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Abstract. In this work, we address the task of feature ranking for multi-
label classification (MLC). The task of MLC is to predict which labels
from a maximal predefined label set are relevant for a given example.
We focus on the Relief family of feature ranking algorithms and empir-
ically show that the definition of the distances in the target space used
within Relief should depend on the evaluation measure used to assess
the performance of MLC algorithms. By considering different such mea-
sures, we improve over the currently available MLC Relief algorithm.
We extensively evaluate the resulting MLC ranking approaches on 24
benchmark MLC datasets, using different evaluation measures of MLC
performance. The results additionally identify the mechanisms of influ-
ence of the parameters of Relief on the quality of the rankings.
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1 Introduction

Classification is a task in predictive modelling, where the goal is to learn a
model that takes as the input a vector @ of descriptive variables (features) a;,
and predicts the class value y that a given example belongs to. If y can take two
different values, the task at hand is referred to as binary classification. Otherwise
(y can take more than two values), the task at hand is multi-class classification.
In both cases, every example is assigned precisely one value. For example, one can
predict whether a person has survived a shipwreck where y € {yes,no} (binary),
or what is the blood type of a person where y € {A,B,AB,0} (multi-class). In
both cases, class values are mutually exclusive.

A related task is multi-label classification (MLC). As opposed to the standard
classification, a MLC predictive model predicts which labels from a predefined
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set £ are relevant for a given example. For example, one can predict which of
the genres from the set . = {romance, drama, comedy} are relevant for a given
film. Clearly, a film can be drama and comedy at the same time.

There are two main approaches to MLC: problem transformation and algo-
rithm adaptation. From the problem transformation group of methods most
widely known are binary relevance and label power set. Binary relevance is a
simple method that converts a MLC task to several binary classification tasks
with y € {yes,no} where we predict the relevance of each label separately. This
approach is often criticized for it cannot make use of the interactions among the
labels. In the label power set approach [24], the task of predicting a subset of £
is converted to the task of predicting an element of the power set 2, and thus
converting a MLC task to multi-class classification task. However, the number
of classes can be as high as 21|, which results in a very sparse dataset.

The second group of methods are method transformation techniques where
an existing method is adapted to a new problem. A prominent member of this
group are predictive clustering trees which generalize decision trees, so that they
can handle MLC [15] and other structure output prediction tasks [12].

Another important task in machine learning is feature ranking, where the
goal is to asses the importance of every descriptive attribute (feature) by using
some scoring function. The output of a feature ranking algorithm is a list of
features that is sorted with respect to the scores.

Feature ranking is typically considered a part of data preprocessing, since it
can be used to reduce the dimensionality of the input space, so that only the
features that contain the most information about labels (or target(s) in general)
are kept in the dataset. By doing this, we decrease the computational cost of
building a predictive model, while the performance of the model is not degraded.
Another reason to compute a feature ranking is that dimensionality reduction
typically results in models that are easier to understand, which is useful when a
machine learning expert works in collaboration with a domain expert. Predictive
models, such as decision trees, are easier to interpret when a small number of
the most relevant features are used to learn them.

There is a plethora of feature ranking methods for the task of classifica-
tion [22]. A possible approach to MLC feature ranking is to adapt the binary
relevance approach from predictive modelling, where at the first stage, feature
importances are computed for every label £ € % separately as in the classifi-
cation case. After that, the feature importances are averaged over the different
labels and a single ranking is returned. In this work, we focus on the RELIEF
family of feature ranking algorithms, which are distance based approaches and
thus widely applicable. They are part of the filter methods which compute the
ranking without any additional predictive model [9]. The filters are typically fast,
i.e., linear in the number of features, but myopic at the same time, i.e., cannot
capture the feature interaction. RELIEF family of the feature ranking algorithms,
however, overcomes this, and can successfully discover, e.g., XOR-relation [14].

The rest of the paper is organized as follows. In Sect. 2, the overview of related
work is given. In Sect. 3, the proposed feature ranking algorithms are described
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and analyzed. In Sect. 4, the detailed description of the experimental is given. In
Sect. 5, the results of the experiments are presented. In Sect. 6, conclusions and
direction for further work are given.

2 Related Work

We start the overview of the related work with the extensions of the RELIEF
family to MLC setting that are presented in [20]. There, the binary relevance
and label power set approach were applied to the feature ranking scenario. More
precisely, in the case of binary relevance approach, feature ranking was computed
for every label ¢ € £ separately. This was done by using the Relief algorithm
for the standard binary classification [11]. After that, the feature importances
were averaged to a single score. In the case of the label power set approach the
multi-class extension of the Relief (ReliefF) was used [14].

As mentioned before, these two approaches have some drawbacks. Binary
relevance approach does not take the label interactions into account and can
be expensive to run when the number of labels is high: we have to solve |.Z|
feature ranking problems which results in high time or space complexity. High
space complexity is also a drawback of label power set approach if the number
of different relevant label subsets is high. In that case, the data may also become
too sparse for the ranking to be relevant.

Both procedures were evaluated on a rather small subset of ten datasets
presented in this study (see Sect.4.2), in a manner similar to our evaluation
procedure, which uses k nearest neighbours classifier. No statistical tests were
done and the feature rankings were not compared to any baseline.

Another data transformation approach was presented in [13] where the MLC
problem is transformed into |.Z|(|-£| —1)/2 binary classification problems - one
for each of the label pairs ({1, ¢s) where ¢; # ¢5. For each binary problem, only
the examples for which either ¢; or ¢5 is relevant (but not both) are retained in
the corresponding dataset. The exclusion of the examples for which both labels
are relevant is necessary to avoid ill-defined terms in the equations for importance
update. The authors motivate this by claiming that the number of the examples
for which both labels are relevant, is small in comparison to the number of
examples for which precisely one of the two labels is relevant. However, this may
not be the case in some data sets, as observed in [18]. The main drawback of this
approach is the computational complexity, since the number of feature ranking
problems to solve grows quadratically with the number of labels.

A member of the RELIEF family ReliefF-ML [18] does solve the multi-label
ranking problem directly, yet its space complexity is still considerable. The algo-
rithm RReliefF-ML [18] overcomes this issue since it is an extension of the RReli-
efF version that is suitable for regression tasks [14]. In contrast to the extensions,
RReliefF(-ML) computes only one group of the nearest neighbors per example
which results in significantly smaller space complexity.

The method was empirically shown to yield relevant feature rankings [18§]
since it statistically significantly outperformed the baseline. For showing statis-
tical significance, Friedman test was used. However, we need to point out that
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the very basic assumption of the independence of data samples (datasets in this
case) was not met, since 10 out of 34 are basically different versions of the same
data (Corell6k datasets). In our experiments, we also show that the seemingly
ad-hoc choice of the target distance may not lead to the best rankings if we want
to optimize for a particular evaluation measure.

Regarding pure predictive modelling setting, the authors in [4] show that
in general, different evaluation measures result in different optimal classifiers.
However, the authors also show that, e.g., Hamming Loss and Subset Accuracy
have the same optimal classifier under some rather strict conditions.

3 MLC-Relief

RELIEF family of feature ranking algorithms calculates the feature importance
scores by considering differences in the feature values between pairs of examples
(an example and its nearest neighbor). More specifically, if the values of features
of a pair of examples from the same class are different then the features’ impor-
tance decreases. Conversely, if the feature values are different for examples from
different classes then the features’ importance increases.

In the following, we first introduce the distance measures used within the
algorithm. Then, the algorithm is described and its computational complex-
ity (including the complexity of computing different distances) is analyzed.
Throughout the paper, F' and L always denote the number of features and labels
respectively.

3.1 Distances: Why and Which

All methods of the RELIEF family assign feature z; a weight w; that is a measure
of feature importance in these algorithms. The expected value of the w; has a nice
probability interpretation in the case when both the target and z; are nominal
[14]: simplified to some extent, we have a relation

PaiffAter, diffTarget  Paiffattr — PdifAttr, diffTarget

E W;| = — 5 1
[ ] PdiffTarget 1- PdiﬂTarget ( )

where we define the probabilities Psy = P(ev) and Peyi, evo = P(eviAev2) that
base on the events diff/sameAttr (two instances have different/same value of
x;) and diff/sameTarget (two instances have different/same target value). The
probabilities from the right hand side of Eq. (1) are modeled as the distances in
the corresponding spaces: Pyigattr is modeled by the distance d; on the domain
of feature x;, PaigTarget is modeled by the distance d¢ on the label set £, and
Pyigeattr, diffTarget 18 modeled as their product d;d¢.

First, the distance on the whole descriptive domain X is defined via the
distances d; on the domains Xj; of features x; as

lzl #22 X ¢R 1 o
di(z',@?) = ¢ jal-a? X, CR dX(w17$2):FZdi(wl’w2) (2)

max x;—minax; i=1
T x -
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where 1 is the indicator function with the values 1[true] =1 and 1[false] = 0,
and max and min go over the examples x in the training set.

For the distance dy between two sets of labels S' and S2, we consider four
options. The use of the first (Hamming Loss) was proposed in [18].

Hamming Loss. This distance is defined as

A ramming (', %) = |S1\ $2 U S?\ §'| / L. (3)

We observe that this is an analogue of dy from Eq.(2). Encoding a subset
S C % as a 0/1 vector s, where s; =1 < ¢; € S, we have dgamming (S, S?) =
%Zle dj(s', s?), where the numeric part of d; in Eq.(2) applies in d;. We
believe that there are more suitable choices for the distance d¢ that take into
account the set structure.

Accuracy. The similarity between two sets can be also measured by their
Jaccard index |S' N S2|/|St U S?| which is well defined when at least one of the
subsets S2 is not empty (this is the case in our datasets). We then define

dAccumcy(Sl,SQ)=1—|SlﬂSQ| /|51U52|. (4)
F; distance. This distance is defined as
dpi(S',8%) = 128" nS?[ / (|S*] +157)), (5)

where the second term can be seen as the harmonic mean of the precision and
recall [15]. However, these two measures are not symmetric, thus inappropriate
as the distance measures.

Subset Accuracy. This distance is defined as

dSubsetAcc(Slst) =1 [Sl 7é SQ] . (6)

It is the strictest, since it does not differentiate between, e.g., almost the same
and disjunctive pairs of subsets. This allows for a faster computation of the
distance as compared to the other options (Lemma 2).

Except for the dpq, all distances are also metrics. We named them after the
measures that they are expected to optimize (defined in Sect.4.4), and believe
that no other standard measures (see [15,27]) allow for a direct derivation of
distance definitions.

3.2 Algorithm Description

The calculation of the weights w; = importance(z;) using the MLC extension of
RReliefF is outlined in Algorithm 1. RReliefF is an iterative procedure. For each
of the m iterations, we randomly select an example r from Zrrain (line 4) and
find its K nearest neighbors (line 5) using the distance dy from Eq. (2). After
that, we use the neighbors to update the estimates of probabilities that appear
in the definition of the weights (1) for all attributes (lines 8-10). The estimates
of probabilities are updated with the weighted average of the distances between
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Algorithm 1 MLC-RReliefF(Z2traiN, m, K, dy)
11 PaiftAttr, diffTarget, Paifastr = zero lists of length F'
2: PdiffTarget =0.0
3: for .t =1,2,...,m do

4: 7 = random example from &

5 mni,na,...,ng = K nearest neighbors of r

6: fork=1,2,...,Kdo

T PdiffTarget += 5(£)d.§/,” (ry nk)

8: fori=1,2,...,F do

9: Paigace[i] += 6(0)d;i (r,nx)

10: Paigiater, difitarget[i] += 6(0)di (r,mr)dz (7, 1)

11: for i1 =1,2,...,F do

19 w, — Ddiffater, diffTarget 4] Pairater ] — P aiffAttr, diffTarget[d]
K3

PaiffTarget 1—PyiffTarget

r and its neighbors. Here, the distance d ¢ from the algorithm input is used. The
weight 0(k) = 1/(mK) ensures that w; € [—1,1] when the algorithms finishes.
At the end, the weights w; are computed (line 12) by using the relation (1).

The default values of the parameters are set as follows. Typically, we iterate
over the whole dataset, i.e., m = |Zrrain|- By doing this, the estimates of
probabilities are expected to be more accurate. The value of K is typically set
small enough to capture the local structure in the data. In that way, we implicitly
capture the interactions between features [14].

3.3 Computational Complexity

We first analyze the time complexity of a single iteration. Since the space-
partitioning data structures, such as kD trees do not perform well when the
number of features F' is high, we use a brute-force method for finding the nearest
neighbors. Hence, the computation of the distances between r and the neighbour
candidates takes O(MF) steps, where M = |Z71rain|. In addition to this, the
current group of the nearest neighbors must be updated from time to time.

Lemma 1. The expected number of updates of the group of current nearest
neighbors of the instance r is approrimately K log M.

Proof. When we iterate over the neighbors, the group of currently K nearest
neighbors is updated if, and only if, at most K — 1 better candidates have been
found so far. Let mj be the instances from Zrrain \ {r}, sorted increasingly
by the distance to r, i.e., ny is the nearest neighbor and n,;_1 is the farthest
neighbor. Let E} be the expected number of updates when we find the candidate
ng. Then, E} equals the probability p, of discovering at most K — 1 of the
instances nq, ..., ng_1 before nj. Probability py s of discovering precisely s of
them equals the probability that mj appears in the (s + 1)-th position in the
random permutation of the instances nq,. .., ny, hence p, s = 1/k, for all s < k,

and pg s = 0 otherwise. It follows that p, = Zf:_ol prs = min{k, K}/k.
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The total number of expected updates E then equals E = 22\4:—11 E, hence
E=Y0t o =K+KY L = K(1+Hy1 — Hy), where k-th harmonic
number Hj, is defined as Hy = Zf:l 1/s. Since logk < Hy < 1+ logk, the
leading term in F is indeed K log M.

The overall cost of updating the current nearest neighbours is thus
O(K log M log K) if we are using, e.g., the heap structure.

When the neighbours ng, 1 < k < K, are computed, the distance between
their label set and the label set of r are computed. Considering that we store
the label sets as 0/1-lists of length L, this takes O(K L) steps for the distances
dHamming, @Accuracy and dp1, since we have to iterate over all labels. In the
case of dgypsetace, we can do much better, knowing that the labels are typically
sparse. To be able to obtain a closed form expression, we will assume that all
labels have the same probability to be relevant and that they are independent.

Lemma 2. The expected value of the labels considered in one computation of
dsubsetAce 18 %, where p is the probability of a label being relevant.
Proof. We know that dgypsetace(S*,S?) = 1 as soon as we encounter the label
¢, ¢ S* N S2% Let X be the number of labels considered. The key observation
is that we can easily compute P(X > k) = P({y,...,lp_1 € S'NS?) = (1 -
p)2*=1)_ This is useful since E[X] = Zi:l P(X > k). We obtained geometric
series whose sum equals E[X] = 177(”5_(71)}#.

Table 1 reveals that the dataset Delicious has L = 983 labels and label car-
dinality (average number of labels per example) ¢. = 19. Thus, p = 0.019 and
E[X] = 1.04, which is considerably smaller than L.

After the distances d ¢ are computed, the probability estimates are updated
in O(KF) steps. After all iterations, the weights are computed in O(F') steps,
thus the final time complexity is O(m[MF + KlogMlog K + KL+ KF]+F) =
O(m[MF + KL]) (in the case of dgypsetace, L the term KL is replaced by E[X]).
If the number of labels is high, then the term KL may not be negligible, which
was overlooked in [18].

4 Experimental Design

Here, we give the detailed experimental design for evaluating the performance
of the proposed distances. We begin by stating the experimental questions and
summarizing the MLC datasets used in this study. Then, we present the evalu-
ation procedure and give the specific parameters instantiations of the methods.

4.1 Experimental Questions

The main experimental question is: Does the choice of the distance d matter?
Furthermore, we investigate (i) whether the knowledge encapsulated in the
feature importances leads to better predictive performance of a model, i.e, are
the obtained feature rankings relevant, and (ii) how the quality of ranking is
influenced by the number of neighbors K and the number of iterations m.
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4.2 Datasets

We use 24 MLC benchmark problems. Table 1 presents the basic statistics of
the datasets. The number of features ranges from 72 to 52350. The features
are numeric and nominal. The label set size L ranges from 6 to 983, while the
number of training examples ranges from 322 up to 70000. The average number
of labels per example (in Zrrain U ZTEST), i-€., label cardinality is also given.
With the exception of Delicious dataset, it ranges between 1.0 and 4.38.

The datasets come from different domains. Arts, Business, Computers, Edu-
cation, Entertainment, Health, Recreation, Reference, Science, Social and Society
describe the problems of finding relevant subtopics of the given main topic of a
web page. Bibtex and Bookmarks are automatic tag suggestion problems, Birds
deals with predictions of multiple bird species in a noisy environment. Corel5k
contains Corel images. Delicious contains contextual data about web pages along
with their tags. Emotions deals with emotions in music. Enron contains data
about emails. Genbase and Yeast come from biological domain. Mediamill was
introduced in a video annotation challenge. Medical comes from Medical Natu-
ral Language Processing Challenge. Scene deals with labelling of natural scenes.
TMC2007-500 is about discovering anomalies in text reports.

4.3 Evaluation Methodology

We adopted the evaluation methodology that has been previously used in MLC
context [18] and in the other types of structured output prediction [17].

We use the same train-test split of the datasets as in the Mulan repository
http://mulan.sourceforge.net/datasets-mle.html. A ranking is computed from
the training part Zrrain only, and evaluated on the testing part Zrggr.

The quality of the ranking is assessed by using the kNN algorithm where
instead of the standard Euclidean distance, its weighted version was used. For
two input vectors ! and a2, the distance between them is defined as

F
d(@',@%) = | > wd(z},x3), (7)
i=1

where d; is defined by Eq.(2). The weights are set to w; =
max{importance(x;),0}, since they need to be made non-negative to ensure that
d is well defined, and also to ignore the attributes that have smaller values for
importance than a randomly generated attribute would have.

The evaluation through a kNN predictive model was chosen because of two
main reasons. First, this is a distance based model, hence, it can easily make use
of the information contained in the feature importances in the learning phase.
The second reason is kNN’s simplicity: its only parameter is the number of neigh-
bors, which we set to 15. In the prediction stage, the neighbors’ contributions
to the predicted value are equally weighted, so we do not introduce additional
parameters that would influence the performance.
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Table 1. Data characteristics: sizes of train and test part of the dataset, number of
features F', labelset size L and label cardinality ..

Dataset |Z1rAIN| | |DTEST| | F L |4

Arts [26] 3712 3772 23146 | 26 1.65
Bibtex [10] 4880 2515 1836 |159| 2.40
Birds [3] 322 323 260 19 1.01
Bookmarks [10] 70000 17856 | 2150 208 2.04
Business [26] 5710 5504 21924 | 30 1.60
Computers [26] 6270 6174 34096 |33 | 1.51
Corel5k [7] 4500 500 499 1374 3.52
Delicious|25] 12920 3185 500 |983119.02
Education [26] 6030 6000 27534 | 33 1.46
Emotions[23] 391 202 72 6 1.87
Enron [1] 1123 579 1001 |53 | 3.38
Entertainment [26] | 6356 6374 32001 | 21 1.41
Genbase [6] 463 199 1185 |27 1.25
Health [26] 4557 4648 30605 | 32 1.64
Mediamill [19] 30993 12914 120 101 | 4.38
Medical [16] 645 333 1449 45 | 1.25
Recreation [26] 6471 6357 30324 | 22 1.43
Reference [26] 4027 4000 39679 | 33 1.17
Scene [2] 1211 1196 294 6 1.07
Science [26] 3214 3214 37187 1 40 1.45
Social [26] 6037 6074 52350 | 39 1.28
Society [26] 7273 7239 31802 | 27 1.67
TMC2007-500 [21] | 21519 7077 500 |22 2.22
Yeast [8] 1500 917 103 |14 | 4.24

The second rationale for using kNN as an evaluation model is as follows. If
a feature ranking is meaningful, then when the feature importances are used as
weights in the calculation of the distances kNN should produce better predictions
as compared to kNN without using these weights [28].

4.4 Evaluation Measures

In the following, we denote the sets of true and predicted labels for an example
@ respectively by y(x) and §(x). The measures Hamming Loss, Accuracy, F;
Score and Subset Accuracy can be defined in terms of the distances (3)—(6). They
are respectively the means (over Prggr) of the values dpamming(Y(®),9(x)),

1 - dAccu’mcy(y(w)vg(w))v 1 - dFl(y(x)ag(w)) and 1 — dSubsetAcc(y(w)vg(w))'
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Thus, Hamming Loss should be minimized while the remaining three should
be maximized. We use another four well known measures: One Error, Precision,
Recall and area under the pooled precision-recall curve (pooledAUPRC'). The
definitions can be found in [15,27].

4.5 Statistical Analysis of the Results

For comparing the algorithms, we use the Friedman test. The null hypothesis H
is that all considered algorithms have the same performance. If Hy is rejected by
the Friedman’s test, we additionally apply Nemenyi or Bonferroni-Dunn post-
hoc test. The first is used when we investigate where the statistically significant
differences between any two algorithms occur, while the second is used when we
are interested in the differences between one particular algorithm and the others.
A detailed description of all tests is available in [5].

The results of the Nemenyi and Bonferroni-Dunn tests are presented on crit-
ical distance diagrams. Each diagram shows the average rank of the algorithm
over the considered datasets, and the critical distance, i.e., the distance for which
average ranks of two considered algorithms must differ to be considered statisti-
cally significantly different. Additionally, the groups of algorithms among which
no statistically significant differences occur are connected with a line.

Before proceeding with the statistical analysis, we round the performances to
three decimal points. In the analysis, the significance level was set to o = 0.05.

4.6 Parameter Instantiation

Since the sizes of datasets range over different orders of magnitude, the number of
iterations m is given as the proportion of the size of ZTran. The considered val-
ues are m € {1%, 5%, 10%, 25%, 50%, 100%}. On the other hand, since the num-
ber of neighbors K controls the level of locality, it is better given in absolute val-
ues. Our choice is to consider the following values K € {1, 5, 10, 15, 20, 25, 30, 40}.

5 Results

5.1 Does the Distance Matter?

To give every distance as good chance as possible, we compute and evaluate
feature rankings for all combinations of the parameters m and K and for every
dataset and distance version, the best pair (with respect to the evaluation mea-
sure at hand) is chosen.

Friedman test rejected the null hypothesis for three of the four evaluation
measures that the distance definitions are part of: Accuracy (p = 5.2-107%), F;
Score (p = 3.5-107%) and Subset Accuracy (p = 0.011). In the case of Hamming
Loss, the performances are not statistically significantly different (p = 0.28).
The Bonferroni-Dunn test reveals that dgamming performs statistically signifi-
cantly worse than the other three distances, for the evaluation measures Accu-
racy (Fig. 1la) and F; Score (with qualitatively the same diagram). In the case of
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dAccumcu dSubsetAcc dFl dSubsetAcc
F1 dH:mzminu dA(t(:umc’u den,mim/
1T T
1234 | 1234 ,,
critical distance: 0.8922 critical distance: 0.8922

(a) Evaluation measure: Accuracy (b) Evaluation measure: Subset Accuracy

Fig. 1. Comparison of the four distance functions in terms of (a) Accuracy, and (b)
Subset Accuracy: Critical distance diagrams from Bonferroni-Dunn test with the base-
line dHamming-

Subset Accuracy, it has still the worst performance, but it is not statistically sig-
nificantly worse than dgypsetace (Fig. 1b). Interestingly enough, the hypotheses
was not rejected for the Hamming Loss evaluation measure. Also in this case,
the rankings with dgamming have the worst average rank of 2.9 (as compared
to the best average rank of 2.1 that belongs to daccuracy), Which leads us to a
conclusion that the rankings with d gamming are indeed to some extent optimized
for Hamming Loss, but not sufficiently. Average ranks for this four measures are
shown on the radar plot in Fig. 2a.

The average ranks of the feature rankings with respect to the other four
measures are shown in Fig.2b. Here, the null hypothesis Hy is rejected in the
case of Precision (p = 0.0011) and Recall (p = 3.8 - 10~*). This is not that
surprising, since optimizing for F; Score should directly result in optimized
Precision and/or Recall, as noted after the definition of dr; (Eq. (5)). The results
of the follow-up Bonferroni-Dunn tests are similar to those for Subset Accuracy:
rankings obtained with dgamming have the worst rank, but are not statistically
significantly worse than those obtained with dgypsetace. Additionally, Hy is also
rejected in the case of pooled AUPRC (p = 0.027), but in this case, no ranking is
statistically significantly different from the one that corresponds to dmamming-

Accu}q‘acy Hamming Loss pooled AUPRC One Error
o k »
Po— B A Hamming o — —& | A Hamming
;i @
‘ 1 b 3 B Accuracy . . ) . B Accuracy
‘ (o} Fl c F1
I  — D SubsetAcc o 4(,-}'3 D SubsetAcc
b D |
o “A A —A
Fi score Subset Accuracy Recall Precision
(a) Distance related measures (b) Other measures

Fig. 2. Average ranks of the rankings computed with the four distance functions
(denoted by A, B, C and D), in terms of measures that (a) are, and (b) are not
directly related to any of distances.
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Since we have rejected the null hypotheses (all algorithms perform equally
well) in 6 of 8 cases, we can already claim that choosing an appropriate distance
measure does matter. Moreover, both diagrams in Fig. 2 show that our newly
proposed distance definitions result in rankings that outperform those computed
with dHamming- A reason for this may be that the latter cannot really capture
the possible interactions between the labels since it can be decomposed to the
per-label distances, as noted in Sect. 3.1. This may also be the reason why the
rankings computed with the newly proposed distances are typically closer to
each other than to the rankings computed with dramming-

To detect the differences among the rankings, we also apply Nemenyi post-hoc
test. In addition to the relations discovered with Bonferroni-Dunn test, we now
know that there is statistically significant difference between dpq and dgypsetace,
when the quality is measured in terms of pooledAUPRC.

5.2 Are the Obtained Rankings Relevant?

To answer this question, we partially repeat the analysis from the previous
section: in addition to the evaluation of the four ranking types, also the non-
weighted 15NN algorithm is evaluated. If we reject the null hypothesis Hy with
Friedman test, the four rankings are compared to the non-weighted 15NN clas-
sifier with Bonferroni-Dunn post-hoc test. If there is a statistically significant
difference between the weighted 15NN classifier and non-weighted 15NN classi-
fier (in favour of the weighted one), we proclaim the ranking relevant.

Hy is rejected for all evaluation measures. The corresponding Bonferroni-
Dunn tests identifies the following. The distances d Accuracy and dp1 always result
in relevant rankings. The distance dgypsetace fails to result in relevant rankings
in the case of One Error. The distance dgamming results in relevant rankings
when the quality is measured in terms of Subset Accuracy and pooledAUPRC.

5.3 Influence of the Parameters m and K

To assess how does the number of iterations m influence the quality of ranking,
we choose one of the distance functions and a value for the number of neighbors
K. When m varies over the values specified in Sect. 4.6, six different rankings are
obtained. We compare their quality in terms of the chosen evaluation measure,
by applying the Friedman test.

Hy is rejected for all values of m and for all versions of target distance in the
case of Accuracy, F; Score, Precision, Recall and Subset Accuracy. In the case
of Hamming Loss, it is never rejected. In the case of One Error, it is rejected for
dr1 when K > 25 and for dgypsetace when K = 40. In the case of pooledAUPRC,
the hypothesis is only rejected for dgypsetace when m = 40.

The only values of m which are always in the top performing group of algo-
rithms, are 25%, 50% and 100%. A typical critical distance diagram (for daccuracy
and K = 20) is shown in Fig. 3a.

To assess the influence of the number of Relief neighbours K, a similar anal-
ysis is performed, now with the interchanged roles of m and K: the former is
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Fig. 3. Critical distance diagrams from Nemenyi tests that show the influence of the
number of (a) iterations, and (b) neighbors, on the quality of the daccuracy Tankings,
measured in terms of Precision.

fixed and the latter varies. The summary of the results is as follows. Number
of neighbors seems to have a lesser influence on the quality, since we do not
reject all hypotheses for any of the evaluation measures. However, this is mostly
due to the fact that K almost never statistically significantly influence the qual-
ity of the dgamming rankings. For the other distances, the hypothesis is always
rejected when the quality is measured in terms of Accuracy, F; Score, Precision,
Recall. This also holds for Subset Accuracy with two exceptions for dsypsetace:
m € {1%, 100%}. Again, no hypothesis is rejected in the case of Hamming Loss.

Typically, more is better regarding the number of neighbors and the highest
values of K, i.e., K € {30,40} have often the best average rank. This can be
explained by the sparsity of the labels. To properly asses the average label space
distance in ZTraIN, one has to consider larger neighborhoods. However, the dif-
ferences among the algorithms for which K > 15 are not statistically significant.
A typical situation (for daccuracy and m = 25%) is shown in Fig. 3b.

6 Conclusions and Future Work

In this paper, we propose the use of three distance measures on the target space
within an extension of RReliefF approach to feature ranking for MLC tasks.
These are the distances that are used within the evaluation measures Accu-
racy, F; Score and Subset Accuracy for predictive performance on MLC tasks.
We have shown that using any of these distances always results in rankings of
higher quality than the rankings computed with the distance used in the eval-
uation measure Hamming Loss [18]. Additionally, the newly proposed measures
outperform the old one in terms of Precision and Recall, since these two are
directly connected to the F; Score. For more independent measures, such as
pooled AUPRC and One Error we did not observe any differences, so we can
conclude that the use of the proposed distance within RReliefF optimizes the
corresponding MLC evaluation measures.

We have also shown that all proposed rankings are relevant by comparing
the nearest neighbor classifier that uses feature relevance information, to the
standard nearest neighbor classifier. Additionally, we measure the influence of the
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parameters m (number of Relief iterations) and K (number of Relief neighbors)
and show that rankings computed from m = 25% of the training dataset cannot
be statistically significantly outperformed on average. The same goes for rankings
that were computed by examining the neighborhoods of size K = 15.

There are several directions for future work. We plan to find appropriate dis-
tance measures for the hierarchical version of the MLC task: hierarchical multi-
label classification. Incorporating probabilities in the distances, the RELIEF fam-
ily can be also extended in the direction of data with missing labels and semi-
supervised problems. Once these are solved, we also plan to develop an extension
of Relief for seemingly much harder context of unsupervised learning, where there
are no target variables and the analogous approach cannot be taken.
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