random Forest importance of the attribute is the average of
these values across all trees in the forest, namely

Z Err(OOBY) — Err(OOB7)
Err(O0OB7) ’

importancegp(x;)
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Note that Err(OOBY) = Err(OOB7) if the attribute x; does not appear in 7.
This can speed up the computation of importancegp, but this feature ranking
method is still the most time consuming. While the time complexity of the first
two is negligible as compared to the one of growing the forest, this one has an
additional linear factor: the number of examples in the dataset.

4 Experimental Design

In this section, we present the experimental design used to evaluate the perfor-
mance of the proposed feature ranking methods. We begin by stating the main
experimental questions and then briefly summarize the MTR datasets used in
this study. We next describe the evaluation procedure and give the specific para-
meter instantiations of the methods.

4.1 Experimental Questions
The main focus of this study is to answer the following questions:

1. Can additional knowledge from feature importances lead to better predictive
performance of a regressor, i.e., are the obtained feature rankings relevant?

2. Which ranking method is the most appropriate for a given ensemble method?

3. Which ensemble method is the most appropriate for a given ranking algo-
rithm?

4. Which ensemble-ranking pair is the best overall?

For answering these questions, we design several experiments and compar-
isons of performance. We learn different feature rankings by considering combi-
nations of ensemble learning methods and feature ranking methods. More specif-
ically, we construct 8 different feature rankings: Random Forest Symb, Random
Forest Genie3, Random Forest RF, Bagging Symb, Bagging Genie3, Bagging
RF, Extra trees Symb, and Extra trees Genie3. We then use the obtained feature
importances as weights in k nearest neighbor predictor (kNN) and compare the
different rankings to address the questions outlined above. Finally, based on the
obtained results, we identify the method that yields the best feature ranking.

4.2 Data Description

We use 26 MTR benchmark problems. Table 2 presents the basic statistics of the
datasets: The number of features per dataset ranges from 6 to 576 and features
are mainly numeric. The number of targets ranges from 2 to 16, while the number
of examples takes values between 42 and 60607.

The datasets come from different domains: andro, ENB and water quality
originate from studies of water quality; the ATP datasets concern the prediction
of airline tickets prices; collembola, the Forestry datasets, soil quality and vegeta-
tion condition describe soil and vegetation conditions; FDM stands for electrical
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discharge machining; jura contains measurements of heavy metals concentra-
tions; metal-data is about meta learning; OFES stands for occupational employ-
ment survey; osales (online product sales) and scpf (see-click-predict fix) origi-
nate from two Kaggle competitions; RF1 and RF2 describe river flows; SCM1d
and SCM20d were derived from a competition in supply chain management;
sigmeareal and sigmeasim deal with cross-pollination between conventional and
GM crops, and slump concerns the prediction of concrete slump.

Table 2. Description of the benchmark problems in terms of the number of nominal
and numeric descriptive attributes, the number of targets, and the number of examples.

Dataset Nominal | Numeric | Targets | Examples
andro [17] 0 30 6 49
ATP1d [23] 0 411 6 337
ATP7d [23] 0 411 6 296
collembola [19] 8 39 3 393
EDM [20] 0 16 2 154
ENB [28] 0 8 2 768
Forestry Kras [206] 0 160 11 60607
Forestry LIDAR IRS [25] 0 29 2 2730
Forestry LIDAR Landsat [25] | 0 150 2 6218
Forestry LIDAR Spot [25] 0 49 2 2730
jura [15] 0 15 3 359
metal-data [27] 0 53 10 42
OES10 [23] 0 208 16 403
OES97 [23] 0 263 16 334
osales [1] 0 401 12 639
RF1 [23] 0 64 8 9125
RF2 [23] 0 576 8 9125
SCM1d [23] 0 280 16 9803
SCM20d [23] 0 61 16 8966
scpf [2] 0 23 3 1137
sigmeareal [11] 0 6 2 817
sigmeasim [11] 2 9 2 10368
slump [29] 0 7 3 103
soil quality [12] 0 156 3 1944
vegetation condition [21] 1 39 7 16967
water quality [13] 0 16 14 1060
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4.3 Evaluation Methodology

We adopted the following evaluation methodology to properly assess the per-
formance of the proposed methods. First, we randomly divide each dataset &
into 2/3 for the training part ZTrain and 1/3 for the testing part Prgsr. A
ranking is computed from an ensemble that is built on the training part only.
This procedure is repeated 10 times and the performance measures are averaged.

The quality of the ranking is assessed by using the kNN algorithm. Instead
of the standard Euclidean distance, its weighted version was used in kNN. For
two input vectors ! in x2, the distance d between them is defined as

D
d(wl,:l:Q) = Zwid?(wz‘lvw?)7 (3)

i=1
where the distance d; : X; x X; — [0, 1] is defined as

1[xz} # x?] : X; nominal
di(x!, x?) = ol 2|
2 ’ |z —=; | . Xi C R )

max @; —min x;
@x

where max and min go over the known examples . The weights are set to w; =
max{importance(x;),0} and are equal to the feature importances obtained by
Symb and Genie3 ranking. They need to be made non-negative for RF ranking.
In this way, we ensure that d is well defined and ignore the attributes that are
of lower importance than a randomly generated attribute.

The evaluation through a kNN predictive model was chosen for two main rea-
sons. First, this is a distance based model, which can easily use the information
contained in the feature importances in the learning phase. The second reason
is kNN’s simplicity: its only parameter is the number of neighbors k, which we
set to 5. In the prediction stage, the neighbors’ contributions to the predicted
value are equally weighted, so we do not introduce additional parameters that
would influence the performance.

The rationale for using kNN as an evaluation model is as follows. If a fea-
ture ranking is meaningful, then the feature importances used as weights in the
calculation of distances should yield better predictive power as compared to not
using these weights [10].

We assess the predictive performance with the average relative root mean
squared error RRMSE. If we denote the predicted value of the target y; by
gj(x), the RRMSE for this target is defined as

m ZwEQTEST (yj (.’1}) - yj (m))Q
VGTj(-@TRAIN)

)

RRMSE(y;) = \/

and RRMSE can be expressed as RRMSE = \/% S RRMSE? (y;)-

j=1
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4.4 Statistical Analysis of the Results

For comparing two algorithms, we use the Wilcoxon’s test, and for comparing
more than two algorithms, we use the Friedman’s test [12]. In both cases, the
null hypothesis Hy is that all considered algorithms have the same performance.
If Hy is rejected by the Friedman’s test, we additionally apply Nemenyi’s post-
hoc test [12] to investigate where the statistically significant differences occur.
Finally, to control the false discovery rate, the Benjamini-Hochberg procedure
[3] was applied: let p; be the i-th smallest among the obtained p-values, and m
the number of tests. Let i¢ be the largest ¢, such that p; < %a =: &;. Then, we
can reject the hypotheses that correspond to p-values p;, for 1 < i < 4.

The results of the Nemenyi’s tests are presented by average ranks diagrams.
Each diagram shows the average rank of each algorithm over the considered
datasets, and the critical distance, i.e., the distance by which the average ranks
of two algorithms must differ to be considered statistically significantly different.
Additionally, the groups of algorithms among which no statistically significant
differences occur are connected with a red line. In the analysis, the significance
level was set to a = 0.05.

4.5 Parameter Instantiation

The algorithm for inducing an ensemble of PCTs for MTR takes as input the
following parameters: the number of base predictive models in the forest (all
ensemble types), minimal number of examples in a leaf of a tree (all ensemble
types), and the feature subset size (Random Forest only). In all cases, we grow
100 trees, whose leaves must contain at least two examples each. Additionally,
the feature subset size in the case of Random Forests is set to [v/D].

Next, recall that the symbolic ranking requires selecting a value for w. In
a preliminary study, we investigate the influence of several values of w, i.e.,
w € {0.25,0.5,0.75, 1}, on the performance of feature ranking. We perform Fried-
man’s test with the null hypothesis Hy that the four symbolic rankings perform
equally well. It turns out that the differences among the rankings are not sta-
tistically significant in the case of Bagging (p-value is 0.418) and ET (p-value is
0.230), whereas in the case of RF, they are (p-value is 0.000697). In the RF case,
we can proceed to Nemenyi’s test, whose results are shown in Fig. 1.

The diagram reveals that only the symbolic ranking with weight w = 1.0
is statistically significantly worse than the rankings with weights w = 0.5 and
w = 0.25. This can be explained by Eq. 2: this value for the weight is the only
one where the depth of the node where an attribute appears is not taken into
account when computing the relevance.

Since the average ranks of the ranking methods with w = 0.25, w = 0.5,
w = 0.75 and w = 1.0 are respectively 2.38, 2.25, 2.54 and 2.83 for Bagging, and
2.42, 2.38, 2.25 and 2.94 for ET, the ranking Symb50 is a reasonable choice for
all three ensembles, since it is always ranked at least second. The reason for this
is less obvious but we hypothesize that it could be an artifact of the algorithm
for inducing ensembles (see Table1). Namely, splits in the ensemble trees are
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RE-Symb25 ~ RF-Symb75
RE-Symb50 || _ RF-Symb1l00

I I |

1 2 3 4

critical distance: 0.9198
—

Fig. 1. The average ranks diagram for Nemenyi’s test, performed for the symbolic
ranking methods with the Random Forest ensemble at significance level of o = 0.05.

binary. If we assume that the best test in an internal node .#° € 7 partitions
E(/) C 2 approximately in half, then the attribute in .4”’s test influences one
half of the instances that arrive to its parent; hence, the parent should receive
twice as large a reward as each of its two children.

5 Results and Discussion

In this section, we present the results from the experimental evaluation, respond-
ing to the experimental questions posed above. The baseline kNN is denoted as
5NN, while the weighted 5NN is denoted by the combination of ensemble and
ranking method (ensemble-ranking).

5.1 Are the Obtained Feature Rankings Relevant?

The investigation of whether a given feature ranking is relevant has a pivotal role
in this work. More specifically, we investigate whether 5NN prediction can benefit
from using the additional information from the feature importances. To this end,
we compare the performance of 5NN without and with feature importances. We
use the Wilcoxon’s test to assess the statistical significance of the differences in
performance between the two 5NN methods.

Table3 gives the results of the statistical evaluation. It shows that all
hypotheses are rejected, since we have p; < &; for all i. Therefore, we can con-
clude that using feature ranking is clearly beneficial, i.e., the obtained feature
rankings (more precisely, feature importances) are relevant and meaningful. Con-
sidering that the answer to the first question is positive, we now proceed with
discussing the remaining experimental questions.

5.2 Comparison of the Different Ranking Methods

We compare the performance of the different ranking methods when coupled with
a given ensemble learning method. In other words, we perform three analyses,
where the ensemble method is fixed in each analysis. The results of this analysis
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Table 3. The results of the Wilcoxon’s tests that compare the performance of standard
5NN to its weighted-distance version. The i-th row contains the name of the ensemble-
ranking pair that provided the feature importances and was tested against standard
5NN; the p-value p;; and the corrected value &;.

ensemble-ranking | p; Qi

RF-Genie3 0.000146 | 0.006250
RF-Symb50 0.001938 | 0.012500
ET-Symb50 0.009776 | 0.018750
Bagging-RF 0.017592 | 0.025000
ET-Genie3 0.020120 | 0.031250
Bagging-Genie3 |0.028920 | 0.037500
Bagging-Symb50 | 0.031316 | 0.043750
RF-RF 0.035411 | 0.050000

for Random Forests and Bagging are given in Fig. 2. For Random Forests, the
Friedman test found that there are statistically significant differences among the
three ranking methods with p = 0.00316. The follow-up Nemenyi test reveals
that the performance of a feature ranking obtained with Genie3 is statistically
significantly better than the Random Forest ranking.

The differences between the different rankings for the Bagging ensemble
method are not statistically significant (p = 0.347) and we can note that the
three ranking methods have close average ranks. Furthermore, the Wilcoxon test
for the Extra Trees ensemble revealed that there is no statistically significant dif-
ference (p = 0.191) between the two rankings, but Genie3 has a better sum of
ranks than Symbb0. Finally, the Random Forest ranking should be avoided: it
has the worst computational complexity and it is consistently the worst perform-
ing ranking method (both for the Bagging and RF ensemble method).

RE-Symb50
RF-Geni RF-RF
- ) Bagging-Geni
L Bagging-Symb50 |  ~ Bagging-RF
1 2 3 |
iti i . Ll
mtlcal distance: 0.6498 I 23
(a) Random Forest (b) Bagging

Fig. 2. The average ranks diagrams for Nemenyi’s post-hoc test at a significance level
of a = 0.05, performed for the rankings RF, Genie3 and Symb50, for (a) RF ensemble
method and (b) Bagging ensemble.
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5.3 Comparison of the Different Ensemble Methods

We also compare the performance of the different ensemble methods when used
together with a given ranking method. In other words, we perform three analyses
where the ranking method is fixed in each analysis. The Friedman test for Genie3
and Symbb50 and the Wilcoxon test for Random Forest ranking did not rejected
the null hypotheses with p-values 0.403, 0.346 and 0.176, respectively. Neverthe-
less, top ranked ensemble methods for the given ranking methods are: Random
Forests for Genie3, and Bagging for Symb50 and Random Forests ranking.

5.4 Selecting the Best Ensemble-Ranking Pair

Finally, one of the goals of this paper is to select the best ensemble-ranking pair
of methods. For this purpose, we evaluate the performance of the 8 ensemble-
ranking pairs by performing a Friedman test. It reveals that there are statistically
significant differences in performance among the methods and the results of the
post hoc Nemenyi test are shown in Fig.3. The average ranks diagram shows
that the best performing pair is the Random Forest ensemble method coupled
with the Genie3 ranking method. Moreover, the best performing method pair is
statistically significantly better than the worst performing method pair (Random
Forest ensembles coupled with Random Forest ranking).

ET-Genie3 Bagging-Genie3

EF—SymbSO g —Symbgl(:)
iINg-Sym agqing-

RE-Genie3 RE—RF

L1 1 1] L1 |
1 2 3 4 5 6 7 8

critical distance: 2.0592
—

Fig. 3. The average ranks diagram from the Nemenyi’s post-hoc test, performed for
all ensemble-ranking pairs, at a significance level of a = 0.05.

6 Conclusions

In this work, we proposed three base feature ranking methods that can be cou-
pled with three ensemble learning methods. We investigated and evaluated eight
ensemble-ranking options. These are the first methods that can address the task
of feature ranking in the case of MTR with numeric and nominal attributes. More
specifically, we extend Genie3, Random Forest and Symbolic ranking towards
the task of MTR. We then coupled these rankings with the following ensemble
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learning methods: Bagging, Random Forests and Extra trees — all of which use
predictive clustering trees as base predictive models.

We perform an extensive experimental evaluation of the proposed feature
ranking methods using 26 benchmark MTR datasets. The evaluation is based
on a 5NN predictive model that uses the obtained feature importances as weights.

The results show that all of the proposed eight methods yield a relevant
feature ranking, i.e., the 5NN predictive models that use the feature importances
as weights statistically significantly outperform the standard 5NN. Next, the best
values for the weight parameter of the Symbolic ranking is 0.5. Furthermore, the
best performing method is the one that uses Random Forests for learning the
ensemble and Genie3 for calculating the feature importances. Moreover, this
method is also computationally efficient: Random Forests are among the most
efficient ensemble learning methods and Genie3 adds just a small computational
cost of a single traversal of each tree in the ensemble.

We plan to extend this work along three major directions. First, we will
compare the proposed methods to methods that use the data transformation
approach, i.e., transform a MTR problem to a set of STR problems, coupled
with a feature ranking algorithm for STR. Second, we will extend the proposed
method to other structured output prediction tasks, such as multi-label classifi-
cation, and hierarchical multi-label classification. Finally, we will investigate the
influence of the ensemble size on the produced feature rankings.
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