
Ecological Informatics xxx (2010) xxx–xxx

ECOINF-00203; No of Pages 11

Contents lists available at ScienceDirect

Ecological Informatics

j ourna l homepage: www.e lsev ie r.com/ locate /eco l in f

ARTICLE IN PRESS
Estimating vegetation height and canopy cover from remotely sensed data with
machine learning☆

Daniela Stojanova a, Panče Panov b,⁎, Valentin Gjorgjioski b, Andrej Kobler a, Sašo Džeroski b

a Slovenian Forestry Institute, Večna pot 2, SI-1000 Ljubljana, Slovenia
b Jožef Stefan Institute, Department of Knowledge Technologies, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
☆ The authors wish it to be known that, in their opinio
be regarded as joint first authors.
⁎ Corresponding author. Tel.: +386 1 477 3307; fax:

E-mail addresses: daniela.stojanova@gozdis.si (D. St
(P. Panov), valentin.gjorgjioski@ijs.si (V. Gjorgjioski), an
(A. Kobler), saso.dzeroski@ijs.si (S. Džeroski).

1574-9541/$ – see front matter © 2010 Elsevier B.V. Al
doi:10.1016/j.ecoinf.2010.03.004

Please cite this article as: Stojanova, D., et
learning, Ecological Informatics (2010), do
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 14 August 2009
Received in revised form 10 March 2010
Accepted 15 March 2010
Available online xxxx

Keywords:
Remote sensing
LiDAR
Landsat
Vegetation height
Canopy cover machine
Learning
High quality information on forest resources is important to forest ecosystem management. Traditional
ground measurements are labor and resource intensive and at the same time expensive and time consuming.
For most of the Slovenian forests, there is extensive ground-based information on forest properties of
selected sample locations. However there is no continuous information of objectively measured vegetation
height and canopy cover at appropriate resolution.
Currently, Light Detection And Ranging (LiDAR) technology provides detailed measurements of different
forest properties because of its immediate generation of 3D data, its accuracy and acquisition flexibility.
However, existing LiDAR sensors have limited spatial coverage and relatively high cost of acquisition.
Satellite data, on the other hand, are low-cost and offer broader spatial coverage of generalized forest
structure, but are not expected to provide accurate information about vegetation height.
Integration of LiDAR and satellite data promises to improve the measurement, mapping, and monitoring of
forest properties. The primary objective of this study is to model the vegetation height and canopy cover in
Slovenia by integrating LiDAR data, Landsat satellite data, and the use of machine learning techniques. This
kind of integration uses the accuracy and precision of LiDAR data and the wide coverage of satellite data in
order to generate cost-effective realistic estimates of the vegetation height and canopy cover, and
consequently generate continuous forest vegetation map products to be used in forest management and
monitoring.
Several machine learning techniques are applied to this task: they are evaluated and their performance is
compared by using statistical significance tests. Ensemble methods perform significantly better than single-
and multi-target regression trees and are further used for the generation of forest maps. Such maps are used
for land-cover and land-use classification, as well as for monitoring and managing ongoing forest processes
(like spontaneous afforestation, forest reduction and forest fires) that affect the stability of forest ecosystems.
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1. Introduction

In forest management and forestry decision-making there is a
continuous need for high quality information on forest resources. The
state of forest resources can be monitored by using visualizations of
forest properties for a specific spatial region in the form of a map.
Forest maps are an effective tool for detecting the state of forest
resources and monitoring ongoing spatial processes in forested
landscapes. Examples of such processes include the enlargement of
forest area by spontaneous afforestation of abandoned agricultural
land, and the vertical growth of trees and transitions between
developmental stages of existing forest stands. These processes affect
the stability of forest ecosystems, an ever more important property
due to extreme weather conditions, hydrological stress and the
appearance of new diseases and pests.

One of the most important forest properties are: vegetation height
and canopy cover. Vegetation height is the height of the vegetation in a
stand, relative to the ground. It is a function of the species composition,
climate and site quality, and can be used for land-cover classification or
in conjunction with vegetation indices. If coupled with species
composition and site quality information, vegetation height serves as
an estimate of the stand age or the successional stages. Vegetation
height is also a useful indicator of forest age and habitat quality. It is an
important input variable for ecosystem and forest fire models, and is
highly correlated with vegetation biomass and productivity. Biomass is
the key component of the carbon circle (Skole and Tucker, 1993) and a
surrogate for fuel loading estimation (Finney, 2004).
y cover from remotely sensed data with machine
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Forest canopy cover is defined as the percent cover of the tree
canopy in a stand. It includes the cover from both trees and shrubs, but
not herbal vegetation. Canopy cover describes the vertical projection
of the tree canopy onto an imaginary horizontal surface representing
the ground surface. Forest canopy cover is an ecologically very
important forest property because it determines the occurrence and
speed of forest regeneration. It is useful for distinguishing different
plant and animal habitats, assessing forest floor microclimate,
light conditions and estimating other forest variables (e.g., Leaf Area
Index). Measurements of canopy cover are essential for silvicultural
activities (Jennings et al., 1999).

Traditional ground-based field measurements of forest properties
are made by using hand-held equipment. These measurements are
expensive, subjective, time consuming and labor intensive, as well as
difficult to perform, especially in dense forests (Buckley et al., 1999).
Due to these reasons, other methods of estimating forest properties
for larger areas are often used, such as remote sensing.

Over the course of the past few decades, remote sensing1 (RS) has
been a valuable source of information in mapping and monitoring
forest activities. Remote sensing involves collecting of spatially
organized data and information about an area of interest by detecting
and measuring signals composed of radiation, particles and fields
emanating from objects located beyond the immediate neighborhood
of the sensor devices (Franklin, 2001). In this way, it offers a potential
for more efficient resource assessment.

Multi-spectral RS is often used to map structural metrics at
moderate resolution and broader scale. Multi-spectral satellite
imagery is well suited for capturing horizontally distributed (2D)
conditions, strictures and changes (Wulder et al., 2008). However, it
cannot capture the 3D forest structure directly and is easily influenced
by topographical covers and weather conditions.

Light Detection And Ranging (LiDAR) technology, on the other
hand, provides horizontal and vertical information (3D) at high
spatial resolution and vertical accuracies. It is good for characterizing
the vertical structure of vegetation, but has limited spatial coverage
mostly due to pricing. By combining remotely sensed data, that
describe the horizontal distribution of target phenomena, with LiDAR
data, we can improve the measurement, mapping and monitoring of
forest properties and provide means of characterizing forest canopy
parameters and dynamics.

In this context, many papers have been recently published on the
joint use of LiDAR and other active and passive sensors in forest
properties estimation problems (Lefsky et al., 1999; Hyde et al., 2006;
Maltamo et al., 2006). These studies perform estimation of the forest
structure directly from LiDAR measurements and extend them, over
limited areas, to spatially homogeneous spectral segments derived from
theoptical data sets.MediumresolutionRSdata, suchas Landsat images,
are relatively inexpensive to acquire over large areas (Franklin and
Wulder, 2002),whereas LiDAR covers small areas, at a high cost per unit
area (Lim et al., 2003). As a result, these two data types may be
combined to generate estimates of vegetation heights and canopy cover
over large areas at a reasonable cost (Hudak et al., 2002).

Latest studies (Wulder et al., 2008) of the integration of LiDAR and
satellite data point out possible high correlations between different
satellite images and forest properties (vegetation height and canopy
cover). Hyde et al. (2006) compared the performance of step-wise
linear regression models using waveform LiDAR, RaDAR, Landsat,
Quickbird and InSAR in a statistical combination of structural
information in an attempt to estimate the mean canopy height and
biomass. The addition of Landsat ETM+ metrics significantly
improved LiDAR estimates of large tree structure — the combination
of all sensors is more accurate than using LiDAR alone, but only
marginally better than the combination of LiDAR and Landsat ETM+.
1 Remote sensing. See also:http://rst.gsfc.nasa.gov (accessed February 11, 2010).
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Machine learning techniques, such as regression trees, artificial
neural networks and support vector machines have been widely used
in many remote sensing forestry applications (Lefsky et al., 1999;
Moghaddam et al., 2002; Wulder and Seeman, 2003). The typical
machine learning task in all these studies is to learn a predictive
model that uses a set of remote sensing observations with the aim of
predicting the value of forest conditions or properties for unseen
cases. The data input to the machine learning system consists of
information extracted from different RS data sources, while the
output of the system is a predictive model (or a set of predictive
models called an ensemble) that describe the forest property.

Themain objective of this study is to estimate the vegetation height
and canopy cover from an integration of LiDAR and Landsat data in a
diverse and unevenly distributed forest. This kind of integration uses
the accuracy and precision of LiDAR data and the wide coverage of
satellite data in order to generate cost-effective realistic estimation of
the forest properties over a geographically large area. The study area is
located in the Kras region in western Slovenia, near the border with
Italy. The input to the machine learning system are the independent
explanatory variables generated from multi-temporal Landsat data
and the target variables (representing forest properties that we want
to model): The latter are estimated from the 3D LiDAR data and serve
as a very good substitute forfield-base sample plotmeasurements. The
machine learning system outputs a predictive model of the forest
property at hand, which is then used to generate forest vegetation
maps that can be used in a variety of forest management applications.

Although forest vegetation maps can be generated with high
precision and accuracy purely from LiDAR data, this seems impractical
for the nearest future due to the very high cost of high resolution
LiDAR data (in our case 4 EUR/ha). On the other hand, the price of
Landsat ETM+data for amulti-temporal coverage is significantly lower
(in our case it is free of charge). Using Landsat data as the main data
source therefore ensures a very acceptable cost benefit ratio. On the
other hand, LiDAR as used here for model calibration seems a very good
substitute for field-based sample plot measurements of vegetation
height and canopy cover, due to the even higher costs of field
measurements which can in some cases also be very difficult and
imprecise.

In our preliminary work (Džeroski et al., 2006a,b; Taškova et al.,
2006), we introduce the problem of prediction of forest parameters
from Landsat and LiDAR data, and present preliminary results using a
limited set of machine learning algorithms. The predictive models for
estimating the vegetation height and canopy cover from LiDAR and
Landsat data, using model and regression trees, pointed out a possible
high correlation between satellite data and vegetation properties
(Džeroski et al., 2006b). These results were enhanced by using
additional machine learning techniques (bagging of model trees) in
Taškova et al. (2006).

In this study, we significantly extend and upgrade the work
presented in the preliminary work. Here we investigate the
performance of a broader set of state-of-the-art machine learning
techniques. We confirm the results from our preliminary work by
systematically repeating the experiments using the same machine
learning techniques. In addition, we apply other state-of-the-art
machine learning techniques, i.e., ensemble methods that aim at
improving the predictive performance of a given machine learning
technique, using single (learning an ensemble for each target
variable separately) as well as multi-target setting (learning an
ensemble for all target variables together). We use a more carefully
chosen experimental methodology that allows extensive comparisons
of the predictive performances of all algorithms and perform
statistical significance testing. Finally, we use the model with the
best predictive power for generation of vegetation height and canopy
cover maps of the Kras region of Slovenia and provide a more
comprehensive discussion of the experimental results and the use of
the map products.
eight and canopy cover from remotely sensed data with machine
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Fig. 1. A contour map of Slovenia. The study area is encompassed with a black line
whereas the area recorded with LiDAR is presented with black color. The white dots in
the LiDAR area present the area not covered with vegetation (e.g., settlements) and
these parts were not included in the study.
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The remainder of the paper is organized as follows. In Section 2, we
first describe the data and the methodology used in this study. In
Section 3, we then present the results of the modeling process. Next,
in Section 4 we present a comparison of the models, discussion on the
significance of the results and the map products. Finally, in Section 5
we outline our conclusions and discuss possible directions for further
work.

2. Materials and methods

2.1. Study area

The study area measures 72,226 ha of the Kras region in western
Slovenia, in the vicinity of the Adriatic Sea, 5 km from theGulf of Trieste.
The local Gauss–Krueger coordinates of the study area are: Min.Easting
(X)=389,000, Max.Easting(X)=433,000, Min.Northing(Y)=37,000
and Max.Northing(Y)=86,000.

The relief of the study area is roughwith slopes rangingup to60°, the
average slope being 22°. The investigated area covers very diverse and
not evenly distributedvegetation. TheKras regionhas about 40different
types of trees, which includes species such as: Ostrya carpinifolia (Hop-
hornbeam), Pinus nigra (Black pine), Quercus pubescens (Downy Oak),
Fraxinus orneus (South Europea Flowering Ash) and Fagus syllvatica
(European Beech). In Fig. 1we present themap of Slovenia onwhichwe
mark the area recorded by LiDAR and the Kras region. The study area is
encompassed with a black contour line, whereas the study area
recorded with LiDAR is covered with black color. The white dots within
the LiDAR area present parts not covered with vegetation i.e. denote
settlements and were not included in the study.

2.2. Data description

2.2.1. Data sources
Passive optical systems such as aerial photography and Landsat, as

well as active systems like Radar and LiDAR, provide cost-effective
methods of spatial data collection and measurements of forest
properties. The suitability of a sensor type for a particular study
depends on the scale of study and the nature of the observed objects
or processes. In this study, we used the Landsat and LiDAR remote
sensing techniques for estimating of the vegetation height and canopy
cover.

2.2.1.1. Landsat. Landsat 7 Thematic Mapper Plus ETM+2 is the latest
satellite of the Landsat Program designed to collect radiance data in 7
bands (channels) of reflected energy and one band of emitted energy.
A well calibrated ETM+ enables one to convert the raw solar energy
collected by the sensor to absolute units of radiance. The eight bands
of ETM+ data are used to discriminate between Earth surface
materials through the development of spectral signatures. Thus, a
multi-spectral data set having both high (30 m) andmedium to coarse
(250 m–1000 m) spatial resolution is acquired on a global basis
repetitively and under nearly identical atmospheric and plant
physiological conditions. The panchromatic band has spatial resolu-
tion of 15 m, while the thermal infrared (TIR) channel has a resolution
of 60 m.

2.2.1.2. LiDAR. Airborne laser scanning (ALS), also termed airborne
LiDAR (Light Detection And Ranging) is an optical remote sensing
technology that measures properties of scattered light to find range
and/or other information of a distant target. The laser emits a light
pulse which is scattered (reflected) from the object back to the sensor.
By measuring the round trip time of an emitted laser pulse from the
2 Landsat. See also: http://www.trfic.msu.edu/data_portal/Landsat7doc/landsatch5.
html (accessed February 11, 2010).
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sensor to a reflecting surface and back again, the distance from the
sensor to the surface is determined.

LiDAR is one of the most promising remote sensing techniques for
detailed measurements of forest properties because of its immediate
generation of 3D data, self-georeferencing, high spatial resolution
(typically 0.5–5 points/m, positional error 10–20 mphcm), accuracy
(raging from 15 to 20 cm Root Mean Square Error (RMSE) vertically
and 20–30 cm horizontally) and acquisition flexibility.3 It enables
detailed measurements and making of maps with quality comparable
to the most passive or active systems. It penetrates through the
vegetation layer to the bare ground, enabling structural rendering of
vegetation and providing 3D data about objects.

With LiDAR, we can directly define the third dimension of forest
layers and the relief under the forest. It is a good source for generation
of digital relief models (DEM) and topographical analysis, especially
for forested areas, where classical aerophotogrametrical techniques
do not give satisfactory accuracy. LiDAR can be used for mapping
forest stands, individual tree canopy detection, etc.

2.2.2. Data description and generation of the dataset
The data used in this study consists ofmulti-spectralmulti-temporal

Landsat satellite imagesand3DLiDAR recordings of the studyarea. From
the Landsat data, we extracted the explanatory variables, while the
LiDAR data was used to extract the target variables (forest properties)
used in the process of learning the predictive model. The spatial unit of
analysis was a 25 m×25m square.

2.2.2.1. Landsat data description. Multi-spectral Landsat ETM+ data
were acquired on August 3rd, 2001, May 18th, 2002, November 10th,
2002, and March 18th, 2003, thus capturing the main phenological
stages of forest vegetation in the area. In Fig. 2 we show a part of a
Landsat ETM+ band 3′ image, that covers the area recorded with
LiDAR, obtained on November 10th, 2002. The Landsat imagery was
first geometrically corrected by orthorectification. Image segmenta-
tion was then applied. The commercially available eCognition image
analysis software, version 2.1 (Definiens Imaging, Munich, Germany)
was used for the image segmentation. The software uses a patented
procedure for multi-resolution segmentation to extract image objects,
exploiting both spatial and spectral information to create objects from
image data. The segmentations are typically visually appealing,
although the users need to interactively select a useful segmentation
level through trial and error (Hay et al., 2003).
3 Instrument technical details. See also: http://arsf.nerc.ac.uk/instruments/altm.asp
(accessed August 18, 2008).

eight and canopy cover from remotely sensed data with machine
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Fig. 2. A part of Landsat ETM+ band 3′ image that covers the area recorded with LiDAR acquired on 10.11.2002.
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The typical result of image segmentation is extraction of large
homogeneous image objects (e.g., meadow), small homogeneity
image objects (e.g., forest stand) and small homogeneity objects
embedded in a high contrast, especially for data such as Landsat
imagery. Each of the four Landsat images was segmented at two levels
of spatial detail in order to get realistic object based information that
correspond to the real world objects and later serve as information
carrier and building block for further analysis. The average image
segment sizes were 4 ha for the fine segmentation and 20 ha for the
coarse segmentation. Image segmentation is illustrated in Fig. 3 and it
represents a segmentation of the Landsat image presented in Fig. 2. It
has been derived as a result of fine image segmentation of the third
Landsat channel. The objects are givenwith different colors in order to
be distinguishable among each other (the number of objects is around
45,500).

2.2.2.2. Explanatory variables. In order to represent and display remote
sensed data, we employ basic statistic measures like bandmean value,
standard deviation and others (Jensen, 2004). The statistic measures
can be used further in the analysis of the data directly or indirectly.
The link between remote sensing and statistics is strong; clearly,
remote sensing can be considered a multivariate problem (Kershaw,
1987) and probabilistic methods constitute one of the most powerful
approaches to the analysis of multivariate problems.

Therefore, we generate our explanatory variables from Landsat
imagery data based on statistical information for each band. Based on
the data within each image segment, four statistic measures
(minimum reflectance, maximum reflectance, average reflectance,
and standard deviation of reflectance) were computed for each date,
for each segmentation level, and for each of the Landsat image
channels (2, 3, 4, 5, and 7). Using different segmentation levels, for
each example, we take into account two different kinds of neighbor-
hood (narrow and broader). The information about the narrow
neighborhood is included with the fine image segmentation level and
the broader one is included with the coarse image segmentation level.
In this way, we obtain 160 explanatory variables to be used in the
predictive modeling. As the borders of individual segments were not
identical between dates and segmentation levels, values of the 160
variables were attributed back to individual image pixels, each with
dimension 25 m×25 m.

2.2.2.3. LiDAR data description. An east–west transect measuring
2 km×20 km (highlighted in black in Fig. 1) across a representative
part of the Kras region was flown over by LiDAR, in the spring of 2005.
The equipment included Optech ALTM 3100 LiDAR flown on a
Eurocopter EC-120 B “Colibri” helicopter. The device collects 33,000
laser observations per second in standard operating mode, measuring
height, first, intermediate, only and last returns, angle, radian and
Fig. 3. Fine image segmentation of the Landsat ETM+ band
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intensity data. From an operating altitude of 1000 m, the resulting
height data has an absolute root mean squared error better than ±
15 cm. The average point cloud density of the LiDAR dataset was
7.5 points/m2, thus 4687.5 discrete 3D LiDAR returns were contained
on average in each 25 m×25 m square.

2.2.2.4. Target variables. The target variables were computed from the
LiDAR data, at the level of 25 m×25 m squares corresponding to
Landsat pixels. The vegetation height (H) for each square (or Landsat
pixel) was computed by averaging the heights of the LiDAR-based
normalized digital surface model (nDSM) within the 25 m×25 m
square. A nDSM is a high resolution raster map showing the relative
height of vegetation above the bare ground. Our nDSM had a
horizontal resolution of 1 m2 and was computed using the REIN
(REpetitive INterpolation) algorithm for calculation of a Digital
Terrain Model (DTM) (Kobler et al., 2007). The REIN algorithm was
developed for generating DTMs under forest cover in steep terrain
using dense LiDAR data (≥5 points/m2): In such conditions, other
filtering algorithms typically have problems distinguishing between
ground returns and off-ground points reflected in the vegetation. A
field validation of the nDSM on a sample of 120 trees confirmed a
vertical RMS error of 0.36 m and a vertical bias of −0.71 m.

The canopy cover (CC)within this study is defined as the percentage
of bare ground within 25 m×25m (or a Landsat pixel), covered by the
vertical projection of the overlying vegetation, higher than 1 m. The
canopy cover for each Landsat pixel was computed as the ratio of the
heights of the LiDAR-based normalized digital surface model (nDSM)
that exceeded1 mrelative height differencebetween the bare groundof
thedigital terrainmodel and the surfaceof the Landsat pixel. The canopy
cover for each 25 m square was computed as the percentage of
vegetation within a pixel. The values of the canopy cover are in the
interval 0–100%.

2.3. Machine learning methodology

Predictive modeling is a machine learning task concerned with
predicting the value of one or more dependent variables (classes,
targets) from the values of independent variables (explanatory
variables). If the target variable is continuous, the task at hand is called
regression. If the target is discrete (it has a finite set of nominal values),
the task at hand is called classification. The tasks of classification and
regression are the two most commonly addressed predictive modeling
tasks in machine learning.

In predictive modeling, a set of data records is taken as input to a
predictive modeling algorithm, and a predictive model (or set of
predictive models called an ensemble) is generated as an output. This
model can then be used to predict values of the target variable for new
data. If we are predicting a value of a single-target variable, then we
3′ image acquired on 10.11.2002 (presented in Fig. 2).

eight and canopy cover from remotely sensed data with machine
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have a single-target prediction task. In the case when we predict the
values of several target variables simultaneously with one model, we
have a multi-target prediction task.

In this study, the machine learning task is to learn a predictive
model (or a set of models) for predicting vegetation height and
canopy cover from an integration of LiDAR and Landsat data. This is a
multi-target prediction task. The target variables are derived from the
LiDAR data and the explanatory variables are extracted from the
Landsat images.

2.3.1. Single-target prediction: decision, regression and model trees
Decision tree learning (Quinlan, 1986) is one of the most widely

used methods for inductive learning. A decision tree is a hierarchical
structure, where the internal nodes contain tests on the descriptive
variables. Each branch of an internal test corresponds to an outcome
of the test, and the prediction for the value of the target variable is
stored in a leaf. To obtain a prediction for a new data record, the
record is sorted down the tree, starting from the root (the top-most
node of the tree). For each internal node that is encountered on the
path, the test is stored in the applied node. Depending on the outcome
of the test, the path continues along the corresponding branch. The
resulting prediction of the tree is taken from the leaf at the end of the
path.

A decision tree is usually constructed with a recursive partitioning
algorithm from a training set of records. The algorithm is known as
Top-Down Induction of Decision Trees (TDIDT). The records include
measured values of the descriptive and the target attributes. The tests
in the internal nodes of the tree refer to the descriptive,while the
predicted values in the leaves refer to the target attributes.

The TDIDT algorithm starts by selecting a test for the root node.
Based on this test, the training set is partitioned into subsets according
to the test outcome. In the case of binary trees, the training set is split
into two subsets: one containing the records for which the test
succeeds (typically the left subtree) and the other containing the
records for which the test fails (typically the right subtree). This
procedure is recursively repeated to construct the subtrees.

The partitioning process stops when a stopping criterion is
satisfied (e.g., the number of records in the induced subsets is smaller
than some predefined value; the length of the path from the root to
the current subset exceeds some predefined value, etc.). In that case,
the predicted value is calculated and stored in a leaf. The predicted
value is the mean value of the target variable calculated over the
records that are sorted into the leaf.

One of the most important steps in the tree induction algorithm is
the test selection procedure. For each node a test is selected by using a
heuristic function computed on the training data. The goal of the
heuristic is to guide the algorithm toward smaller trees with good
predictive performance.

Regression trees are decision trees that predict the value of a
numeric target attribute (Breiman et al., 1984). Each leaf of a
regression tree contains a constant value as a prediction for the target
variable, as regression trees represent piece-wise constant functions.
If the leaf contains a linear regression model that predicts the target
value of examples that reach the leaf, the decision tree in question is
called a model tree (Quinlan, 1992). Model trees have advantages
over regression trees in both compactness and prediction accuracy,
and the ability to exploit local linearity in the data. Another advantage
over regression trees is that model trees can extrapolate the predicted
value outside the range observed in the training cases. In this paper,
we use M5′ regression and model tree algorithm implementation
from the WEKA environment (Witten and Frank, 2005).

2.3.2. Multi-target prediction: multi-target regression trees
Multi-target regression trees (Blockeel, 1998; Struyf and Džeroski,

2006) are a generalization of regression trees for the prediction of
several numeric target variables simultaneously. The leaves of amulti-
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target regression tree store a vector of numeric values, instead of
storing a single numeric value. Each component of this vector is a
prediction for one of the target attributes. The components of the
prediction vector are the means of the target variables calculated over
the records that are stored in the leaf. The main advantages of multi-
target regression trees (over building a separate model for each
target) are: (1) a multi-objective model is smaller than the total size
of the individual models for all target variables, and (2) such a multi-
objective model explicates dependencies between the different target
variables.

In this paper, we use the CLUS (Blockeel and Struyf, 2002; Struyf
and Džeroski, 2006) system for constructing (multi-target) regression
trees. The heuristic used for selecting the attribute tests (that define
the internal nodes) in this algorithm is the intra-cluster variance
summed over the subsets induced by the test. The variance function is
standardized so that the relative contribution of the different targets
to the heuristic score is equal. Lower intra-subset variance results in
predictions that are more accurate.

2.3.3. Ensembles
An ensemble method constructs a set of predictive models called

an ensemble (Dietterich, 2000). An ensemble gives a prediction for a
new data record by combining the predictions of the individual
models for that data record. For regression tasks, the final prediction
can be obtained by averaging the output predictions of the models in
the ensemble. The learning of ensembles consists of two steps. In the
first step, we have to learn the base models that make up the
ensemble. In the second step, we have to figure out how to combine
these models (or their predictions) into a single coherent model (or
prediction).

When learning base models it makes sense to learn models that
are accurate and diverse (Hansen and Salamon, 1990). Accurate
models perform better than random guessing on new examples, and
diverse models make different prediction errors on new examples.
The diversity in an ensemble can be introduced in different ways: by
manipulating the training set (e.g., bootstrap sampling, change of
weights of the data instances) or by manipulating the learning
algorithm used to obtain the base models (e.g., introducing random
elements in the algorithm).

Ensemble methods aim at improving the predictive performance
of a given machine learning technique. They aim to improve the
predictive performance of their base classifier when used in a single-
target setting (learn an ensemble for each target attribute separately)
(Breiman, 1996, 2001). In Kocev et al. (2007), it is shown that this
applies also for the multi-target setting (learn one ensemble for all
target attributes). In addition, the ensembles for multi-target
prediction should be preferred because they are faster to learn. In
this work, we use bagging and random forests, the two most widely
used ensemble methods to produce ensembles of regression trees and
multi-target regression trees.

2.3.3.1. Bagging. Bagging (Breiman, 1996) is an ensemble method that
constructs the different basemodels bymaking bootstrap replicates of
the training set and using them to build the individual models. Each
bootstrap sample is obtained by randomly sampling training
instances, with replacement, from the original training set. The
bootstrap sample and the training set have an equal number of
instances. Bagging can give substantial gains in predictive perfor-
mance, when applied to an unstable learner (i.e., a learner for which
small changes in the training set result in large changes in the
predictions), such as classification and regression tree learners.

2.3.3.2. Random forest. A random forest (Breiman, 2001) is an
ensemble of trees, where the diversity among the individual trees is
obtained from two sources: (1) by using bootstrap sampling and
(2) randomization of the selection step of the TDIDT algorithm. At
eight and canopy cover from remotely sensed data with machine
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each node in the decision tree, a random subset of the input attributes
is taken and the best split is selected from this subset. The size of the
random subset is given by a function of the number of descriptive
attributes. Prediction is made by aggregation (majority vote for
classification or averaging for regression) of the predictions of the
individual models in the ensemble.

3. Results

3.1. Experimental design

3.1.1. Dataset
The dataset consists of 160 explanatory variables and 2 target

variables. The explanatory variables are derived from Landsat data for
two levels of image segmentation, as explained in Section 2. The target
variables are: vegetation height (H) and canopy cover (CC), derived from
LiDAR data. There are 64,000 examples of which 60,607 describe the
vegetation outside a settlement and are used in the process of learning.

3.1.2. The learning algorithms
In this study, one of the objectives is to study the predictive

performance of state-of-the art machine learning algorithm, for the
task of prediction of vegetation height and canopy cover. The problem
of prediction of forest properties inherently represents a multi-target
learning problem: it can be solved by using algorithms that build a
single-target model for each forest property separately or by using
algorithms that build a multi-target model for both forest properties
at the same time. Another dimension of comparison of the predictive
performance is using single models or ensemble of models. In this
study, we investigate this dimension by performing experiments for
single-model prediction and state-of-the-art ensemble prediction
(e.g., bagging and random forests) both in the single-target andmulti-
target setting.

Weuse implementations of the state-of-the-art algorithms from two
open source machine learning systems: WEKA (Witten and Frank,
2005) and CLUS4 (Blockeel and Struyf, 2002; Struyf andDžeroski, 2006).
In total, we performed experiments using 9 different algorithms. First,
weperformed experiments using algorithms that have a singlemodel as
an output. We used the implementations of regression tree (wRT) and
model tree (wMT) algorithm in the WEKA system and single-target
(STRT) and multi-target regression trees (MTRT) implemented in the
CLUS system.Next,we performedexperiments using ensemble learning
algorithms that produce a set of models. In this case, we used the
implementations of the baggingmethod fromWEKA usingmodel trees
as base-level learners (wBagMT), and bagging and random forests of
CLUS regression trees (as base learners) in the CLUS system both in the
single-target (BagSTRT and RFSTRT) andmulti-target setting (BagMTRT
and RFMTRT).

The experiments were performed by using the default parameter
settings for all the algorithms. Single-target regression trees and
multi-target regression trees from the CLUS system are built with the
default heuristic (intra-cluster variance) and default pruning method
(M5 pruning). The minimal number of examples for the method to
form a leaf was 4 examples. The settings for ensembles include the
default pruning method, the number of variables in variable selection
for random forest was set to 5 variables (calculated using the
suggestion by Breiman, 2001), the default ensemble size of 10 and
the default voting type for regression (the mean value).

3.1.3. Evaluation and comparison
Evaluation of themodels was performed using the standard 10 fold

cross-validation evaluation method. All the algorithms were evaluat-
4 The system is available at http://www.cs.kuleuven.be/dtai/clus/ (accessed August
18, 2008).
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ed on the same folds, in order to allow comparison of the results and
statistical significance testing. We use two regression evaluation
measures to estimate and discuss the predictive performance of the
models: correlation and root mean squared error. Correlation (Corr)
indicates the strength and direction of a linear relationship between
two random variables and is usually expressed through the Pearson
correlation coefficient. Root mean squared error (RMSE) is a
frequently-used measure of the differences between values predicted
by a model of an estimator and the target values actually observed.

To compare the performance of the different algorithms, we use
the corrected Friedman test (Friedman, 1940; Iman and Davenport,
1980). The evaluation measure for each fold of the cross-validation
represents a data point for the statistical test. The test is performed on
each target variable (H and CC) separate for each evaluation measure
(Corr and RMSE).

The Friedman nonparametric test first ranks the algorithms for each
dataset (fold), the best performing algorithm getting the rank of 1. It
then compares the average ranks of the algorithms across datasets
(folds). The null-hypothesis, which states that all the algorithms are
equivalent and so their ranks should be equal.

If the null-hypothesis is rejected, we can proceed with a post-hoc
test. The Nemenyi (1963) test is used when in our case, since all
classifiers are compared to each other. The performance of two
classifiers is significantly different if the corresponding average ranks
differ by at least the critical difference CD. The results of this test are
visualized by using the average rank diagrams on which the critical
distance is also depicted (Demšar, 2006). We consider the differences
in performance significant if the standard p-value is below the
threshold of 0.05.

3.2. Results — predictive performance

Here, we present the predictive performance of the obtained
models in terms of two evaluationmeasures (Corr and RMSE) for both
target variables. The results, presented in Tables 1 and 2, are
represented with the corresponding confidence intervals, to show
the stability of the used algorithms. We can note that the confidence
intervals in both tables are small, due to the size of the dataset (60,607
examples). In Tables 1a and 2a we list the performance for algorithms
that produce single models as output, and in Tables 1b and 2b we list
the performance of ensemble algorithms.

To check whether the differences in performances are statistically
significant, we used the corrected Friedman test for multiple
hypothesis testing. To detect which algorithms perform significantly
better or worse than others, we used the Nemenyi post hoc test. The
results of this procedure are presented in the form of average rank
diagrams in Fig. 4, for each target variable and each evaluation
measure. The ranks are depicted on the axis in such a manner that the
best ranking algorithms are at the right-most side of the diagram. The
critical difference (CD) interval, for a significance level of 0.05, is
computed by the Nemenyi test and is plotted in the upper left corner;
algorithms whose average rank difference is larger than this critical
difference can be considered significantly different with 95% proba-
bility. The algorithms that do not differ significantly are connected
with a line.

The Nemenyi test shows (Fig. 4a and b) that the best performing
algorithms are ensemble methods and in particular random forests of
multi-target regression trees (RFMTRT), while the worst performing
algorithms are single-model algorithms. The test shows that the
performance of the ensemble methods, in terms of correlation
coefficient, is significantly better than the one of single-model
methods. If we compare the multi-target methods, we can see that
random forests of multi-target regression trees perform statistically
better than individual multi-target regression trees: in the case of
bagging, the difference is not statistically significant. Similar conclu-
sions can be drawn if instead of the results for correlation we
eight and canopy cover from remotely sensed data with machine
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Table 2
Comparison of RMSE of the predictive models for both target variables: a) Single model algorithms (wRT — WEKA Regression Tree; wMT — WEKA Model Tree; STRT — CLUS Single
Target Regression Tree; MTRT— CLUS Multi-target Regression Tree); b) Ensemble algorithms (wBagMT—WEKA Bag of Model Trees; BagSTRT— CLUS Bag of STRTs; RFSTRT— CLUS
Random Forest of STRTs; RFMTRT — CLUS Random Forest of MTRTs).

a) Single model algorithms

Single-target Multi-target

Target wRT wMT STRT MTRT

H [m] 2.336±0.035 2.271±0.038 2.361±0.025 2.373±0.038
CC [%] 16.068±0.051 15.758±0.129 16.481±0.151 14.708±0.108

b) Ensemble algorithms

Single-target Multi-target

Target wBagMT BagSTRT RFSTRT BagMTRT RFMTRT

H [m] 2.091±0.038 2.071±0.029 2.056±0.030 2.070±0.028 2.054±0.029
CC [%] 14.723±0.079 14.868±0.125 14.713±0.105 14.891±0.109 14.708±0.108

Table 1
Comparison of correlation coefficients of the predictive models for both target variables: a) Single model algorithms (wRT—WEKA Regression Tree; wMT—WEKAModel Tree; STRT—

CLUS Single Target Regression Tree;MTRT— CLUSMulti-target Regression Tree); b) Ensemble algorithms (wBagMT—WEKABag ofModel Trees; BagSTRT— CLUS Bag of STRTs; RFSTRT—
CLUS Random Forest of STRTs; RFMTRT — CLUS Random Forest of MTRTs).

a) Single model algorithms

Single-target Multi-target

Target wRT wMT STRT MTRT

H 0.876±0.004 0.884±0.004 0.874±0.003 0.880±0.015
CC 0.858±0.002 0.863±0.004 0.851±0.003 0.852±0.013

b) Ensemble algorithms

Single-target Multi-target

Target wBagMT BagSTRT RFSTRT BagMTRT RFMTRT

H 0.902±0.004 0.904±0.003 0.906±0.002 0.904±0.002 0.906±0.002
CC 0.883±0.002 0.880±0.003 0.883±0.002 0.880±0.002 0.883±0.002
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consider the results for RMSE (see Fig. 4c and d). In general, RFMTRT
constructed from the CLUS system perform significantly better than
any of the individual trees. The only exception to this is the RMSE for
canopy cover, where multi-target regression trees (MTRT) have the
same rank as RFMTRT.

3.3. Results — maps of vegetation height and canopy cover

The second objective of our work is to produce maps of vegetation
height and canopy cover using the predictive models obtained in the
study. For that purpose, we used RFMTRT, which is the best
performing method according to predictive performance, to generate
maps. This model was built using the entire dataset of 60,607
examples, from the representative part of the Kras region (containing
variety of different vegetations) for which we have both Landsat and
LiDAR data available. Next, we translated the RFMTRT model into
functions in the PYTHON5 programming language, that were later on
used in the GIS (Geographical Information System) system to
visualize the predictions in the form of a map. Finally, we generated
maps of vegetation height (see Fig. 5) and canopy cover (see Fig. 6) by
applying the PYTHON functions to the whole Kras region, thus
extrapolating the predictions of the model built on the smaller
representative part of the region using Landsat data available for the
whole region.
5 http://www.python.org/ (accessed on August 18, 2008).
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4. Discussion

In this study, we compare several machine learning methods on
the task of estimating vegetation height and canopy cover by using
LiDAR and Landsat data. To this end, we redesigned the experiments
from the first two preliminary studies (Džeroski et al., 2006b; Taškova
et al., 2006). We tested additional machine learning methods in order
to improve the accuracy of the predictive models. Beside single- and
multi-target regression trees used in the previous studies, we also use
single- and multi-target ensemble methods.

The best results are obtained using the RFMTRT algorithm, random
forests of multi-target regression trees. Ensemble methods improve
the accuracy of the predictive models. Moreover, the ensembles for
multi-target prediction should be preferred because theyare faster to
learn and predict more than one variable at the same time.

All ensemble methods perform better than the single model
algorithms (wMT, wRT, STRT and MTRT) used. An exception is the
performance in terms of the RMSE for canopy cover whereMTRT have
the same performance as RFMTRT. The average rank diagram shows
that random forests created by CLUS system perform best in all four
cases (see Fig. 4). The difference of the performance between
ensembles of different types of trees is insignificant.

The results from this study are better than results presented in
our preliminary work. Džeroski et al. (2006b) reported a correla-
tion of 0.885 and RMSE=2.25 m for vegetation height and a
correlation of 0.861 and RMSE=0.17 for canopy cover: These were
achieved by using model trees. Taškova et al. (2006) reported a
eight and canopy cover from remotely sensed data with machine
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Fig. 4. Average ranks diagrams: a) target variable— H and eval. measure— Corr; b) target variable— CC and eval. measure— Corr; c) target variable— H and eval. measure— RMSE and
d) target variable—CCandeval.measure—RMSE. Algorithmswith lower ranks (far right) performbetter. Algorithmswhoseaverage rankdifference is larger than the critical difference can
be considered significantly differentwith 95% probability. The algorithms that donot differ significantly are connectedwith a line. Algorithm labels are as follows:wRT—WEKARegression
Tree; wMT—WEKAModel Tree; STRT— CLUS Single-target Regression Tree; MTRT— CLUSMulti-target Regression Tree; wBagMT—WEKA Bag of Model Trees; BagSTRT— CLUS Bag of
STRTs; RFSTRT — CLUS Random Forest of STRTs; RFMTRT — CLUS Random forest of MTRTs.

6 Kyoto protocol: http://unfccc.int/resource/docs/convkp/kpeng.html, (accessed
August 18, 2008).
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correlation of 0.902 and RMSE=2.19 m for vegetation height and a
correlation of 0.882 and RMSE=0.238 for canopy cover: These
were achieved by using bagging of model trees. The accuracy of the
predictive models is improved by using ensemble methods. In this
more general study, we obtained higher correlation coefficients and
lower error rates. The average error rate (RMSE) of the best models is
2.05 m for the vegetation height and 14% for the canopy cover, whereas
the corresponding correlation coefficients are 0.91 and 0.88.

The investigated study area covers very diverse and not evenly
distributed vegetation. It was selected by taking into account the
diversity and the distribution of the many different vegetation types
present in the Kras region. The Kras region has about 40 different types
of trees,which includes species suchas:O. carpinifolia (Hop-hornbeam),
P. nigra (Black pine), Q. pubescens (Downy Oak), F. orneus (South
Europea Flowering Ash) and F. syllvatica (European Beech). The models
build using the methodology described in this paper can also serve for
estimation of the vegetation height and canopy cover in other study
areas with similar vegetation species. The different vegetation types
have different influences on the structure and the accuracy of themodel.
The different combinations of vegetation species will decrease (in most
of the cases) the accuracy of the predictions of the model. In case of
regions with very diverse vegetation it is preferable to divide the region
into smaller subregions and perform modeling in each subregion
separately. In addition, special attention when modeling the vegetation
properties needs to be focused on the relief of the area.

The generated maps represent a rough, but continuous estimates
of the vegetation height and canopy cover over a large spatial area.
The precision of the derived maps is lower than the precision of the
field measurements done on smaller plots or individual trees within
the study area (see field validation of the nDSM in Section 2.2.2).
Therefore, these maps cannot be used for determination of the
growing stock or other individual tree estimates, but can be useful
when coverage of a grater spatial area is required.
Please cite this article as: Stojanova, D., et al., Estimating vegetation h
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Suchmaps canbeusedas an input for advanced systems suchasGIS to
improve their planning, managing and monitoring capabilities, in
performing a variety of tasks such as land-cover mapping, land-cover
classification, land-usemapping, land-use classification, change detection
and many other forestry, ecological, geological and military applications.
Moreover, themaps canbeused formonitoring andmanaging avariety of
ongoing processes in the forest ecosystems that involve enlargement of
forest areas by spontaneous afforestation of abandoned agricultural land,
forest area reduction, urban rapprochement, as well as vertical growth
and gradual closing of canopy cover of existing forest stands. These maps
can be used in the process ofmonitoring the forest biomass accumulation
and CO2 sink in the Kyoto framework.6 Furthermore they can be used in
estimating the risk of forest fire outbreaks.

In addition, these maps can also serve for temporal comparisons.
Finally, due to their spatial continuity (unlike the discrete sampling
layout of current forest monitoring schemes) potential applications
also include the study of forest habitats and transitional agricultural-
forest habitats, visual landscape assessments, land-use suitability
analysis, visibility analysis for cell phone networks etc. The method-
ology used in this study integrates remote sensing, forestry and
machine learning techniques and can be a powerful tool for diverse
mapping and modeling applications in the future.

5. Conclusions

In this study, we focus on the estimation of forest properties (forest
vegetation height and canopy cover) from remotely sensed data over a
large geographical area (the study area measures 72,226 ha of the Kras
eight and canopy cover from remotely sensed data with machine
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Fig. 5. Map of vegetation height for the Kras region generated by using a random forest of multi-target regression trees model. The legend shows the vegetation height in meters.
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region in western Slovenia in the vicinity of the Adriatic Sea), by
integrating LiDAR and Landsat satellite data and generating predictive
models of forest properties. We use machine learning methods
for predictive modeling and apply a set of state-of-the-art machine
learning techniques. To model the forest properties we focused on two
dimensions: modeling the parameters with individual models or
ensembles (single model prediction and ensemble prediction) and
modeling the target properties separately or simultaneously (single-
target and multi-target prediction). The results show the advantages of
multi-target over single-target regression, asmulti-targetmodels have a
smaller size and are faster to learn and apply, and the advantage of
ensemble prediction over singlemodel prediction in terms of predictive
performance.

Several contributions are presented in this study. First, we use
state-of-the-art machine learning methodology to model forest
properties, in contrast to the simple statistical methods and linear
regression used in similar studies (Hyde et al., 2006). Second, we
achieved better results in terms of higher correlation coefficients and
lower RMSE errors compared to the results obtained in our
preliminary work (Džeroski et al., 2006b; Taškova et al., 2006). Also,
we perform modeling of the forest properties in diverse forests, as
opposed to modeling of homogeneous forests. Next, we use multi-
temporal multi-spectral Landsat data, obtained in different vegetation
seasons, instead of mono-temporal data used in similar studies.
Finally, we use the accurate and precise LiDAR data to learnmodels for
the representative part of a region and then we extrapolate the
predictions on a larger area using less expensive remote sensing
Landsat data.

The derived models represent a key piece of infrastructure
required in support of sustainable forest management. They serve to
Please cite this article as: Stojanova, D., et al., Estimating vegetation h
learning, Ecological Informatics (2010), doi:10.1016/j.ecoinf.2010.03.00
generate forest vegetation map products for a large geographical
area. Although such maps could be generated with exceeding
precision and accuracy purely from LiDAR data, this seems
impractical for the foreseeable future due to the very high cost of
high resolution LiDAR data. Using Landsat data as the main data
source therefore ensures a very acceptable cost benefit ratio.
Moreover, using LiDAR for model calibration seems a very good
replacement for sample plot field measurements of vegetation
height and canopy cover, due to the even higher costs and difficulty
or imprecision of the field measurements.

In future work, we first plan to investigate different image
segmentation algorithms and to see what is the influence of
segmentation on the overall predictive performance. Moreover, we
would like to use other preprocessing methods and techniques and
combine them with domain-based knowledge (e.g., image clustering,
geo-ontologies). Second, we want to incorporate the spatial correlation
and the spatial autocorrelation in the predictivemodels. Finally,we plan
to expand the forest maps to broader areas (i.e., country level). We will
evaluate the predictions of the machine learning models on different
study areas and explore the influence of diverse vegetation and land-
cover types on the accuracy of the results.
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Fig. 6. Map of canopy cover for the Kras region generated by using a random forest of multi-target regression trees model. The legend shows the percentage of canopy cover.
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