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Abstract. Multi-target regression (MTR) is the task of learning pre-
dictive models for problems with multiple continuous target variables.
In this work, we introduce the task of hierarchical multi-target regres-
sion (HMTR), where these target variables are organized in a hierarchy.
The hierarchy contains the target variables and has an aggregation func-
tion that defines the parent child relationships in the hierarchy. This
information can be used by learning methods to obtain better predictive
models. We then propose to extend the approach of predictive clustering
trees for MTR towards addressing the task of HMTR. The information
from the hierarchy is exploited by defining the variance function through
a weighted Euclidean distance. We evaluate the proposed method on 4
practically relevant HMTR datasets. The results show that HMTR per-
forms better than standard MTR. Finally, we illustrate the enhanced
interpretability potential of PCTs for HMTR.

Keywords: Multi-target regression · Hierarchical multi-target regres-
sion · Interpretable models · Predictive clustering trees

1 Introduction

The task of building a model that is capable of making predictions is called
predictive modeling. Supervised learning is the machine learning task of inferring
a function from given training data. It is an area of machine learning that has
been extensively researched. The goal in supervised learning is to learn, from a
set of examples with known class, a function that outputs a prediction for the
class of a previously unseen example. Regression models make predictions for
continuous variables, e.g. housing prices, weather temperature and similar.

In this work, we are interested in predicting multiple continuous variables
since many real-life problems have multiple outputs. Multi-target regression
(MTR), also known in the literature as multi-output, multi-response or mul-
tivariate regression, tries to simultaneously predict multiple continuous target
variables based on a set of input variables [1]. The methods addressing the MTR
task can be categorized into two groups: local and global methods [2]. Local
methods construct multiple models for each target variable separately and then
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combine the predictions from each model, whereas global models construct only
one model that outputs the predictions for all of the target variables. If a problem
has multiple outputs, it is generally better to build a model that gives a predic-
tion for all of the outputs, rather than one by one [1]. It has been shown that
global methods perform better than local methods [3]. They have several advan-
tages over local methods: (a) they can achieve higher predictive performance
since they exploit the dependencies that exist between the output variables; (b)
they can be more efficient if there are many outputs since building a separate
model for each output will be slower, and (c) can produce smaller models than
the combined size of the models created with local methods.

Many applications for MTR have been studied due to its applicability to a
wide range of domains, including the assessment of vegetation condition, water
quality, stock market selection, in chemometrics, to predict wind noise of vehicle
components and gas tanks level prediction, to predict biophysical parameters,
to perform channel estimation, etc. These applications of MTR also inherit the
many challenges present when working with real-world applications, such as
missing data and noise, but also provide the means to create the model consid-
ering the underlying relationships between the targets, and not only the rela-
tionships between the inputs. Global multi-target approaches therefore give a
better representation and interpretability of the given problems, as well as sim-
pler models with higher computational efficiency [3]. For a survey on the MTR
task, we refer the reader to [4].

Many real-life objects tend to exist within organizational structures. For
example, in education, students exist within a hierarchical social structure that
can include family, peer group, classroom, grade level, school, school district,
state and country [5]. Data collected about an individual is hierarchical, as all
the observations are nested within individuals. While there are other methods
to deal with this type of data, the assumptions relating to them are rigorous,
whereas procedures relating to hierarchical modeling require fewer assumptions.
The individuals in the hierarchy follow the hierarchy constraint - an individual
that belongs to a given hierarchy node also belongs to all its supernodes [1]. If an
example has multiple continuous outputs in a hierarchy that we want to predict,
then the task is called hierarchical multi-target regression (HMTR).

In this work, we extend the predictive clustering trees (PCTs) [1,6] towards
the HMTR task. They are a state-of-the-art interpretable global approach for
different types of outputs and can efficiently learn models valid for the output
structure as a whole [1,7,8]. One major reason why we consider PCTs beside
their good predictive performance is their interpretability since the model is
a tree. This representation is easily understood by people from different back-
grounds and expertise [9].

We evaluate the proposed PCTs for HMTR on 4 practically relevant domains.
The major goal of the comparison is to check whether the introduction of a
hierarchical structure in the output space can improve the predictive power as
well as the interpretability of the predictive models.



Predictive Clustering Trees for Hierarchical Multi-Target Regression 225

The remainder of this paper is organized as follows. First, we introduce the
task of hierarchical multi-target regression (HMTR). We then propose a method
for addressing the HMTR task, i.e., the predictive clustering framework. Next, we
outline the experimental design used to evaluate the proposed method. Finally,
we conclude and give directions for further work.

2 The Hierarchical Multi-Target Regression Task

The work presented in this paper concerns the learning of a model for hierar-
chical multi-target regression (HMTR). In accordance with Džeroski [10], where
predictive modeling is defined for arbitrary types of input and output data, we
define the HMTR task as follows:

Given:

• A description space X that consists of tuples of values of continuous (or
discrete) primitive data types, i.e. ∀Xi ∈ X,Xi = (xi1 , xi2 , . . . , xiNd

), where
Nd is the number of descriptive variables,

• A target space Z, defined with a numeric variable hierarchy (H,≤p), where H
is a set of numeric variables and ≤p is structured as a rooted tree representing
the supervariable relationship (∀h1, h2 ∈ H : h1 ≤p h2 if and only if h1 is a
supervariable of h2). The supervariables are the products of aggregate func-
tions on their respective children (for example, sum, minimum, maximum,
average. . . ) i.e. hj = agg(hi)∀hi ≤p hj ,

• A set of examples E, where each example is a pair of a tuple and a set,
from the descriptive and target space, respectively, and each set satisfies the
hierarchy constraint, i.e., E = {(Xi, Zi)|Xi ∈ X,Zi ⊆ H,h ∈ Zi =⇒ ∀h′ ≤p

h : h′ ∈ Zi, 1 ≤ i ≤ Ne} and Ne is the number of examples in E(Ne = |E|),
and

• A quality criterion q, which rewards models with high predictive accuracy
and low complexity.

Find: A function f : X → RH where RH are all of the variables from H such
that f maximizes q and h ∈ f(x) =⇒ ∀h′ ≤p h : h′ ∈ f(x) in order to satisfy
the hierarchy constraint.

To the best of our knowledge, the task of HMTR as defined above has not
been treated before by the research community. The HMTR task applies to
problems whose target variables have hierarchical dependencies. The HMTR
learning algorithm can exploit this information, which means that it can help
in building a better predictive model. Such problems up until now could not
have been solved, at least not in such a way that the hierarchy would be taken
into account when learning the predictive model. The only solution for solving
such problems until now was by using a MTR algorithm and simply ignoring
the hierarchy of the output space.

The major advantage of HMTR over MTR is that HMTR is a broader task
that encapsulates MTR, i.e., if we instantiate HMTR without a hierarchy weight-
ing scheme, the results will be the same as using a MTR algorithm. Even further,
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one of the major gains of this design of the learning algorithm is the possibility
to define the hierarchy aggregation function based on the task at hand. Most
commonly the aggregate function of the supervariable is the sum of its children,
however it can also be any other function, for example minimum, maximum,
average and similar. In other words, this design provides an additional degree
of freedom for the tree induction algorithm and facilitates its application to a
wider range of practical tasks.

Let us illustrate the generality of the HMTR definition by deriving the task of
hierarchical multi-label classification (HMLC) from the definition above. HMLC
is a variant of classification where an example can have multiple labels at the
same time and the labels are organized in a form of hierarchy. The presence or
absence of a label for a given example can be presented as a boolean variable
or as a binary 0/1 variable. Then, by instantiating the aggregation function as
logical or, we obtain the hierarchy constraint defined in [9], i.e., we define the
task of HMLC.

3 Predictive Clustering Trees for Hierarchical
Multi-Target Regression

The PCT framework views decision trees as a hierarchy of clusters where the
root node corresponds to a cluster that contains all of the examples: The other
nodes at the lower levels of the tree are smaller clusters partitioned from the
nodes that are above them (parent nodes). The predictive clustering framework
is implemented in the system CLUS [11].

The TDIDT algorithm (top-down induction of decision trees) is used for
inducing the PCTs [12] as presented in Algorithm 1. It takes a set of examples
E as input and produces a tree as an output. The heuristic score s that is used
for selecting the best tests b is the reduction of variance that is caused by the
partitioning p of the examples. With maximization of the variance reduction,
we maximize the cluster homogeneity and improve the predictive performance
of the model.

The main difference between the algorithm for learning PCTs and an algo-
rithm for learning decision trees is that the former considers the variance function
and the prototype function (that computes a label for each leaf) as parameters
that can be instantiated for a given learning task. The PCTs have been instanti-
ated for multi-target prediction [6,13], prediction of time series [14] and hierar-
chical multi-label classification (HMLC) [9]. We instantiate these two functions
for the HMTR task as follows.

The variance is calculated using a distance function among the values of the
variables. The proposed variance for HMTR of a set of examples E is defined as
the average squared distance between each node vector Li of the examples and
the mean node vector L̄ [9]:

V ar(E) =
1
|E| ·

∑

Ei∈E

(d(Li, L̄)2) (1)
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Algorithm 1. The top-down induction algorithm for learning PCTs.
Procedure PCT
Input: A dataset E
Output: A predictive clustering tree
(b∗, s∗, p∗) = BestTest(E)
if t∗ ̸= none then

for each Ei ∈ p∗ do
treei = PCT (Ei)

return node(b∗,∪i{treei})
else

return leaf(Prototype(E))
Procedure BestTest
Input: A dataset E
Output: best test b∗, heuristic score s∗, induced partition, p∗ on the dataset E
(b∗, s∗, p∗) = (none, 0, ∅)
for each test b do

p = induced partition by b on E
s = V ar(E) −

∑
Ei∈p

|Ei|
|E| · V ar(Ei)

if (s > s∗)&Acceptable(b, p) then
(b∗, s∗, p∗) = (b, s, p)

return (b∗, s∗, p∗)

Note that we represent the output hierarchy as a vector of variables by traversing
the hierarchy in preorder mode.

The target variables are normalized so that they would contribute equally to
the overall score. As for the distance d, any distance can be essentially used. For
the task of HMTR, we propose to use a weighted Euclidean distance:

d(L1, L2) =

√√√√
|L|∑

l=1

w(nl) · (L1,l − L2,l)2 (2)

where Li,l is the l-th component of the node vector Li of an instance Ei, |L| is the
node’s vector size, and w(n) are the node weights which decrease exponentially
with the depth of the node in the hierarchy, e.g., as w(n) = wdepth(n)

0 .
We provide the following example to better illustrate the calculation of the

distance for HMTR. We consider the toy hierarchy depicted in Fig. 1 and two

Fig. 1. An example of a toy hierarchy.
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data examples (X1, Z1) and (X2, Z2) that use a vector representation for the
numeric values of the nodes {root, N1, N1.1, N1.2, N2, N3} in that order. The
aggregate function for the supervariables used in this example is sum. The exam-
ples have the following numeric variables for their outputs: Z1 = {1.7, 1.1, 0.5,
0.6, 0.1, 0.5} and Z2 = {1.1, 0.3, 0.1, 0.2, 0.1, 0.7}. The weighted Euclidean
distance is then calculated as follows:

dw0(Z1, Z2) = dw0({1.7, 1.1, 0.5, 0.6, 0.1, 0.5}, {1.1, 0.3, 0.1, 0.2, 0.1, 0.7})

=
√
w0

0(0.6)2 + w1
0(0.8)2 + w2

0(0.4)2 + w2
0(0.4)2 + w1

0(0)2 + w1
0(−0.2)2

=
√

0.36w0
0 + 0.68w1

0 + 0.32w2
0

(3)

Setting a specific value for w0, 3
4 for example, yields the following distance:

d 3
4
(Z1, Z2) =

√

0.36
(
3
4

)0

+ 0.68
(
3
4

)1

+ 0.32
(
3
4

)2

=
√
1.05 ≈ 1.025 (4)

The prototype function used is averaging the values of the examples belong-
ing to a given leaf. One needs to be careful when defining this prototype func-
tion, since it can break the hierarchy constraint if it is not compatible with the
used hierarchy aggregation function. For example, averaging works fine when the
aggregation function is sum or avg, while it may break the hierarchy constraint
if the aggregation function is min or max (the value calculated by averaging the
parents may not be the min or max of the averaged children).

Next, we analyse the computational complexity of PCTs for HMTR and
compare it with the complexity of PCTs for MTR. Let us assume that the size
of the training set is Ne, the number of descriptive attributes is Nd out of which
Nc are continuous, the number of target attributes is Nt and the number of
supervariables is Ns. From the algorithm for induction of PCTs, we can note that
sorting the Nc numeric attributes is of the order of O(NcNe logNe) and Nc =
O(Nd). Calculating the best split for multiple variables has the complexity order
of O(NtNdNe) and applying the split to the examples has a linear complexity,
i.e. O(Ne). We assume that the tree is balanced, which means that the depth
of the tree is the logarithm of the number of examples, i.e. logNe. With these
calculations, the computational cost of inducing a single MTR tree is:

O(MTR) = O(NdNe log2 Ne) +O(NtNdNe logNe) +O(Ne logNe) (5)

For the HMTR algorithm, we also have the supervariables which in this
case act like targets. This changes only the cost of calculating the best split to
O((Nt + Ns)NdNe logNe). With this in mind, the order of complexity for the
HMTR tree is very similar to the MTR and is given as:

O(HMTR) = O(NdNe log2 Ne)+O((Nt+Ns)NdNe logNe)+O(Ne logNe) (6)
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From the complexity analysis of single PCTs for HMTR, we can see that
the HMTR algorithm has a higher computational complexity than the MTR
algorithm. The increase, however, is linear with the number of targets from
the introduced supervariables. We can see that the dominant elements in the
computational costs are the first two in the parentheses, i.e. the one containing
the second logarithmic power of the number of examples, and the one that is
multiplied with the number of targets. The first element is O(NdNe log2 Ne),
and the second is O(NtNdNe logNe) or O((Nt + Ns)NdNe logNe) for MTR
and HMTR respectively. If we compare the two terms, we can see that the
first term is bigger than the second when logNe > Nt for MTR and logNe >
(Nt+Ns) for HMTR. Let us explore the first case where the first term is smaller.
This means that when comparing MTR and HMTR, HMTR will have greater
computational cost, due to the addition of Ns. Let us now explore the second
case where logNe is greater. This will make the first term of the equation the
major contributor to the cost of the algorithm. With this, the linear increase
in the second terms of the equations for the HMTR task (i.e. the addition of
Ns in O((Nt + Ns)NdNe logNe)) will be insignificant in this case, resulting in
comparable performance between MTR and HMTR, on datasets with sufficiently
large number of examples.

4 Experimental Design

We assess the effect of introducing a hierarchy in the output space by comparing
the performance of PCTs for HMTR with the performance of PCTs for MTR. We
estimate the predictive performance by using 10-fold cross-validation. We follow
the recommendations from Borchani et al. [4] and adopt the average correlation
coefficient (aCC) and average relative root mean squared error (aRRMSE) as
evaluation measures. For a fair comparison, we calculate these errors only for
the variables at the leafs of the hierarchy.

The parametrization of HMTR sets the weight parameter w(n) for a node n.
From the weights of the Euclidean distance, one might have already concluded
that if we instantiate the algorithm such that w = 1, all of the nodes will have the
same weight regardless of their depth in the hierarchy, thus giving little weight
to the hierarchy. Lowering the weight w from 1 downwards, we place increasingly
greater importance on the hierarchy, meaning that a smaller weight w assigns
larger relative weights to the higher levels of the hierarchy in comparison to the
deepest nodes in the hierarchy, which get the smallest weights.

For each application domain, the user needs to define the hierarchy for the
output space of the problem (if it is not readily available) and are adequate
aggregation function that will be applied in order to calculate the values for the
parent nodes. The user also needs to choose the weighting parameter.

We perform the experimental evaluation of our method on 4 practically rel-
evant datasets: OSALES, MARSEXPRESS, ADNI and SIS.

The task for theOSALES dataset is the prediction of online sales of products
described with various product features. The dataset is from the Kaggle’s Online
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Product Sales competition in 2012 and the goal is to predict the monthly sales for
12months of products. It has 639 examples, 413 features and 12 target variables
that need to be predicted. The data and additional information are available at
https://www.kaggle.com/c/online-sales.

The MARSEXPRESS dataset concerns the power consumption of the the
different systems of the European Space Agency’s MARS Express spacecraft
orbiting Mars. It includes context data as descriptive variables and 33 thermal
power lines read-outs of the electric current (power consumption) in each thermal
subsystem node. The data consists of 464 features describing the current and
past operation of the satellite and 33 target features referring to the thermal
power lines. Here, we consider a subsample of 20000 examples out of the over
2.6 million examples in the dataset. More information about the data can be
found at https://kelvins.esa.int/mars-express-power-challenge/home/.

The ADNI dataset contains data from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) – a longitudinal study for developing clinical, genetic,
imaging and biochemical biomarkers for the Alzheimer’s disease (AD). The
ADNI dataset consists of subjects with AD, as well as elderly controls and
patients with mild cognitive impairment. The dataset consists of 659 exam-
ples [15]. We consider 10 descriptive features (APOE4 and PET imaging data)
and 27 targets consisting of clinical scores that describe everyday cognition
(eCOG), Montreal Cognitive Assessment (MoCA), Mini-Mental State Exam
(MMSE) and Alzheimer’s Disease Assessment Scale (ADAS13).

The SIS dataset refers to the New York City Social Indicators Survey (SIS)
– a study on social problems and inequality in New York City for the year 2001.
For the 229 descriptive features, we consider questionnaire answers on a variety
of topics, while the 12 targets are the subjects’ income from various sources.
We consider data from 1501 subjects. More information is available at http://
cupop.columbia.edu/research/research-areas/social-indicators-survey-sis.

For the four datasets, we consider the hierarchies presented in Fig. 2. The
OSALES hierarchy combines the months into quarters (a period of 3months),

Fig. 2. The hierarchies for the output spaces of the four HMTR datasets.
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then groups the quarters into semesters, and then to an entire year. In the
MARSEXPRESS dataset, the thermal power lines are grouped depending on
their location and subsystem, resulting in a hierarchy of depth 5. The ADNI
dataset before combining all of the target variables in the root node separates
them according to the four different assessment examinations. The SIS dataset
groups the target variables depending on the type of income: salary (and pen-
sion), social income and income from other sources.

5 Results and Discussion

In this section, we present and discuss the results obtained from the experimental
evaluation. We first compare the predictive performance of the proposed PCTs
for HMTR with the predictive performance of PCTs for MTR. We next illustrate
the enhanced interpretability of the PCTs for HMTR.

Table 1 gives a detailed overview of the performance of PCTs for HMTR
and PCTs for MTR as measured with aRRMSE on the training set and on
unseen data (estimated by 10-fold cross-validation). First of all, it shows the
performance of PCTs for HMTR for different values of the parameter w0. We
can note that the training error generally increases when decreasing the value
of w0 (an exception is the SIS dataset for w0 = 0.25). This means that putting
less weight on the more general concepts in the hierarchy guides the learning
algorithm towards learning better fitted descriptions of the data. However, we

Table 1. Train and test aRRMSE errors of PCTs for HMTR and PCTs for MTR
with different weights w0.

Dataset HMTR MTR
Weight Train Test Train Test

OSALES 0.75 0.445 0.840 0.422 0.878
0.5 0.450 0.844
0.25 0.476 0.842

MARS 0.75 0.453 0.836 0.449 0.839
0.5 0.456 0.836
0.25 0.472 0.841

ADNI 0.75 0.640 1.055 0.632 1.074
0.5 0.648 1.051
0.25 0.652 1.063

SIS 0.75 0.704 1.155 0.705 1.175
0.5 0.720 1.124
0.25 0.672 1.112
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cannot make the same statement about the errors as estimated with 10-fold cross
validation (the column test in the Table).

Furthermore, we observe that the PCTs for HMTR overfit less than PCTs
for MTR. Namely, the training errors of PCTs for HMTR are always worse
than the training errors of the PCTs for MTR, while this is reversed for the
error estimated with 10-fold cross validation. This is due to the fact that with
the hierarchy, the learning algorithm now is able to generalize better the data.
Hence, PCTs for HMTR perform worse on the training set because the hierarchy
prevents them from focusing on too specific concepts existing in the data.

Next, we can note that PCTs for HMTR have better predictive performance
than PCTs for MTR across all datasets and almost all of the values for w0 (an
exception is the MARSEXPRESS dataset for w0 = 0.25). Based on these results,
the best values for the depth parameter w0 per dataset are as follows. For the
OSALES and MARSEXPRESS datasets, the best value for w0 is 0.75. For the
ADNI dataset, the best value is 0.5, while for the SIS dataset is 0.25.

We then compare the performance of PCTs for HMTR with the best values
for the parameter w0 with the performance of PCTs for MTR in Table 2. The per-
formance is here measured with both aCC and aRRMSE. For both evaluation

Table 2. Evaluation (test) and efficiency comparison of HMTR and MTR

Dataset HMTR MTR
aCC aRRMSE aCC aRRMSE

OSALES 0.361 0.840 0.331 0.878
MARS 0.418 0.836 0.416 0.839
ADNI 0.081 1.051 0.074 1.074
SIS 0.014 1.112 0.010 1.175

Fig. 3. A model for the OSALES dataset: A PCT for HMTR predicting the online
sales of products by months (lowest part of the hierarchy), quarters, semesters and
year (root node of the hierarchy).
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measures, the same conclusions can be made: PCTs for HMTR outperform PCTs
for MTR on the four datasets.

Finally, we demonstrate the enhanced interpretability of the PCTs by show-
ing a heavily pruned PCT for HMTR learned on the OSALES dataset in Fig. 3.
As it can be seen, the leafs of the PCT contain a prediction for the complete
hierarchy, thus a domain expert can directly observe and comment on the more
specific variables (lower in the hierarchy) and the more global variables (upper
in the hierarchy, quarters, semesters and yearly). For example, if the attribute
QUAN 4 is higher than 2053329, from the predictions from the model, we can
see that the sales of these products will be high overall, but will mostly take
place in the first quarter of the year.

6 Conclusions

In this work, we introduce the task of hierarchical multi-target regression
(HMTR). This structured output prediction task considers that a problem has
multiple continuous target variables that can have hierarchical relationships
among themselves. The formal task definition presented here unites all of the
multi-target prediction tasks available.

We also propose a method for learning predictive clustering trees (PCTs)
for the task of HMTR. Moreover, we propose to include the information about
the hierarchy through adapting the Euclidean distance. The weighted Euclidean
distance introduces weights to take into account the depth of the nodes in the
hierarchy.

We evaluated the proposed method on 4 datasets and compared its perfor-
mance to PCTs for MTR that do not exploit the hierarchical structure in the
output space. The evaluation revealed that the PCTs for HMTR have better
predictive performance than PCTs for MTR across all datasets. Furthermore,
the PCTs for HMTR overfit less than PCTs for MTR. All in all, we showed that
considering a hierarchical structure in the output space consisting of multiple
continuous variables improves the performance.

We plan to extend this work along several directions. First, we will look more
closely into the influence of various aggregation measures for different problems.
We will also look into the weight parameter that the algorithm uses. As a general
rule of thumb, w = 3/4 is a good starting point for most of the data sets, where
higher values reduce the influence of the hierarchy and make the problem closer
to standard MTR, and low values give more importance to the hierarchy than
the target variables in the leaves. Finally, another direction to explore is the
one of ensemble methods like random forests and bagging. We will investigate
whether the performance improvement in HMTR carries over in the ensemble
learning setting.
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