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Semi-supervised learning (SSL) aims to use unlabeled data as an additional source of information in order
to improve upon the performance of supervised learning methods. The availability of labeled data is often
limited due to the expensive and/or tedious annotation process, while unlabeled data could be easily
available in large amounts. This is particularly true for predictive modelling problems with a structured
output space. In this study, we address the task of SSL for multi-target regression (MTR), where the
output space consists of multiple numerical values. We extend the self-training approach to perform SSL
for MTR by using a random forest of predictive clustering trees. In self-training, a model iteratively uses
its own most reliable predictions, hence a good measure for the reliability of predictions is essential.
Given that reliability estimates for MTR predictions have not yet been studied, we propose four such
estimates, based on mechanisms provided within ensemble learning. In addition to these four scores, we
use two benchmark scores (oracle and random) to empirically determine the performance limits of self-
training. We also propose an approach to automatically select a threshold for the identification of the
most reliable predictions to be used in the next iteration. An empirical evaluation on a large collection of
datasets for MTR shows that self-training with any of the proposed reliability scores is able to consistently
improve over supervised random forests and multi-output support vector regression. This is also true
when the reliability threshold is selected automatically.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The major machine learning paradigms are supervised learning
(e.g., classification, regression), where all the data are labeled, and
unsupervised learning (e.g., clustering), where all the data are un-
labeled. Semi-supervised learning (SSL) [1] examines how to ex-
ploit both labeled and unlabeled data, aiming to benefit from the
information that unlabeled data bring. SSL is of a practical rel-
evance because, in many real-world scenarios, labeled data are
scarce due to a costly and/or time-consuming labelling procedure;
while unlabeled data abound and are easy to obtain. For exam-
ple, such scenarios are encountered in life sciences (gene function
prediction, quantitative structure-activity relationship modelling),
ecology (habitat and community modeling), multimedia (annota-
tion of images and videos) and semantic web (categorization and
analysis of text and web).

Intuitively, SSL yields best results when there are few labeled
examples as compared to unlabeled ones (i.e., large-scale labelling
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is not affordable). Such a scenario is especially relevant for ma-
chine learning tasks with structured outputs where, due to the
increased complexity of the output, labelling of the data is even
more difficult. Consider, for example, the problem of natural lan-
guage parsing, where the aim is to predict the parse tree that gen-
erates a given input sentence. To label the data, linguists need to
determine the parse tree for input sentences. This is feasible for
a few sentences, but for large number of sentences the process
becomes very tedious and expensive: It took 2 years to manually
construct parse trees for 4000 sentences of Penn Chinese Treebank
[2]. At the same time unlabeled input sentences are readily avail-
able in vast amounts. Another prominent example comes from the
ecological modelling domain, where some attribute values are eas-
ily available (e.g. temperature, humidity) whereas some other at-
tribute values have to be manually collected/measured by experts
and thus, can be the subject of the prediction process (e.g. water
pollution in a river, or abundance of specific species which popu-
late the river). Obviously, in the latter case, data collection is very
expensive and time consuming, so only few observations can be
obtained with limited resources [3].

In this study, we are concerned with SSL for the task of multi-
target regression (MTR). MTR is a structured output prediction task
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where the goal is to predict multiple continuous target variables
(also known as multi-output or multivariate regression). In many
real-life problems, we are interested in simultaneously predict-
ing multiple continuous variables. Prominent examples of this task
come from ecology: predicting the abundance of different species
occupying the same habitat [4], assessing different properties of
forests [5], or estimating vegetation quality indices [G]. We argue
that SSL, as for classical machine learning tasks, can lead to im-
proved predictive capabilities also for MTR by leveraging the con-
tribution of unlabeled examples and, at the same time, by exploit-
ing the possible dependencies among the multiple target variables.

The handful of existing SSL methods for structured output
prediction almost exclusively deal with discrete outputs. Here, a
prominent work was done by Brefeld [7], who used the co-training
paradigm and the principle of maximizing the consensus among
multiple independent hypotheses to develop semi-supervised sup-
port vector learning algorithm for joint input-output spaces and
arbitrary loss. Zhang and Yeung [8] proposed a semi-supervised
method based on Gaussian processes for a task related to MTR:
multi-task regression. In multi-task learning the aim is to predict
multiple single-target variables with different training sets (in gen-
eral, with different descriptive attributes) at the same time. The
few existing SSL methods for MTR are highly specialized for indi-
vidual applications. For example, Navaratnam et al. [9] have pro-
posed a SSL method for MTR specialized for computer vision. On
the other hand, SSL for single-target regression has received more
attention in the past [10-13]. While it is possible to decompose a
MTR problem into several (local) single-target ones and use such
methods, there are several advantages of learning a global multi-
target model over learning a separate local model for each target
variable. Global models have better computational efficiency, typ-
ically perform better and overfit less than a collection of single-
target models [14,15].

We propose a global SSL method for MTR. More specifically, we
extend the self-training approach [16] to the task of MTR. The main
advantage of this iterative SSL approach is that it can be “wrapped”
around any existing (supervised) method. In the past, several stud-
ies have proposed supervised methods for solving the task of MTR
directly and demonstrated their effectiveness [6,14,17,18]. We pro-
pose to use predictive clustering trees (PCTs), or more precisely,
random forests [19] of PCTs for MTR, as base predictive models
[14] for the self-training approach. PCTs are a generalization of
standard decision trees towards predicting several types of struc-
tured outputs: tuples of continuous/discrete variables, hierarchies
of classes, and time series.

The main principle of self-training is iterative usage of its own
most reliable predictions for the unlabeled data as additional data
in the training process. The most reliable predictions are selected
by applying a threshold on the reliability scores of predictions. A
good reliability scoring function assigns a high score to the predic-
tions with low error and a low score to the predictions with high
error. Obviously, a proper reliability scoring function is crucial for
the success of self-training, since an error once made can reinforce
itself in the subsequent iterations. However, developing a good re-
liability scoring function is not a simple task [20]: This has not yet
been entirely resolved in the single-target regression and classifi-
cation, and even less for the task of MTR.

In this paper, we propose and evaluate several reliability scor-
ing functions for MTR, which are based on the mechanisms pro-
vided by ensemble learning. Namely, we use the variance of the
votes of an ensemble and random forest proximities to estimate
the reliability of predictions [19,20]. These reliability estimates are
by-products of ensemble learning. Hence, they impose almost no
additional computational overhead, as opposed to some other re-
liability estimates for regression [20]. This aspect is especially im-
portant in SSL, where we can expect to deal with huge amounts

of unlabeled data and/or to re-train the model several times (as in
self-training). In order to empirically determine the performance
limitations of the proposed approach to self-training for MTR, we
use oracle scoring (the best possible scoring function) and random
scoring as benchmark scoring functions. Finally, we explore the in-
fluence of two strategies for merging per-target scores into a global
score (normalized averaging and ranked averaging) on the perfor-
mance of self-training.

We also consider the problem of automatically determining the
threshold on the reliability scores of predictions. The threshold-
ing is crucial for the selection of the unlabeled examples with
the most reliable predictions. The selected unlabeled examples to-
gether with the predictions are then considered as training exam-
ples in the next iteration. To this end, we propose an automatic
threshold selection algorithm for SSL that exploits the out-of-bag
error obtained when learning the ensemble.

Our study investigates three important questions: (1) Can un-
labeled data improve predictive performance on MTR tasks in a
self-training setting? (2) Which reliability scoring function yields
the best predictive performance in this setting? (3) Can we ex-
ploit the advantage introduced by the self-training setting for MTR
when an automatic threshold selection algorithm is used? To ad-
dress these questions, we perform experimental evaluation of self-
training with the various reliability scoring functions using 9 MTR
datasets from various domains. The evaluation reveals that self-
training, coupled with any of the proposed reliability scoring func-
tions, is able to outperform a supervised random forest and multi-
output support vector regression (MSVR) [21,22]. In particular, all
of the proposed reliability scoring functions performed better than
random scoring. The best results, excluding the upper (oracle) lim-
its on the performance of self-training, were achieved by using a
reliability score based on the variance of the votes of ensemble
members.

We summarize the major contributions of this paper as follows:

« A SSL method tailored for the task of MTR based on the predic-
tive clustering framework for predicting structured outputs.
Two reliability scoring functions for MTR predictions, two nor-
malization strategies, and two strategies for merging per-target
scores into a global score.

Empirical determination of the upper bounds on the perfor-
mance, i.e., the potential of SSL with self-training.

An automatic threshold selection algorithm, i.e., a practical so-
lution for exploiting the potential of SSL with self-training.
Empirical evaluation of the proposed method on 9 MTR
datasets.

An initial investigation of the proposed SSL method for MTR
has been presented in a workshop paper [23,24]|. We extend that
work along six major dimensions. First, we propose a new reli-
ability scoring function based on the random forest proximities,
in addition to the one based on the variance of the votes of the
ensemble members. Second, we propose four strategies for ob-
taining a single global score from the per-target scores. Third, we
propose an oracle score to test the performance bounds of the
self-learning paradigm. Fourth, we propose an algorithm for the
automatic selection of the threshold for reliability of predictions.
Fifth, we consider a more sophisticated stopping criterion for self-
training, which automatically stops learning if the performance be-
gins to degrade. Finally, the empirical evaluation is performed on a
larger collection of MTR datasets.

The remainder of the paper is organized as follows. In the next
section, we present the background of the work presented here.
This includes a discussion on related work on the topics of MTR
and SSL, and a brief description of the predictive clustering frame-
work. Next, in Section 3 we describe the self-training approach and
the proposed reliability scores for MTR. The experimental design
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and key experimental questions are outlined in Section 4. The re-
sults of the empirical investigations are presented and discussed
in Section 5. Finally, we draw the main conclusions and give direc-
tions for further work in Section 6.

2. Background
2.1. Related work

Within SSL, there are different classes of algorithms [16]:
low-density separation methods, graph-based methods, generative
models, and methods based on iterative training. The last group
of methods consists of two main paradigms: self-training and co-
training. These paradigms have established themselves as the main
approaches to SSL for practical reasons: They are based on a con-
venient extension of existing supervised methods towards SSL.

Self-training [16] and co-training [25] are iterative approaches
that, in addition to labeled data, use unlabeled data and their
own predictions of its labels, in the learning process. The latter
approach trains models on independent feature sets (i.e., views):
These models help one another to avoid biasing to their own
prediction errors. In this paper, we are concerned with the self-
training paradigm and thus introduce it in more detail.

Self-training was first proposed by Yarowsky [26] for word
sense disambiguation. Since then, it has had a number of success-
ful applications, including detection of objects in images [27,28],
identification of subjective nouns [29] and learning human motion
over time [30]. Abney [31]| and Haffari & Sarkar [32] proposed a
theoretical analysis of the self-training algorithm. It showed that
the self-training framework minimizes the same objective function
of the base model (but in a different way). In the specific case con-
sidered by the authors it minimizes a cross-entropy based objec-
tive function, given that the base model reduces the same objec-
tive function.

An overwhelming majority of studies relying on self-training to
perform SSL are concerned with the task of classification. How-
ever, there are handful of methods based on self-training (or co-
training) for the task of (single-target) regression [10-13]. Recently,
Sousa and Gama [33] proposed a self-training method based on
adaptive model rules for MTR from data streams [34]. To the best
of our knowledge, self-training has not yet been implemented for
the task of MTR in the batch learning setting.

Multi-label classification is a machine learning task somewhat
related to MTR. There the goal is to simultaneously predict multi-
ple binary labels, while in MTR the goal is to simultaneously pre-
dict multiple continuous variables. Contrary to MTR, several semi-
supervised methods for multi-label classification were previously
published [35-37]. However, such methods are not directly appli-
cable for MTR, and are thus not comparable to the method pro-
posed in this paper.

Independently of the self-training paradigm, MTR has recently
received increasing attention [38]. An early method for MTR was
proposed by Brown and Zidek [39] who adapted the standard
ridge regression to multivariate ridge regression. Later, Breiman
and Friedman [40] proposed the Curds&Whey method, where cor-
relations between the target variables are modelled in a post-
processing phase. Recently, several machine learning methods,
popular for regression, have been implemented also for the task
of MTR, such as decision trees [17,18], support vector machines
[21,22,41] and k-nearest neighbours [42]. Ensemble methods for
MTR include rule ensembles [43], bagging and random forests [14].
A different approach is followed by Tsoumakas et al. [44], who pro-
posed another ensemble-based method for MTR, where new target
variables are constructed as random linear combinations of exist-
ing target variables.

In principle, any of the listed MTR methods could be used
as the base model of self-training for MTR - given that a mea-
sure for the reliability of its predictions is defined. As already
noted in the introduction, our ideas for development of reliability
scores are based on the mechanisms provided by ensemble learn-
ing, and in particular by random forests. This is the main reason
why we choose random forests of PCTs for MTR [14] as base mod-
els for self-training. As self-training relies on its own predictions, a
method with state-of-the-art predictive performance, such as ran-
dom forests, is needed. Moreover, random forests of PCTs were
found to perform better than or comparable to other ensemble ap-
proaches for MTR, while being computationally efficient [43,44].

In this study, we propose several scoring functions for the re-
liability of MTR predictions based on the studies of Bosni¢ and
Kononenko [20] and Briesemeister et al. [45]. The first extensively
studies different reliability scores for regression, based on sensi-
tivity analysis, local cross-validation, analysis of the density of the
distribution of learning examples, and the variance of bagged mod-
els. The empirical evaluation highlighted the variance of bagged
models as the most successful reliability score. The second study
proposes a reliability score for regression predictions based on es-
timating the examples’ error by considering its local environment
in the training set. In a similar fashion, our reliability score also
considers the neighbourhood of the examples as defined by the
distance function intrinsic to random forests, and estimates errors
with out-of-bag examples.

2.2. Ensembles of predictive clustering trees for MTR

The basis of the semi-supervised method proposed in this study
is the use, in an ensemble learning fashion, of PCTs. In this section,
we first briefly describe PCTs for MTR, and then the method for
learning a random forest of PCTs. Both are described in more detail
in Kocev et al. [14].

2.2.1. Predictive clustering trees for MTR

The PCT framework views a decision tree as a hierarchy of clus-
ters, where the top-node corresponds to one cluster containing all
data. This cluster is recursively partitioned into smaller clusters
while moving down the tree. The PCT framework, including PCTs
for MTR and ensembles thereof, is implemented in the CLUS sys-
tem [14], available at http://sourceforge.net/projects/clus.

PCTs are induced with a standard top-down induction of decision
trees (TDIDT) algorithm, which takes as input a set of examples E
and outputs a tree. The heuristic that is used for selecting the tests
to put in internal tree nodes is the reduction in variance caused
by partitioning the examples according to the tests. By maximizing
the variance reduction, the cluster homogeneity is maximized and
the predictive performance is improved.

The main difference between the algorithm for learning PCTs
and a standard decision tree learner is that the former considers
the variance function and the prototype function (that computes
a label for each leaf) as parameters that can be instantiated for
a given learning task. So far, PCTs have been instantiated for the
following tasks [14]: multi-target prediction (which includes MTR),
hierarchical multi-label classification and prediction of time-series.
In this article, we focus on the task of MTR.

The variance and prototype functions of PCTs for MTR are in-
stantiated as follows. The variance is calculated as the sum of the
variances of the target variables, i.e., Var(E) = ZL Var(Y;), where
T is the number of target variables, and Var(Y;) is the variance of
target variable Y;. The variances of the targets are normalized, so
each target contributes equally to the overall variance. The normal-
ization is performed by dividing the estimates with the standard
deviation for each target variable on the available training set. The
prototype function (calculated at each leaf) returns as a prediction
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the vector of mean values of the target variables, calculated by us-
ing the training examples that belong to the given leaf.

2.2.2. Ensembles of predictive clustering trees

We consider random forests of PCTs for structured output pre-
diction, as implemented by Kocev et al. [14] in the CLUS system.
The individual PCTs in a random forest are constructed by the
approach proposed by Breiman [19]. A random forest is an en-
semble of trees, where diversity among the predictors is obtained
by using bootstrap replicates of the training set (as in bagging)
and by changing the set of descriptive attributes during learn-
ing. Bootstrap samples are obtained by randomly sampling train-
ing examples, with replacement, from the original training set, un-
til an equal number of examples as in the training set is sampled.
Breiman [46] showed that bagging can give notable gains in pre-
dictive performance, when applied to unstable learners (for which
small changes in the training set result in large changes in the pre-
dictions), such as classification and regression tree learners.

To learn a random forest, the classical PCT algorithm for tree
construction is randomized by replacing the standard selection of
attributes with a randomized selection. More precisely, at each
node in a decision tree, a random subset of the descriptive at-
tributes is taken, and the best attribute is selected from this sub-
set. The number of attributes that are retained is given by a func-
tion f of the total number of descriptive attributes D (e.g., f(D) =
[logz (D) +1]).

In random forest of PCTs, the prediction for a new example is
obtained by combining the predictions of all PCTs in the forest. For
the MTR task, the prediction for each target variable is computed
as the average of the predictions for that target variable obtained
from each tree in the forest.

3. Self-training for MTR with ensembles of PCTs

In this section, we present our approach to semi-supervised
learning for the task of MTR. The approach is based on the pre-
dictive clustering framework and the self-training paradigm. In a
nutshell, the proposed approach works as follows. To begin with,
a predictive model (i.e., a random forest of PCTs) is constructed
by using all of the available labeled examples (the training set).
Next, the predictive model is applied to the unlabeled examples,
i.e., it produces labels for the unlabeled examples. The examples
with the most reliable predictions are then selected and added to
the training set. Next, a new predictive model is constructed using
the updated training set. The learning algorithm continues until a
stopping criterion is satisfied. The pseudo-code of the self-training
algorithm for MTR with ensembles of PCTs (named CLus-SSL) is
outlined in Table 1.

In the description of the CLus-SSL algorithm, three key notions
require a precise definition: the reliability scoring function, the
threshold on the reliability scores and the stopping criterion. First,
self-training relies strongly on the assumption that its own (most
reliable) predictions are correct. Hence, the most crucial part of the
algorithm is to define an appropriate reliability scoring function. A
good reliability scoring function should be able to discern correct
predictions (thus assigning them high scores) from wrong predic-
tions (thus assigning them low scores).

We define the reliability score of a predictive model M as a
function:

Reliability™ : E, — [0, 1], (1)

where E; is a set of unlabeled examples. For a given example e ¢
Ey, Reliability™ (e) denotes an estimate of the probability that the
prediction M¢(e) is correct, i.e., the reliability score is a kind of a
proxy for the accuracy of the prediction.

Table 1

The learning algorithm for self-training with random forests of
PCTs (CLus-SSL). Here, E; is a set of the labeled examples, E,
is a set of unlabeled examples, k is the number of trees in the
forest, D is the total number of descriptive attributes, f(D) is a
function which gives the size of the feature subset for random
forests considered at each node during tree construction, and t
is the threshold for the reliability of predictions.

procedure CLUS-SSL(E,, E,, 7, k, f(D))
returns Forest

1: repeat

2 F = RForest(Ey, k, f(D))

3 E; = predict(F, E,)

4 for each ¢, € E;, do
5: if Reliability? (e,) > 7 then
6: move ¢, from Ej, to E;
7 drop e, from E,,
8: until stopping_criterion()
9: return F

Next, a user-defined threshold (z e [0, 1]) on the reliability
score needs to be set to select the unlabeled examples that should
be added to the training set. If the reliability of the prediction for
an unlabeled example is greater than t, the example is moved
from the unlabeled set (E;) to the training set (E;), together with
the predicted values of its target variables. This procedure is iter-
ated until the stopping criterion is met (see Section 3.5 for more
details on stopping criteria).

Within each iteration of the self-training algorithm (see
Table 1), we solve a MTR problem with m continuous targets. The
existing reliability scoring functions are tailored for single-target
problems [20]. We propose to calculate the reliability scores for a
given unlabeled example as follows. We first calculate m per-target
reliability scores, i.e., we apply a reliability scoring function to each
of the targets separately. Next, the m reliability scores are aggre-
gated into a single reliability score. The threshold 7 is then applied
to the aggregated reliability score. We explore two aggregation
schemes for the per-target reliability scores: averaging-based and
minimum-based aggregation. The averaging-based scheme consists
of simple averaging of the per-target reliability scores, whereas the
minimum-based aggregation scheme is more conservative. There,
the examples’ prediction is considered as reliable as the prediction
of its least reliable target. The two aggregation schemes are defined
as follows:

Reliabilitya,(e) = % " Reliability;(e), (2)
i=1

Reliabilityy;, (e) = rPinm (Reliability; (e)). (3)
i=1,...,
where Reliability;(e) is a normalized (in [0,1]) reliability score for
the ith target variable of an example e.
We consider two strategies of normalization of per-target
scores: min-max normalization and ranking-based normalization.
Formally:

Reliability, " (e.)
_ Reliability;(e,) — min;_; g, Reliability;(e;) (4)
a max;_;._ g, Reliability;(e;) — min;_q | Reliability;(e;)’
mﬁ?ank () =1-— Rank;(Reliability;(e,)) — 1 5)

|Eul -1 ’

where Reliability;(e,) is the reliability score for the ith target vari-
able of the example ey, |Ey| is the number of unlabeled examples,
and the Rank; function gives ranks to unlabeled examples accord-
ing to the reliability scores of the ith target variable.
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Table 2

An illustrative example of using the procedure for calculating of the reliability
scores according to different aggregation and normalization schemes. The same ex-
amples eq, e, and e; are used in both the upper and lower part of the Table.

Normalized per-target reliability scores

Reliability scores Aggregated scores

Reliabilityyy™, . Reliability}y":

ReliabilityYe™  Reliability}ye™

1.2 Min
ey 08 0.1 08401 _ 045 01
e, 03 05 03305 _ 0 4 03
es 09 04 09504 _ 0 65 04

Ranked per-target reliability scores

Reliability scores Aggregated scores

Reliabilityfek  Reliability5e ReliabilityRark ReliabilityRamk

1.2 Avg 1.2 Min
ep 1-=l=05 1-3%xl=0 0540 _ 025 0
e 1-3l-0 1- = =1 %l -05 0
es 1-1l-1 1-=l =05 1305 _ .75 05

The use of the ranking-based normalization strategy is moti-
vated by the following. It can happen that the distributions of the
per-target scores can be very different, thus introducing different
biases to the aggregated reliability score. Ranking-based normal-
ization, instead of considering the absolute values of the per-target
reliability scores (as in min-max normalization), considers the rela-
tive differences between the per-target ranks. Issues related to the
different distributions for different target variables are illustrated
in Fig. 4 and discussed in more detail in Section 5.

In Table 2, we give an illustrative example of the procedure for
calculating the reliability scores according to the previously de-
fined aggregation schemes and normalization strategies. The task
considered in this example is a MTR task with two target variables.
Let us take three examples eq, e; and e, with their per-target reli-
ability scores (0.8, 0.1), (0.3, 0.5) and (0.9, 0.4), respectively. These
scores are used to calculate four different reliability scores, with
respect to the two different normalization schemes (min-max nor-
malization and ranking-based normalization), and the two differ-
ent aggregations schemes (averaging-based and minimum-based
aggregation).

First, based on the (min-max) normalized reliability scores, we
show the aggregation of the reliability scores using averaging-
based and minimum-based aggregation. We see that with the av-
eraging aggregation the examples have the order es, eq, e;, while
with the minimum aggregation the examples have the es, e;, e (as
illustrated in the last two columns of the upper part of Table 2).

Second, using the ranking of the per-target reliability scores and
Eq. (5), we produce the ranking-based per-target scores (illustrated
in the first column in the lower part of Table 2). For the first target,
the order of the examples is es, ey, e;, while for the second tar-
get the ordering is e, e3, e;. We next aggregate these scores using
the two aggregation schemes and obtain the following orderings:
for the averaging-based aggregation, the order is es, e, eq, for the
minimum based aggregation es is top-ranked, while e, and e; are
tied.

The reliability scores for MTR (Reliability;(e)) are obtained by
exploiting some mechanisms provided directly by the ensemble
learning paradigm. More specifically, we define two scores based
on (1) the variance of the votes of the base predictive mod-
els in an ensemble and (2) random forest proximities [19]. We
also propose two benchmark scores: a random and an oracle
score. While the random score assigns random reliability scores
to the examples, the oracle score assigns reliability scores based
on the true labels of the unlabeled data (see Section 3.3 for more
details).

These two benchmark scores determine the potential of the
self-training approach and of the reliability scoring function. The

random score provides information on whether using reliability
scores improves the predictive performance of self-training or not.
If the use of a random reliability scoring function yields similar re-
sults as the use of a non-random reliability scoring function, this
means that the reliability scoring function is not useful. The or-
acle score provides insight into whether the performance of self-
training improves if the ‘true’ reliabilities of the predictions are
given.

The four reliability scores (variance score, random forest prox-
imity score, random score and oracle score), coupled together with
the two aggregation schemes (avg and min) and two normaliza-
tion schemes (norm and rank) yield to 13 reliability scores in to-
tal (the different aggregation/normalization schemes lead to the
same results for the random score). The various reliability scor-
ing functions are explained in more detail in the remainder of this
section.

Finally, we emphasize that self-training is, in principle, a
generic approach. We argue that the instantiation of self-training
proposed in this study is effective specifically for the task of MTR,
due to the (1) base model we use (i.e., random forest of PCTs),
which was shown to successfully handle MTR [14], and (2) the pro-
posed reliability scoring functions, developed specifically for the
predictions of this base model. Obviously, self-training could be ex-
tended to types of structured outputs other than MTR, given ap-
propriate base models are used, and reliability scoring function are
properly defined for the prediction of these models.

3.1. Variance score

The variance score exploits the voting mechanism of the en-
semble model [47]. Namely, when a prediction is made for an un-
labeled example by a random forest, we consider it reliable if the
predictions of the individual trees in the ensemble are coherent.
This variance measure has been previously used in the context of
bagging, where it was found to perform the best among a vari-
ety of approaches for estimating the reliability of regression pre-
dictions (in an extensive empirical comparison [20]).

In each iteration of our self-training approach, a random forest
M with k PCTs is built. The PCTs are trained on a set of labeled ex-
amples E; and applied to a set of unlabeled examples E,. First, for
each unlabeled example e, € E,, the per-target standard deviation
ri, of votes of the ensemble is calculated as:

) 1 K ) ) 2,
= 1 > (treet(es) — Mi(en))”, i=1,....m, (6)
i

where rreez. (ey) is the vote (i.e., prediction) for e, returned by the

jth tree for the ith target, M! is the prediction for e, returned by
the ensemble for the ith target (i.e., the average of the votes across
all trees for the ith target), and m is the number of target variables.

In this case, in order to give high reliability scores for small
standard deviation we define:

Reliability;(ey) = —r%, i=1,...,m, (7)

This reliability score can be theoretically motivated by the prop-
erties of variance. In fact, the variance represents (informally) how
much the predictions differ from the mean. If we assume that the
errors of the ensemble are distributed according to a normal dis-
tribution (this assumption is reasonable for most of the ensemble
learning approaches and follows the central limit theorem [48]), rf,
can be considered as a good approximation of the variance of the
errors, which we can directly associate to the concept of reliability.
Actually, our approach follows some previous studies [20] where
the variance of predictions obtained by bagging of artificial neural
networks was used to estimate reliability.



46 J. Levatic et al./Knowledge-Based Systems 123 (2017) 41-60

Combining this reliability score with the two normalization
schemes and with the two aggregation schemes leads to four con-
figurations, named VarianceNormAvg, VarianceNormMin, VarianceR-
ankAvg and VarianceRankMin.

3.2. Random forest proximities score

This reliability scoring function relies heavily on the random
forest inner mechanisms. More specifically, we exploit two such
mechanisms: the measure of proximity between examples and the
out-of-bag error estimation. A random forest has an intrinsic prox-
imity measure [19]: For two examples e and f, proximity p(e, f) is
defined as the proportion of trees in the forest where e and f end
in the same leaf.

When constructing ensembles from bootstrap replicates of the
training data, the performance can be estimated using the out-of-
bag error, i.e., the error on the examples that were not used to con-
struct the individual base models. Breiman [49] presented empiri-
cal evidence that the out-of-bag error is a very accurate estimate
of a nodes’ errors in a regression tree. More generally, out-of-bag
error is a good estimate of the error which an ensemble model will
make on unseen examples.

We propose to join these two mechanisms (proximity between
examples and out-of-bag error estimation) into a reliability scoring
function. Namely, we extrapolate the expected error of unlabeled
examples by using the out-of-bag errors of the labeled examples in
their proximity. In this way, we obtain an estimate of the ensem-
bles’ predictive performance (and conversely error) for that exam-
ple. In particular, we first compute the out-of-bag error for each la-
beled example and then, for each unlabeled example, we calculate
its proximities to all the labeled examples. If the unlabeled exam-
ple e, often falls in the same leaf with a labeled example e, (i.e.,
p(ey, €) is high), according to the above discussion, the out-of-bag
error of the labeled example e; is a good estimate of the error of
the unlabeled example e,. Thus, if the out-of-bag errors of labeled
examples in the close proximity of the unlabeled example e, are
low, then it is expected that the error of e, will also be low (i.e.,
the prediction is correct).

More formally, the per-target expected error (expErri,) for each
example (e, € Ey) is calculated as follows:

expErry, = Y (p(eu. ) - O0BErrori(e)). i=1,....m, (8)

eck

where OOBError;(e;) is the out-of-bag error for the ith target of the
labeled example e, m is the number of targets and p(., -) is the
proximity function.

Our reliability scoring function based on the random forest
proximities is similar to reliability estimation based on local neigh-
bourhoods [20] - both functions consider the local neighbourhood
of an example to estimate the reliability of its prediction. How-
ever, none of the scores there takes prediction errors into account.
Briesemeister et al. [45] proposed a reliability estimate based on
the errors in the local environment in the training set. This method
is model-independent and requires estimation of errors on the
training set, optimization of the number of neighbours and calcula-
tion of distances among examples. In contrast, the score proposed
in this paper is tailored to random forests and adds no additional
computational overhead, except for counting the number of times
a pair of examples ended in the same leaf.

As an error measure for OOBError;(e;), we use the root-mean-
square error (RMSE). Moreover, in order to give high reliability
scores for small out-of-bag errors, we define:

i=1,...,m, (9)

Combining this reliability score with the two normalization
schemes and the two aggregation schemes leads to four configura-

Reliability;(e,) = —expErr!,

tions, named as RForestProxNormAvg, RForestProxNormMin, RForest-
ProxRankAvg and RForestProxRankMin.

3.3. Benchmark reliability scores

To assess the potential of the self-training paradigm and the re-
liability scoring function, we propose two benchmark scores: the
random and the oracle scores. When self-training is performed
with the random score, unlabeled examples are added to the train-
ing set in a random order. With the oracle score, they are added in
the best possible order, that is, examples where the model makes
the smallest actual error are added first. A good reliability score
for self-training yields performance better than that of the random
score, and as close as possible to the one of the oracle score. The
random score assigns a random number between 0 and 1 to each
unlabeled example.

For this purpose, we generate pseudo-random numbers accord-
ing to the uniform distribution in [0,1]. New random scores are
generated at each iteration of self-training and are assigned to the
examples remaining in the unlabeled set.

The oracle score is defined on the basis of the actual error a pre-
dictive model makes on unlabeled examples. The SSL algorithms
are typically evaluated by using the set of entirely labeled data,
where unlabeled data are simulated by temporarily ignoring the
labels. Knowing the exact labels of all data enables us to measure
the errors made on the unlabeled data. Note that this score can
not be used in practical applications of SSL. We use this score to
assess how far the proposed reliability scoring functions are from
the theoretically optimal score.

The oracle score is calculated as follows. In each iteration of
self-training, predictions are made for the unlabeled examples. For
each unlabeled example, we measure its per-target errors using the
predicted and the real labels. The obtained per-target errors are
then normalized to [0, 1] the same way as in the other two re-
liability scores, so that small (per-target) error leads to high (per-
target) reliability.

Random reliability scores and oracle reliability scores with the
two normalization schemes and the two aggregation schemes lead
to five configurations, named Random, OracleNormAvg, OracleNorm-
Min, OracleRankAvg and OracleRankMin.

3.4. Automatic threshold selection

Once the predictions on unlabeled examples are made and reli-
ability scores are calculated, it is necessary to choose the examples
which will be considered as training examples in the next iteration
(i.e., the ones with reliable predictions). For this purpose, a thresh-
old on the reliability scores is needed. In Section 5, we demon-
strate that a properly selected threshold is of great importance for
the optimal performance of the self-training approach. If an inap-
propriate threshold is selected, such that it allows examples with
erroneous predictions to enter the training set, the performance of
self-training can deteriorate.

In this work, we propose an approach to automatically identify
a an appropriate threshold for the reliability of predictions. A sim-
ple solution, already proposed and empirically evaluated for simple
binary classification in [50], is to select 10% of the most-reliable
predictions and use the mean of their reliability score as a thresh-
old. Henceforth, we will call this solution Tavg10%. A variant of this
solution is to include the top 10% most-reliable predictions in the
next iteration. Henceforth, we will call this solution Ttop10%. Note
that, we adapted these procedures for the task of MTR.

A more sophisticated alternative, which we propose in this pa-
per, is to simultaneously exploit the errors and reliability scores of
out-of-bag examples. In particular, at each iteration of self-training,
out-of-bag reliability scores for labeled examples are calculated.
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Table 3

The learning algorithm for self-training with automatic threshold selection based on out-of-bag errors (CLus-SSL-AuTo). Here, E; is a set of labeled examples, E,
is a set of unlabeled examples, k is the number of trees in the forest, D is the total number of descriptive attributes, f{D) is a function which gives the size of
the feature subset for random forests considered at each node during tree construction, and initial is an indicator variable specifying whether the threshold is

automatically selected only after the first iteration of throughout all the iterations.

procedure CLUS-SSL-Auto(E;, E,, k, f(D), initial)
returns Forest

oinal
1: E;}rlgma :El

2: repeat

3: F = RForest(Ey, k, f(D))

4: E!, = predict(F, E,)

5: if initial = false or (initial = true and isFirstlteration()) then
6: 7 = automaticOOB(F, E;”igi"a[)

7 for each ¢, € E;, do

8: if Reliability” (¢,) > 7 then

9: move ¢, from Ej, to E;

10: drop e, from E,,

11: until stopping_criterion()
12: return F

procedure automaticOOB(Forest, E)
returns Threshold

1: OOBErrAll = getOOBErrors” (E)

2: reliabilityScores = ReliabilitySOB(E)

3: sortDescending(reliabilityScores)

4: for each 7’ € reliabilityScores do

5 E’ ={e € E | Reliabitliyf) ) .(e) > 7'}

6: OOBErrSubset = getOOBErrors’ (E”)

7 p-value = t-test(OOBErrAll, OOBErrSubset)
8 if p-value < 0.05 then
9 return 7’
10: return 0

Out-of-bag reliability scores of labeled examples are calculated in
a similar way as the reliability scores of unlabeled examples, with
the difference that, for each labeled example, only the trees for
which that example was out-of-bag are considered. Then, for each
candidate threshold on the reliability score, our approach evaluates
if the mean of the out-of-bag error between the examples with re-
liability score greater than the considered threshold is significantly
different (according to a statistical test) from the mean of the out-
of-bag error of all the examples. Note that, in this procedure, we
use only 'original’ labeled examples, i.e., unlabeled examples which
are added to the training set are not considered.

The basic idea is that, at each iteration, the algorithm should
select the threshold such that examples with reliability scores
greater than the threshold contribute to significant reduction in er-
ror. Candidate thresholds are all the out-of-bag reliability scores of
labeled examples, taken in descending order. When the test ac-
cepts the hypothesis that the means are different, the algorithm
stops and returns the last considered threshold. The threshold
found is such a way is then applied to select unlabeled examples
to be added to the training set. If statistical significance cannot be
reached for any of the candidate thresholds, the algorithm returns
0, meaning that all of the unlabeled examples will be added to the
training set at the next iteration.

The statistical test we consider is the two sample t-test for
equal means (with a significance level of 0.05). In this algorithm
for automatic threshold selection, we do not only consider trees
(of the random forest) obtained at the last iteration, but all the
trees obtained over all the considered iterations, thus guarantee-
ing stability of the threshold values. Henceforth, we will call this
solution T_OOB and we will compare this solution with the vari-
ant T_OOBInitial that determines the threshold only after the first
iteration of the self-training framework, and uses this threshold
throughout all the following iterations. The pseudo-code of the
self-training method with the proposed algorithms for automatic
threshold selection is presented in Table 3.

3.5. Stopping criteria

In this work, we consider two different stopping criteria for
self-training. The first one is the commonly used stopping crite-
rion which stops self-training if no unlabeled example is moved
from the set of unlabeled examples (E,) to the training set (E;).
This stopping criterion is satisfied when one of the following con-
ditions is met: (1) the reliability scores for all the unlabeled ex-

amples are lower than the threshold, or (2) all unlabeled examples
have been moved to the training set.

The second stopping criterion we consider, named Airbag [28],
is designed to automatically stop the self-training procedure in
the case of predictive performance degradation. This criterion has
been evaluated on simple classification tasks, while here we con-
sider it for MTR tasks. At each iteration, the out-of-bag error of the
model is recorded. If an increase in the out-of-bag error is detected
from one iteration to the next one, then the self-training proce-
dure does not continue, the current model is discarded, and the
model learned in the previous iteration is considered as the final
model. Similarly to the procedure for automatic threshold selec-
tion (Section 3.4), the calculation of the out-of-bag error is based
on the ’original’ labeled examples (and not on examples labeled
during the self-training procedure). Note that, in the case of Airbag
stopping criteria, the first stopping criterion is also used in con-
junction.

3.6. Computational complexity

The computational complexity of the self-training approach is
the product of the number of iterations and the complexity of
learning the base predictive model at each iteration. The theoreti-
cal upper bound for the number of iterations is equal to the num-
ber of unlabeled examples, assuming one unlabeled example is
added to the training set per iteration. Note that this upper bound
is typically never reached.

The complexity of learning the base model in this study, i.e.,
training random forests for predicting structured outputs, depends
linearly on the number of decision trees, logarithmically on the
number of descriptive attributes and NlogN on the number of
training instances [14]. Note that (1) the number of training in-
stances is not constant in self-training, as it increases with each
iteration when unlabeled examples are added to the training set
and (2) the cost of the automatic threshold selection algorithm is
linear in the number of training instances N.

4. Experimental design

In this section, we first describe the datasets used in the exper-
imental evaluation. Next, we present the performance metrics, the
evaluation procedure and the specific parameter settings of the al-
gorithms. Finally, we state the main experimental questions of the
study and describe the strategies used to answer them.
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Table 4

Characteristics of the datasets. N: number of in-
stances, D/C: number of descriptive attributes (dis-
crete/continuous), T: number of target variables.

Dataset (Reference) N D|C T
RF1 [51] 9125 0/64 8
SCM1D [51] 9803 0/280 16
SCM20D [51] 9803 0/61 16
SIGMEA real [52] 817 0/4 2
SIGMEA simulated [52] 10,368 2/9 2
Soil quality [4] 1944 0/142 3
Solar flare-2 [53] 1066 10/0 3
Vegetation condition [6] 16,967 1/39 7
Water quality [54] 1060 0/16 14

4.1. Data description

We use nine datasets with multiple continuous target variables
to evaluate the predictive performance of the proposed methods.
The datasets come from two different domains: environmental sci-
ences and economy.

The majority of the data are from the area of environmental
sciences. To begin with, the task in the RF1 dataset is to predict
river network flows 48 h ahead. Next, the SIGMEA real and SIG-
MEA simulated datasets consist of data about pollen dispersal rates
on fields with genetically modified oilseed rape. Furthermore, the
Soil quality and Water quality datasets concern habitat modelling of
soil and water microorganisms, respectively. Next, the Solar flare-2
dataset is about the number of solar flares of a certain class that
occur over a 24 h period. Finally, the Vegetation condition dataset
contains remote sensed vegetation data. From the domain of econ-
omy, we consider the SCM1D and SCM20D datasets, where the task
is to predict the price of 16 products for the next day and their
mean price over the next 20 days, respectively. We can observe
(see Table 4) that the datasets vary in their size, number of at-
tributes and number of target variables.

4.2. Experimental setup and evaluation procedure

The SSL method for MTR proposed in this study (CLus-SSL) it-
eratively trains random forest ensembles for MTR. Hence, we com-
pare the predictive performance of the self-training approach to
the performance of a supervised random forest (CLUS-RF) - a base-
line in the experimental evaluation. Additionally, we compare the
proposed self-training approach to supervised multi-output sup-
port vector regression! (MSVR) [21,22]. A schematic representation
of the self-training pipeline is presented in Fig. 1.

In all of the experiments, we construct random forests con-
sisting of 100 predictive clustering trees for MTR. The trees are
not pruned and the number of random features at each internal
node is set to |log,(D) + 1|, where D is the total number of fea-
tures [19]. We used MSVR with a radial basis kernel while opti-
mizing the C (275,273, ..., 2BYand o (272,271, ..., 27) parameters
in a grid search procedure by performing 10 fold cross-validation
on the labeled part of the data. The epsilon parameter was fixed
(e =0.001) [55].

The experimental evaluation uses different amounts of labeled
data for both the supervised and SSL methods. To this end, we vary
the proportion of labeled data used. The ratio of labeled (relative
to unlabeled) data ranges in the following set: [1%, 5%, 10%, 15%,
20%, 30%, 50%].

For the CLus-SSL algorithm, a threshold t on the reliability
score needs to be set. In order to estimate the potential perfor-
mance of the various reliability scoring functions (independently

1 https://github.com/wjb19/mimo-svr.

from the threshold), we consider 15 manually defined thresh-
olds: T ={0.1, 0.2, 0.3, 0.4, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85,
0.9, 0.95, 0.99}, resulting in 15 executions of the CLus-SSL algo-
rithm. From these executions, we report the best predictive perfor-
mance. Obviously, we also evaluate performances obtained when
the threshold is automatically set according to the four algorithms
described in Section 3.4 (baselines: Tavg10%, Ttop10%; our algo-
rithms: T_OOBInitial and T_OOB). For these four algorithms, we
also investigate the effect of the Airbag stopping criterion.

The labeled data used for training the predictive models (both
supervised and semi-supervised) are randomly selected from the
available training data, while the remaining examples serve both
as unlabeled data and as a test set. Namely, we temporarily re-
move their labels and provide the examples to the algorithm to
serve as unlabeled data during training. At the end of self-training,
the performance of the obtained model is evaluated on the test set
composed of the unlabeled examples with the true labels restored
(i.e., we consider a transductive-learning-setting). For fair compari-
son, supervised random forests are trained only on the labeled part
of the data and evaluated on the same test set.

Note that the performance of self-training depends on the dis-
tribution of the initial labeled training data. For this reason, the
performance of semi-supervised methods is, in general, known to
be domain dependent [56]. To evaluate the robustness of our ap-
proach to the effect of possible different distributions of the la-
beled data, we repeated the random selection of labeled data (as
described above) 10 times with different random initialization,
to create 10 different labeled training sets. The predictive perfor-
mance reported in the results is the average of the performance
values obtained from the 10 runs.

We assess the predictive performance of the algorithms by us-
ing the root-mean-square-error (RMSE) defined as follows: RMSE =

N % > RMSEiz, where m is the number of target variables and

RMSE; is root mean square error of the ith target variable.

To investigate whether the observed differences in performance
among the methods are statistically significant, we follow recom-
mendations given by Dems3ar [57]. More specifically, to statistically
compare the predictive performance of two methods over multi-
ple datasets, we use the Wilcoxon signed ranks test [58], while for
comparison of multiple methods, we use the corrected Friedman
test and the post-hoc Nemenyi test [59]. We present the result
from the Nemenyi post-hoc test with an average ranks diagram.
The ranks are depicted on an axis, in such a manner that the best
ranking algorithms are at the right-most side of the diagram. The
algorithms that do not differ significantly (in performance) for a
significance level of 0.05 are connected with a line.

All experiments were performed on a computer cluster which
has 44 nodes and 984 central processing units (CPUs) in total: 9
nodes with 16 CPUs with an AMD Opteron processor at 800GHz on
64GB of RAM with the Fedora 24 operating system, 10 nodes with
24 CPUs with an AMD Opteron processor at 1900GHz on 128GB
of RAM with the Fedora 24 operating system, and 25 nodes with
24 CPUs with an AMD Opteron processor at 1400GHz on 256GB of
RAM with the Fedora 24 operating system. The CLus-SSL and CLus-
RF algorithms are implemented in the Java programming language
(version 1.6.), while MSVR is implemented in the C++ programming
language.

4.3. Experimental questions

The principal goal of SSL is to improve the predictive perfor-
mance of supervised learning by exploiting the information con-
tained in unlabeled data. Therefore, the first question we want to
answer in this study is: Can self-training with any of the proposed
reliability scores for MTR improve over the performance of supervised
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Fig. 1. The self-training approach to MTR. The left panel gives a schematic representation of the self-training approach, with all of its components. The right panel summa-
rizes all of the possible choices we consider with respect to reliability scores, thresholding procedures, and stopping criteria.

learning? We address this question by comparing the predictive
performance of the proposed method with the predictive perfor-
mance of a supervised random forest.

If the answer to the first question is favourable, we are then in-
terested in the following two questions: (1) Is the performance in-
crease due to the usage of reliability scores?, and (2) Which reliability
score produces the largest improvement in performance? To this end,
we compare the proposed reliability scores (variance-based and
ranking-based) to the benchmark scores (random score and oracle
score). For question (1), we compare the performance of the pro-
posed reliability scores with the performance obtained using ran-
dom scores. If the proposed reliability scores have better predic-
tive performance than random scores, then it is worthwhile to use
a reliability scoring function and to look for an optimal function
for this purpose. As for question (2), we compare the performance
of the proposed reliability scores with the performance obtained
using oracle scores. We expect that the oracle score performs best
and we are optimistic that the performance of the proposed reli-
ability scores is reasonably close to the performance of the oracle
score.

Finally, we address the following question: Is an automatic
threshold selection algorithm able to exploit the advantage (if any)
introduced by the reliability scores used in self-training? To answer
this question we evaluate the four different automatic threshold
selection algorithms implemented in CLUS-SSL and compare them
with the supervised random forest.

5. Results and discussion

In this section, we present the results obtained from the empir-
ical evaluation of the various reliability scoring functions. We first
present the evaluation of the methods’ performance obtained us-
ing various portions of the data as training. Second, we compare
the performance of SSL (CLus-SSL) with the best performing reli-
ability score with supervised learning (CLus-RF and MSVR). Third,
we illustrate a complete run of the CLus-SSL method on a single
dataset. Next, we compare the performance of CLus-SSL with su-
pervised learning (CLus-RF and MSVR) when automatic threshold
selection algorithms are used. Finally, we examine the per-target
performance of the proposed method. In this section we only re-
port summarized results: The complete and raw results are re-
ported in Appendix.

The first results we present are summarized in Figs. 2 and
Fig. 3. Fig. 2 gives the statistical evaluation of the performance of
various methods using different portions of labeled data. The Ne-

menyi post-hoc analysis is performed for each portion of labeled
data separately. Fig. 3 summarizes the average rank diagrams and
presents a global overview of the experimental evaluation. More
specifically, this figure is obtained by plotting the multiple criti-
cal diagrams from the Nemenyi post-hoc test (from Fig. 2) jointly
as follows. On the x-axis we depict the percentage of labeled data
used, while on the y-axis we depict the average rank of a given
method when applied to such data. These lines should not be
treated as curves but as a parallel coordinate representation of the
results of the statistical analysis. Fig. 3 thus facilitates easier inter-
pretation and understanding of the statistical analysis.

From the results, we can make several interesting observations.
First of all, a major conclusion is that using unlabeled data (SSL)
clearly improves the predictive performance of supervised ran-
dom forests (CLUs-RF). Moreover, SSL using the benchmark ora-
cle score with ranking-based aggregation (OracleRankAvg and Or-
acleRankMin) is statistically significantly better than the supervised
method in all of the settings with different percentages of labeled
data. Furthermore, as hypothesized, the results of the proposed
reliability scores are bounded by the results of the benchmark
scores: Random is always ranked the lowest, while OracleRankAvg
and OracleRankMin are always ranked the highest (Fig. 3). Finally,
as expected, CLus-RF and Random show similar behaviours.

A comparison of supervised and semi-supervised random
forests to support vector regression (MSVR) reveals that both su-
pervised and semi-supervised random forests outperform MSVR by
a large margin. MSVR is better than CLus-SSL and CLus-RF only on
1 out of 9 datasets (Soil quality), while on the other 8 datasets,
random forests are superior to MSVR across all percentages of la-
beled data (Tables A.9-A.15).

Next, we examine the contributions of the specific reliability
scoring functions to the predictive performance (Fig. 3). All the
proposed reliability scores (in all their variants) perform better
than the Random score. This observation confirms that the used
estimators of the reliability of predictions help to discern cor-
rect from erroneous predictions. Considering this and the fact that
the oracle score with ranking-based averaging yields the best re-
sults, we conclude that instance selection in self-training for MTR
strongly influences the predictive performance. In other words, if
unlabeled instances are selected based on the reliability of their
predictions during self-training, rather than selected randomly,
better performance is achieved.

This finding is somewhat in disagreement with the empirical
evaluation of self-training and co-training performed in the con-
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Fig. 2. Average ranks diagrams for the performance of the supervised algorithms (CLus-RF and MSVR) and semi-supervised self-training with various reliability scores. The
percentage of labeled data varies from 1% to 50%. Each graph represents two different kinds of information: the ranking among the algorithms (the algorithms positioned
at the rightmost side of each graph are the best performing) and the statistical significance of the difference between pairs of algorithms (if their distance is less than the
critical distance (at p-value = 0.05) there is no statistically significant difference between the two). The critical distance for all diagrams is 7.14886.

text of classification by Guo et al. [60]. They concluded that se-
lecting the most confident unlabeled examples is not necessarily
superior to random selection. In our study, random selection typ-
ically led to degradation of performance of the base model, and
performed worse than the proposed reliability scores. Our results
suggest that a proper reliability measure (i.e., one able to discern
correct from erroneous predictions) will yield better performance
of self-training than random instance selection.

The better ranking of SSL methods with the proposed reliability
scores as compared to the supervised method is consistent across
the different percentages of labeled data. Reliability scores based
on the variance of votes of an ensemble, in most of the cases, per-
form better than reliability scores based on random forest prox-
imities. Among the variance-based reliability scores, VarianceNor-
mAvg is clearly one of the best performing. Moreover, the differ-
ence in performance between the two best scoring functions (Ora-
cleRankAvg and OracleRankMin) is not statistically significant.

The proposed reliability scores use two aggregation schemes
(average and minimum), and two normalization schemes (min-
max and ranking-based normalization) for the per-target scores.

The results suggest that the two aggregation schemes do not show
significant differences in performance. On the other hand, be-
tween the two normalization approaches, min-max normalization
is favourable, since VarianceNorm and RForestProxNorm are (in most
of cases) ranked better than their counterparts based on ranking
(VarianceRank and RForestProxRank). However, this is not the case
with the benchmark oracle score: OracleRank has better predictive
performance than OracleNorm. We find this to be an artefact of the
(skewed) distribution of errors on unlabeled examples. We further
illustrate this phenomenon in Fig. 4 for the RF1 dataset (similar
observations are made also for other datasets). In particular, we
report the frequencies of the RMSE errors discretized into bins in
Fig. 4a and b. We see that the distributions of per-target errors of
unlabeled examples are highly skewed, where few examples have
much higher errors than the rest of examples.

Next, recall that the oracle scores (OracleRank and OracleNorm)
are calculated by using the actual errors on unlabeled examples.
The OracleNorm reliability score averages (or takes the minimum
of) the normalized per-target errors, therefore, such distributions
of per-target errors yield reliability scores biased towards high re-
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Fig. 4. The distributions of per-target errors (discretized into bins) made on unlabled examples after the initial iteration of self-training are very skewed for the target
variables of the RF1 dataset when 10% of the data are labeled. These are depicted for the first two target variables (a, b), similar distributions are observed also for the other
six target variables of the RF1 dataset. The reliability scores (discretized into bins) for unlabeled examples calculated by averaging normalized per-target errors are biased
towards high reliability (c, e), while the scores calculated by averaging ranks of per-target errors are normally distributed (d, f).
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Table 5

Results of the Wilcoxon signed-rank test applied to the performance of self-training with VarianceNormAvg
reliability score and the performance of supervised random forest (CLus-RF) on the 9 datasets considered in
this study. In bold, we report significant p-values (< 0.05).

% Labeled 1% 5% 10% 15% 20% 30% 50%
p-value 15x105 17x10% 22x10° 4x10% 17x10% 42x105 48x10°6
liability scores (i.e., the majority of unlabeled examples are given Table 6

a reliability score close to one, Fig. 4c). In other words, during
the initial iterations of self-training, erroneously predicted unla-
beled examples are easily deemed reliable, and are thus likely to
be added to the training set. A prediction error made in early it-
erations of self-training can propagate itself in the next iterations,
leading to a degradation of the performance.

Regardless of the relatively poor performance of self-training
with the OracleNorm score, the reliability scores given by Ora-
cleNorm are still “oracle” scores, i.e., from two unlabeled examples,
the one with the smaller error will always get the higher reliability
score. It can be expected that fine tuning the reliability threshold
in the region of high reliability (from 0.9 to 0.99) would likely re-
sult in improved performance of OracleNorm. The OracleRank reli-
ability score does not suffer from this problem, since the ranks of
the per-target errors are averaged (and not the errors themselves),
which yields normally distributed (i.e., unbiased) scores (Fig. 4d).

An additional observation we can make from Fig. 4e and f is
that the frequency distribution of the (Norm and Rank) variance
reliability scores conforms to the frequency distribution of the cor-
responding (Norm and Rank) oracle reliability scores. This is an in-
dication that our reliability scores, in this particular dataset, ap-
proximate the real distributions of the errors and, thus, identify
the best predictions to be considered as reliable.

Based on this analysis, we select the best performing aggre-
gation scheme for each of the different types of reliability scores
(Variance, Random forest proximities and Oracle) as follows: Vari-
anceNormAvg, RForestProxNormMin and OracleRankMin. To better il-
lustrate the difference in the performance, we compare the per-
formance of these against the performance of supervised random
forests (CLus-RF) and random scores (Random). The results of the
statistical analysis (Friedman test and Nemenyi post-hoc analysis)
are given in Fig. Al. The findings from this simplified analysis con-
cur with the findings above.

As noted before, among the proposed reliability scores, one of
the best performing ones is VarianceNormAvg. To inspect if the dif-
ferences in performance at the various percentages of labeled data
between this reliability score and supervised learning (CLus-RF) are
statistically significant, we use the Wilcoxon signed-rank test. The
results of the Wilcoxon test are given in Table 5. They show that
self-training with VarianceNormAvg is statistically significantly bet-
ter than CLUS-RF (p-value < 0.05) for all percentages of labeled
data.

In order to demonstrate the possible effects of the value of
the reliability threshold on the performance of self-training, we
present an example of results obtained on the RF1 dataset by ap-
plying the different thresholds (Fig. 5). These results show that
selecting a too permissive threshold (i.e., smaller value for the
threshold) can allow wrongly predicted examples to enter into the
training set, leading to a degradation of the performance. For ex-
ample, if a threshold smaller than 0.85 on the VarianceNormAvg
reliability score at 1% of labeled data is chosen, a performance
worse than with the random instance selection can be observed
(Fig. 5). On the other hand, a too stringent threshold can prevent
self-training to learn from unlabeled data, i.e., self-training will not
improve the performance of supervised learning. For example, if
a threshold greater than 0.8 is set for the OracleRankAvg reliabil-

Average number of iterations (across the 9 dataset considered in this study) of the
self-training with different algorithms for automatic reliability threshold selection
and manual threshold selection (VarianceNormAvg).

Method Percentage labeled

1% 5% 10% 15% 20% 30% 50%
VarianceNormAvg 153 374 21.0 645 312 349 452
T_00B 223 423 368 352 347 349 311
T_OOB + Airbag 6.6 7.2 6.7 7.6 8.3 85 7.9
T_OOBInitial 212 675 496 513 521 583  40.0
T_OOBInitial + Airbag 34 35 35 32 32 31 2.8
Ttop10% 11.0 11.0 11.0 11.0 11.0 11.0 11.0
Ttop10% + Airbag 3.8 33 32 31 34 29 2.7
Tavg10% 775 900 820 738 693 634 400
Tavg10% + Airbag 41 2.8 2.7 2.5 2.7 24 2.4

ity score at 1% or 5% of labeled data on the RF1 dataset, none, or
very few, of the unlabeled examples enter the training set, mean-
ing that we miss the opportunity to improve performance by using
unlabeled data (Fig. 5).

After this discussion, it is clear that the reliability threshold se-
lection is critical to the success of the self-training approach to
SSL. We next investigate the effectiveness of the algorithms for
automatic threshold selection that we have proposed. Fig. 6, al-
lows us to compare results obtained by CLUs-RF and MSVR with
results obtained when the four automatic threshold selection al-
gorithms (Tavg10%, Ttop10%, T_OOBInitial and T_OOB) are used in
CLus-SSL (with the VarianceNormAvg reliability score). The results
confirm that automatic threshold selection is not an easy task in
self-training and that choosing the best algorithm for this task is
crucial to profit from the semi-supervised learning framework. In
the specific case we consider, we can see that the algorithm pro-
posed by Tanha et al. [50] (i.e., Tavg10%) in most of cases, puts
semi-supervised learning at a disadvantage. This is not the case for
the algorithms we propose in this paper (T_OOB and T_OOBInitial).
These algorithms materialize the SSL advantage by exploiting the
out-of-bag error of the random forest (even if, according to the
Wilcoxon signed rank test, there is no clear statistical evidence that
T_OOB and T_OOBInitial outperform CLUS-RF). Moreover, adapting
the threshold at each iteration is generally better than choosing it
only once after the initial iteration (T_OOB vs T_OOBInitial).

A good indication of how close the automatically identified
thresholds are to the optimal ones is provided by the number of
iterations. As we can see from Table 6, the algorithms T_OOB and
T_OOBInitial lead to convergence in a number of iterations which
is similar to the number of iterations when the threshold is ‘hand-
picked'. This is not true for the other algorithms for the automatic
identification of the threshold.

When we consider automatic threshold selection in combina-
tion with the Airbag stopping criterion (Fig. 6), we can see that
we are able to considerably improve performance and outperform,
also with a statistically significant difference, CLus-RF. This is espe-
cially true for T_OOBInitial when the percentage of labeled exam-
ples is greater than 10% (see Table 8). When we have a small per-
centage of labeled examples, the simple algorithm Tavg10% outper-
forms T_OOBInitial. This difference between the two algorithms for
automatic threshold selection was expected. In fact, the out-of-bag
error is computed only on labeled examples and this can lead to
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Fig. 5. A comparison of the predictive performance of random forests (CLus-RF) and self-training with different reliability scores (VarianceNormAvg, Random and OracleR-
ankAvg) on the RF1 dataset illustrates the possible effects of threshold selection: A too permissive threshold for the VarianceNormAvg reliability score leads to worse per-
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wrong decisions about thresholds when we have very few labeled
examples. Moreover, Tavg10% outperforms CLUS-RF when the per-
centage of labeled examples is very small (= 1%, see Table 8 and
Fig. 6). We notice from Table 6 that the Airbag stopping criteria
strongly reduces the average number of iterations, confirming that
a large number of iterations, without an optimal threshold, is not
beneficial.

Since the self-training method iteratively re-trains the base
method, obviously, potential predictive performance of self-
training comes with a cost of increased learning time. Table 7 re-
ports learning times of CLus-RF, MSVR and self-training. We can
observe that learning time of self-training can be up to several
hundred times larger than the one of CLUs-RF (e.g, for Tavg10%
or T_OOBInitial). However, as we previously stated, the Airbag
stopping criterion is not only beneficial for predictive perfor-
mance, but it also greatly reduces the number of iterations of
self-training. Since the learning time of self-training is strongly
correlated with the number of iterations (Tables 6 and 7), the
learning time of self-training with the Airbag stopping criterion
is greatly reduced if compared to self-training without this stop-

ping criterion. The learning time of the best performing methods
(i.e., T_OOBInitial+Airbag and Tavg10%+Airbag) is typically only 3-
5 times larger than the learning time of CLus-RF. The MSVR al-
gorithm typically runs faster than CLus-RF or self-training. This is
in line with the time complexity analysis reported in Section 3.6,
where we point out that the time complexity of our approach is
NlogN in the number of training instances, logarithmic in the num-
ber of attributes and linear in the number of iterations, whereas
the time complexity of MSVR is linear in the number of training
instances, linear in the number of descriptive attributes and lin-
ear in the number of iterations® [21]. However, much more time is
used in MSVR for parameter optimization, especially as the amount
of labeled data increases. Note that the predictive performance of
MSVR can vary extremely depending on parameter values; there-
fore, it is advisable to perform parameter optimization.

Finally, Fig. 7 presents a different perspective on the results,
highly relevant to MTR problems, by illustrating the per-target

2 MSVR performs a quasi-Newton approach in which each iteration better ap-
proximates the model.
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Table 7

Average learning time in seconds (across the 9 dataset considered in this study) of supervised methods (CLUS-RF and MSVR), self-training with different
algorithms for automatic reliability threshold selection and manual threshold selection (VarianceNormAvg). For the MSVR algorithm, learning time spent for

parameter optimization is presented in brackets.

Method Percentage labeled
1% 5% 10% 15% 20% 30% 50%
CLUS-RF 24 3.5 4.5 5.8 6.6 9.5 13.9
MSVR 0.01(256.5) 0.1(1437.4) 0.2(1864.2) 0.5(3113.1) 1.7(6972.1) 2.4(13354.4) 8.5(31843.7)
VarianceNormAvg 116.9 872.8 464.9 667.9 625.9 1133.6 1989.6
T_OOB 542.7 1205 689.2 671.5 649.5 781.7 867.5
T_OOB + Airbag 149.9 163.6 72.5 88.1 98.2 128 167.5
T_OOBInitial 588.4 2118.1 1281.6 1518 1548 1704.3 1001.8
T_OOBInitial + Airbag 69.5 327 24.2 203 223 24.9 40.4
Ttop10% 189.8 195.8 205.8 201.1 207.5 2253 2383
Ttop10% + Airbag 10.3 12.2 16.7 18.5 25.2 26.3 37.7
Tavg10% 1871.3 2365.9 2104.2 1847.8 1745.4 1577.3 1013.3
Tavg10% + Airbag 10.6 8.6 10.7 134 16.8 211 37.2
Table 8

P-values of the Wilcoxon signed-rank test applied to the performances (RMSE) of a supervised random forest (CLUS-
RF) and self-training with algorithms for automatic threshold selection (T_OOBInitial + Airbag and Tavg10% + Airbag)
on the 9 datasets considered in this study. In bold, we report significant p-values (<0.05). The ‘~’ sign denotes that

CLus-RF is better, while ‘+' that self-training is better.

% Labeled 1% 5% 10% 15% 20% 30% 50%
T_OOBInitial + Airbag 041 (+) 0162 (=) 0251 (=) 0034 (+) 0.01(+) 0.008(+) 0.012 (+)
Tavg10% + Airbag 013 (+) 0075(-) 0286(-) 033(+) 032(+) 0186(-) 0.015 (+)
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Fig. 7. Analysis of per-target performance for the RF1 dataset, in terms of difference in performance (ARMSE) between CLus-RF and self-training with the VarianceNor-
mAvg reliability score. Positive values suggest that self-training is better, while negative that CLUS-RF is better. Zero means that there is no difference in performance. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

RMSE performance of self-training. More specifically, it presents
the per-target RMSE improvements of self-training with the Vari-
anceNormAvg reliability score over supervised random forest (CLUS-
RF). These results show that the improvement provided by the SSL
setting is not necessarily uniform across all of the different tar-
get variables. Self-training improves performance over CLUS-RF for
all of the targets when the percentage of labeled examples is rel-
atively small. Otherwise it improves the performance for most of
the target variables, but can degrade the performance for some tar-
get variables (e.g., target no. 7 for > 5% of labeled data).

6. Conclusions

In this paper, we address the task of semi-supervised learning
for multi-target regression — a type of structured output predic-
tion, where the goal is to simultaneously predict multiple continu-
ous variables. To the best of our knowledge, general purpose semi-

supervised methods dealing with this task do not exist thus far.
We propose a self-training approach to semi-supervised learning
by using a random forest of predictive clustering trees for multi-
target regression. In the proposed approach, a model uses its own
most reliable predictions in an iterative fashion. Therefore, a proper
measure for the reliability of predictions is of crucial importance.

We propose two reliability scoring functions for multi-target
predictions, two aggregation schemes for merging per-target scores
into a global score and two normalization techniques, resulting in a
total of eight distinct scores. The proposed reliability scoring func-
tions are based on the mechanisms provided by ensemble learn-
ing: the variance of the votes of an ensemble and the estimate of
errors of unlabeled examples by using out-of-bag labeled examples
in their random forest proximities.

Our empirical evaluation conducted on real datasets for multi-
target regression, shows that self-training with any of the eight
proposed reliability measures is able to consistently improve
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over supervised random forests and outperform supervised multi-
output support vector regression. Among the two strategies for
merging per-target scores, the averaging of the scores showed to
be more favourable than the averaging of their ranks. The averaged
variance-based reliability score (VarianceNormAvg), which is based
the variance of votes of an ensemble, is the best performing reli-
ability score among the proposed reliability scores. Random selec-
tion during self-training is clearly inferior to the use of reliability
scores: Better performance is achieved if unlabeled examples are
selected on the basis of reliability scores, than if they are selected
randomly.

Despite this potential superiority of self-training over super-
vised approaches when learning random forests, choosing the best
threshold for the reliability of predictions still remains an issue:
the best threshold depends on the specific domain and can vary
from iteration to iteration. In this respect, we proved that auto-
matic identification of the threshold is possible but, depending
on the amount of labeled examples we have, different algorithms
should be used. The algorithm automatic threshold selection based
on the exploitation of out-of-bag errors (T_OOBInitial) is recom-
mended when more than 5% of labeled (as compared to unlabled)
data is available. For very small amounts of labeled data (< 5%)
estimates of out-of-bag errors are not reliable; therefore, a simple
solution is more suitable: using the average score of the top 10%
of most reliable predictions. The use of the Airbag stopping criteria
during the automatic threshold selection proved to be beneficial in
all cases.

There are several directions to extend our work in the future.
A first possible direction concerns handling per-target reliability
scores separately: Losses of accuracy related only to individual tar-
get variables could be avoided by optimizing thresholds specifi-

cally for each target. This would require the development of meth-
ods capable of dealing with partially labeled data. Dealing with
such type of data has not received much attention in the semi-
supervised learning community, but it is particularly relevant for
the task of structured output prediction. We would like to perform
a more extensive evaluation on more MTR datasets and achieve
better understanding of when SSL (i.e., at which datasets) improves
performance (as compared to SSL). Moreover, we would like to ex-
tend our self-training approach to other tasks of structured out-
put prediction, such as (hierarchical) multi-label classification and
predicting time-series, and evaluate its performance on practically
relevant tasks of these types, e.g., gene function prediction.
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Appendix

In this appendix, we report the RMSE results according to
which the figures and tables reported in this paper have been
drawn. In particular, Table A.9 shows results obtained with 1%
of labeled data, Table A.10 shows results obtained with 5% of la-
beled data, Table A.11 shows results obtained with 10% of la-
beled data, Table A.12 shows results obtained with 15% of labeled
data, Table A.13 shows results obtained with 20% of labeled data,
Table A.14 shows results obtained with 30% of labeled data, and
Table A.15 shows results obtained with 50% of labeled data.
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Table A9

RMSE on the 9 considered datasets obtained with 1% of labeled data by supervised methods (CLUS-RF and MSVR), self-training with the proposed reliability scores
(VarianceNormAvg, VarianceNormMin, VarianceRankAvg, VarianceRankMin, RForestProxNormAvg, RForestProxNormMin, RForestProxRankAvg and RForestProxRankMin), and
self-training with benchmark scores (Random, OracleNormAvg, OracleNormMin, OracleRankAvg and OracleRankMin). The lower sub-table presents the performance of self-
training with the VarianceNormAvg reliability score and several procedures for automatic selection of a threshold for the reliability score (T_OOB, T_OOBInitial, Ttop10%
and Tavg10%), with or without the Airbag stopping criteria. The best result for each column of each sub-table is marked in bold. The last column presents the average rank
of the methods according to their performance on the 9 datasets (calculated separately for each sub-table).

Dataset
Method Sigmea Real Sigmea Sim. Soil Quality Solar Flare-2 ~Water Quality Vegetation Cond. SCM20D SCM1D  RF1 Average rank
CLUS-RF 6.422 0.062 0.547 45909.739 1.372 2.871 206.99 175969 13136  10.833 + 4.430
MSVR 6.555 0.185 0.217 47440.970 1.354 3.105 230.765 265.669 22911 13.278 + 4.631
VarianceNormAvg 6.4 0.036 0.536 45886.432 1.352 2.866 206.832 175924 13136 5.333 + 4.077
VarianceNormMin 6.408 0.036 0.538 45913.693 1.354 2.864 206.99 175.969 12.998 6.222 + 3.465
VarianceRankAvg 6.406 0.037 0.541 46016.187 1.348 2.868 207.276  176.801 13.048 9.611 + 3.018
VarianceRankMin 6.388 0.039 0.538 45962.634 1.346 2.869 208.656  176.555 12.968 7.944 + 3.321
RForestProxNormAvg  6.408 0.047 0.54 45870.267 1.341 2.866 206.99 175969 13127 7167 + 2.681
RForestProxNormMin  6.405 0.048 0.54 45909.739 1.343 2.866 206.99 175.969 13.156  7.889 + 3.286
RForestProxRankAvg  6.405 0.047 0.536 45934.234 134 2.872 207323 176772 13115  8.722 + 3.759
RForestProxRankMin ~ 6.416 0.046 0.539 45850.644 1.346 2.871 210392 176134 13.064 8.944 + 3.283
Random 6.38 0.055 0.54 46262.372 1.346 2.866 207383 176.883 13.155 10.444 + 3.787
OracleNormAvg 6.421 0.04 0.543 46224.958 1.341 2.864 207.229 176.619 13.061 8.889 + 3.765
OracleNormMin 6.421 0.038 0.541 46000.04 1.336 2.86 207.242 176.626 13.069 8 + 4.493
OracleRankAvg 6.375 0.03 0.54 45765.407 1.338 2.867 206.99 175.969 12.676 4 =+ 3.260
OracleRankMin 6.375 0.032 0.537 45694.472 1.337 2.864 206.99 175969 12.878 2.722 + 1.325
CLUS-RF 6.422 0.062 0.547 45909.739 1.372 2.871 206.99 175.969 13136 4.5 + 4.031
MSVR 6.555 0.185 0.217 47440.97 1.354 3.105 230.765 265.669 22911 8 + 3.708
T_0OB 6.422 0.036 0.545 46251.345 1.368 2.93 207.341 178391 13427 5.222 + 1970
T_OOB + Airbag 6.422 0.046 0.545 46251.345 1.368 2.905 207.341 178391 13461 5.611 + 1.387
T_OOBInitial 6.422 0.04 0.545 46251.345 1.368 3.037 207.332  178.662 13.927 6.111 + 2.205
T_OOBInitial + Airbag ~ 6.422 0.046 0.545 46251.345 1.368 2912 207331 178526 13.332 5.278 + 1.716
Ttop10% 6.432 0.044 0.542 46337.764 1.351 3.027 216.671 189.056 13.672 6 =+ 2.872
Ttop10% + Airbag 6.439 0.059 0.544 46114.348 1.366 2.867 209.574  177.558 13.204 4.833 + 2.598
Tavg10% 6.408 0.037 0.543 46433.652 1.355 3.109 221.755 207.888 13.403 5.722 + 3.528
Tavg10% + Airbag 6.422 0.059 0.543 45926.363 1.363 2.875 209183  177.029 13134 3.722 + 2.063

Table A.10

RMSE on the 9 considered datasets obtained with 5% of labeled data by supervised methods (CLUS-RF and MSVR), self-training with the proposed reliability scores
(VarianceNormAvg, VarianceNormMin, VarianceRankAvg, VarianceRankMin, RForestProxNormAvg, RForestProxNormMin, RForestProxRankAvg and RForestProxRankMin), and
self-training with benchmark scores (Random, OracleNormAvg, OracleNormMin, OracleRankAvg and OracleRankMin). The lower sub-table presents the performance of self-
training with the VarianceNormAvg reliability score and several procedures for automatic selection of a threshold for the reliability score (T_OOB, T_OOBInitial, Ttop10%
and Tavg10%), with or without the Airbag stopping criteria. The best result for each column of each sub-table is marked in bold. The last column presents the average rank
of the methods according to their performance on the 9 datasets (calculated separately for each sub-table).

Dataset
Method Sigmea Real Sigmea Sim. Soil Quality Solar Flare-2 ~Water Quality Vegetation Cond. SCM20D SCM1D RF1 Average rank
CLUS-RF 5.431 0.019 0.524 41384.376 1.262 2.678 177182 143124 7422 11.222 + 3.743
MSVR 6.337 0.816 0.168 45561.610 1.304 2.988 230311 229473 23985 13.444 + 4.667
VarianceNormAvg 5.241 0.018 0.513 41384.376 1.253 2.673 177153 143124 7157 5.5 + 3.873
VarianceNormMin 5.305 0.018 0.511 41384.376 1.255 2.676 177.182 143.079 7359 7333 £ 2.739
VarianceRankAvg 5.239 0.017 0.513 41334.819 1.254 2.679 178.049 144487 17177 8.056 + 4.482
VarianceRankMin 5.281 0.017 0.51 41239.703 1.256 2.676 177207  143.582 7.269 6.611 + 2.619
RForestProxNormAvg  5.305 0.017 0.511 41191135 1.255 2.677 177182 143124 7394  6.833 + 2.784
RForestProxNormMin ~ 5.317 0.018 0.51 41058.845 1.255 2.677 177182  143.116 7416 7167 + 3.800
RForestProxRankAvg  5.279 0.018 0.51 41347.346 1.255 2.678 178.004 144.617 7.308 8.944 + 2.721
RForestProxRankMin ~ 5.307 0.017 0.509 41366.16 1.257 2.678 177978 145404 7366  9.333 + 3.976
Random 5.273 0.018 0.513 41865.799 1.255 2.679 178.017 144487 7425 11167 + 2.969
OracleNormAvg 5.329 0.019 0.516 41513.983 1.251 2.677 177716 144101 7173 9.5 + 3.961
OracleNormMin 5.286 0.018 0.515 41600.439 1.251 2.675 177758 14414 7217 8.333 + 3.865
OracleRankAvg 5.235 0.017 0.512 41237.003 1.248 2.677 177182 143.032 6.74 3.722 + 2917
OracleRankMin 5.248 0.017 0.509 41078.147 1.25 2.676 177182 142967 7.013 2.833 + 1.199
CLUS-RF 5.431 0.019 0.524 41384.376 1.262 2.678 177182 143124 7422  4.889 + 3.209
MSVR 6.337 0.816 0.168 45561.61 1.304 2.988 230.311 229473 23985 9 =+ 3.000
T_0OB 5.414 0.019 0.518 41536.77 1.257 2.678 184.59 152.449 7.609 5.611 + 1.799
T_OOB + Airbag 5.423 0.018 0.52 41567.099 1.257 2.676 184.062  148.509 7.571 5.278 + 1.679
T_OOBInitial 5.418 0.017 0.517 41509.666 1.257 2.781 184.642 155167 7322  4.833 + 2.634
T_OOBInitial + Airbag  5.418 0.017 0.52 41585.324 1.257 2.676 182.042 145905 7468  4.389 + 1.635
Ttop10% 5.35 0.017 0.514 42109.113 1.256 2.753 185.862 153104 7429  4.722 + 3.270
Ttop10% + Airbag 5.451 0.017 0.524 41078.715 1.263 2.676 178.31 143.608 7502  4.944 + 3.330
Tavg10% 5.427 0.019 0.517 41721.025 1.257 2.742 189.001 161129 751 6.889 + 1.949

Tavg10% + Airbag 5.376 0.019 0.521 41386.025 1.263 2.678 177726 143.052 7.424 4.444 + 2.888
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Table A.11

RMSE on the 9 considered datasets obtained with 10% of labeled data by supervised methods (CLUS-RF and MSVR), self-training with the proposed reliability scores
(VarianceNormAvg, VarianceNormMin, VarianceRankAvg, VarianceRankMin, RForestProxNormAvg, RForestProxNormMin, RForestProxRankAvg and RForestProxRankMin), and
self-training with benchmark scores (Random, OracleNormAvg, OracleNormMin, OracleRankAvg and OracleRankMin). The lower sub-table presents the performance of self-
training with the VarianceNormAvg reliability score and several procedures for automatic selection of a threshold for the reliability score (T_OOB, T_OOBInitial, Ttop10%
and Tavg10%), with or without the Airbag stopping criteria. The best result for each column of each sub-table is marked in bold. The last column presents the average rank
of the methods according to their performance on the 9 datasets (calculated separately for each sub-table).

Dataset
Method Sigmea Real Sigmea Sim. Soil Quality Solar Flare-2 ~Water Quality Vegetation Cond. SCM20D SCM1D  RF1 Average rank
CLUS-RF 4.922 0.015 0.527 38615.185 1.231 2.601 161.061 127.894 5.089  10.444 + 3.948
MSVR 5.815 0.094 0.169 43551.48 1.276 2.998 220416  219.555 22315 13.444 + 4.667
VarianceNormAvg 4918 0.014 0.519 38576.336 1.225 2.602 161.021 127.894 4905 7444 + 3.820
VarianceNormMin 4913 0.014 0.519 38576.336 1.225 2.602 161.061 127.894 5.038  8.278 + 3.203
VarianceRankAvg 4,901 0.014 0.517 38653.538 1.224 2.603 160.726  129.139 4904  7.722 + 3.684
VarianceRankMin 4.873 0.014 0.516 38551.846 1.225 2.601 161.312 128189 4.955  6.556 + 2.877
RForestProxNormAvg  4.904 0.014 0.518 38621.215 1.226 2.601 161.061 127.894 5129  8.833 + 2.773
RForestProxNormMin  4.904 0.014 0.519 38607.197 1.226 2.601 161.061 127879 5.107 8.278 + 3.280
RForestProxRankAvg  4.882 0.014 0.516 38655.623 1.225 2.601 162.15 129465 4.972 9 + 3354
RForestProxRankMin  4.894 0.014 0.517 38602.015 1.227 2.601 161.273 128512 5.036  8.278 + 2.224
Random 4.861 0.014 0.519 39485.778 1.225 2.604 161948  129.231 5.115 10.667 + 400
OracleNormAvg 4.867 0.014 0.52 39189.14 1.223 2.601 161.687 128902 4.929  8.611 + 3.855
OracleNormMin 4.866 0.014 0.519 39004.731 1.223 2.6 161.276  128.937 4.901 7111 + 4.053
OracleRankAvg 4.877 0.013 0.516 38615.185 1.219 2.6 160.148  127.846 4.545  2.833 £ 2.462
OracleRankMin 4.848 0.013 0.515 38579.84 1.221 2.597 161.023  127.894 4.684 2.5 + 1458
CLUS-RF 4.922 0.015 0.527 38615.185 1.231 2.601 161.061 127.894 5.089  4.778 + 2.938
MSVR 5.815 0.094 0.169 43551.48 1.276 2.998 220416  219.555 22315 9 4+ 3.000
T_OOB 4.901 0.014 0.525 39178.759 1.225 2.602 166.109 130989 5.264  4.833 & 2.449
T_OOB + Airbag 4914 0.014 0.525 39148.626 1.225 2.603 164.526  129.572 5.191 4.833 + 1.581
T_OOBInitial 4915 0.014 0.525 39381.705 1.224 2.605 167.385 136.241 5.073  5.167 + 2.716
T_OOBInitial + Airbag  4.916 0.014 0.523 38966.383 1.225 2.601 163.248 128378 5.112 3.889 + 1.341
Ttop10% 4.905 0.014 0.52 39856.55 1.228 2.646 166.137 134911 5.02 5.056 + 3.087
Ttop10% + Airbag 4953 0.014 0.526 38539.778 1.233 2.603 161.236 128107 5.098  4.889 + 2.559
Tavg10% 4.992 0.015 0.527 38890.317 1.229 2.609 168.485 136.906 5.143 7.722 + 1.787
Tavg10% + Airbag 4.954 0.015 0.526 38581.027 1.232 2.603 161.014 127.805 5.085 4.833 + 3.122

Table A.12

RMSE on the 9 considered datasets obtained with 15% of labeled data by supervised methods (CLUS-RF and MSVR), self-training with the proposed reliability scores
(VarianceNormAvg, VarianceNormMin, VarianceRankAvg, VarianceRankMin, RForestProxNormAvg, RForestProxNormMin, RForestProxRankAvg and RForestProxRankMin), and
self-training with benchmark scores (Random, OracleNormAvg, OracleNormMin, OracleRankAvg and OracleRankMin). The lower sub-table presents the performance of self-
training with the VarianceNormAvg reliability score and several procedures for automatic selection of a threshold for the reliability score (T_OOB, T_OOBInitial, Ttop10%
and Tavg10%), with or without the Airbag stopping criteria. The best result for each column of each sub-table is marked in bold. The last column presents the average rank
of the methods according to their performance on the 9 datasets (calculated separately for each sub-table).

Dataset
Method Sigmea Real Sigmea Sim. Soil Quality Solar Flare-2 Water Quality Vegetation Cond. SCM20D SCM1D RF1 Average rank
CLUS-RF 4194 0.012 0.513 37562.992 1.214 2.568 149.976  120.878 4.014 10.5 + 3.182
MSVR 5.194 0.219 0.165 97039.2 1.276 3.027 225.622 237821 20.391 13.444 + 4.667
VarianceNormAvg 3.978 0.012 0.506 37568.513 1.208 2.568 149.825 120.892 3.882  7.389 + 2.837
VarianceNormMin 4.023 0.012 0.505 37562.992 1.21 2.567 149.83 120.713 3.941 7 + 2.905
VarianceRankAvg 4.006 0.012 0.504 37509.874 1.209 2.567 149.763 12137 3.805  5.778 & 2.451
VarianceRankMin 4,028 0.012 0.504 37329.419 1.212 2.568 149.764 120.863 3.869 7167 + 3.152
RForestProxNormAvg  4.006 0.012 0.506 37326.996 1.209 2.568 150.034 120.872 4.049  7.833 & 3.072
RForestProxNormMin  4.013 0.012 0.506 37202.539 1.21 2.568 149.976  120.878 4.038  8.056 + 3.225
RForestProxRankAvg  4.011 0.012 0.504 37316.548 1.209 2.568 151.037 122386 3.973 8.389 + 3.781
RForestProxRankMin  4.013 0.012 0.505 37445.731 1.212 2.568 150.276  121.2 3.973 8.944 + 1.976
Random 4.032 0.012 0.505 38273.226 1.21 2.572 150.947 122107 4.054  11.722 + 2.587
OracleNormAvg 4,035 0.012 0.507 37963.36 1.207 2.568 150.691  121.76 3.849  9.556 + 4.065
OracleNormMin 4.027 0.012 0.507 37829.565 1.208 2.567 150169  121.801 3.867  8.722 + 3.589
OracleRankAvg 3.931 0.012 0.503 37475.782 1.204 2.558 147849 120.768 3.505  2.944 + 2.579
OracleRankMin 3.974 0.012 0.502 37309.152 1.207 2.556 149.657 120.742 3.666  2.556 + 1.895
CLUS-RF 4194 0.012 0.513 37562.992 1.214 2.568 149.976  120.878 4.014 4.5 £ 2.550
MSVR 5.194 0.219 0.165 97039.2 1.276 3.027 225.622 237821 20391 9 + 3.000
T_OOB 4144 0.012 0.513 37789.77 1.209 2.568 152.247 122217 4126 5.556 + 1.895
T_O0OB + Airbag 4148 0.012 0.513 37808.887 1.209 2.569 151269  121.72 4115 5.833 + 1.369
T_OOBInitial 4124 0.012 0.513 38108.565 1.209 2.568 154.843  126.583 4.045  5.833 + 2.332
T_OOBInitial + Airbag  4.114 0.012 0.513 37653.957 1.209 2.569 150.23 120983 4.022 4.5 + 1458
Ttop10% 4.076 0.012 0.507 38515.324 1.209 2.595 153.988 125946 4.016 5.278 + 2.906
Ttop10% + Airbag 4166 0.012 0.513 37584.892 1.214 2.568 149.808 120.805 4.003 4.167 + 2.622
Tavg10% 4124 0.012 0.511 37734.932 1.209 2.57 154.939 126.063 4.053  5.778 + 2.265

Tavg10% + Airbag 4.202 0.012 0.513 37480.141 1.214 2.569 150143  120.799 3.998  4.556 + 3.167
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RMSE on the 9 considered datasets obtained with 20% of labeled data by supervised methods (CLUS-RF and MSVR), self-training with the proposed reliability scores
(VarianceNormAvg, VarianceNormMin, VarianceRankAvg, VarianceRankMin, RForestProxNormAvg, RForestProxNormMin, RForestProxRankAvg and RForestProxRankMin), and
self-training with benchmark scores (Random, OracleNormAvg, OracleNormMin, OracleRankAvg and OracleRankMin). The lower sub-table presents the performance of self-
training with the VarianceNormAvg reliability score and several procedures for automatic selection of a threshold for the reliability score (T_OOB, T_OOBInitial, Ttop10%
and Tavg10%), with or without the Airbag stopping criteria. The best result for each column of each sub-table is marked in bold. The last column presents the average rank
of the methods according to their performance on the 9 datasets (calculated separately for each sub-table).

Dataset
Method Sigmea Real Sigmea Sim. Soil Quality Solar Flare-2 Water Quality Vegetation Cond. SCM20D SCM1D RF1 Average rank
CLUS-RF 414 0.011 0.512 36704.708 1.203 2.544 142.221  115.072 3.241 11.333 + 2.958
MSVR 5.076 0.086 0.157 41336.29 1.275 3.054 231.853 21393  23.705 13.444 + 4.667
VarianceNormAvg 3.953 0.011 0.507 36704.708 1.199 2.542 141.417 115.042 3.157 6.278 + 3.270
VarianceNormMin 3.989 0.011 0.507 36516.581 12 2.543 141502  115.042 3.187 7444 + 2.920
VarianceRankAvg 3.983 0.011 0.506 36442.51 1.2 2.543 141.661 115.307 3.08 7167 + 2.610
VarianceRankMin 3.966 0.011 0.506 36656.879 1.202 2.544 141424 115125 3.158 8.444 + 2.242
RForestProxNormAvg  3.963 0.011 0.506 36477.326 12 2.544 141592  115.046 3.283 7.722 + 2.852
RForestProxNormMin  3.98 0.011 0.506 36479.676 1.201 2.544 141.811 115.072  3.279 8.778 + 2.224
RForestProxRankAvg  3.944 0.011 0.504 36546.452 12 2.544 141.901 116.016 3.234 8 + 3.363
RForestProxRankMin  3.949 0.011 0.505 36589.821 1.202 2.544 142145 115119  3.222 8.444 + 2.811
Random 3.958 0.011 0.505 37550.074 1.2 2.547 143.082 116181 3.305 10.778 + 3.890
OracleNormAvg 4 0.011 0.507 37340.94 1.198 2.542 142.098 115.869 3.223 9.278 + 3.589
OracleNormMin 4.006 0.011 0.507 37032.297 1.198 2.541 141.37 115.876  3.151 7.778 + 4.583
OracleRankAvg 3.94 0.011 0.504 36376.513 1.194 2.528 138.857 114.778 2932 2167 + 2121
OracleRankMin 3.935 0.011 0.504 36440.297 1.198 2.526 140932  115.059 3.001 2.944 + 2.098
CLUS-RF 414 0.011 0.512 36704.708 1.203 2.544 142221 115.072 3.241 5333 + 2411
MSVR 5.076 0.086 0.157 41336.29 1.275 3.054 231.853 21393 23705 9 &+ 3.000
T_OOB 4.079 0.011 0.51 36946.38 1.2 2.545 142477 115.683 3.29 5389 + 1.516
T_O0OB + Airbag 4.096 0.011 0.511 36815.638 1.2 2.545 142.024 115454 3.293 5.444 + 1.488
T_OOBInitial 4.075 0.011 0.509 36991.573 1.2 2.544 145.063 118.584 3.319 5.778 + 2.740
T_OOBInitial + Airbag  4.107 0.011 0.51 36811.305 1.2 2.543 141.772 115116  3.231 3.5 + 1.601
Ttop10% 4.004 0.011 0.507 37708.519 1.2 2.564 144.544 118.808 3.301 5.944 + 3.167
Ttop10% + Airbag 416 0.011 0.512 36596.684 1.204 2.544 141.842 115115 3.265 5278 + 2.980
Tavg10% 4114 0.011 0.511 36582.057 1.2 2.544 144.564 118.045 3.269  5.222 + 2.123
Tavg10% + Airbag 4123 0.011 0.511 36677.801 1.204 2.543 141.918 115.01 3.229 4111 + 2.859

Table A.14

RMSE on the 9 considered datasets obtained with 30% of labeled data by supervised methods (CLUS-RF and MSVR), self-training with the proposed reliability scores
(VarianceNormAvg, VarianceNormMin, VarianceRankAvg, VarianceRankMin, RForestProxNormAvg, RForestProxNormMin, RForestProxRankAvg and RForestProxRankMin), and
self-training with benchmark scores (Random, OracleNormAvg, OracleNormMin, OracleRankAvg and OracleRankMin). The lower sub-table presents the performance of self-
training with the VarianceNormAvg reliability score and several procedures for automatic selection of a threshold for the reliability score (T_OOB, T_OOBInitial, Ttop10%
and Tavg10%), with or without the Airbag stopping criteria. The best result for each column of each sub-table is marked in bold. The last column presents the average rank
of the methods according to their performance on the 9 datasets (calculated separately for each sub-table).

Dataset
Method Sigmea Real Sigmea Sim. Soil Quality Solar Flare-2 ~Water Quality Vegetation Cond. SCM20D SCM1D  RF1 Average rank
CLUS-RF 3.635 0.01 0.519 34586.338 1192 2.507 130.013 106.865 2.45 10.611 + 3.190
MSVR 4.796 0.081 0.151 38370.49 1.276 3.341 222.24 218.396 18.38  13.444 + 4.667
VarianceNormAvg 3.613 0.009 0.513 34598.023 1.189 2.508 129.386  106.801 2.405 7.667 + 3.640
VarianceNormMin 3.628 0.01 0.512 34586.338 119 2.507 129.221 106.83 2439 8 + 1871
VarianceRankAvg 3.59 0.01 0.512 34581.316 1.189 2.509 128.981 106.769 2.326 5.944 + 3.321
VarianceRankMin 3.627 0.01 0.512 34554.094 1.191 2.506 129.209 106.882 2.402 7556 + 3.056
RForestProxNormAvg  3.547 0.01 0.513 34591.64 1189 2.507 129.84 106.783 2.505 8.278 + 3.866
RForestProxNormMin  3.607 0.01 0.513 34549.428 119 2.507 129.732 106.766  2.497 8.444 + 3137
RForestProxRankAvg 3.588 0.01 0.511 34650.811 119 2.507 129.781 107159  2.484 8.444 + 3.292
RForestProxRankMin  3.635 0.01 0.512 34495.345 1.191 2.507 129.715 106.844 2.466 8.778 + 3.289
Random 3.602 0.01 0.512 35459.71 119 2.511 130.77 107.674  2.526 11.444 + 3.077
OracleNormAvg 3.594 0.01 0.514 35135.863 1.187 2.503 129.588 107462 2461 8.611 + 3.903
OracleNormMin 3.592 0.01 0.512 34894.938 1.188 2.502 129.064 107.497 2.454 7278 + 3.492
OracleRankAvg 3.591 0.01 0.511 34504.833 1.185 2.482 125819 105.148 2.246 2.667 + 2.449
OracleRankMin 3.548 0.01 0.511 34479.713 1187 2483 127.522 106.642 2.328 2.833 + 2.031
CLUS-RF 3.635 0.01 0.519 34586.338 1.192 2.507 130.013 106.865 2.45 4944 + 2.324
MSVR 4,796 0.081 0.151 38370.49 1.276 3.341 222.24 218.396 18.38 9 + 3.000
T_OOB 3.662 0.01 0.515 34789.872 1191 2.508 129.29 107.021 2.526 4.944 + 1810
T_OOB + Airbag 3.627 0.01 0.519 34775.811 1.191 2.507 129.227 107.058 2.469 4.278 + 2.306
T_OOBInitial 3.684 0.01 0.518 34994.06 119 2.508 130.03 108.118  2.506 6.333 + 2.236
T_OOBInitial + Airbag  3.594 0.01 0.518 34698.755 119 2.508 129.701 106.747 2.448 3.222 + 1.716
Ttop10% 3.634 0.01 0.515 35716.041 119 2.519 130.866  108.944 2498 6.111 + 2.987
Ttop10% + Airbag 3.679 0.01 0.519 34552.385 1192 2.508 129.755 106.847 2.452 5111 + 2.571
Tavg10% 3.634 0.01 0.52 34814.006 1.191 2.509 129.646 107423 2541 6.389 + 2.421
Tavg10% + Airbag 3.669 0.01 0.518 34556.359 1192 2.508 129.902 106.85 2437 4.667 + 2.291
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RMSE on the 9 considered datasets obtained with 50% of labeled data by supervised methods (CLUS-RF and MSVR), self-training with the proposed reliability scores
(VarianceNormAvg, VarianceNormMin, VarianceRankAvg, VarianceRankMin, RForestProxNormAvg, RForestProxNormMin, RForestProxRankAvg and RForestProxRankMin), and
self-training with benchmark scores (Random, OracleNormAvg, OracleNormMin, OracleRankAvg and OracleRankMin). The lower sub-table presents the performance of self-
training with the VarianceNormAvg reliability score and several procedures for automatic selection of a threshold for the reliability score (T_OOB, T_OOBInitial, Ttop10%
and Tavg10%), with or without the Airbag stopping criteria. The best result for each column of each sub-table is marked in bold. The last column presents the average rank
of the methods according to their performance on the 9 datasets (calculated separately for each sub-table).

Dataset
Method Sigmea Real Sigmea Sim. Soil Quality Solar Flare-2 Water Quality Vegetation Cond. SCM20D SCM1D RF1 Average rank
CLUS-RF 3.428 0.008 0.522 33734.994 1175 2.465 114366  96.226 1792  10.611 + 3.110
MSVR 4.623 0.161 0.187 50224.72 1.258 3.242 219344 292572 16.619 13.444 + 4.667
VarianceNormAvg 3.441 0.008 0.517 33734.994 1172 2.464 112.99 95.937 1783  6.444 + 3.147
VarianceNormMin 3.399 0.008 0.517 33734.994 1174 2.464 113.697  96.141 1771 6.5 + 2.550
VarianceRankAvg 3.414 0.008 0.517 33734.994 1173 2.465 112.907 96.026  1.746  5.944 + 2.555
VarianceRankMin 3.426 0.008 0.517 33734.994 1174 2.464 113.365  96.037 1752  6.833 + 2475
RForestProxNormAvg  3.429 0.008 0.518 33784.707 1173 2.465 114164  96.189 1833 10 + 1.854
RForestProxNormMin  3.415 0.008 0.518 3373211 1174 2.464 114366  96.214 1.834 9111 + 3.638
RForestProxRankAvg  3.414 0.008 0.518 33787.903 1173 2.465 114153  96.16 1.807  8.833 + 2.107
RForestProxRankMin  3.417 0.008 0.518 33844.657 1174 2.465 114199  96.181 179 9.667 + 1.984
Random 341 0.008 0.518 34551.197 1173 2.467 114931 96.607 1856 11111 + 4.099
OracleNormAvg 3.418 0.008 0.516 34187455 1171 2455 113.596 96453 1825  7.722 + 4.032
OracleNormMin 3432 0.008 0.517 34075.344 1171 2.453 113.631  96.277 1796 8167 + 3.649
OracleRankAvg 3411 0.008 0.517 33734.994 1.168 2429 109.839 93.7 1.728 3.167 + 2.727
OracleRankMin 3.391 0.008 0.516 33723.302 117 2431 111.569  95.147 1.731 2.444 + 1.960
CLUS-RF 3.428 0.008 0.522 33734.994 1175 2.465 114366 96.226  1.792  6.222 + 2.108
MSVR 4.623 0.161 0.187 50224.72 1.258 3.242 219.344 292572 16.619 9 + 3.000
T_OOB 3.404 0.008 0.522 34021.286 1174 2.464 113.655  96.196 1.801 5111 + 2.329
T_OOB + Airbag 3.464 0.008 0.522 33820.038 1174 2.464 114.086  96.103 1785 5111 £ 1.710
T_OOBInitial 3.422 0.008 0.521 34237.089 1172 2.465 113.262  96.113 1.811 4,944 + 2.480
T_OOBInitial + Airbag ~ 3.439 0.008 0.522 33807.261 1174 2463 114299 96.008  1.783 4.5 + 2.291
Ttop10% 3.504 0.008 0.519 34671.671 1173 2.469 114.209  96.69 1815  6.556 + 3.087
Ttop10% + Airbag 3.406 0.008 0.521 33734.61 1175 2.464 114441  96.113 1778  4.444 £ 2.732
Tavg10% 3.421 0.008 0.521 33992.132 1174 2465 113145 95938 1.799  4.167 + 2.151
Tavg10% + Airbag 3.456 0.008 0.522 33743.407 1175 2.464 114226  96.079  1.773  4.944 + 2.480
References [17] A. Appice, S. DZeroski, Stepwise Induction of Multi-target Model Trees, in: Ma-

[1] O. Chapelle, B. Scholkopf, A. Zien, Semi-supervised learning, MIT Press, Cam-
bridge, MA, 2006.

[2] R. Hwa, P. Resnik, A. Weinberg, C. Cabezas, O. Kolak, Bootstrapping parsers
via syntactic projection across parallel texts, Nat. Lang. Eng. 11 (03) (2005)
311-325.

[3] E. Biber, The challenge of collecting and using environmental monitoring data,
Ecol. Soc. 18 (4) (2013).

[4] D. Demsar, S. Dzeroski, T. Larsen, J. Struyf, ]. Axelsen, M. Pedersen,
P. Krogh, Using multi-objective classification to model communities of soil mi-
croarthopods, Ecol. Modell. 191 (1) (2006) 131-143.

[5] D. Stojanova, P. Panov, V. Gjorgjioski, A. Kobler, S. DZeroski, Estimating vegeta-
tion height and canopy cover from remotely sensed data with machine learn-
ing, Ecol. Inform. 5 (4) (2010) 256-266.

[6] D. Kocev, S. DZeroski, M.D. White, G.R. Newell, P. Griffioen, Using single- and
multi-target regression trees and ensembles to model a compound index of
vegetation condition, Ecol. Modell. 220 (8) (2009) 1159-1168.

[7] U. Brefeld, Semi-supervised Structured Prediction Models, Humboldt-Univer-
sitdt zu Berlin, Berlin, Germany, 2008 PhD thesis.

[8] Y. Zhang, D.-Y. Yeung, Semi-Supervised Multi-task Regression, in: Machine
Learning and Knowledge Discovery in Databases, volume 5782 of LNCS, 2009,
pp. 617-631.

[9] R. Navaratnam, A. Fitzgibbon, R. Cipolla, The Joint Manifold Model for Semi-
supervised Multi-valued Regression, in: Proc. of the 11th IEEE Int'l Conf. on
Computer Vision, 2007, pp. 1-8.

[10] U. Brefeld, T. Gartner, T. Scheffer, S. Wrobel, Efficient Co-Regularised Least
Squares Regression, in: Proc. of the 23rd Int'l Conf. on Machine learning, 2006,
pp. 137-144.

[11] Z.-H. Zhou, M. Li, Semi-supervised regression with co-training style algorithms,
IEEE Trans. Knowl. Data Eng. 19 (11) (2007) 1479-1493.

[12] A. Appice, M. Ceci, D. Malerba, An Iterative Learning Algorithm for Within-net-
work Regression in the Transductive Setting, in: Discovery Science, volume
5808 of LNCS, 2009, pp. 36-50.

[13] M.-C. Yang, Y.-CF. Wang, A self-learning approach to single image super-reso-
lution, IEEE Trans. Multimedia 15 (3) (2013) 498-508.

[14] D. Kocev, C. Vens, ]. Struyf, S. DZeroski, Tree ensembles for predicting struc-
tured outputs, Pattern Recognit. 46 (3) (2013) 817-833.

[15] J. Levatic, D. Kocev, S. DZeroski, The importance of the label hierarchy in hier-
archical multi-label classification, J. Intell. Inf. Syst. 45 (2) (2014) 247-271.

[16] X. Zhu, Semi-Supervised Learning Literature Survey, Technical Report, Com-
puter Sciences, University of Wisconsin-Madison, 2008.

chine Learning: ECML 2007, volume 4701 of LNCS, 2007, pp. 502-509.

[18] J. Struyf, S. DZeroski, Constraint Based Induction of Multi-objective Regression
Trees, in: Knowledge Discovery in Inductive Databases, volume 3933 of LNCS,
2006, pp. 222-233.

[19] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5-32.

[20] Z. Bosni¢, I. Kononenko, Comparison of approaches for estimating reliability of
individual regression predictions, Data Knowl. Eng. 67 (3) (2008) 504-516.

[21] M. Sanchez-Fernandez, M. de Prado-Cumplido, ]. Arenas-Garcia, F. Pérez-Cruz,
Svm multiregression for nonlinear channel estimation in multiple-input mul-
tiple-output systems, IEEE Trans. Signal Process. 52 (8) (2004) 2298-2307.

[22] WJ. Brouwer, J.D. Kubicki, J.O. Sofo, C.L. Giles, An investigation of machine
learning methods applied to structure prediction in condensed matter, arXiv
preprint arXiv:1405.3564(2014).

[23] ]. Levati¢, M. Ceci, D. Kocev, S. DZeroski, Semi-Supervised Learning for Multi-
target Regression, in: New Frontiers in Mining Complex Patterns, ECML/PKDD
Workshop, 2014, pp. 110-123.

[24] ]. Levati¢, M. Ceci, D. Kocev, S. DZeroski, Semi-Supervised Learning for Mul-
ti-target Regression, in: A. Appice, M. Ceci, C. Loglisci, G. Manco, E. Masciari,
Z.W. Ras (Eds.), New Frontiers in Mining Complex Patterns, volume 8983 of
LNCS, Springer International Publishing, 2015, pp. 3-18.

[25] A. Blum, T. Mitchell, Combining Labeled and Unlabeled Data with Co-training,
in: Proc. of the 11th Annual Conf. on Computational Learning Theory, 1998,
pp. 92-100.

[26] D. Yarowsky, Unsupervised Word Sense Disambiguation Rivaling Supervised
Methods, in: Proc. of the 33rd Annual Meeting of the Association for Com-
putational Linguistics, 1995, pp. 189-196.

[27] C. Rosenberg, M. Hebert, H. Schneiderman, Semi-Supervised Self-training of
Object Detection Models, in: Proc. of the 7th IEEE Workshop on Applications
of Computer Vision, 2005.

[28] C. Leistner, A. Saffari, J. Santner, H. Bischof, Semi-Supervised Random Forests,
in: Proc. of the 12th Int’'l Conf. on Computer Vision, 2009, pp. 506-513.

[29] E. Riloff, ]. Wiebe, T. Wilson, Learning Subjective Nouns Using Extraction Pat-
tern Bootstrapping, in: Proc. of the 7th Conf. on Natural Language Learning,
2003, pp. 25-32.

[30] J. Bandouch, O.C. Jenkins, M. Beetz, A self-training approach for visual tracking
and recognition of complex human activity patterns, Int. J. Comput. Vis. 99 (2)
(2012) 166-189.

[31] S. Abney, Understanding the yarowsky algorithm, Comput. Ling. 30 (3) (2004)
365-395.


http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0001
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0001
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0001
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0001
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0002
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0002
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0002
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0002
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0002
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0002
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0003
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0003
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0004
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0004
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0004
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0004
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0004
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0004
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0004
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0004
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0005
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0005
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0005
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0005
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0005
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0005
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0006
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0006
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0006
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0006
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0006
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0006
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0007
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0007
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0008
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0008
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0008
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0009
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0009
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0009
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0009
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0010
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0010
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0010
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0010
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0010
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0011
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0011
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0011
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0012
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0012
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0012
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0012
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0013
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0013
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0013
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0014
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0014
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0014
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0014
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0014
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0015
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0015
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0015
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0015
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0016
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0016
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0017
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0017
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0017
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0018
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0018
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0018
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0019
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0019
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0020
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0020
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0020
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0021
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0021
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0021
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0021
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0021
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0022
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0022
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0022
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0022
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0022
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0023
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0023
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0023
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0023
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0023
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0024
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0024
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0024
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0025
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0025
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0026
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0026
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0026
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0026
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0027
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0027
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0027
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0027
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0027
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0028
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0028
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0028
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0028
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0029
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0029
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0029
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0029
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0030
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0030

60 J. Levatic et al./Knowledge-Based Systems 123 (2017) 41-60

[32] G. Haffari, A. Sarkar, Analysis of semi-supervised learning with the yarowsky
algorithm, in: Proc. of the 23rd Conf. on Uncertainty in Artificial Intelligence,
AUAI Press, pp. 159-176.

[33] R. Sousa, J. Gama, Online Semi-supervised Learning for Multi-target Regression
in Data Streams Using AMRules, Springer International Publishing, pp. 123-
133.

[34] ]. Duarte, J. Gama, Multi-Target Regression from High-speed Data Streams with
Adaptive Model Rules, in: Proceeding of the IEEE International Conference on
Data Science and Advanced Analytics, 2015, pp. 1-10.

[35] Y. Liu, R. Jin, L. Yang, Semi-Supervised Multi-label Learning by Constrained
Non-negative Matrix Factorization, in: Proceedings of the National Conference
on Artificial Intelligence, volume 21, 2006, pp. 421-426.

[36] G. Chen, Y. Song, F. Wang, C. Zhang, Semi-Supervised Multi-label Learning by
Solving a Sylvester Equation, in: Proceedings of the SIAM International Confer-
ence on Data Mining, 2008, pp. 410-419.

[37] Y. Guo, D. Schuurmans, Semi-Supervised Multi-label Classification, in: Proceed-
ings of the European Conference on Machine Learning and Knowledge Discov-
ery in Databases, 2012, pp. 355-370.

[38] H. Borchani, G. Varando, C. Bielza, P. Larrafiaga, A survey on multi-output re-
gression, Wiley Interdiscip. Rev. 5 (5) (2015) 216-233.

[39] PJ. Brown, ].V. Zidek, Adaptive multivariate ridge regression, Ann. Stat. 8 (1980)
64-74.

[40] L. Breiman, J.H. Friedman, Predicting multivariate responses in multiple linear
regression, J. R. Stat. Soc. 59 (1) (1997) 3-54.

[41] S. Xu, X. An, X. Qiao, L. Zhu, L. Li, Multi-output least-squares support vector
regression machines, Pattern Recognit. Lett. 34 (9) (2013) 1078-1084.

[42] M. Pugelj, S. DZeroski, Predicting Structured Outputs K-Nearest Neighbours
Method, in: Discovery Science, volume 6926 of LNCS, 2011, pp. 262-276.

[43] T. Aho, B. Zenko, S. DZeroski, T. Elomaa, Multi-target regression with rule en-
sembles, J. Mach. Learn. Res. 13 (1) (2012) 2367-2407.

[44] G. Tsoumakas, E. Spyromitros-Xioufis, A. Vrekou, I. Vlahavas, Multi-Target Re-
gression via Random Linear Target Combinations, in: Machine Learning and
Knowledge Discovery in Databases, volume 8726 of LNCS, 2014, pp. 225-240.

[45] S. Briesemeister, ]J. Rahnenfiihrer, O. Kohlbacher, No longer confidential: esti-
mating the confidence of individual regression predictions, PLoS ONE 7 (11)
(2012) e48723.

[46] L. Breiman, Bagging predictors, Mach. Learn. 24 (2) (1996) 123-140.

[47] ].G. Carney, P. Cunningham, U. Bhagwan, Confidence and Prediction Intervals
for Neural Network Ensembles, in: International Joint Conference on Neural
Networks, volume 2, IEEE, 1999, pp. 1215-1218.

[48] P. Bithimann, Handbook of Computational Statistics, Springer-Verlag, pp. 985—
1022.

[49] L. Breiman, Out-of-bag estimation, Technical Report, University of California,
1996.

[50] J. Tanha, M. van Someren, H. Afsarmanesh, Semi-supervised self-training for
decision tree classifiers, Int. J. Mach. Learn. Cybern. (2015) 1-16.

[51] E. Spyromitros-Xioufis, W. Groves, G. Tsoumakas, I. Vlahavas, Multi-
label classification methods for multi-target regression, arXiv preprint
arXiv:1211.6581(2014).

[52] D. Demsar, M. Debeljak, C. Lavigne, S. DZeroski, Modelling Pollen Dispersal of
Genetically Modified Oilseed Rape within the Field, in: Proc. of the Annual
Meeting of the Ecological Society of America, 2005.

[53] A. Asuncion, D. Newman, UCI machine learning repository, 2007.

[54] H. Blockeel, S. DZeroski, J. Grbovi¢, Simultaneous Prediction of Multiple Chemi-
cal Parameters of River Water Quality with Tilde, in: Principles of Data Mining
and Knowledge Discovery, volume 1704 of LNCS, 1999, pp. 32-40.

[55] M. Kuhn, K. Johnson, Applied predictive modeling, Springer, 2013.

[56] N. Chawla, G. Karakoulas, Learning from labeled and unlabeled data: an em-
pirical study across techniques and domains, J. Artif. Intel. Res. 23 (1) (2005)
331-366.

[57] J. Demsar, Statistical comparisons of classifiers over multiple data sets, ]. Mach.
Learn. Res. 7 (2006) 1-30.

[58] F. Wilcoxon, Individual comparisons by ranking methods, Biometrics Bull. 1
(1945) 80-83.

[59] P.B. Nemenyi, Distribution-free multiple comparisons, Princeton University,
Princeton, NY, USA, 1963 Ph.D. thesis.

[60] Y. Guo, X. Niu, H. Zhang, An Extensive Empirical Study on Semi-supervised
Learning, in: Proc. of the 10th IEEE Conf. on Data Mining, 2010, pp. 186-195.


http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0031
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0031
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0031
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0032
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0032
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0032
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0032
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0033
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0033
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0033
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0033
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0033
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0034
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0034
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0034
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0035
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0035
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0035
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0035
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0035
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0036
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0036
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0036
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0037
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0037
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0037
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0038
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0038
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0038
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0038
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0038
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0038
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0039
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0039
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0039
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0040
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0040
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0040
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0040
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0040
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0041
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0041
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0041
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0041
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0041
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0042
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0042
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0042
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0042
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0043
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0043
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0044
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0044
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0044
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0044
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0045
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0045
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0046
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0046
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0046
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0046
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0047
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0047
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0047
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0047
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0047
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0048
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0048
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0048
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0048
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0049
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0049
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0049
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0050
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0050
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0050
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0051
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0051
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0052
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0052
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0053
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0053
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0054
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0054
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0054
http://refhub.elsevier.com/S0950-7051(17)30081-3/sbref0054

	Self-training for multi-target regression with tree ensembles
	1 Introduction
	2 Background
	2.1 Related work
	2.2 Ensembles of predictive clustering trees for MTR
	2.2.1 Predictive clustering trees for MTR
	2.2.2 Ensembles of predictive clustering trees


	3 Self-training for MTR with ensembles of PCTs
	3.1 Variance score
	3.2 Random forest proximities score
	3.3 Benchmark reliability scores
	3.4 Automatic threshold selection
	3.5 Stopping criteria
	3.6 Computational complexity

	4 Experimental design
	4.1 Data description
	4.2 Experimental setup and evaluation procedure
	4.3 Experimental questions

	5 Results and discussion
	6 Conclusions
	 Acknowledgment
	 Appendix
	 References


