Towards a General Framework for Data Mining

Saso Dzeroski

Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

Abstract. In this paper, we address the ambitious task of formulat-
ing a general framework for data mining. We discuss the requirements
that such a framework should fulfill: It should elegantly handle differ-
ent types of data, different data mining tasks, and different types of
patterns/models. We also discuss data mining languages and what they
should support: this includes the design and implementation of data
mining algorithms, as well as their composition into nontrivial multi-
step knowledge discovery scenarios relevant for practical application. We
proceed by laying out some basic concepts, starting with (structured)
data and generalizations (e.g., patterns and models) and continuing with
data mining tasks and basic components of data mining algorithms (i.e.,
refinement operators, distances, features and kernels). We next discuss
how to use these concepts to formulate constraint-based data mining
tasks and design generic data mining algorithms. We finally discuss how
these components would fit in the overall framework and in particular
into a language for data mining and knowledge discovery.

1 Introduction: The Challenges for Data Mining

While knowledge discovery in databases (KDD) and data mining have enjoyed
great popularity and success in recent years, there is a distinct lack of a generally
accepted framework for data mining. The present lack of such a framework is
perceived as an obstacle to the further development of the field. For example, at
the SIGKDD-2003 conference panel “Data Mining: The Next 10 Years” (Fayyad
et al. 2003), U. Fayyad emphasizes in his position statement that “the biggest
stumbling block from the scientific perspective is the lack of a fundamental theory
or a clear and well-understood statement of problems and challenges”.

Yang and Wu (2006) collected the opinions of a number of outstanding data
mining researchers about the most challenging problems in data mining research
(and presented them at ICDM-2005). Among the ten topics considered most im-
portant and worthy of further research, the development of a unifying theory is
listed first. The article states: “Several respondents feel that the current state of
the art of data mining research is too ad-hoc. ... a theoretical framework that uni-
fies different data mining tasks ..., as well as different data mining approaches ...,
would help the field and provide a basis for future research.”

High on the list of important research topics is mining complex data (Yang
and Wu 2006). We will take complex data here to mean structured data that
depart from the format most commonly used in data mining, namely the format

S. Dzeroski and J. Struyf (Eds.): KDID 2006, LNCS 4747, pp. 259-[300, 2007.
© Springer-Verlag Berlin Heidelberg 2007

260 S. Dzeroski

of a single table. This will include sequences and graphs, but also text, images,
video, and multi-media data. From this viewpoint, much of the current research
in data mining is about mining complex data, e.g., text mining, link mining,
mining social network data, web mining, multi-media data mining. Many of
the grand challenges for data mining are perceived to be in this area, cf. the
SIGKDD-2006 conference panel (Piatetsky-Shapiro et al. 2006). An additional
challenge is to treat the mining of different types of structured data in a uniform
fashion, which is becoming increasingly more difficult, as somewhat separate
research (sub)communities are evolving around text/link/tree/graph mining.

Hand in hand with the above go the problems of mining complex patterns and
the incorporation of domain knowledge (Yang and Wu 2006; Aggrawal’s com-
ments in Fayyad et al. 2003). As the complexity of the data analyzed grows, more
expressive formalisms are needed to represent patterns found in the data. The use
of such formalisms has been proposed within relational data mining (Dzeroski
and Lavra¢ 2001) and statistical relational learning (Getoor and Taskar, 2007);
these are now used increasingly more often in link mining, web mining and min-
ing of network data.

The last set of methodological questions that we want to emphasize here
concerns knowledge discovery as a process, rather than individual data min-
ing tasks and approaches. Data preparation typically takes significant time and
different data mining operations need to be applied and composed in practical
applications. Arguably, there is insufficient support for humans carrying out the
knowledge discovery process as a whole. Integration and compositionality of data
mining operations/algorithms are called for.

At a KDD-03 panel discussion (Fayyad et al. 2003), Fayyad states: “In a typ-
ical data mining session, I spend most of my time extracting and manipulating
data, not really doing data mining and exploration. The trail of ‘droppings’ 1
leave behind in any given data mining session is enormous, and it seems every
time it is replicated and repeated, almost from scratch, again.” Ramakrishnan
(at the same panel) follows suit and identifies as technical challenges the fol-
lowing: “(1) Finding ways to address the real bottleneck in data mining, which
is the human cycles spent in analyzing data. ... Real advances will come from
techniques that lead to more efficient management of the process of data mining,
and that reduce the cycle time in arriving at useful insights. (2) Data mining
is often perceived as a bag of tricks. We need to at least provide a vision of
how these tricks fit into a coherent tool-kit.” In the same article, Uthurusamy
makes the point that: “Even obvious and immediate needs like ... the core need
of integration have not received their much-deserved attention... The original
process centric view of KDD espoused the three ‘I's (Integrated, Iterative, and
Interactive) as basic for KDD. These are central to the ideas of ‘Computer As-
sisted Human Discovery’ and ‘Human Assisted Computer Discovery.” There has
been very little work on these in recent years.” Yang and Wu (2006) also point
out the need to support the composition of data mining operators, as well as the
need to have a theory behind this.

Towards a General Framework for Data Mining 261

In the remainder of this article, we first discuss (Section 2) inductive databa-
ses and inductive queries, one of the most promising approaches to formulating a
general framework for data mining, then discuss the desirable properties of such
a framework (Section 3). Section 4 defines the basic concepts of data mining,
including data, patterns/models, and data mining tasks. Section 5 discusses
the dual nature of patterns/models, which can be viewed both as data and as
functions. Section 6 introduces constraint-based data mining and discusses the
types of constraints considered therein. Section 7 introduces the key ingredients
of data mining algorithms (i.e., refinement operators, distances, features and
kernels). Section 8 revisits constraint-based data mining and treats it in the
context of the basic ingredients from Section 7. Section 9 discusses the design of
generic data mining algorithms for structured data. We finally discuss how all of
the above components would fit in the overall framework and in particular into
a language for data mining and knowledge discovery in Section 10. The article
closes with a brief discussion of related work.

2 Inductive Databases and Inductive Queries

Inductive databases (IDBs, Imielinski and Mannila 1996, De Raedt 2002a) are
an emerging research area at the intersection of data mining and databases. In
addition to normal data, inductive databases contain patterns (either material-
ized or defined as views). Besides patterns (which are of local nature), models
(which are of global nature) can also be considered. In the IDB framework, pat-
terns become “first-class citizens” and can be stored and manipulated just like
data in ordinary databases.

Inductive databases embody a database perspective on knowledge discovery,
where knowledge discovery processes become query sessions. Ordinary queries
can be used to access and manipulate data, while inductive queries (IQs) can be
used to generate (mine), manipulate, and apply patterns. KDD thus becomes
an extended querying process (Imielinski and Mannila 1996) in which both the
data and the patterns that hold (are valid) in the data are queried. IDB research
thus aims at replacing the traditional KDD process model, where steps like pre-
processing, data cleaning, and model construction follow each other in succession,
by a simpler model in which all data pre-processing operations, data mining
operations, as well as post-processing operations are queries to an inductive
database and can be interleaved in many different ways.

Given an inductive database that contains data and patterns, several different
types of queries can be posed. Data retrieval queries use only the data and their
results are also data: no pattern is involved in the query. In IDBs, we can also have
cross-over queries that combine patterns and data in order to obtain new data,
e.g., apply a predictive model to a dataset to obtain predictions for a target prop-
erty. In processing patterns, the patterns are queried without access to the data:
this is what is usually done in the post-processing stages of data mining. Data min-
ing queries use the data and their results are patterns: new patterns are generated

262 S. Dzeroski

from the data and this corresponds to the traditional data mining step. When we
talk about inductive queries, we most often mean data mining queries.

A general statement of the problem of data mining (Mannila and Toivonen
1997) involves the specification of a language of patterns and a set of constraints
that a pattern has to satisfy. The latter can be divided in two parts: language
constraints and evaluation constraints. The first part only concerns the pattern
itself, while the second part concerns the validity of the pattern with respect
to a given database. Constraints thus play a central role in data mining and
constraint-based data mining is now a recognized research topic (Bayardo 2002).
The use of constraints enables more efficient induction and focusses the search
for patterns on patterns likely to be of interest to the end user.

In the context of inductive databases, inductive queries consist of constraints.
Inductive queries can involve language constraints (e.g., find association rules
with item A in the head) and evaluation constraints, formed by using evaluation
functions. The latter express the validity of a pattern on a given dataset. We
can use these to form evaluation constraints (e.g., find all item sets with support
above a threshold) or optimization constraints (e.g., find the 10 association rules
with highest confidence).

Different types of data and patterns have been considered in data mining,
including frequent itemsets, episodes, Datalog queries, and graphs. Designing
inductive databases for these types of patterns involves the design of inductive
query languages and solvers for the queries in these languages, i.e., constraint-
based data mining algorithms. Of central importance is the issue of defining the
primitive constraints that can be applied for the chosen data and pattern types,
that can be used to compose inductive queries. For each pattern domain (type
of data, type of pattern, and primitive constraints), a specific solver is designed,
following the philosophy of constraint logic programming (De Raedt 2002b).

The IDB framework is an appealing approach towards a theory for data min-
ing, because it employs declarative queries instead of ad-hoc procedural con-
structs. As such, it holds the promise of facilitating the formulation of an “alge-
bra” for data mining, along the lines of Codd’s relational algebra for databases
(Calders et al. 2006b, Johnson et al. 2000). The IDB framework is also appealing
for data mining applications, as it supports the entire KDD process (Boulicaut
et al. 1999). In inductive query languages, the results of one (inductive) query
can be used as input for another: nontrivial multi-step KDD scenarios can be
thus supported in IDBs, rather than just single data mining operations.

The state-of-the-art in IDBs (Boulicaut et al. 2006) is that there exists some
theory for and various effective approaches to constraint-based mining (induc-
tive querying) of local patterns, such as frequent itemsets and sequences. There
is an obvious lack of a theory for and practical approaches to inductive querying
of global models. This issue has only recently began to attract some attention
through the research on constrained induction of tree-based (Garofalakis et al.
2003, Struyf and Dzeroski 2006) and equation-based (Dzeroski et al. 2006) pre-
dictive models.

Towards a General Framework for Data Mining 263

More importantly, most of the existing approaches to constraint-based data
mining and inductive querying work in isolation and are not integrated with
databases or other data mining tools. Only few attempts at integration have been
made, such as the approach of mining views (Calders et al. 2006a). Answering
complex inductive queries that involve different pattern domains and supporting
complex KDD scenarios has also barely been studied.

3 Desiderata for a General Data Mining Framework

In this section, we briefly discuss the requirements that a general framework for
data mining should fulfill. In our opinion, such a framework should elegantly
handle different types of data, different data mining tasks, and different types
of patterns/models. These should be orthogonal dimensions, so that combina-
tions should be facilitated, e.g., tree-based approaches for classification of images
(where the type of data is image(s), the task is classification and the model type
is decision tree(s)).

One of the distinguishing features of data mining is its concern with analyzing
different types of data. Besides data in the format of a single table, which is most
commonly used in data mining, complex data are receiving increasing amounts
of interest. These include data in the form of sequences and graphs, but also
text, images, video, and multi-media data. Much of the current research in data
mining is about mining such complex data, e.g., text mining, link mining, mining
social network data, web mining, multi-media data mining. A major challenge
is to treat the mining of different types of structured data in a uniform fashion.

Many different data analysis tasks have been considered so far within the
field of data mining. By far the most common is the task of predictive mod-
elling, which includes classification and regression. Mining frequent patterns is
the next most popular, with the focus shifting from mining frequent itemsets to
mining frequent patterns in complex data. Clustering, which has strong roots in
the statistical community, is also commonly encountered in data mining, with
distance-based and density-based clustering as the two prevailing forms. A vari-
ety of other tasks has been considered, such as change and deviation detection,
but it is not clear whether these are of fundamental nature or can be defined by
composing some of the tasks listed here.

Finally, different kinds/representations of patterns/models may be used for
the same data mining task. This is most obvious for predictive modelling, where a
variety of methods/approaches exist, ranging from rules and trees, through sup-
port vector machines, to probabilistic models (such as Naive Bayes or Bayesian
networks for classification). The different types of models are interpreted in dif-
ferent ways, and different algorithms may exist for building the same kind of
model (cf. the plethora of algorithms for building decision trees).

A general framework for data mining should define a set of basic concepts that
cover the dimensions outlined above. Through combining these basic concepts, one
should be able to obtain most of the diversity present in data mining approaches
today. Hopefully, it would also facilitate the derivation of new approaches and

264 S. Dzeroski

insights. The basic concepts would be a keystone in the development of data min-
ing languages, which should support the design and implementation of data min-
ing algorithms, as well as their composition into nontrivial multi-step knowledge
discovery scenarios relevant for practical application. In the latter case, we can
speak of knowledge discovery languages.

4 The Basic Concepts of Data Mining

“Knowledge discovery in databases (KDD) is the non-trivial process of identi-
fying valid, novel, potentially useful, and ultimately understandable patterns in
data”, state Fayyad et al. (1996). According to this definition, data mining (DM)
is the central step in the KDD process concerned with applying computational
techniques (i.e., data mining algorithms implemented as computer programs) to
actually find patterns in the data. To arrive at a general theory/framework for
data mining, we need to have general definitions for the above terms, including
data, patterns and validity.

The basic concepts of data mining include data, data mining tasks, and pat-
terns/models. The validity of a pattern/model on a given set of data is related
to the data mining task considered. Below we discuss these in some detail.

4.1 Data

Let us start with data: This is the most basic ingredient of data mining. A data
mining algorithm takes as input a set of data. An individual datum in the data
set has its own structure, e.g., consists of values for several attributes, which may
be of different types or take values from different ranges. We typically assume
that all data items are of the same type and share the same structure.

More generally, we are given a data type T and a set of data D of this type.
We will not discuss in detail what a data type is and how to formally define
it: any standard textbook on data structures (e.g., Aho et al. 1983) covers this
topic, while a more formal treatment in the context of logic is given by Lloyd
(2003). It is important to notice, though, that a set of basic/primitive types is
typically taken as a starting point, and more complex data types are built by
using type constructors. As argued above, it is of crucial importance to be able
to deal with structured data, as these are attracting an increasing amount of
attention within data mining.

Assume we are given a set of primitive data types, such as Boolean or Real.
Other primitive data types might include Discrete(S), where S is a finite set of
identifiers, or Integer. In addition, we are given some type constructors, such as
Tuple and Set, that can be used to construct more complex data types from
existing ones. For example, Tuple(Boolean,Real) denotes a data type where
each datum consists of a pair of a Boolean value and a real number, while
Set(Tuple(Boolean,Real)) denotes a data type where each datum is a set of such
pairs.

Other type constructors might include Sequence(T), which denotes a sequence
of objects of type T, or LabeledGraph(VL,EL), which denotes a graph where

Towards a General Framework for Data Mining 265

vertex labels are of type VL and edge labels are of type EL. With these, we
can easily represent the complex data types that are of practical interest. For
example, DNA sequences would be of type Sequence(Discrete({A,C,G,T})),
while molecules would be labeled graphs with vertices representing atoms and
edges representing bonds between atoms: atoms would be labeled with the type
of element (e.g., nitrogen, oxygen) and edges would be labeled with the type of
bond (e.g., single, double, triple).

4.2 Patterns and Models

Here we will consider four types of patterns/models, which are directly related
to the data mining tasks discussed later in this section. These are probability
distributions, patterns (in the sense of frequent patterns), predictive models and
clusterings. All of these are defined on a given type of data, except for predictive
models, which are defined on a pair of data types. Note that we allow arbitrary
(arbitrarily complex) data types. The most typical case in data mining would
consider a data type T = Tuple(Ty, ..., Tk), where each of T, ..., T is Boolean,
Discrete(S) or Real.

A probability distribution D on type T is a mapping from objects of type
T to non-negative Reals, i.e., has the signature d :: T — R°*. For uncountably
infinite types, probability densities are used instead. The sum of all probabilities
(the integral of the probability densities) over T is constrained to amount to one.

A pattern P on type T is a Boolean function on objects of type T, i.e., has
the signature p :: T — bool. A pattern on type T is true or false on an object
of type T. Frawley et al. (1991) define a pattern as a statement (expression) in
a given language, that describes (relationships among) the facts in (a subset of)
the data. In the broadest sense, the word pattern is used to describe the output
of a variety of data mining algorithms and includes probability distributions,
predictive models and clusters/clusterings; however, we restrict it here to the
sense that it is most commonly used, i.e., in the sense of frequent pattern mining.

A predictive model M for types T, T, is a function that takes an object
of type T4 and returns one of type T, i.e., has the signature m :: Ty — T.. Most
often, predictive modelling is concerned with classification, where T, would be
Boolean (for binary classification) or Discrete(S) (for multi-class classification),
or regression, where T, would be Real. In our case, we allow both T4 (description)
and T, (class/target) to be arbitrarily complex data types.

A probabilistic predictive model P for types T., Ty is a function that
takes an object of type T, and returns a probability distribution over type Ty,
i.e., has the signature p :: T, — (T4 — R°"). For discrete T., the probability
of each possible class value is given by a prediction. For real-valued T, the
probability distribution can be, for example, assumed to be normal and its mean
and standard deviation can be given by the prediction.

A clustering C on a set of objects S of type T is a function from S
to {1,...,k}, where k is the number of clusters, which has to obey k < |S].
Unlike all the previously listed types of patterns, a clustering is not necessarily
a total function on T, but rather a partial function defined only on objects from

266 S. Dzeroski

S. Overlapping and soft clusterings, where an element can (partially) belong to
more that one cluster have the signature T — ({1,...,k} — R%*).

We can think of C' as a matrix B, where B(e, ¢) states to which degree datum
e belongs to cluster ¢. In conventional clustering B(e, ¢) = 1 if datum e belongs
to cluster ¢ and 0 otherwise; only one “1” entry is allowed in each row of B. In
overlapping clustering, there can be more than one “1” in each row of B. In soft
clustering, the sum of the entries in each row should amount to one.

In predictive clustering, C is a total function on T. In addition, we have
T=(T4,T.) and we have a predictive model associated with each cluster through
a mapping M :: {1,...,k} — (Ty — T¢). Performing the function composition
of M and C, i.e., applying first C and then M, we get a predictive model on T.

4.3 Data Mining Tasks

In essence, the task of data mining is to produce a generalization from a given
set of data. A plethora of data mining tasks has been considered so far in the
literature. Here we will focus on four tasks, according to the generalizations
produced: approximating the (joint) probability distribution, learning predictive
models, clustering and finding valid (frequent) patterns.

Estimating the (Joint) Probability Distribution. A set of data (of type
T) is often assumed to be a sample taken from a population according to a
probability distribution. A probability distribution/density function assigns a
non-negative probability /density to each object of type T. Probably the most
general data mining task (Hand et al. 2001) is the task of estimating the (joint)
probability distribution D over type T from a set of data items or a sample
drawn from that distribution.

As mentioned above, in the most typical case we would have T = Tuple(Ty,
..., Tx), where each of Ty, ..., T is Boolean, Discrete(S) or Real. We talk about
the joint probability distribution to emphasize the difference to the marginal
distributions of each of the variables of type T4y, ..., Tg: the joint distribution
captures the interactions among the variables.

Representing multi-variate distributions is a non-trivial task. Two approaches
are commonly used in data mining. In the density-based clustering paradigm,
mixtures of multi-variate Gaussian distributions are typically considered (Hand
et al. 2001). Probabilistic graphical models, most notably Bayesian networks,
represent graphically the (in)dependencies between the variables: Learning their
structure and parameters is an important approach to the problem of estimating
the joint probability distribution.

Learning a (Probabilistic) Predictive Model. In this task, we are given
a dataset that consists of examples of the form (d,c), where each d is of type
T4 and each c is of type T,.. We will refer to d as the description and ¢ as the
class or target. To learn a predictive model means to find a mapping from the
description to the target, m :: Ty — T,, that fits the data closely. This means
that the observed target values and the target values predicted by the model,
i.e., ¢ and ¢ = m(d), have to match closely.

Towards a General Framework for Data Mining 267

In the case of learning probabilistic models, we need to find a mapping of the
form m :: Ty — (T, — R"). In a more general formulation of the problem,
the training examples can have probability distributions over the ¢ values instead
of individual ¢ values: This can represent uncertainty in the observations. Few (if
any) actual data mining approaches take this stand; most assume that a single
value for the target is given for each example.

Many different kinds of predictive models have been considered in data min-
ing. Some examples include classification rules, decision trees and (generalized)
linear models. We postpone the discussion on different model kinds (classes)
until later in the chapter.

The present task can be viewed as a special case of the task of estimating the
probability distribution. If we solve the latter and obtain P((d,¢)), an estimate
of the probability of observing the example (d, ¢), we can derive the conditional
distribution P(c|d), which is a predictive probabilistic model.

Clustering. Clustering in general is concerned with grouping objects into classes
of similar objects (Kaufman and Rousseeuw 1990). Given a set of examples (ob-
ject descriptions), the task of clustering is to partition these examples into sub-
sets, called clusters. The notion of a distance (or conversely, similarity) is crucial
here: examples are considered to be points in a metric space (a space with a dis-
tance metric). The goal of clustering is to achieve high similarity between objects
within individual clusters (intra-cluster similarity) and low similarity between ob-
jects that belong to different clusters (inter-cluster similarity).

In clustering, the examples do not contain a target property to be predicted,
but only an object description. Note that a prototype (prototypical example)
may be used as a representative for a cluster. This may be, e.g., the mean or the
medoid of the examples in the cluster (which are examples with lowest average
distance to all the examples in the cluster).

Clustering is known as cluster analysis in statistics, as customer segmenta-
tion in marketing and customer relationship management, and as unsupervised
learning in machine learning. Conventional clustering focusses on distance-based
cluster analysis. In conceptual clustering (Michalski 1980), a symbolic represen-
tation of the resulting clusters is produced in addition to the partition into
clusters: we can thus consider each cluster to be a concept (much like a class in
classification). In predictive clustering (Blockeel et al. 1998), a predictive model
is associated with the clustering, so that new instances can be immediately asso-
ciated with one of the created clusters and its prototype, which can be considered
as a representative of the cluster.

In density-based clustering (Hand et al. 2001), clusters correspond to different
components of the joint probability distribution, which is assumed to be a mix-
ture model. An example belongs to each cluster to a different degree, determined
by the probability that the corresponding component of the mixture assigns to
it. In this context, clustering is clearly a special case of the task of estimating
the joint probability distribution.

Pattern Discovery. In contrast to the previous three tasks, where the goal
is to build a single global model describing the entire set of data given as

268 S. Dzeroski

input, the task of pattern discovery is to find all local patterns from a given
pattern language that satisfy the required conditions. A prototypical instantia-
tion of this task is the task of finding frequent itemsets (sets of items, such as
{bread, butter}), which are often found together in a transaction (e.g., a market
basket) (Aggrawal et al 1993). The condition that a pattern (itemset) has to
satisfy in this case is to appear in (hold true for) a sufficiently high proportion
(called support and denoted by s) of the transactions in the input dataset.

With the increasing interest in mining complex data, mining frequent patterns
is also considered for structured data. We can thus talk about mining frequent
subsequences or mining frequent subgraphs in sequence or graph data. We can
consider as frequency the multiple occurrences of a pattern in a single data
structure (e.g., sequence or graph) or the single occurrences of a pattern in
multiple data structures.

The task of finding frequent itemsets (patterns) is typically performed in
the context of association analysis (Han and Kamber 2001). After all frequent
itemsets are found, one looks for association rules of the form X — Y, where X
and Y are frequent itemsets and the confidence of the rule passes a threshold c.
The confidence of the rule X — Y is the percentage of transactions containing
X that also contain Y. Generalizations of the task of pattern discovery include
the discovery of clauses in first order logic (Dehaspe and De Raedt 1997) and
the discovery of frequent Datalog queries and query extensions (Dehaspe and
Toivonen 1999), the latter being generalizations of finding frequent itemsets and
association rules to first order logic.

While the original formulation of the problems of frequent itemset and associ-
ation rule mining reports all itemsets and rules that pass the support respectively
confidence threshold, we can think of these tasks also as ranking tasks, where the
itemsets and rules are ordered according to support, respectively confidence. One
can then imagine asking for the top-k most frequent itemsets or most confident
association rules. This formulation bears an important similarity to the problem
of feature ranking and selection, which is often encountered in the context of
global (mostly predictive) modelling. Top-k queries of this kind also appear in
the context of correlated itemsets and association rules, which can be used for
constructing classifiers. In fact, there is an increasing body of research that uses
the results of local pattern mining/discovery to build global (predictive) models.

In this context, we can view the tasks of bump hunting (Friedman and Fisher
1999) and subgroup discovery (Kloesgen 2002, Lavra¢ et al. 2004) as special
cases of pattern discovery. Both involve finding groups of examples where the
(probability distribution of) the values of a designated target is unusual. Here
unusual can be taken to mean unusually large or small, or, more generally,
significantly different from the average (or the distribution) over the entire
dataset /population. It is in addition desired that these regions be describable in
an interpretable form involving simple statements (rules).

Note, finally, that finding frequent patterns can be viewed as a special case of
estimating the joint probability distribution. If we think of the joint probability
distribution as a surface in multi-dimensional space, then the frequent patterns

Towards a General Framework for Data Mining 269

(and the groups of examples for which they are true) would correspond to peaks
of the surface. The threshold on the frequency would correspond to a hyperplane
that would cut off patterns below the given frequency.

5 The Dual Nature of Patterns and Models

Patterns and models inherently have a dual nature. According to the definitions
from the previous sections, they are functions that take as input data points and
map them to probabilities, Booleans, class predictions or probabilities thereover,
or cluster assignments. On the other hand, they can be treated as data structures
and as such represented, stored and manipulated.

Let us illustrate this with a simple example. Suppose we have a frequent item-
set consisting of the items bread and butter. We can view this as a set, namely
{bread, butter}, and store it in a database. In this fashion, we can store the
frequent itemsets derived from a set of transactions. On the other hand, from
the functional viewpoint, the itemset represents a mapping from transactions
to Booleans. The transactions which contain the itemset, i.e., both bread and
butter, are assigned the value true, i.e., the pattern holds true for such transac-
tions. For example, the transaction {bread, butter, milk} subsumes our itemset
and yields the value true, while {beer, peanuts, butter} does not and yields the
value false.

5.1 The Data Aspect: Classes of Patterns and Models

Many different kinds of predictive models have been considered in the data
mining literature. Classification rules, decision trees and linear models are just
a few examples. We will refer to these as model classes. In the case of patterns
we will talk about pattern classes.

A class of patterns Cp on type T is a set of patterns P on type T', expressed
in a language Lp. Similarly, a class of models Cy; on types Ty, T, is a set of
models M on types Ty, T, expressed in a language Lj;. In the same fashion, we
can define classes of probability distributions Cp and clusterings C¢.

The languages Lp/Ly/Lp/Lc refer to the data part of the patterns and
models. They essentially define data types for representing the patterns and
models. For example, if we have data types Ty = (Real, Real) and T, = Real,
linear models would be represented by three real-valued coefficients and would
need a data type T; = (Real, Real, Real) to be represented.

Suppose we have a dataset where data items correspond to descriptions of
individuals, each individual being described by a tuple of the form (Gender,
Age, HairColor), where Gender = Discrete({M, F'}), Age = Real, HairColor =
Discrete({ Blond, Brown, Black, Red, Other}), and the target is of type
Education = Discrete({ None, Elementary, High, College, BSc, M Sc, PhD}).
The language of decision trees for this case would be the language of tree struc-
tures with tests like HairColor=Blond in the internal nodes and predictions like
Education=PhD in the leaves. The elements of this language (its alphabet) de-
pend on the attributes and their values, and vary with the underlying data type.

270 S. Dzeroski

5.2 The Function Aspect: Interpreters

There is usually a unique mapping from the data part of a pattern/model to the
function part. This takes the data part of a pattern/model as input, and returns
the corresponding function as an output. The mapping we refer to is inherently
second/higher order (Lloyd 2003) since it has a function as an output.

This mapping can be realized through a so-called interpreter. An interpreter
takes as input (the data part of) a pattern and an example, and returns the
result of applying the (function part) of the pattern to the example. Given a
data type d, an example F of type d, and a pattern P of type p :: d — bool,
an interpreter I returns the result of applying P to E, i.e., [(P,E) = P(E).

The signature of the interpreter is i :: p — d — bool. If we apply the
interpreter to a pattern and an example, we obtain a Boolean value. In functional
programming (Thompson 1999), we can evaluate the interpreter only partially,
i.e., apply it only to the data part of a pattern, obtaining as a result the function
part of the pattern. The partial evaluation i p has a signature d — bool.

The interpreters map from the data part of a pattern/model to the function
part. Suppose we are given a linear model with coefficients a, b, and ¢. The
interpreter of linear models I; would, given a, b, and ¢, and a data tuple of the
form (x,y), return the value of the linear combination ax + by + ¢. A partial
evaluation/application of the interpreter to the tuple of constant coefficients of
the linear model I; (a,b,c) would yield the linear function aX + bY + ¢: This
linear function can then be applied to specific tuples (z,y) to yield predictions.

The interpreter is crucial for the semantics of a class patterns/models: a class
of patterns/models is only completely defined when the corresponding interpreter
is defined (e.g., Ip/In for patterns/models are parts of the definition of the
class Cp/Cyy). To illustrate this, consider rule sets, which may be ordered or
unordered. Both can actually be represented by the same list of rules: It is the
interpreter that treats the rules as ordered or unordered. In the first case, the
rules are considered in the order they appear in the list and the first rule that
applies to a given example is taken to make a prediction. In the second case, all
rules from the list that apply to a given example are taken, and their predictions
combined to obtain a final prediction.

6 Constraints in Data Mining: Introduction

Let us recall briefly that data mining is concerned with finding patterns/models
that are valid in a given set of data. The key ingredients of data mining thus
include data, data mining tasks, and patterns/models, which we have elabo-
rated on in some detail in the previous sections. We now turn to the issue of
pattern/model validity. Essentially, we say that a pattern is valid if it satisfies a
given set of constraints. The constraints considered depend heavily on the data
mining task at hand, and so does the concept of validity. In this section, we
introduce the notion of constraints and discuss the different types of constraints.

A view generally held is that constraints are Boolean functions on patterns/
models. A constraint is either satisfied or not satisfied. Given that patterns and

Towards a General Framework for Data Mining 271

models have a dual nature, i.e., have both a data and a function aspect, we can
have constraints on each of these aspects.

6.1 Language Constraints

Language constraints concern the data part of a pattern/model. Boolean lan-
guage constraints define a subclass/sublanguage of the class of patterns/models
considered. For example, in the context of mining frequent itemsets, we might
be interested only in itemsets where a specific item, e.g., beer occurs. Or, in
the context of learning predictive models, we may be interested only in decision
trees that have a specific attribute in the root node and, in addition, do not have
more than seven leaves.

These are language constraints and refer to the data part only. We can check
whether they are satisfied or not without accessing the data that we have been
given as a part of the data mining task. If we are in the context of inductive
databases and queries, queries on the data part of patterns/models are composed
of primitive language constraints.

Language constraints may also involve (cost) functions on the data part of
patterns/models. An example of these is the size of a decision tree, mentioned
above. Another example would be the cost of an itemset (market basket), in
the context where each item has a price. The cost functions as discussed here
are mappings from the data part of a pattern/model to non-negative reals and
Boolean language constraints can put thresholds on the values of these functions.

6.2 Evaluation Constraints

Evaluation constraints correspond to inductive queries that concern the function
aspect of patterns/models. Evaluation constraints are typically Boolean func-
tions, i.e., statements, involving evaluation functions and comparing them to con-
stant thresholds. Evaluation functions measure the validity of patterns/models
on a given set of data.

Evaluation functions are functionals, i.e., they take a function (in this case
a pattern or a model) as input and return a scalar (real) value as output. The
set of data is an additional input to the evaluation functions. For example,
the frequency of a pattern on a given dataset is a typical evaluation function.
Similarly, the classification error of a predictive model is also an evaluation
function. Evaluation constraints typically compare the value of an evaluation
function to a constant threshold, e.g., minimum support or maximum error.

Constraints on the function part of a pattern/model may also involve some
general property of the function, which does not depend on the specific dataset
considered. For example, we may only consider functions that are convex or
symmetric or monotonic in certain variables. These properties are usually defined
over the entire domain of the function, i.e., the corresponding data type, but may
be checked for the specific dataset at hand.

272 S. Dzeroski

6.3 Optimization Constraints

Many Boolean constraints are obtained by imposing a threshold on the value
of a function(al). This can be a threshold on a cost function over the data part
of a pattern/model or on an evaluation function(al) on the function part of the
model. Boolean constraints are either satisfied or not.

On the other hand, optimization constraints ask for (a fixed-size set of) pat-
terns/models that have a maximal/minimal value for a given cost or evaluation
function. Example queries involving such constraints would ask for the & most
frequent itemsets or the top k correlated patterns. Alternatively, we might ask
for the most accurate decision tree of size five, or the smallest decision tree with
classification accuracy of at least 90%.

In this context, optima for the cost/evaluation function at hand are searched
for over the entire class of patterns/models considered, in the case the optimiza-
tion constraint is the only one given. But, as illustrated above, optimization
constraints often appear in conjunction with (language or evaluation) Boolean
constraints. In this case, optima are searched for over the patterns/models that
satisfy the given Boolean constraints.

6.4 Soft Constraints

If we define language and evaluation constraints as Boolean functions, we view
them as hard constraints. A constraint is either satisfied or not satisfied by
a pattern. The fact that constraints actually define what patterns are valid or
interesting in data mining, and that interestingness is not a dichotomy (Bistarelli
and Bonchi 2005), has lead to the introduction of so-called soft constraints.

Instead of dismissing a pattern for violating a constraint, we might consider
the pattern incurring a penalty for violating a constraint. In the cases where we
typically consider a larger number of binary constraints, such as must-link and
cannot-link constraints in constrained clustering (Wagstaff and Cardie 2000),
a fixed penalty may be assigned for violating each constraint. In case we are
dealing with evaluation constraints that compare an evaluation function to a
threshold, the penalty incurred by violating the constraint may depend on how
badly the constraint is violated. For example, if we have a size threshold of five,
and the actual size is six, a smaller penalty would be incurred as compared to
the case where the actual size is twenty.

In the hard constraint setting, a pattern/model is either a solution or not.
In the soft constraint setting, all patterns/models are solutions to a different
degree. Patterns that satisfy the constraint(s) get zero penalty: This leads to an
optimization problem where we look for patterns with minimum penalty.

6.5 The Task(s) of (Constraint-Based) Data Mining

Having set the scene, we can now attempt to formulate a very general version
of the problem addressed by data mining. We are given a dataset D, drawn
according to some probability distribution P, consisting of objects of type T'. We

Towards a General Framework for Data Mining 273

are also given a data mining task, one of the four listed in a previous section
(estimating the probability distribution P, learning a predictive model, cluster-
ing or pattern discovery). We are further given a class of generalizations Cg
(patterns/models/clusterings/probability distributions), from which to find so-
lutions to the data mining task at hand. Finally, a set of constraints C' is given,
which can include both language and evaluation constraints.

The problem addressed by constraint-based data mining is to find a set of
generalizations G from Cg that satisfy the constraints in C, if C' is boolean, or
optimize the constraints in C, if C' contains optimization or soft constraints. A
desired cardinality on the solution set is usually specified.

In the above formulation, all of data mining is really constraint-based data
mining. We argue that the ‘classical’ formulations of and approaches to data
mining tasks, such as clustering and predictive modelling, are a special case of
the above formulation. A major difference between the ‘classical’ data mining
paradigm and the ‘modern’ constraint-based one is that the former typically
consider only one optimization constraint, such as minimize predictive error
or intra-cluster variance, and requires only one solution (predictive model or
clustering).

A related difference concerns the fact that most of the ‘classical’ approaches to
data mining are heuristic and do not give any guarantees regarding the solutions.
For example, a decision tree generated by a learning algorithm is typically not
guaranteed to be the smallest or most accurate tree for the given dataset. On the
other hand, constraint-based mining approaches have typically been concerned
with the development of so-called ‘optimal solvers’, i.e., data mining algorithms
that return the complete set of solutions that satisfy a given set of constraints
or the truly optimal solutions (e.g., the k itemsets with highest correlation to a
given target) in the context of optimization constraints.

7 The Key Ingredients of Data Mining Algorithms

7.1 Generality and Refinement Operators

The notion of generality is a key notion in data mining, in particular for the
task of pattern discovery. To find patterns/models valid in the data, data mining
algorithms search the space of patterns defined by the class of patterns/models
considered, possibly additionally restricted by language constraints. To make the
search efficient, the space of patterns/models is typically ordered by a generality
or subsumption relation. A generality relation on a set (of patterns/models) is
a partial order on that set.

The generality relation typically refers to the function part of a pattern/mo-
del. The corresponding notion for the data part is that of refinement. A typical
example of a refinement relation is the subset relation on the space of itemsets.
This relation is a partial order on itemsets and structures itemsets into a lattice
structure, which is typically explored during the search for, e.g., frequent item-
sets. The refinement relation is typically the closure of a refinement operator,
which performs minimal refinements. In the case of itemsets, it takes an itemset

274 S. Dzeroski

and adds an item to it: if all possible items are beer, diapers, milk and peanuts,
the refinements of the itemset i; = beer are io = beer, diapers, i3 = beer, milk and
14 =beer, peanuts. Starting with the empty itemset, we can obtain any itemset
through a sequence of refinements (applications of the refinement operator).

We can think of refinement and generality as expressing the same relation
between patterns at the data (or syntax) level and the function (or semantics)
level. In logic, we talk about subsumption in the first case and logical entailment
(implication) in the second (Dzeroski 2007). For example, if we take the itemsets
from the above paragraph, is is a refinement of ¢; at the data level means iy C io.
At the function level, i1 and i5 are Boolean functions over transactions, i1 (¢) and
i2(t). Generality here has the following meaning: i; is more general than is at
the function level means Vt : i2(t) |= 41(t), where = denotes logical implication.

In the ideal case, the notions of refinement at the syntactic and generality
at the semantic level (resp. the data and function level) coincide. Whether this
is actually the case depends on the interpreter for the class of patterns consid-
ered. These issues have received considerable attention in the area of inductive
logic programming (Lavra¢ and Dzeroski 1994, Dzeroski 2007), where both data
and patterns are represented in first order logic. The notions of generality and
refinements are also directly relevant to and ubiquitously used in mining predic-
tive models and other forms of generalizations. However, the notion of semantic
generality does not transfer in a straightforward manner to the case of functions
that are not binary/Boolean (i.e., to clusterings, probability distributions and
predictive models in general).

7.2 Distances and Prototypes

Distance functions are of crucial importance for the design of many data mining
algorithms, most notably for clustering and predictive modelling. A distance
function d for type T is a mapping from pairs of objects of type T to non-negative
reals: d :: T x T — RO, A distance function has to satisfy three properties:
(1) d(z,y) > 0, (2) d(z,y) = 0 if and only if z =y, and (3) d(x,y) = d(y, z).

Note that the distance between two objects should be zero if and only if
the two objects are identical (this property is called discernibility) and that a
distance function should be symmetric. Properties (1) and (2) taken together
produce positive definiteness. An additional property of interest for distance
functions is the triangle inequality: (4) d(z,2) < d(z,y) + d(y,z). A distance
function that satisfies the triangle inequality is called a metric.

While it is immediately obvious that we need distances for distance-based
clustering (where by definition we want to minimize the distance between objects
in a cluster), it is may be less obvious why we need them for predictive modelling.
The primary reason is the need to assess the predictions of a model: we need to
compare the true value of the target to the predicted one, for any given example.
In most predictive modelling approaches, it is assumed that the error/penalty
incurred by predicting x instead of y is the same as the one incurred by predicting
y instead of z, and equal to some distance function d(z,y).

Towards a General Framework for Data Mining 275

For any type of data we can easily define the distance function 8, which takes
the value zero for pairs of identical data points and one for all other pairs:
6(z,z) =0 and é(x,y) = 1 for x # y. In fact, this is the distance function most
commonly used for discrete/nominal data types in data mining algorithms. For
real numbers, we can use |z — y| as the distance between z and y.

Related to the notion of distance is the notion of a prototype. A prototype is
something that is representative of a category of things, in this case of all the
objects in a given set S. The prototype of a set of objects (defined in the context
of a given distance d) is the object o that has the lowest average square distance
to all of the objects in S: 0 = argmin,)y g d*(X,q). Note that the quantity
that we want to minimize in this formula is a generalization of the notion of
variance from a set of real numbers to a set of arbitrary objects.

A prototype function p for objects of type T', takes as input a set S of objects
of type T, and returns an object of type T, i.e., the prototype: p :: Set(T) — T.
We can consider two possibilities here: (a) the prototype is an arbitrary object
of type T or (b) the prototype is one of the objects from S. In the case (b), the
prototype can be computed with |S|? distance computations by substituting ¢
with each of the objects in s. In the case (a), the space of candidate prototypes
may easily be infinite. We thus need to have a closed algebraic form of the
prototype or should resort to approximative algorithms to compute it.

In vector spaces, such as the Euclidean spaces R", where objects may be
scaled or added, the prototype of a set of objects can be defined in closed form
as the centroid of the set. The notion of centroid generalizes the notion of mean
from sets of real numbers to multidimensional spaces. The centroid is defined
as the (weighted) mean / average of the vectors in the set: by default each
vector has an equal weight (1/]5]), although different weights may be assigned
to different vectors. For example, given a set S of vectors x; in the Euclidean
space R", each of the form x; = (z;1,...,2), the centroid T is defined as
T = (Z1,...,T;), where T; = Zﬁll x;;/|S|. The centroid can be computed by
|S| addition computations and one scaling computation.

Prototypes and prototype functions are directly relevant to the clustering
task of data mining, as well as the task of predictive modelling. Quite often,
a prototype is associated with each cluster. In predictive modelling approaches
which partition the space of training examples, such as tree-based and rule-based
methods, the prediction of a rule/tree leaf is typically obtained by constructing
a prototype of the (target part) of the examples covered by the rule/leaf.

7.3 Features and Background Knowledge

The term ‘feature’ is heavily used in pattern recognition (Bishop 2006), where
features are individual measurable properties of a phenomena or object being
observed. Features are usually numeric, but structural features (such as strings
and graphs) are used in syntactic pattern recognition. While different areas of
pattern recognition (such as image analysis or speech recognition) obviously use
different features, once the features are decided upon, a relatively small set of

276 S. Dzeroski

algorithms is used to analyze the resulting data table. These algorithms include,
e.g., linear discriminants / regression and probabilistic (naive Bayes) approaches.

Some approaches to data mining do not explicitly rely on a feature-based rep-
resentation of the data analyzed. For example, many distance-based approaches
to prediction (e.g., nearest neighbor methods) and clustering (e.g., hierarchical
agglomerative/divisive clustering or k-medoids) only need a distance function
on the underlying data (type). However, even for these, the distances are most
commonly calculated through a set of features. The majority of data mining
algorithms, though, crucially depend on the use of features (linear regression,
naive Bayes, decision trees, classification rules, to name the most common ones).

Defining an appropriate set of features for a data mining problem at hand is
still much of an art. However, it is also a step of key importance for the successful
use of data mining. In the following, we try to formalize the notion of a feature
and briefly discuss principled approaches to generating features.

Suppose d is a datum (structured object) of type T'. Note that d can be, e.g.,
an image represented by an array of real numbers, or a recording of speech,
represented by a sequence of real numbers. A feature f of objects of type T is a
mapping from objects of type T to a primitive data type (Boolean, Discrete or
Real) and f(d) refers to the value of the feature for the specific object d.

There are at least three ways to arrive at features for a given object d of
type T'. First, the feature may have been directly observed and thus be a part
of the representation of d. For example, if we have a molecule represented by its
molecular weight, hydrophobicity and activity against a given species of bacteria,
hydrophobicity as a bulk property is typically measured directly and is a feature
of the molecule.

The other two ways are related to background knowledge concerning the struc-
ture of the object or concerning domain knowledge. Suppose molecules are repre-
sented by labeled graphs with vertices representing atoms and edges representing
bonds between atoms: atoms would be labeled by the type of element (e.g., ni-
trogen, oxygen) and edges would be labeled by the type of bond (e.g., single,
double, triple). In this context, a (simple) structural feature might indicate the
presence/absence of a carbon and oxygen atom connected by a double bond
(a C = O group) in a given molecule. To illustrate how a feature may be de-
rived through the use of some domain knowledge, consider molecules again. The
presence of (complex) structures, such as certain functional groups (alcohols) or
complexes thereof (triple fused rings) might be used as features. Connectivity
indices calculated on the entire graph might also be used as features.

Background knowledge can be thought of as a set of mappings that generate
new features, either directly, as in the case of connectivity indices on graphs
mentioned above, or indirectly. In the second case, a mapping from the back-
ground knowledge would map an object from one representation to another, and
features can be generated from the latter. For images, such a mapping might per-
form image segmentation and describe each segment with a new set of features,
thus transforming the learning problem to a completely different representation.

Towards a General Framework for Data Mining 277

From the latter, new features can then be generated directly or through the
further use of domain knowledge.

7.4 Kernels

Kernel Methods (KMs, Shawe-Taylor and Cristianini 2004) in general, and Sup-
port Vector Machines (SVMs) in particular, are among the most successful re-
cent developments within the machine learning and data mining communities.
KMs can be used to address different tasks of data mining, such as clustering,
classification, and regression, for general types of data, such as sequences, text
documents, sets of points, vectors, images, etc. KMs (implicitly) map the data
from its original representation into a high dimensional feature space, where
each coordinate corresponds to one feature of the data items, transforming the
data into a set of points in a Euclidean / linear space. Linear analysis methods
are then applied (such as separating two classes by a hyperplane), but since the
mapping can be nonlinear, nonlinear concepts can effectively be captured.

Technically, a kernel k corresponds to the inner product in some feature space.
The computational attractiveness of kernel methods comes from the fact that
quite often a closed form of these feature space inner products exists. The kernel
can then be calculated directly, thus performing the feature transformation only
implicitly without ever computing the coordinates of the data in the ‘feature
space’. This is called the kernel trick.

Whether, for a given function k with signature k£ :: T x T — R, a fea-
ture transformation ¢ exists from T to a Hilbert space H, such that k(z,z’) =
(p(x), d(2")) for all 2,2’ can be checked by verifying that the function is pos-
itive definite. A symmetric function k on pairs of data points of type T is a
positive definite kernel on T if, for all positive integers n, z1,...,z, € T and
C1,...,Cn € R, it holds that Zi,jel,.-.,n cicjk(x;, x;) > 0. While it is not always
easy to prove positive definiteness for a given kernel, positive definite kernels
do have nice closure properties. In particular, they are closed under sum, di-
rect sum, multiplication by a scalar, product, tensor product, zero extension,
pointwise limits, and exponentiation (Shawe-Taylor and Cristianini 2004).

Probably the simplest kernel is the linear one, defined for tuples of real num-
bers (z,2') as k(z,z') = (x,2'), where ¢(z) = z. If we have x = (x1,22) and
' = (z],24), then k(x, a’) = z12] + x22%. Other kernels include the polynomial
k(z,2') = ((z,2') + 1) and the exponential k(z,2’) = e~ *=='II* kernel.

At the conceptual level, kernels elegantly relate to both features and distances.
As mentioned above, a kernel k (implicitly) defines a mapping from the original
space to a Hilbert space x — ¢(z), the latter being the feature space implicitly
associated with the kernel. A (pos. def.) kernel also defines a distance: if k is a
kernel, then d(z,y) = \/k(x,x) — 2k(z,y) + k(y,y) is a (pseudo)metric.

At the practical level, kernel functions have been introduced for different types
of data, such as vectors, text, and images, including structured data, such as se-
quences and graphs (Gaertner 2003). There are also many algorithms capable of
operating with kernels: these include SVMs, Fisher’s linear discriminant analysis

278 S. Dzeroski

(LDA), principal components analysis (PCA), ridge regression, spectral cluster-
ing, and many others. Since any kernel can be used with any kernel-algorithm,
it is possible to construct many combinations, such as regression over DNA se-
quences, classification of documents, and clustering of images.

8 Constraints in Data Mining: Revisited

8.1 Evaluation Functions for the Basic Data Mining Tasks

The evaluation functions used in evaluation constraints are tightly coupled with
the data mining task at hand. If we are solving a predictive modelling problem,
the evaluation function used will most likely concern predictive error. If we are
solving a frequent pattern mining problem, the evaluation function used will
definitely concern the frequency of the patterns.

For predictive models with a signature m :: Ty — T., we need a distance
(or cost) function d. on objects of type T, to define the notion of predictive error.
For a given model m and a dataset D, the average predictive error of the model
is defined as 1/|D| x 3. _(, yep de(t, m(a)). For each example e = (a,t) in the
dataset, which consists of a descriptive (attribute) part a and target (class) part
t, the prediction of the model m(a) is obtained and its distance to the true class
value t is calculated. Analogously, the notion of mean squared error would be
defined as 1/[D| x }>._(, ep d%(t,m(a)).

The notion of cost-sensitive prediction has been recently gaining increasing
amounts of attention in the data mining community. In this setting, the errors
incurred by predicting x instead of y and predicting y instead of z, are typically
not the same. The corresponding misprediction (analogous to misclassification)
cost function is thus not symmetric, i.e., is not a distance. The notion of average
misprediction cost can be defined as above, where the distance d(z,y) is replaced
by a cost function ¢(z, y).

In the case of probabilistic models, which predict a probability distribution
over the target type and are of the form m :: Ty — (T, — R°"), we need
a distance function on probability distributions over the target data type T..
When T, is discrete and takes values from S = {s1,...,5s;}, we can represent
a probability distribution on T, with a vector p = (p1,...,px) of probabilities
of its possible values. We can then use distances on vectors of reals. However,
distances or cost functions that explicitly take into account the fact that we are
dealing with probability distributions can also be taken, such as the likelihood-
ratio defined for two distributions p and ¢ as Zle pilog(pi/q;). The latter is
a special case of the Kullback-Leibler divergence, defined also for probability
distributions / densities over continuous variables.

For the task of estimating the probability distribution of objects of type
T, we need a scoring function for distributions / densities. The most commonly
used ones are based on likelihood or log-likelihood (Hand et al. 2001). Given a
dataset D and a probability distribution p, the likelihood function is defined as
L(p) = [I.cp p(e) and the log-likelihood function as logL(P) = .., logp(e).

Towards a General Framework for Data Mining 279

Another possibility for evaluating a candidate probability distribution p is to
calculate the integrated (average) squared error between p and the true distri-
bution p*. This is defined as [(p(x) — p*(x))?dz. We can ignore terms that do
not depend on p, yielding [p*(x)dz — [p*(z)p(x)dx = [p*(x)dx — E(p(x)),
where each of the terms can be approximated to obtain an estimate of the true
integrated (average) squared error for p: E(p(x)) denotes the expectation of p(z).

Density-based clustering is a direct special case of the task of estimating the
joint probability distribution, where clusters correspond to different components
of the joint probability distribution, which is assumed to be a mixture model. A
mixture model has the form p(x) = Zle 7Pk (z) and decomposes the overall
density (or distribution) for z into a weighted linear combination of k£ component
or class densities. In this case, the same evaluation functions as for the task of
estimating the probability distribution can be applied.

For the traditional partition-based clustering approach, the quality of a clus-
tering is typically evaluated with intra-cluster variance (ICV). For a clustering
with k clusters C; with D = UY_,C;, we have ICV = ﬁZle |C;|Var(C;),
where C; is the set of elements of cluster i. Var(C;) is the intra-cluster vari-
ance of cluster i and is defined as Var(C;) = Y, c¢. d*(e,C;), where Cj is the
prototype of cluster C; with respect to the distance d.

Finally, for the task of pattern discovery, with the discovery of frequent
patterns as the prototypical instantiation, the primary evaluation function is
frequency. Recall that patterns are Boolean functions and have the signature
p :: T — bool. For a dataset D of objects of type T, the frequency of a pattern
p is defined as f(p, D) = |{ele € D, p(e) = true}|.

8.2 Cost Functions for Language Constraints

The cost functions that are used in language constraints concern the data part of
generalizations (patterns/models/...). Most often, these functions are related to
the size/complexity of the generalizations. They are different for different classes
of generalizations, e.g., for itemsets, mixture models of Gaussians, linear models
or decision trees. For itemsets, the size is the cardinality of the itemset, i.e., the
number of items in it. For decision trees, it can be the total number of nodes,
the number of leaves or the depth of the tree. For linear models, it can be the
number of variables (with non-zero coefficients) included in the model.

More general versions of cost functions involve costs of the individual language
elements, such as items or attributes, and sum/aggregate these over all elements
appearing in the pattern/model. These are motivated by practical considera-
tions, e.g., costs for items in an itemset and total cost of a market basket. In the
context of predictive models, e.g., attribute-value decision trees, it makes sense
to talk about prediction cost, defined as the total cost of all attributes used by
the model. For example, in medical applications where the attributes correspond
to expensive lab tests, it might be useful to upper-bound the prediction cost of
a decision tree.

Language constraints as commonly used in constraint-based data mining in-
volve thresholds on the values of cost functions (e.g., find a decision tree of size

280 S. Dzeroski

at most ten leaves). They are typically combined with evaluation constraints, be
it threshold or optimization (e.g., find a tree of size at most 10 with classification
error of at most 10% or find a tree of size at most 10 and the smallest classi-
fication error). Also, optimization constraints may involve the language-related
cost functions, e.g., find the smallest decision tree with classification error lower
than 10%.

In the ‘classical’ formulations of and approaches to data mining tasks, scoring
functions often combine evaluation functions and language cost functions. The
typical score function is a linear combination of the two, i.e., Score(G,D) =
wg X Evaluation(G. function, D) + wr, x LanguageCost(G.data), where G is
the generalization (pattern/model) scored and D is the underlying dataset. For
predictive modelling, this can translate to Score = wg X Error + wg x Size.

8.3 Monotonicity and Closedness

The notion of monotonicity of an evaluation (or cost) function on a class of
generalizations is often considered in constraint-based data mining. In mathe-
matics, a function f(z) is monotonic (monotonically increasing) if Va,y : ¢ <
y — f(z) < f(y), i.e., the function preserves the < order. If the function reverses
the order, i.e., Va,y : x <y — f(z) > f(y), we call it monotonically decreasing.

In data mining, in addition to the order on Real numbers, we also have a
generality order on the class of generalizations. The latter is typically induced
by a refinement operator. We say that g; <,.f g2 if g2 can be obtained from g;
through a sequence of refinements (and thus g7 is more general than go): we will
refer to this order as the refinement order.

An evaluation (or cost) function is called monotonic if it preserves the re-
finement order or anti-monotonic if it reverses it. More precisely, an evaluation
function f is called monotonic if Yg1, g2 : g1 <ref 92 — f(g1) < f(g2) and anti-
monotonic (or monotonically decreasing) if Vg1, g2 : g1 <ref g2 — f(g1) > f(g2).

Note that the above notions are defined for both evaluation/cost functions
that refer to the function part of a generalization and for functions that refer
to the data part. In this context, the frequency of itemsets is anti-monotonic (it
decreases monotonically with the refinement order). The total cost of an itemset
and the total prediction cost of a decision tree, on the other hand, are monotonic.

In the constraint-based data mining literature (Boulicaut and Jeudy 2006),
the refinement order considered is typically the subset relation on itemsets (<yef
is identical to C). A constraint C' (taken as a Boolean function) is considered
monotonic if 41 <, ia A C(i1) implies C(42). A maximum frequency constraint
of the form freq(i) < 6, where 6 is a constant, is monotonic. Similarly, minimum
frequency /support constraints of the form freq(i) > 6, the ones most commonly
considered in data mining, are anti-monotonic. A disjunction or a conjunction
of anti-monotonic constraints is an anti-monotonic constraint. The negation of
a monotonic constraint is anti-monotonic and vice versa.

The notions of monotonicity and anti-monotonicity are important because
they allow for the design of efficient constraint-based data mining algorithms.
Anti-monotonicity means that when a pattern does not satisfy a constraint C,

Towards a General Framework for Data Mining 281

then none of its refinements can satisfy C. It thus becomes possible to prune
huge parts of the search space which can not contain interesting patterns. This
has been studied within the learning as search framework (Mitchell, 1982) and
the generic levelwise algorithm from (Mannila and Toivonen, 1997) has inspired
many algorithmic developments.

Finally, let us mention the notion of closedness. A pattern (generalization) is
closed, with respect to a given refinement operator <,.s and evaluation function
f, if refining the pattern in any way decreases the value of the evaluation func-
tion. More precisely, z is closed if Yy, z <, y : f(y) < f(z). While this notion
has primarily been considered in the context of mining frequent itemsets, where
it plays an important role in condensed representations (Calders et al. 2005), it
can be defined analogously for other types of patterns, as indicated above.

8.4 Multi-objective Optimization and Constraint-Based Data
Mining
The moment we consider more than one evaluation or cost function in the context
of a single data mining task, we are dealing with a multi-objective optimization
problem. In multi-objective optimization we wish to simultaneously optimize
several (possibly conflicting) objectives. More precisely, we want to minimize
each component of a vector of objective/evaluation functions f = (f1,..., fim)
simultaneously.

In the context of multi-objective optimization, the notions of Pareto domi-
nance and Pareto optimality are important. We say that a vector of values of
the objective functions g weakly dominates another vector h iff g; < h; for all i.
If, in addition, g; < h; for at least one j, we say that g dominates h. If g; < h;
for all i, we are talking about strict Pareto dominance.

The weak Pareto dominance is a natural generalization of the < relation on
real numbers. While < induces a total order on reals, the weak Pareto dominance
induces only a partial order on vectors of reals. This means that two objective
vectors (and therefore two solutions) can be incomparable: In case of conflicting
objectives the multi-objective optimization problem can have multiple optimal
solutions. A solution and its corresponding vector of objective function values are
Pareto optimal if they are not Pareto dominated by any other solution/vector
in the space considered. All Pareto optimal solutions compose the Pareto opti-
mal set, while the corresponding objective vectors constitute the Pareto optimal
front.

The typical approach to multi-objective optimization taken within the data
mining community, as indicated earlier in this section, is to transform the multi-
objective optimization problem into a single-objective problem, by combining
the individual objectives using a weighted sum. A single solution (e.g., predic-
tive model) is then acquired by solving the corresponding single-objective prob-
lem (e.g., optimizing the weighted sum of error and complexity of the predictive
model). This approach is recognized in multi-objective optimization as an appli-
cation of the ‘preference-based principle’ (Deb 2001), where the user explicitly
specifies her preference for the different objectives (e.g., weights) in advance.

282 S. Dzeroski

In contrast, using the ‘ideal principle’, the multi-objective problem is first
solved and only then the user selects a single solution among several alternatives,
using preference information. The ideal principle is ideal in the sense that it
does not demand from the user to set a preference for the objectives before
optimization. Only when several tradeoff solutions are known, the user chooses
the preferred one among them.

The ideal principle for multi-objective optimization seems very suitable in
the context of inductive databases/queries and constrained based data mining,
where multiple objectives are often employed and multiple solutions are usually
expected. After a set of solutions has been obtained, this can be the input for
further (inductive) queries that would allow the user to express her preference
and select a solution. Unfortunately, few approaches in data mining and machine
learning employ the ideal approach, with the notable exception of Tusar (2007).
This leaves ample space for the development of truly multi-objective approaches
to constraint-based data mining and inductive querying, which we believe is a
promising direction for further research.

9 Generic Algorithms for Mining Structured Data

Early on in this article, we have stated that a unifying approach to mining
different types of data would be a significant step towards a general data min-
ing framework. Having elaborated on the different types of data, different data
mining tasks and the basic components of data mining algorithms, we can now
outline what such a unifying approach would look like. Essentially, it should
provide an elegant mechanism for defining the key ingredients of data mining
algorithms, such as generality /refinement operators, distances, features and ker-
nels, for the different types of data considered.

The key data mining notions have been studied extensively and are reasonably
well understood for primitive data types. The basic idea of the unified approach
to mining structured data is to derive the key components of data mining al-
gorithms for a complex data type (built through using type constructors) from
information on the structure of that type (what constructors on what simpler
data types) and the key components for the simpler data types. For example, a
distance function d on tuples of type Tuple(T1,...,T,) can be composed from
distance functions d; on types T; by adding up the distances for each tuple
component d(z,y) = d((z1, ..., Tn)s (Y1, -, Yn)) = Diy di(@i, Yi)-

Note that there are several degrees of freedom when constructing the dis-
tance for a more complex data type from distances on simpler types. One di-
mension is the type constructor, which besides Tuple() may also be Set() or
Sequence(). Even if we fix the type constructor to Tuple(), there are alterna-
tive ways to combine the distances on the simpler types: for example, we can
take the square root of the sum of squared distances for each tuple component
d(z,y) = />y d?(x;, y;) instead of the above. Finally, different distances may
exist for the same simpler type (e.g., d11 and dy2 on type T4, instead of just dy).

Towards a General Framework for Data Mining 283

The approach we have outlined above for distances can be also applied for
generality /refinement operators, features and kernels. In the remainder of this
section, we outline how this would be done. We also discuss generic data mining
algorithms that would work on arbitrary types of data: These would be param-
eterized with the key components mentioned above.

9.1 Distances and Distance-Based Algorithms

Distances. We have already discussed how distances for simpler data types can
be combined to derive distances for more complex data types created with the
Tuple() constructor: this is done in a straightforward fashion by adding up the
distances along each component. For the Set() constructor, the situation is more
complicated. Many proposals exist in the literature for constructing a distance
on sets of objects of type T from a distance on objects of type T'. A concise, yet
comprehensive, overview is given by Kalousis et al. (2007).

The simpler option of constructing a distance on sets is to calculate the dis-
tances for all pairs of elements D(A, B) = {d(a;, b;)|(ai,b;) € A x B}, then
aggregate this d(A, B) = f(D(A, B)): Here A and B are sets, a,/b; are elements
thereof, and f an aggregation function. The three options of f = min, max or
average give rise to the so-called single, complete and average linkage, which are
in common use, e.g., in hierarchical clustering. Even if d(a,b) is a metric, none
of the three variants here is a metric and only single linkage is a true distance
function, as the other two are not reflexive. The Hausdorff distance, defined
as dg (A, B) = max(maxq, {miny{d(a;, b;)}}, maxy, {ming.,{d(b;,a;)}}), one of
the most well known distances for sets, is a metric if d(a, b) is a metric.

The more complicated option is to consider a set of relations between elements
of A and B, R = {R;|R; C A x B} and compute the distance between A and B
based on the relation R; € R that minimizes a distance on the elements of R;.
Here the relations may be surjections, fair surjections, linkings, or matchings
(Kalousis 2007). Of these, the proposal by Ramon and Bruynooghe (2001) is
a metric: as R it considers matchings in which each element of the two sets
is associated with at most one element of the other set. The distance, defined
as d(A, B) = ming,er(Y o, yer Aaiby) + (B — Ri(A)| + |A— R, (B)]))
adds a M /2 penalty for the elements of A and B that do not participate in the
relation R;, where M is the maximum possible distance between two elements.

For the Sequence() type constructor, the edit-distance approach can be used.
While this has typically been used for sequences of alphabet symbols, i.e., Se-
quence(Discrete(Alphabet))), Kalousis et al. (2007) have recently suggested an
extension towards sequences of arbitrary complex objects on which a distance d
is defined. Given two sequences A = [a1...,amn] and B = [by ..., by], an align-
ment of A and B is a pair of sequences A’ and B’ of equal length I > maxz(n, m),
constructed from the initial sequences by insertion of gaps, —. In an alignment,
an element from A/B can be aligned to a gap (insert/delete operation) or two
elements from A resp. B can be aligned with each other (replace operation).

The cost of an alignment is simply the sum of the cost of all operations used to
derive the alignment, where the cost of the replace operation is ¢(x,y) = d(z, y)

284 S. Dzeroski

and the cost of the insert and delete operations is a constant, i.e., ¢(z,—) =
¢(—,y) = a, called the gap penalty. The alignment-based edit distance, dg(A, B),
of two sequences A and B is then simply the minimum cost overall possible
alignments of the two sequences, i.e., the cost of the lowest cost sequence of
operations that turns the first sequence into the second. The edit distance can
be computed using dynamic programming (Durbin et al., 1998) in time O(mn).

Generic Distance-Based Algorithms. It is quite easy to formulate generic
distance-based algorithms for data mining, which have the distance as a pa-
rameter. For example, hierarchical agglomerative clustering only makes use of
the distances between the objects clustered and distances between sets of such
objects. The latter can be based on single, complete or average linkage.

Clustering algorithms that make use of cluster prototypes, such as the k-
means/medoids algorithm, require in addition a prototype function to be defined
on the type of objects clustered. A closed-form prototype is desirable since its
computation is more efficient and supports the version of the k-means algorithm
parameterized with the distance and prototype functions. If no closed-form is
known, the prototype of a cluster can be computed as the element of the cluster
that has the lowest average (squared) distance to the other objects in the cluster,
and the distance-parameterized version of (k-means like) k-medoids applies.

Distance-based prediction algorithms are also easy to formulate in a generic
way. For a predictive problem of type T; — T;, the nearest neighbor method
applies as long as we have a distance on T;. To make a prediction for a new
instance, the distance between the (descriptive part of the) new instance and
the training instances is calculated. The target part is copied from the nearest
training instance and returned as a prediction. To use the k-nearest neighbor
algorithm, we also need a prototype function on the target data type: the pre-
diction returned is the prototype of the target parts of the k nearest (in the
description space) instances.

9.2 Kernels and Kernel Methods

Kernels for a complex data type T can be derived from kernels for the simpler
data types used to form 7', analogously to distances. The manner in which the
kernels for the simpler types are combined depends on the type constructor used
to form T. As for distances, the easiest case is the one for tuples. A kernel
function k on tuples of type Tuple(Th,...,Ty,) can be composed from kernel
functions k; on types T; by adding up the kernels for each tuple component
k(z,y) = k((z1,...,2n), (Y1, yn)) = Z?:l ki(@i, yi)-

One possibility for kernels on sets is the product kernel, defined as k(A, B) =
> wveayep k(@,y). This is a special case of the convolution kernel proposed by
Haussler (1999), which defines kernels of composite objects based on a rela-
tion between an object and its parts. Sets and multi-sets are also a special
case of abstractions, which are mappings to the set of (non-negative) reals: sets
are mappings to {0,1} (A(z) = 1 if z € A), while multi-sets are mappings to

Towards a General Framework for Data Mining 285

non-negative integers (B(z) = 2 if « occurs in B twice). Kernels for abstractions
can be defined by k(A, B) = >_ .4 ,ep Alz)B(y)k(z,y) (Lloyd 2003).

Analogously to the manner in which edit-distances on strings have been
adapted to work on sequences on structured objects (Kalousis et al. 2006), ker-
nels on strings have been adapted to work on sequences on structured objects
(Woznica et al. 2006). In particular, the “Contiguous Sublist” and the “Longest
Common Sublist” kernels have been adapted to structured objects. A more de-
tailed treatment of kernels on structured data is given by Gaertner (2003).

Kernel methods are also generic in the sense that any kernel can be used with
any kernel algorithm, thus the kernel function can be seen as a parameter to the
algorithm. We will not discuss here in detail any of the kernel methods, except
to mention the most commonly used methods: support vector machines (SVMs),
ridge regression and spectral clustering. As we have seen, kernels for structured
data can be derived in a principled manner. In addition, special kernels have been
designed for text, images, sequences and graphs, thus making kernel methods
applicable to many kinds of data.

9.3 Features and Feature-Based Methods

The vast majority of data mining methods operate on a feature-based represen-
tation of data. These include, among others, decision trees and rules, linear equa-
tions and discriminants, and probabilistic methods (naive Bayes, Bayes nets).
We will not discuss these here, but all of them assume that data reside in a sin-
gle table, with columns representing features and rows representing data points
(also referred to as instances and examples). Methods from machine learning,
pattern recognition and statistics alike make use of this representation.

In this (sub)section, we briefly discuss how to derive features for structured
objects in a principled manner. So far, this issue has been considered in more
detail by subcommunities dealing with the analysis of more specific forms of
data, such as image processing. The notable exception has been the relational
data mining (Dzeroski and Lavraé¢ 2001) community, where propositionalization,
introduced by Lavra¢ and Dzeroski (1994), explicitly deals with the construction
of features from (possibly structured) data represented relationally.

A large body of work exists in the machine learning and data mining commu-
nities that goes under the heading of feature construction and feature extraction
(Liu and Motoda 1998), jointly referred to as feature discovery or feature trans-
formation. Feature transformation is defined as the process in which a new set
of features is constructed. If the new features are constructed by logical opera-
tions (e.g., conjunction or disjunction) on the original features, we speak about
feature construction. If functional mappings are used instead (e.g., linear com-
binations), we speak about feature extraction. The crucial assumption is that
the set of objects is originally already represented by a set of features, which are
further combined to obtain new features. In our discussion, we do not make this
assumption; rather the objects considered are of an arbitrary data type.

To construct the features for a type T, we proceed as follows. If the type
T is primitive (Boolean, Discrete(S) or Real), a single feature of that type is

286 S. Dzeroski

generated; we write Features(T) = {UniquelD : T}, where the feature of type
T is assigned a unique identifier UniqueID. For a type Tuple(Tty,...,T,), the
set of features generated is the union of the set of features derived for each of
the component types, i.e., Features(T) = U, Features(T;).

To describe a set of objects t = {t1,...,tx} of type T, the most general
approach would be to view ¢ as a sample from a probability distribution pr and
specify the (joint) probability distribution as approximated from that sample.
To describe t in terms of features, we need to consider features for describing
probability distributions. If we assume the objects of type T can be described
by a set/vector of features over the space Features(T), we need to specify a
probability distribution over that space. A simplified approach to this problem
is to specify the marginals of this distribution, i.e., the distributions of the values
for each feature.

For features of type Discrete(S), where S = {s1,...,sm}, m features suffice
to describe the distribution completely, namely P(s;), i = 1,..., m. Oftentimes,
the mode of the distribution would be included as a feature, which is also of
type Discrete(S). The cardinality of the set [¢] is also a feature to be included.
For real-valued features, their minimum and maximum values can be used as
features, as well as the mean, standard deviation, and median: these are known
as aggregates in relational databases. Histograms may be used if a more accurate
description of the distribution is necessary.

For strings (sequences of objects of type Discrete(S)), n-grams are often used
as features. These count the number of occurrences of each of the letters in
the alphabet (1-grams), pairs of letters (2-grams), triplets of letters (3-grams),
and so on. For time series (sequences of objects of type Real), many different
features can also be constructed by using techniques from signal processing, such
as the Fourier transform (Bracewell 1965) to the frequency domain or by wavelet
analysis (Mallat 1999).

For objects of type Sequence(T), assume we can represent objects of type T'
with Features(T). We hence consider feature construction on an object of the
type Sequence(Tuple(F1, ..., Fi)), where F; are the types of the features from
Features(T). In analogy to the approach taken for sets, where the marginals
were used to represent the probability distribution, we replace the type
Sequence(Tuple(Fi,. .., Fy)) with Tuple(Sequence(Fy), ..., Sequence(Fy)) and
derive features from this, resulting in the feature set Features(Sequence(T)) =

?_, Features(Sequence(F})).

We have already mentioned earlier that features may be derived through the
use of domain or background knowledge. Background knowledge can be thought
of as a set of mappings. Assuming we are given a data type T for the data we
are analyzing, as well as some additional data types T;, as well as background
knowledge consisting of a set of mappings b; : T — T;.

In addition to the features Features(T) that can be derived from T directly
as discussed earlier in this section, features can be generated also from each of
the types T;. Suppose each of T; gives rise to Features;(T;). For an object t

Towards a General Framework for Data Mining 287

of type T, besides Features(t), the feature-based representation would include
Features;(b;(t)).

For simplicity we have assumed one level of background knowledge only: all
mappings apply to type T and yield an object of a type other than 7. We can
easily imagine that the background knowledge mappings apply to, as well as,
yield objects of different types. The mappings would then be composed according
to their type signatures. In that case, objects such as b;(b;(t)) and features
thereof will have to be considered.

Let us conclude by noting that a huge number of features may be generated in
this fashion. Hence we expect such feature generation to be used in conjunction
with feature ranking and selection, where pattern discovery can be viewed as a
form of the latter. For example, instead of using all possible n-grams as features
to describe a sequence, only those that occur with a frequency exceeding a certain
threshold may be used. There is a strong link between feature construction and
(frequent) pattern discovery: the latter has been used to generate features for
predictive modelling both in the context of frequent itemsets (Cheng et al. 2007)
and frequent Datalog queries (King et al. 2001).

9.4 Refinement Orders and (Frequent) Pattern Discovery

In the most general formulation of pattern discovery, we can have an arbitrary
language/class of patterns, a matching/covering relationship which corresponds
to the interpreter for the given class of patterns, and an arbitrary evaluation
function to optimize. In practice, the most commonly encountered pattern dis-
covery task is the task of mining frequent patterns, where the evaluation function
is frequency. For this task, the language of patterns is commonly the same (or
very close) to the language of the data (type) considered.

When we mine frequent itemsets, the patterns - itemsets - are expressed in
exactly the same language as the data - transactions. The same holds when min-
ing frequent (sub)strings, (sub)sequences of structured terms or (sub)graphs.
Consequently, the matching relationship used is a syntactic subsumption rela-
tionship, defined on the data type in question. For frequent itemsets this is the
subset relation (on transactions), for the other data types this is analogously the
substring, subsequence, and subgraph relationship.

The prototypical algorithm for mining frequent patterns starts its search with
the empty pattern (set/sequence/graph), which is always frequent. It then pro-
ceeds levelwise, considering at each level the refinements of the patterns from
the previous level and testing their frequencies. Only frequent patterns are kept
for further refinement: Due to the anti-monotonicity of frequency, no refinement
of an infrequent pattern can be frequent.

The key to a generic algorithm for mining frequent patterns that would work
for arbitrary data types is to derive a subsumption/refinement relation from
the definition of the type and subsumption relations for the component types,
in much the same fashion we discussed above for distances, kernels and feature
sets. For the primitive data types, subsumption is defined as follows. For the type
Discrete(S), a pattern is a subset of S and the <, relation corresponds to the C

288 S. Dzeroski

relation. The data type Boolean can be viewed as a special case of Discrete(S),
with S = {false, true} ({0,1}). For the type Real, a pattern is an interval of the
form (a,b): we say (a,b) <ref (¢,d) iff a > cand b <d, i.e., (a,b) C (c,d) if we
view the intervals as sets of real numbers.

For two tuples = and y of type Tuple(T1,...,T,), such that © = (x1,...,2,)
and y = (y1,...,Yn), we have z <p y = A, (x; <1, ;). For two sets X and YV’
of objects of type T, we have X <,.; Y iff there is a subset Y’ of Y such that
each element x; € X can be paired with an element y; € Y’ such that z; <7 y;.
For two sequences X and Y of objects of type T', we have X <, Y iff there is
a subsequence Y’ of Y of the same length as X, such that (z; <p y;) for all 4.

10 Towards a Language for Data Mining and Knowledge
Discovery

Based on the elements presented above, we outline here a vision of a language for
data mining and knowledge discovery. First-order citizens of the language would
include data types, data sets, and generalizations (patterns, models, clusterings,
probability distributions), as well as data mining algorithm components, such as
distance/cost functions, feature sets, kernels and refinement operators.

We envisage an interpreted language of declarative nature, incorporating some
features from both functional programming (Thompson 1999) and logic pro-
gramming (Lloyd 1987). For example, storing and querying structured data,
database style, would be nicely supported by the logic programming side of the
language. The same would hold for materialized collections of patterns/models,
when queries concern the data part thereof.

On the other hand, the functional programming side would support the ma-
nipulation of the function aspects of patterns/models, such as the retrieval of
the function aspect of a pattern/model from the data aspect or deriving predic-
tions through the application of a given predictive model to new data. It would
support operations on patterns and models, such as creating a mixture model
from a given set of probability distributions. It would also support the deriva-
tion of the basic data mining algorithm ingredients for more complex data types
from those of the component types. Finally, it would support the composition
of different data mining operations into knowledge discovery scenarios.

10.1 Data and Background Knowledge

The data part of the language would be close in spirit to deductive databases
(Lloyd 1983). A database in this setting would contain a set of data types
Ty,...,T,, as well as (some) datasets D;; of objects of (each of) these types
T;. Background knowledge, consisting of a set of mappings b : T; — T}, can also
be included.

Each dataset can be viewed as a predicate. Each background knowledge map-
ping can be also viewed as a predicate b(T;,T;). Assuming that the data are

Towards a General Framework for Data Mining 289

represented relationally (in a flattened form), queries on data would be very
similar to Datalog queries.

In our setting, data types are represented explicitly and can also be the object
of manipulation. Recall that types are constructed from primitive data types
(Boolean, Discrete(S), and Real) using type constructors (Tuple, Set, Sequence).
In this context, it is important to note the relationships between different data
types, which can lead to a taxonomy /ontology of data types.

For example, we can have a data type molecule, which is a special case of
labeled graphs. Molecular fragments, which can also be defined as a type, are
substructures (linear paths) in such graphs. Explicitly representing and reason-
ing with such information can be very useful, for example, to determine the
applicability of different data mining algorithms to different data types: an algo-
rithm for mining frequent subgraphs can be used for finding frequent molecular
fragments.

10.2 Generalizations

Patterns, models, clusterings and probability distributions (which we collectively
refer to as generalizations) are first-class citizens in this framework. Recall that
they all have both a data and a function part. Classes of generalizations can be
defined, for which an interpreter can map the data part of a generalization to
its function part.

The function part of a generalization is typed according to the underlying data
type(s), for example, Sequence({A,C,T,G}) — Boolean. For the data part, a
type definition needs to be given, so that the generalizations can be explicitly
stored and queried as data objects. The symbols that can appear in the type
definition depend on the underlying data type(s), as well as the class of gen-
eralizations. If we consider classification trees that classify tuples of Boolean
features X = (x1,...,,) into a Boolean class, internal nodes of the trees would
be labeled with a feature name z; € X while leaves will be labeled with one of
{true, false}.

We can imagine sets of decision trees stored in a ‘dataset’ of the appropriate
type. For example, the set of trees in a random forest can be stored in such a
dataset. The trees need not all be generated by machine: we can give students,
as part of their machine learning exam, the task to generate a decision tree for
a certain (small) set of examples. All of the answers we get from the class of
students would form such a dataset of decision trees as well.

Datasets of generalizations of the kind outlined above can be queried in much
the same fashion as ordinary datasets. For example, datasets of decision trees
can be queried much like datasets of ordinary trees. We might ask, e.g., for all
the trees that contain a certain feature at the root node.

The set of solutions to a data mining query, i.e., the set of generalizations of a
certain class satisfying a given set of constraints would also constitute a dataset
of generalizations. For example, all the decision trees of size at most 10 leaves
with classification error of at most 10% would form a dataset of trees. Another
example would be the set of all itemsets with frequency higher than 10% and

290 S. Dzeroski

cost lower than 100$: Note that the latter also refers to a cost function on the
data part of the pattern. Additional queries, called post-processing queries, can
be posed after the data mining results have become part of a dataset.

10.3 Cross-over Queries

Cross-over queries apply generalizations to a given datum or a dataset. If the
source data type is T, and the generalization maps to type 1., we can think
of cross-over queries as producing pairs of type (Ty, 7). Recall that patterns
map to Booleans, clusterings to integers in the range 1,...,k (where k is the
number of clusters), probability distributions/densities to non-negative Reals,
and predictive models to an arbitrary data type T.. Since cross-over queries
most often involve predictive models, we refer to the application as a prediction
join.

More specifically, the application of a generalization to a given datum refers
to the function part of the generalization. If the function part is explicitly stored
(e.g., as a stored procedure), it would be called directly. Otherwise we would
make use of the interpreter for the particular class of generalizations.

Once we have the results of applying a generalization to a dataset, the value of
an evaluation function can be computed for that generalization. For example, for
a classification model, the classification error can be computed. For a clustering,
the intra-cluster variance can be calculated.

10.4 Generic Data Mining: Components and Algorithms

We also propose that the basic components of data mining algorithms, i.e., dis-
tance and prototype functions, kernel functions, feature sets, and refinement
operators, are also first-class citizens of our language. Suppose we have a set
of distance functions, e.g., a set of weighted Euclidean distances over tuples of
reals, each represented by a tuple of weights. We can query this set and look for
distances that give a very high weight (over a threshold) to a selected feature.

Generic data mining algorithms, such as the ones for distance-based prediction
discussed in the previous section, could then be used, parameterized with the
selected basic components. We envisage several generic algorithms for each of
the major approaches (distance-based, kernel, and feature based). For example,
distance-based methods would include hierarchical clustering (agglomerative and
divisive), k-means/medoids clustering, and k-nearest neighbor prediction.

Generic feature-based algorithms for predictive data mining would be param-
eterized with feature sets on the descriptive side and distance functions for the
target side. If the prediction problem is predicting objects of type T, from objects
of type Ty, the algorithm will need a set of features Features(T,) and a distance
on T, as input. Algorithms for learning predictive clustering trees (Blockeel et
al. 1998) and rules (Zenko et al. 2006) have come closest to this paradigm.

We expect default basic components to be associated with each data type
and/or generic algorithm. For example, a default distance can be associated
with each data type. For the primitive data types, these have been discussed

Towards a General Framework for Data Mining 291

earlier (Section 7.2). For compound data types, if not specified explicitly, default
distances can be derived using the methodology outlined in Section 9.1.

10.5 Constraints and Data Mining Queries

Once we have defined a data mining task and selected the associated basic compo-
nents, we can define precisely the evaluation function(s) to be used. For example,
we can only define predictive error once we have defined a distance/cost function
on the target data type of a predictive modelling task. Different evaluation func-
tions can be defined by selecting different basic components (distances). For prob-
abilistic classification, one can optimize squared loss or log loss, depending on the
underlying distance on probability distributions over discrete variables. Note that
the above are independent of the class of predictive models used.

Besides evaluation constraints, language constraints, which can be subsump-
tion-based or based on cost functions, can also be used. These are defined for
a specific class of generalizations. Subsumption constraints involve the gener-
ality /refinement order on the data part of the generalization. For example, a
specific item has to appear in the discovered frequent itemsets or the classifica-
tion tree has to include a given subtree at the root. Examples of cost functions
for language constraints include the size or depth of a decision tree and the cost
of an itemset. Note that we can also have evaluation constraints that are specific
for a given class of generalizations. For instance, we can require each leaf of a
decision tree to cover at least 10 examples, have accuracy of its majority class
higher than a threshold, or have a majority class frequency higher by a given
margin than the frequency of any other class (Nijssen and Fromont 2007).

Similar to the ontology of data types mentioned above, we can imagine having
a hierarchy /an ontology on generalizations. Evaluation and language cost func-
tions can be defined at different levels in this ontology. The most general ones
will apply, say, for all models, while more specific ones will apply for a given
class of models only, e.g., for decision trees.

When a user defines a data mining task, she will then have available a choice
of primitives (evaluation functions, language cost functions, and subsumption
relations) appropriate to the task at hand. The primitives can be used to form
individual constraints, which can then be combined to form inductive (data
mining) queries. Recall that we have Boolean (hard) constraints, optimization
constraints and soft constraints. Boolean constraints can be combined via log-
ical operations to form complex queries. Note that the use of multiple evalua-
tion/language cost functions entails a multi-objective optimization problem, to
which different approaches can be applied as outlined in Section 8.4.

The design of data mining algorithms to solve arbitrary inductive queries
composed along the lines described above is still much of an open issue. So far,
most of the algorithms for constraint-based data mining have focussed on mining
frequent patterns (in structured data) under frequency constraints (Boulicaut et
al. 2005). Mining closed patterns and mining under (language) cost constraints
has also been considered in this setting. Since all of the above are anti-monotonic,

292 S. Dzeroski

combinations thereof are also anti-monotonic and the generic algorithm for min-
ing frequent patterns (discussed in Section 9.4) applies.

Interest in the constraint-based mining of predictive models has increased
recently. A number of methods have been proposed that take into account ac-
curacy and size constraints in decision trees (Garofalakis et al. 2003), as well
as subsumption constraints (Struyf and Dzeroski 2006). Constraints (including
subsumption and accuracy) have also been considered in the context of learning
polynomial equations (Dzeroski et al. 2005). However, unlike ‘complete’ frequent
pattern mining approaches, which return the complete/optimal set of solutions,
these approaches are heuristic and give no guarantees. Only recently have ‘com-
plete’ approaches been considered for predictive models, e.g., for learning optimal
decision trees (Nijssen and Fromont 2007).

10.6 Re-using the Results of Learning

Recall that the set of solutions to an inductive query produced by a data min-
ing algorithm constitutes a dataset of generalizations (e.g., patterns/models)
and can be stored as such. It then becomes available for further queries, be it
post-processing queries, cross-over queries or inductive queries. Actually, post-
processing queries can be viewed as just data queries on the data part of the
generalizations.

One way to use cross-over queries is to apply learned models (patterns) on a
new set of data to produce a new (feature-based) representation. For example,
as discussed in Section 9.3 frequent patterns (discovered by data mining) have
already been used as features for predictive modelling. This has been done both
for itemsets/propositional representations (Cheng et al. 2007) and for structured
objects/relational representations (King et al. 2001).

Models can also be used to generate new features, either directly or indirectly.
If the target type of a model is a primitive type or a vector thereof, the model’s
predictions can be used directly as features. If it is structured, feature construc-
tion thereon can be applied as outlined in Section 9.3. The above can be done
for any model, irrespective of its representation.

For some classes of models, features can be generated from the structure of
the data part of the model. For instance, if we have a decision tree, we can take
fragments thereof, such as paths which represent a conjunction of conditions,
and make these new features. A similar approach has been used by Srinivasan
and King (1999) to extract features from a logic program, then use these for
predicting biological activity of molecules.

We can also pose inductive queries on sets of patterns/models. We take as
input the data part of the patterns/models. It is important to note that the
ability to mine structured data is of crucial importance here. Namely, patterns
and models are often structured objects, even if the data they were generated
from is flat /propositional: Take for example decision trees and Bayesian networks
derived from a propositional dataset.

Termier et al. (2006) first learn gene networks from microarray data through
a process that generates many different networks. They then apply frequent

Towards a General Framework for Data Mining 293

pattern mining to extract DAGs (directed acyclic graphs) which commonly occur
in the networks. A human expert then only needs to look at and assess the
biological meaning of these smaller components of the gene networks.

The above discussion addresses directly issues raised by Siebes (2006) as prior-
ity issues to be solved in order to achieve truly inductive database functionality.
The paragraphs immediately above refer to what Siebes calls ‘Models on Models’
or ‘Mining on Models and Patterns’. The earlier part of the discussion refers to
what Siebes calls ‘Models for Models’. Both are related to meta-learning (Vilalta
and Drissi 2002), where the results of (base-level) learning are used as input to
a further learning process.

More complicated ways are possible of re-using learned patterns and models.
In some ways, these would depart from the basic data mining tasks that we have
addressed earlier in this article. For example, a given set of data can be used to
improve an existing predictive model: This task is referred to as theory revision.
Here we want to find an improved model, which however is not discovered from
scratch but is based on the given model. One possibility is to formulate this in
terms of subsumption constraints. Dzeroski et al. (2005) discuss a scenario in
which a previously discovered polynomial is used in a sub-polynomial constraint
in the discovery of more complex polynomials. In general, we want the revised
model to be similar to the original model, and constraints based on (syntactic
or semantic) similarity of patterns/models might prove to be useful.

10.7 Operations on Generalizations

It would be desirable to support some operations on generalizations in a data
mining language. An example would be the operation that combines a set of
regression models by taking the average prediction of individual models. A set
of classification models would be combined via majority voting and a set of
probabilistic classification models by probability distribution voting/summation.
Another example would be the weighted summation of a number of probability
distributions to obtain a mixture model. Finally, clustering aggregation (Gionis
et al. 2005) takes as input a set of clusterings and finds a clustering that agrees
as much as possible with the given clusterings.

The first two examples above are easy to implement, especially in functional
programming languages. We can operate on the functional part of the gener-
alizations directly, and obtain, e.g., () = (ri(x) + ...+ ri(z))/k in the first
example, where r;(x) are the individual regression models (the function parts
thereof). For certain classes of generalizations, these operations can be done on
the data part thereof in closed form: if r;(x) were linear models represented by
the coefficients for each of the features x; used, we could simply add these up.

Defining operations on generalizations with a clear semantics goes in the di-
rection of defining an algebra for data mining, analogous to relational algebra.
Mannila (2001) outlined a proposal of an algebra for probabilistic (mixture)
models, with the basic operations of projection, selection, union and join ana-
logues to the operations in the relational model. A probabilistic model is viewed

294 S. Dzeroski

as a relation: selection corresponds to partial evaluation of the model, projec-
tion to marginalization over the variables projected away, union corresponds to
mixing, and applying a model to an ordinary relation to (prediction) join.

10.8 Integration Aspects, Compositionality, and Scenarios

So, how would a user go about solving a specific data mining problem in the
framework outlined here? She would start with the data: Define data type(s), or
choose from pre-defined ones, then load a dataset. Along with the data type(s),
distances/prototypes, features, kernels and refinements may be defined (either
directly by the user or in a semi-automated fashion from the definitions of the
data types).

The data mining task has to be specified next: This can be one of pattern dis-
covery, estimating a probability distribution, clustering or prediction. A different
type of generalization (a set of patterns, a probability distribution, a clustering
or a predictive model) is produced as output, depending on the task. These are
parameterized in the first instance with the types of data they operate on.

Once a data mining task and the underlying data types are selected, a class
of generalizations has to be selected. We expect that some generic classes (e.g.,
trees) will be predefined, parameterized with the appropriate basic components
(e.g., feature sets). Evaluation/language cost functions and constraints have to
be selected next, based on distance/cost functions and refinement orders on the
underlying data/generalization types: These constitute an inductive query.

Integration. The language we envision would support the creation of data min-
ing algorithms capable of solving a variety of inductive queries on a variety of
data types involving a variety of evaluation and language constraints. The key
to this would be the support for different data types, the explicit treatment of
generalizations as both data objects and functions, the explicit representation
and manipulation of basic components of data mining algorithms, as well as
constraint primitives (evaluation an language cost functions). Data mining al-
gorithms implemented in this environment would be tightly integrated into an
overall knowledge discovery language, where outputs of one data mining opera-
tion can be used as input to another.

Loose integration of externally developed data mining algorithms would also
be possible. For an algorithm to be plugged in, we would need a precise spec-
ification of the data mining task addressed, the underlying data type(s), and
the class of generalizations considered. If the algorithm is constraint-based, the
evaluation and language primitives used, and the types of constraints supported
should also be specified. For example, MolFea (Kramer and De Raedt 2001)
addresses the task of finding frequent patterns in the form of linear molecular
fragments in data that consists of molecular structures in the form of labeled
graphs and takes into account subsumption language constraints and frequency
evaluation constraints.

Compositionality. Compositionality is the technique of constructing complex
analyses by using a collection of standard operations as building blocks, with the

Towards a General Framework for Data Mining 295

outputs of some operations serving as inputs to other operations (Ramakrishnan
et al. 2005). Relational algebra, for example, includes the operations of selection,
projection, join, union and difference that take as input tables and produce tables
as output. In the context of data mining, it has so far been a largely open issue
what are the operators of interest, their inputs and outputs.

We argue that data mining operators corresponding to the data mining tasks
we have defined and discussed here should definitely be included in an algebra for
data mining. Whether or not (and which) operations of lower granularity should
be included can be debated on further and depends on whether we want to focus
on knowledge discovery or data mining. In a knowledge discovery language a
coarser granularity may be preferred, while for data mining a finer granularity
might be necessary.

We have described data mining tasks/operations, as well as the basic ingredi-
ents of data mining algorithms, in terms of their signatures, i.e., the domain and
ranges of the functions they are computing. Not all operations can be meaning-
fully combined in all possible ways and signatures provide us with some guidance
on what combinations are meaningful. For example, the output of a frequent pat-
tern mining algorithm for data type T applied to a dataset Dy of objects of type
T can be used as the input to a cross-over operation (together with another
dataset Dy of objects of type T).

The signatures of data mining operators can be organized in a hierarchy (Ra-
makrishnan et al. 2005). At the higher level, the signatures are described in
general terms, such as pattern or model. In the lower levels they may be special-
ized for certain types/classes of patterns or models. Following the same approach
makes sense in our case as well. We propose to lift the hierarchy described there,
which works only for propositional data, to the case of mining structured data.
The ontology of structured data types would be taken into account as well.

Scenarios. Real-life applications of data mining typically require interactive
sessions and involve the formulation of a complex sequence of inter-related in-
ductive queries (including data mining operations), which we will call a KDD
scenario (Boulicaut et al. 1999). Some of the inductive queries would generate
or manipulate patterns, others would apply these patterns to a given dataset to
form a new dataset, still others would use the new dataset to to build a pre-
dictive model. The ability to formulate and execute such sequences of queries
crucially depends on compositionality, the ability to use the output of one query
as the input to another.

KDD scenarios can be described at different levels of detail and precision and
can serve multiple purposes. At the lowest level of detail, the specific data min-
ing algorithms used and and their exact parameter settings employed would be
included, as well as the specific data analyzed. Moving towards higher levels of
abstraction, details can be gradually omitted, e.g., first the parameter setting of
the algorithm, then the actual algorithm may be omitted but the class of gener-
alizations produced by it can be kept, and finally the class of generalizations can
be left out (but the data mining task kept). On the data side, one might move
from the specification of an actual dataset to a specification of the underlying

296 S. Dzeroski

data type and further to data types that are higher in the hierarchy/ontology of
data types. Having ontologies of data types, data mining tasks, generalizations
and data mining algorithms would greatly facilitate the description of scenar-
ios at higher abstraction levels: the abstraction can proceed along each of the
respective ontologies.

At the most detailed level of description, KDD scenarios can serve to doc-
ument the exact sequence of data mining operations undertaken by a human
analyst on a specific task. This would facilitate, for example, the repetition of
the entire sequence of analyses after an erroneous data entry has been corrected
in the source data. At higher levels of abstraction, the scenarios would enable
the re-use of already performed analyses, e.g., on a new dataset of the same type.
We thus argue that the explicit storage and manipulation of scenarios (e.g., by
reducing/increasing the level of detail) would greatly facilitate the KDD pro-
cess as a whole, reduce human effort and thus alleviate a major bottleneck in
applying KDD in practice.

11 Related Work

When attempting to formulate a general framework for data mining, the poten-
tial set of related work items is dangerously large. Here we will give a biased
sample of what we consider related work. Parts of it have been mentioned previ-
ously, while others have not been explicitly mentioned above even though they
have made an intellectual influence during the writing of this article.

Let us start with inductive databases and constraint-based data mining. Since
the notion of inductive databases was introduced, a significant body of research
has grown on these two topics: A survey can be found in the book edited by
Boulicaut et al. (2005). An earlier collection of papers focussing on constraint-
based data mining was edited by Bayardo (2002).

Data mining query languages are also directly relevant: A survey article is
presented by Boulicaut and Masson (2005). A more recent proposal for an SQL-
based data mining query languages, which allows for the integration of various
data mining operations at the data level, has been given by Kramer et al. (2006).
Finally, the IQL language proposed by Nijssen and De Raedt (2007 /this volume),
is very close in spirit to the discussion presented here: it recognizes the impor-
tance of functions and extends tuple relational calculus with a function and
a typing system. However, it only allows for loose integration of data mining
algorithms and does not support the creation of new algorithms.

Another way to recognize the importance of functions is to use higher-order
logic or functional programming to facilitate the implementation of data mining
algorithms (for mining structured data). Lloyd (2003) uses higher-order logic
to define structured data types and principled ways of constructing distances,
features (which he calls predicates) and kernels. Allison (2004) uses functional
programming to define data types and type classes for models (where models
include probability distributions, mixture models and decision trees) that allow
for models to be manipulated in a precise and flexible way.

Towards a General Framework for Data Mining 297

Formulating an algebra for data mining that would be the equivalent of Codd’s
relational algebra for databases is probably the most ambitious goal in the con-
text of the discussion presented here. The 3W-model (Johnson et al. 2000) was
among the first to take an algebraic view on data mining: A refined version has
been presented recently by Calders et al. (2006b). Mannila (2001) presented an
algebraic view on operations with mixture models. Siebes (2006) discusses how
to lift relational algebra to patterns and models. Finally, the compositionality
of data mining operators, as discussed by Ramakrishnan et al. (2005), can be
expected to play a crucial role in the general framework.

Acknowledgments. This work was supported by the IQ project (IST-FET
FP6-516169). Thanks are due to the members of the project for providing the
intellectual background for this work, as well as numerous discussions on related
issues. Special thanks to Jan Struyf, who helped with this article in various
ways, which among other things included a detailed proofreading and search
for references. Thanks also to Alexandros Kalousis and Ljup¢o Todorovski for
reading this text at short notice, as well as Marko Bohanec and Bernard Zenko
for commenting on portions thereof. Thanks as well to Martin Erwig and John
Lloyd for the useful discussions on functional programming languages and their
use for data mining.

References

1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of
items in large databases. In: Proc. of the ACM SIGMOD Conf. on Management of
Data, pp. 207-216. ACM Press, New York (1993)

2. Aho, A.V., Ullman, J.D., Hopcroft, J.E.: Data Structures and Algorithms. Addison-
Wesley, Reading, MA (1983)

3. Allison, L.: Models for machine learning and data mining in functional program-
ming. Journal of Functional Programming 15(1), 15-32 (2004)

4. R. Bayardo (ed.) Constraints in data mining. Special issue of SIGKDD Explo-
rations, 4(1) (2002)

5. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)

6. Bistarelli, S., Bonch, F.: Interestingness is not a Dichotomy: Introducing Softness
in Constrained Pattern Mining. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho,
R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, Springer, Heidelberg
(2005)

7. Blockeel, H., De Raedt, L., Ramon, J.: Top-down induction of clustering trees. In:
Proc. of the 15th Intl. Conf. on Machine Learning, pp. 55—-63. Morgan Kaufmann,
San Mateo, CA (1998)

8. Boulicaut, J.-F., Jeudy, B.: Constraint-based data mining. In: Maimon, O., Rokach,
L. (eds.) The Data Mining and Knowledge Discovery Handbook, pp. 399-416.
Springer, Berlin (2005)

9. Boulicaut, J.-F., Masson, C.: Data mining query languages. In: Maimon, O.,
Rokach, L. (eds.) The Data Mining and Knowledge Discovery Handbook, Springer,
Berlin (2005)

10. Boulicaut, J.-F., Klemettinen, M., Mannila, H.: Modeling KDD processes within
the inductive database framework. In: Mohania, M.K., Tjoa, A.M. (eds.) DaWaK
1999. LNCS, vol. 1676, pp. 293-302. Springer, Heidelberg (1999)

298

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

S. Dzeroski

Boulicaut, J.-F., De Raedt, L., Mannila, H. (eds.): Constraint-Based Mining and
Inductive Databases. Springer, Berlin (2005)

Bracewell, R.N.: The Fourier Transform and Its Applications. McGraw-Hill, New
York (1965)

Calders, T., Rigotti, C., Boulicaut, J.-F.: A survey on condensed representations
for frequent sets. In: Boulicaut, J.-F., De Raedt, L., Mannila, H. (eds.) Constraint-
Based Mining and Inductive Databases, pp. 64-80. Springer, Berlin (2005)
Calders, T., Goethals, B., Prado, A.B.: Integrating pattern mining in relational
databases. In: Proc. of the 10th European Conf. on Principles and Practice of
Knowledge Discovery in Databases, pp. 454-461. Springer, Berlin (2006a)
Calders, T., Lakshmanan, L.V.S., Ng, R.T., Paredaens, J.: Expressive power of an
algebra for data mining. ACM Transactions on Database Systems 31(4), 1169-1214
(2006b)

Cheng, H., Yan, X., Han, J., Hsu, C.-W.: Discriminative frequent pattern analysis
for effective classification. In: Proc. 23nd Intl. Conf. on Data Engineering, pp.
716-725. IEEE Computer Society Press, Los Alamitos (2007)

Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley &
Sons, New York (2001)

De Raedt, L., Dehaspe, L.: Clausal discovery. Machine Learning 26, 99-146 (1997)
Dehaspe, L., Toivonen, H.: Discovery of frequent Datalog patterns. Data Mining
and Knowledge Discovery 3(1), 7-36 (1999)

De Raedt, L.: A perspective on inductive databases. SIGKDD Explorations 4(2),
69-77 (2002a)

De Raedt, L.: Data mining as constraint logic programming. In: Kakas, A.C., Sadri,
F. (eds.) Computational Logic: Logic Programming and Beyond — Essays in Honour
of Robert A. Kowalski, Part II, pp. 113-125. Springer, Berlin (2002b)

Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.J.: Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press,
Cambridge (1998)

Dzeroski, S.: Inductive logic programming in a nutshell. In: Getoor, L., Taskar, B.
(eds.) Statistical Relational Learning, MIT Press, Cambridge, MA (2007)
Dzeroski, S., Lavra¢, N. (eds.): Relational Data Mining. Springer, Berlin (2001)
Dzeroski, S., Todorovski, L., Ljubi¢, P.: Inductive queries on polynomial equations.
In: Boulicaut, J.-F., De Raedt, L., Mannila, H. (eds.) Constraint-Based Mining and
Inductive Databases, pp. 127-154. Springer, Berlin (2005)

Fayyad, U., Piatetsky-Shapiro, G., Uthurusamy, R.: Summary from the KDD-2003
panel — “Data Mining: The Next 10 Years”. SIGKDD Explorations 5(2), 191-196
(2003)

Friedman, J.H., Fisher, N.I.: Bump hunting in high-dimensional data. Statistics
and Computing 9(2), 123-143 (1999)

Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge
discovery: An overview. In: Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., Uthu-
rusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 495-515.
MIT Press, Cambridge, MA (1996)

Frawley, W.J., Piatetsky-Shapiro, G., Matheus, C.J.: Knowledge discovery in
databases: An overview. In: Knowledge Discovery in Databases, pp. 1-30.
AAAI/MIT Press, Cambridge

Gaertner, T.: A survey of kernels for structured data. SIGKDD Explorations 5(1),
49-58 (2003)

Garofalakis, M., Hyun, D., Rastogi, R., Shim, K.: Building decision trees with
constraints. Data Mining and Knowledge Discovery 7(2), 187-214 (2003)

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.
48.

49.
50.
51.
52.

53.

54.

Towards a General Framework for Data Mining 299

Getoor, L., Taskar, B. (eds.): Statistical Relational Learning. MIT Press, Cam-
bridge, MA (2007)

Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. In: Proc. of the 21st
Intl. Conf. on Data Engineering, pp. 341-352. IEEE Computer Society Press, Los
Alamitos (2005)

Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann,
San Francisco, CA (2001)

Hand, D.J., Mannila, H., Smyth, P.: Principles of Data Mining. MIT Press, Cam-
bridge, MA (2001)

Haussler, D.: Convolution kernels on discrete structures. UC Santa Cruz, Technical
Report UCS-CRL-99-10 (1999)

Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Com-
munications of the ACM 39(11), 58-64 (1996)

Johnson, T., Lakshmanan, L.V., Ng, R.: The 3W model and algebra for unified
data mining. In: Proc. of the Intl. Conf. on Very Large Data Bases, pp. 21-32.
Morgan Kaufmann, San Francisco, CA (2000)

Kalousis, A., Woznica, A., Hilario, M.: A unifying framework for relational
distance-based learning founded on relational algebra. Technical Report, Computer
Science Department, University of Geneva (2006)

Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley & Sons, New York (1990)

King, R.D., Karwath, A., Clare, A., Dehaspe, L.: The utility of different represen-
tations of protein sequence for predicting functional class. Bioinformatics 17(5),
445-454 (2001)

Kloesgen, W.: Data mining tasks and methods: Subgroup discovery: deviation
analysis. In: Kloesgen, W., Zytkow, J.M. (eds.) Handbook of Data Mining and
Knowledge Discovery, pp. 354-361. Oxford University Press, Oxford (2002)
Kramer, S., Aufschild, V., Hapfelmeier, A., Jarasch, A., Kessler, K., Reckow, S.,
Wicker, J., Richter, L.: Inductive Databases in the Relational Model: The Data as
the Bridge. In: 4th Intl. Wshp. on Knowledge Discovery in Inductive Databases:
Revised Selected and Invited Papers, pp. 124-138. Springer, Berlin (2006)
Lavrag¢, N., Kavgek, B., Flach, P.A., Todorovski, L.: Subgroup Discovery with CN2-
SD. Journal of Machine Learning Research 5, 153-188 (2004)

Lavrac, N., Dzeroski, S.: Inductive Logic Programming: Techniques and Applica-
tions. Ellis Horwood, Chichester (1994)

Liu, H., Motoda, H.: Feature Extraction, Construction and Selection: A Data Min-
ing Perspective. Kluwer, Dorderecht (1998)

Lloyd, J.W.: Foundations of Logic Programming. Springer, Berlin (1987)

Lloyd, J.W.: An introduction to deductive database systems. Australian Computer
Journal 15(2), 52-57 (1983)

Lloyd, J.W.: Logic for Learning. Springer, Berlin (2003)

Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, London (1999)
Inductive databases vision: Relational operations on models. Unpublished slides.
In: Presented at the meeting of the cInQ project (December 2001)

Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery 1(3), 241-258 (1997)

Michalski, R.S.: Knowledge acquisition through conceptual clustering: A theoret-
ical framework and an algorithm for partitioning data into conjunctive concepts.
Intl. Jrnl. of Policy Analysis and Information Systems 4, 219-244 (1980)
Mitchell, T.M.: Generalization as search. Artif. Intell. 18(2), 203-226 (1982)

300

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.
65.

66.

67.

68.

69.

70.

S. Dzeroski

Nijssen, S., Fromont, E.: Mining optimal decision trees from itemset lattices. In:
Proc. of The 13th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data
Mining, ACM Press, New York (to appear, 2007)

Piatetsky-Shapiro, G., Djeraba, C., Getoor, L., Grossman, R., Feldman, R., Zaki,
M.: What are the grand challenges for data mining? KDD-2006 Panel report.
SIGKDD Explorations 8(2), 70-77 (2006)

Ramakrishnan, R., et al.: Data Mining: The Next Generation. In: Ramakrish-
nan, R., Agrawal, R., Freytag, J.-C. (eds.) Perspectives Wshp. — Data Mining:
The Next Generation. Intl. Begegnungs- und Forschungszentrum fuer Informatik
(IBFI), Schloss Dagstuhl, Germany (2005)

Ramon, J., Bruynooghe, M.: A polynomial time computable metric between point
sets. Acta Informatica 37(10), 765-780 (2001)

Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge
University Press, Cambridge (2004)

Siebes, A.: Data mining in inductive databases. In: 4th Intl. Wshp. on Knowledge
Discovery in Inductive Databases: Revised Selected and Invited Papers, pp. 1-23.
Springer, Berlin (2006)

Srinivasan, A., King, R.D.: Feature construction with inductive logic program-
ming: A study of quantitative predictions of biological activity aided by structural
attributes. Knowledge Discovery and Data Mining 3(1), 37-57 (1999)

Struyf, J., Dzeroski, S.: Constraint based induction of multi-objective regression
trees. In: 4th Intl. Wshp. on Knowledge Discovery in Inductive Databases: Revised
Selected and Invited Papers, pp. 222-233. Springer, Berlin (2006)

Termier, A., Tamada, Y., Imoto, S., Washio, T., Higuchi, T.: From closed tree
mining towards closed DAG mining. In: Proc. of the Intl. Wshp. on Data Mining
and Statistical Science, pp. 1-7 (2006)

Thompson, S.: Haskell: The Craft of Functional Programming. Add. Wesley (1999)
Tusar, T.: Design of an Algorithm for Multiobjective Optimization with Differential
Evolution. M.Sc. Thesis. Faculty of Computer and Information Science, University
of Ljubljana, Slovenia (2007)

Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artificial
Intelligence Review 18(2), 77-95 (2002)

Wagstaff, K., Cardie, C.: Clustering with instance-level constraints. In: Proc. 17th
Intl. Conf. on Machine Learning, pp. 1103-1110. Morgan Kaufmann, San Francisco,
CA (2000)

Woznica, A., Kalousis, A., Hilario, M.: Kernels on lists and sets over relational al-
gebra: an application to classification of protein fingerprints. In: Proc. 10th Pacific-
Asia Conf. on Knowledge Discovery and Data Mining, Springer, Berlin (2006)
Yang, Q., Wu, X.: 10 Challenging problems in data mining research. Intl. Jrnl. of
Information Technology & Decision Making 5(4), 597-604 (2006)

Zenko, B., Dzeroski, S., Struyf, J.: Learning predictive clustering rules. In: 4th
Intl. Wshp. on Knowledge Discovery in Inductive Databases: Revised Selected and
Invited Papers, pp. 234-250. Springer, Berlin (2006)

	Introduction: The Challenges for Data Mining
	Inductive Databases and Inductive Queries
	Desiderata for a General Data Mining Framework
	The Basic Concepts of Data Mining
	Data
	Patterns and Models
	Data Mining Tasks

	The Dual Nature of Patterns and Models
	The Data Aspect: Classes of Patterns and Models
	The Function Aspect: Interpreters

	Constraints in Data Mining: Introduction
	Language Constraints
	Evaluation Constraints
	Optimization Constraints
	Soft Constraints
	The Task(s) of (Constraint-Based) Data Mining

	The Key Ingredients of Data Mining Algorithms
	Generality and Refinement Operators
	Distances and Prototypes
	Features and Background Knowledge
	Kernels

	Constraints in Data Mining: Revisited
	Evaluation Functions for the Basic Data Mining Tasks
	Cost Functions for Language Constraints
	Monotonicity and Closedness
	Multi-objective Optimization and Constraint-Based Data Mining

	Generic Algorithms for Mining Structured Data
	Distances and Distance-Based Algorithms
	Kernels and Kernel Methods
	Features and Feature-Based Methods
	Refinement Orders and (Frequent) Pattern Discovery

	Towards a Language for Data Mining and Knowledge Discovery
	Data and Background Knowledge
	Generalizations
	Cross-over Queries
	Generic Data Mining: Components and Algorithms
	Constraints and Data Mining Queries
	Re-using the Results of Learning
	Operations on Generalizations
	Integration Aspects, Compositionality, and Scenarios

	Related Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

