
Machine Learning (2018) 107:1673–1709
https://doi.org/10.1007/s10994-018-5744-y

Ensembles for multi-target regression with random output
selections

Martin Breskvar1,2 · Dragi Kocev1,2 · Sašo Džeroski1,2

Received: 10 April 2017 / Accepted: 3 July 2018 / Published online: 11 July 2018
© The Author(s) 2018

Abstract
We address the task of multi-target regression, where we generate global models that simul-
taneously predict multiple continuous variables. We use ensembles of generalized decision
trees, called predictive clustering trees (PCTs), in particular bagging and random forests
(RF) of PCTs and extremely randomized PCTs (extra PCTs). We add another dimension of
randomization to these ensemble methods by learning individual base models that consider
random subsets of target variables, while leaving the input space randomizations (in RF
PCTs and extra PCTs) intact. Moreover, we propose a new ensemble prediction aggregation
function, where the final ensemble prediction for a given target is influenced only by those
base models that considered it during learning. An extensive experimental evaluation on a
range of benchmark datasets has been conducted, where the extended ensemble methods
were compared to the original ensemble methods, individual multi-target regression trees,
and ensembles of single-target regression trees in terms of predictive performance, running
times and model sizes. The results show that the proposed ensemble extension can yield
better predictive performance, reduce learning time or both, without a considerable change
in model size. The newly proposed aggregation function gives best results when used with
extremely randomized PCTs. We also include a comparison with three competing methods,
namely random linear target combinations and two variants of random projections.

Keywords Predictive clustering trees · Multi-target regression · Output space
decomposition · Structured outputs · Ensemble methods

1 Introduction

Supervised learning is a highly active and researched area of machine learning. Its goal is
to produce a model, that can take a previously unseen example and predict the value of a

Editors: Michelangelo Ceci and Toon Calders..

B Martin Breskvar
Martin.Breskvar@ijs.si

1 Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia

2 Jožef Stefan International Postgraduate School, Ljubljana, Slovenia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-018-5744-y&domain=pdf
http://orcid.org/0000-0002-9079-3993

1674 Machine Learning (2018) 107:1673–1709

variable of interest, typically called a target variable. If the target variable is of a discrete
type, the task at hand is classification. If the target variable is of a numeric data type, the task
is called regression. Such single-target (ST) prediction scenarios are very common.

A number of challenges from various domains require a more complex representation of
the data. In those cases, we need to move away from generating models that make predictions
for one target variable to models that make predictions for multiple targets simultaneously,
i.e., address the task of multi-target (MT) prediction. In general, MT prediction falls under
the scope of structured output prediction (SOP). SOP, as the name suggests, is concerned
with predicting values of structured data types, which are composed of values of primitive
data types, e.g., boolean, real numbers, or discrete values (Panov et al. 2016). Examples of
structured data types are tuples, sequences, sets, tree-shaped hierarchies, directed acyclic
graphs, etc. (Džeroski 2007). Examples of SOP tasks are multi-target regression (MTR),
(hierarchical) multi-label classification (MLC) and time series prediction. Solving SOP tasks
has great potential and importance in many domains, and has been listed as one of the most
challenging problems in machine learning by Yang and Wu (2006) and Kriegel et al. (2007).

This work considers the task of MTR—predicting multiple continuous variables. Many
real life scenarios exist where one is interested in predicting multiple numerical values, e.g.,
in ecology (Demšar et al. 2006; Stojanova et al. 2010) and life sciences (Jančič et al. 2016).
MT prediction methods differ mostly in the way they exploit the target space structure dur-
ing learning a predictive model. The most natural and simple starting point is to make a
model for each component of the structure separately. The models predicting the individual
components are then combined to make predictions for the whole structure. Such methods
are called local, because they learn a local model for only one component at a time, whilst
ignoring the other components (i.e., global context). Hence, local methods cannot exploit
information hidden in the combination of multiple components and relationships between
them. In contrast to local methods, global methods take into account all the structural com-
ponents and their relations and then make predictions for all of them simultaneously. In
general, this makes global models more interpretable. Global models (as well as the pro-
cess of learning them) are also more computationally efficient as compared to local ones.
This becomes especially evident when the predicted structure consists of many components.
Learning global models can therefore yield better predictive performance while consuming
less resources.

In this paper, we propose a new ensemble extension method for the task of MTR, called
Random Output Selections (ROS). The method uses predictive clustering trees (PCTs) as
base models in the ensembles. PCTs, a generalization of decision trees, are global models for
SOP able to solve MTR and MLC tasks, among other (Blockeel et al. 1998). The proposed
method can be coupled with any ensemble learning method that employs global decision
trees as base learners. The method learns each base model on a random subset of all target
variables (each model has its own subset of variables). In this work we apply ROS on three
different ensemble learning methods: bagging (Bag) (Breiman 1996; Kocev et al. 2013),
random forests (RF) (Breiman 2001; Kocev et al. 2013) and extremely randomized trees
(ET) (Geurts et al. 2006; Kocev and Ceci 2015). Analogously, we refer to extended methods
as Bag-ROS, RF-ROS and ET-ROS.

Themain focus of this study is to determine whether the proposedmethod can improve the
predictive performance and shorten the learning times of the considered ensemble methods.
An extensive empirical evaluation over a variety of benchmark datasets in performed in order
to determine the effects of using ROS on predictive performance. In addition we perform an
analysis with respect to time and space complexity.

123

Machine Learning (2018) 107:1673–1709 1675

We summarize the main contributions of this work as follows:

– A novel global ensemble extension approach for addressing the MTR task. It randomly
selects subsets of targets for learning individual base models. This can yield better pre-
dictive performance and shorter learning times.

– Anovel aggregation function for the prediction of basemodels in the extended ensembles.
By default, each tree in the ensemble predicts all targets. Here, only targets that were
considered during the learning of an individual tree contribute to the final predictions.

– An extensive empirical evaluation of the three different ensemble methods on 17 bench-
mark datasets, which provide performance assessment for the original and extended
ensemble methods, as well as individual multi-target regression trees and ensembles of
single-target regression trees (all over a range of ensemble sizes). The study also includes
parameter setting recommendations for the proposed method. Moreover, we compare the
performance to other competing methods that also transform the output space.

– Theoretical computational complexity analysis of the proposed ensemble extension
method, linked to the empirical evidence of the aforementioned evaluation.

The remainder of this paper is organized as follows. Section 2 outlines the task definition
and related work. Next, Sect. 3 presents the proposed method ROS. Section 4 then provides
details about the experimental design and evaluation, the results of which are presented and
discussed in Sect. 5. Finally, we conclude the paper and provide directions for further work.

2 Background and related work

2.1 Task definition

In this section, we formally describe the machine learning task of MTR. Given:

– An input space X , with tuples of dimension d , containing values of primitive data types,
i.e., ∀xi ∈ X , xi = (xi1 , xi2 , . . . , xid),

– An output (target) space Y , with tuples of dimension t , containing real values, i.e.,
∀yi ∈ Y , yi = (yi1 , yi2 , . . . , yit), where yik ∈ R and 1 ≤ k ≤ t

– A set of examples S, where each example is a pair of tuples from the input and the output
space, i.e., S = {(xi , yi)|xi ∈ X , yi ∈ Y , 1 ≤ i ≤ N } and N is the number of examples
in S (N = |S|),

– A quality criterion c, which rewards models with high predictive accuracy and low
complexity.

Find: A function f : X → Y such that f maximizes c.
In this work, the function f is represented by an ensemble (set) of PCTs. It will be learned

by the approaches of bagging (Bag), Random Forests (RF) and extra-PCTs (ET) and their
ROS counterparts Bag-ROS, RF-ROS and ET-ROS.

2.2 Related work

Our work relates to three main areas: solving the task of MTR, ensemble learning and output
space decomposition. Multi-target regression, also referred to as multi-target, multi-variate
or multi-response regression, is a machine learning task, where the goal is to predict multiple
real-valued variables simultaneously. Borchani et al. (2015) divide multi-target regression

123

1676 Machine Learning (2018) 107:1673–1709

methods into two categories: problem transformation methods and algorithm adaptation
methods.

Problem transformation methods include the work of Spyromitros-Xioufis et al. (2016) on
single-target approaches, multi-target regressor stacking and regressor chains, and the work
of Zhang et al. (2012) on multi-output support vector regression, and the work of Tsoumakas
et al. (2014) on random linear target combinations. Thesemethods transform the output space
in such a way, that it is possible to apply existing methods to solve the task at hand. The
transformation process usually converts amulti-target problem into several single-target ones,
thus approaching the MTR problem locally. However, transformation methods exist, that
solve theMTRproblem locally but, on the other side, includemultiple targets into the learning
process thus making them not fully-local nor fully-global, e.g., Tsoumakas et al. (2014).

Algorithm adaptation methods, on the other hand, have the capability to handle multi-
target tasks naturally, i.e., no transformation of the data is needed. Such methods are global.
They can exploit the potential relatedness of the targets to learn models with better predictive
performance faster as compared to problem transformation methods. Algorithm adaptation
methods include statistical methods, such as those by Abraham et al. (2013), Breiman and
Friedman (1997), Izenman (1975), multi-output support vector regression work by Xu et al.
(2013), Han et al. (2012), Deger et al. (2012), kernel methods by Alvarez et al. (2012),
Micchelli and Pontil (2004), multi-target regression trees (Kocev andCeci 2015; Levatić et al.
2014; Appice andMalerba 2014; Kocev et al. 2013; Stojanova et al. 2012; Ikonomovska et al.
2011; Appice and Džeroski 2007) and rule based methods for MTR by Aho et al. (2012).
Due to the plethora of existing methods, we will not discuss all of them here but rather briefly
describe the ones most closely related to our work.

Predictive clustering trees (PCTs) have been introduced by Blockeel et al. (1998). A PCT
is a generalization of a standard decision tree, which can be instantiated to support different
tasks of SOP, one of which is the task of MTR. PCTs are decision tree based models that
belong to the algorithm adaptation methods group, because they handle the task without
transforming the instance space. PCTs are global models, since they give predictions for
all targets simultaneously. PCTs are instantiated by two required parameters: the variance
and prototype functions. Technically, PCTs perform divisive hierarchical clustering by using
the provided variance function. The variance function is used to calculate heuristic scores
that guide the learning process until a stopping criterion is met. This eliminates the need for
arbitrarily selecting the number of clusters beforehand, as required by traditional clustering
methods. When instances are clustered, the prototype function is used to calculate the pre-
dictions on all leaf nodes (terminal clusters of the hierarchy). A detailed explanation of PCTs
can be found in Sects. 3.1 and 3.2.

Ensembles of PCTs were introduced by Kocev et al. (2007, 2013), specifically bagging
and random forests. Kocev and Ceci (2015) later extended extremely randomized trees,
initially introduced by Geurts et al. (2006), to structured outputs. They called them extra-
PCTs, because they based the implementation on PCTs. Extremely randomized trees select
one random split point for each of k predictive attributes at each split. The best performing
split point is selected and the process recursively continues. Extremely randomized trees and
their multi-output variant (extra-PCTs) are very unstable models, so it only makes sense to
use them in an ensemble setting.

Several multi-target prediction approaches that transform the output space do exist, but
they mainly focus on the task of MLC. Joly et al. (2014) reduce the dimensionality of the
output space by making random projections of it. They make the projections in such a way,
that they preserve the original distances in the projected space. Their approach uses Johnson-
Lindenstrauss lemma. If the output space projection matrix satisfies the lemma, the variance

123

Machine Learning (2018) 107:1673–1709 1677

computations in the projected space will be ε-approximations of the variance in the original
output space. They employ Gaussian, Rademacher, Hadamard and Achlioptas projections to
compress the output space. Only the variance calculations are made in the projected space
while the predictions aremade directly in the original output space (i.e., no decoding needed).
They use multi-output regression trees to calculate the variances in the projected space and
then apply thresholding to obtain predictions for labels (i.e., MLC setting). Our approach is
simpler, as it does not perform a transformation of the output space but only takes a subset of
it, which makes it more straightforward. They do not report any results for the MTR setting.
Joly (2017) proposes a gradient boosting method for MTR that uses random projections of
the output space to automatically adapt to the output correlation structure.

Tsoumakas and Vlahavas (2007) propose an ensemble method RAkEL (Random
k-labelsets) for the task ofMLC, which is also transformation-based. RAkEL is an ensemble-
like wrapper method for solving multi-label classification tasks with existing algorithms for
multi-class classification. They construct the ensemble by providing a small random subset
of k labels (organized as a label powerset) to each base model, learned by a multi-class
classifier. This results in an additional step in the prediction phase because predictions need
to be decoded. In addition to this, RAkEL’s computational complexity is high because the
generated output spaces are label powersets and the underlying classification algorithm is a
parameter, which can considerably change/worsen the training times (e.g., if we use SVMs
instead of ordinary decision trees). This approach has been extended by Szymański et al.
(2016), where the authors propose not to use the original random partitioning of subsets as
performed by RAkEL, but rather a data-driven approach. They propose to use community
detection approaches from social networks to partition the label space, which can find better
subspaces than random search.

Madjarov et al. (2016) also use a data driven approach to solve the task of MLC. They
use label hierarchies which they obtain from hierarchical clustering of flat label sets by using
annotations that appear in the training data. Finally, the work of Tsoumakas et al. (2014)
considers the MTR task. They use random linear target combinations to enrich the output
space by constructing many new target variables. They use a predefined number of original
target variables in each random combination and then transform the original output space
matrix by multiplying it with the coefficient matrix consisting of new combinations.

3 Ensembles for multi-target regression with random output selections

The following section introduces the ROS ensemble extension method. We consider the pro-
posed approach as a globalmethod that belongs to the algorithm adaptation group ofmethods.
AlthoughROSuses subsets of the output space during learning, the learned ensemble provides
predictions for all target variables simultaneously. We first describe the predictive clustering
paradigm and then explain the process of learning a single predictive clustering tree (PCT).
Next, we present the proposed method for learning ROS tree ensembles. Finally, we provide
a computational complexity analysis of the proposed approach.

3.1 Predictive clustering

The predictive clustering (PC) framework has been introduced by Blockeel (1998). It can
be seen as a generalization of supervised and unsupervised learning. The two learning
approaches are traditionally considered as two separate machine learning tasks. However,

123

1678 Machine Learning (2018) 107:1673–1709

there are supervised methods (e.g., decision trees and rules) that partition the instance space
into subsets, which makes it possible, to interpret them as clustering approaches. Unsuper-
vised learning groups/clusters examples that are similar according to some distance measure.
In supervised learning, the primary goal is to make predictions. The PC framework combines
these two approaches.

The PC framework is implemented in the context of decision trees. From the PC point
of view, each decision tree is a hierarchy of clusters. The root node of the tree holds all the
examples. When traversing the tree (from the root to a leaf), each intermediate node contains
less examples than its parent nodes. The connections between nodes represent available paths
that each example can take. The decision which path a new example should take is made at
the time of traversal and is based on the example’s values in the tuple of predictive variables.
The bottom-most nodes of the decision tree are called leaf nodes and hold examples most
similar to each other. The examples in a leaf are used for calculating the prediction of the leaf.

A decision tree within the PC framework is called a predictive clustering tree (PCT). A
PCT is predictive as it is able to make predictions. A PCT is a clustering, i.e., a hierarchy of
clusters, represented by the tree’s structure. Each node in the tree represents a cluster, which
can be explained/described by the conditions/tests that appear in the tree. Each node holds
a test and if we combine all the tests from the root node to the selected node, we get the
description of the cluster at the selected node. Several different predictive clustering methods
(Blockeel and Struyf 2002; Struyf and Džeroski 2006; Kocev 2011; Ženko 2007; Vens et al.
2008; Slavkov et al. 2010) are already implemented in the CLUS software package and are
available at http://sourceforge.net/projects/clus/.

3.2 Learning a single PCT

The induction of a PCT is similar to the induction of a standard decision tree and follows
the TDIDT (top down induction of decision tree) algorithm. Algorithm 1 shows the pseudo
code for PCT induction. Considering the MTR task in the context of ROS tree ensembles,
the PCT induction algorithm takes three inputs:

(i) a dataset S, (ii) a function δc(X) that randomly samples c predictive variables from
dataset X without replacement and (iii) a set of target variables Rt , that the learning process
should consider.

Algorithm 1 TDI of a PCT
Func PCT (S, δc, Rt)
Out: A predictive clustering tree
1: Rd ← δc(S)

2: (t∗, h∗,P∗) ← BestTest(S, Rd , Rt)
3: if t∗ �= none then
4: for each Si ∈ P∗ do
5: treei ← PCT(Si , δc, Rt)
6: end for
7: return node(t∗,

⋃
i {treei })

8: else
9: return leaf(Prototype(S))

10: end if

Algorithm 2 Best test
Func BestT est(S, Rd , Rt)
Out: The selected test t∗
Out: The heuristic score h∗ of test t∗
Out: The partitioning P∗ induced by t∗ on S
1: (t∗, h∗,P∗) ← (none, 0, ∅)

2: SR ← Π(S, Rd , Rt)
3: for each possible test t in SR do
4: P ← partitioning induced by t on SR
5: h ← Var(SR) − ∑

Si∈P
|Si ||SR |Var(Si)

6: if (h > h∗) then
7: (t∗, h∗,P∗) ← (t, h,P)

8: end if
9: end for
10: return (t∗, h∗,P∗)

123

http://sourceforge.net/projects/clus/

Machine Learning (2018) 107:1673–1709 1679

Algorithm 3 Best test (extra-PCTs)
Func BestT est(S, Rd , Rt)
Out: The selected test t∗
Out: The heuristic score h∗ of test t∗
Out: The partitioning P∗ induced by t∗ on S
1: (t∗, h∗,P∗) ← (none, 0,∅)

2: SR ← Π(S, Rd , Rt)
3: for each attribute a in Rd do
4: t ← Select RandomTest(a, SR)

5: P ← partitioning induced by t on SR
6: h ← Var(SR) − ∑

Si∈P
|Si ||SR |Var(Si)

7: if (h > h∗) then
8: (t∗, h∗,P∗) ← (t, h,P)

9: end if
10: end for
11: return (t∗, h∗,P∗)

Algorithm 4 Random test selection
Func Select RandomTest(a, SR)

In: Attribute a
In: Dataset SR
Out: A test t
1: t ← none
2: Av ← get AttributeValues(a, SR)

3: if a is numerical then
4: aM ← getMaxValue(Av)

5: am ← getMinValue(Av)

6: ac ← rndCut Point(am , aM)

7: t ← createT est(a < ac)
8: end if
9: if a is categorical then
10: As ← rndNonEmptySet(Av, SR)

11: t ← createT est(a ∈ As)
12: end if
13: return t

The typical PCT considers all predictive and target attributes and is induced by selecting
δc(X) = δ|D|(X) = D and Rt = T , where D and T are sets of predictive and target
variables respectively. The δc and Rt parameters are needed when inducing PCTs in the
scope of ensemble learning with ROS, which we describe in detail in Sect. 3.3.

There are many ways (i.e., heuristics) to select the best possible split in a decision tree.
PCT uses the reduction of variance as a measure for the quality of a split. The heuristic
function, intuitively, guides the data partitioning in such a way, that the homogeneity of the
clusters, from the root to the leaf nodes, increases and the resulting tree model contains the
most similar examples in the smallest clusters (leaf nodes of the tree). The reduction in cluster
variance is a direct result of partitioning P , according to test t (see line 5 of Algorithm 2). A
part of the proposed extension ROS is visible in line 2 of the same algorithm. Π(S, Rd , Rt)

is a projection function that reduces the original dataset S by only considering predictive
attributes from the set Rd and target variables from the set Rt .

Var(S) =
|T |∑

i=1

Var(Yi) (1)

The reduction of variance calculation is instantiated based on the type of machine learning
task addressed. In this paper, we focus on multi-target regression and the variance (Eq. 1)
is calculated as the sum of the variances of the individual target variables. Yi is the vector
of continuous values of the i th target variable in the set of examples S. The variance is
calculated using the standard deviation of the values in each vector Yi . The variances of
individual target attributes are normalized in order to have them on the same scale. When
different target attributes span different scales that are not in the same range, the effect of
variance of one variable could be much greater than the effect of another variable with a
smaller range. Normalization is needed so that each target attribute contributes equally to the
heuristic score.

Regular PCTs make predictions based on the examples in the leaf nodes. Specifically,
the Prototype function (line 9 of the Algorithm 1) calculates the arithmetic mean of every
target variable over all the examples in a given node. If needed, the prototype calculation
function can be easily adapted to better address a specific task. The BestT est function only

123

1680 Machine Learning (2018) 107:1673–1709

calculates the heuristic value on SR (the reduced subset of S). This, however, does not restrict
the Prototype function, which can make predictions for all output variables, even if some
of them did not contribute to the calculation of the heuristic value h∗. We will discuss this
further later in Sect. 3.3.3.

In addition to regular PCTs, we also consider extra-PCTs (Kocev and Ceci 2015). These
PCTs are induced exactly the same as described inAlgorithm1.However, the extra-PCTfinds
the split points in a different manner (see Algorithms 3 and 4). The split point is randomly
selected for each considered predictive attribute. The evaluation of splits with random split
points is performed using the same procedure as for regular PCTs.

3.3 Ensembles with ROS

An ensemble is a set of models, called base predictive models. Ensemble models are not
considered interpretable, but they generally achieve better predictive performance than indi-
vidual models, which is usually the reason for using them. The downside of using ensembles
is their computational complexity: The cost of learning and using an ensemble model is the
sum of the corresponding costs for all of its base models. Predictions for new examples are
made by querying base models and combining their predictions.

3.3.1 Generating output space partitions

The proposed ensemble approach introduces randomization in the output space. Whereas
regular PCTs simultaneously consider the whole target space in the heuristic used for tree
construction, ROS considers a different random subset of it for each base model in the
ensemble. Each base model is consequently learned by considering only those targets that
are included in the randomly generated partition provided to it (see the call of function Π in
Algorithm 2, line 2).

ROS creates the output space partitions (subspaces) in advance, i.e., the partitions are
independent of the algorithm for learning a single model. ROS generates a different subspace
for every ensemble constituent. Thus, the number of generated subspaces (base models)
equals b. Algorithm 5 constructs the subspaces. The algorithm has the following parameters:
(i) number of subspaces b to generate, (ii) function θ(X , v) that uniformly at random samples
without replacement of subset from the set X and (iii) set/space of target attributes T , from
which subspaces are created.

Algorithm 5 Generating subspaces
Func GenSubspaces(b, T , θ, v)
Out: list of target subspaces
1: G ← emptyList()
2: G1 ← T
3: for i ∈ {2, . . . , b} do
4: Gi ← θ(T , v)

5: end for
6: return G

In the first step, we create an empty list that will contain all the subspaces, i.e., G =
[G1,G2, . . . ,Gb]. The first generated subspace is T and includes all target variables, i.e.,

123

Machine Learning (2018) 107:1673–1709 1681

the corresponding PCT considers all target attributes. This is needed to ensure that all targets
are being considered at least once. We generate the remaining b − 1 subspaces with the
θ function, which has a parameter v. An example of a θ function could return a random
selection of 25% (v = 1

4) of items in the set provided as input. If one defines θ(X) = X , then
all ensemble constituents will always consider all targets, which is what a regular ensemble
of PCTs does. This function is a parameter of our overall ensemble learning algorithm and
we investigate its influence in Sect. 5.

Algorithm 6 describes the random sampling θ function used in our experiments. The
function θ(X , v) uniformly at random samples
v · |X |� items from the set X , where v

represents the percentage of X we want to sample. This algorithm always samples a fixed
number of attributes.

Algorithm 6 Sample v-% of target variables
Func θ(X , v)

In: A set of variables X
In: Sample percentage v ∈ (0.0, 1.0)
Out: A subset of variables Q (Q ⊆ X)
1: Q ← ∅
2: while |Q| <
v · |X |� do
3: a ← rand I temFromSet(X \ Q)

4: Q ← Q ∪ {a}
5: end while
6: return Q

3.3.2 Building the ensembles

With all preliminaries laid out, we can now describe our overall process for learning an
ensemble of PCTs for MTR. We use three ensemble building methods (bagging, random
forests and extremely randomized trees) that have been extended to support multi-target out-
puts and use PCTs (Bag and RF) and extra-PCTs (ET) as base models. Algorithm 7 is generic
and shows how the ensembles are built. We use the values in Table 1 to describe its custom
initialization for the ensembles for multi-target regression with random output selections. All
methods we consider use the same input parameters: (i) S is the dataset, (ii) the γ (X) func-
tion samples the dataset X , (iii) the δX (D) function randomly selects X predictive attributes,
considered at each node during learning and (iv) G is the list of subspaces generated by the
GenSubspaces function and |G| is the number of ensemble constituents.

Bagging (Breiman 1996) is short for bootstrap aggregating. It is an ensemble method that
uses bootstrap replication of the training data to introduce randomization in the learning
dataset. Such perturbations of the learning set have proven useful for unstable base models,
such as decision trees, but can generally be used by any model type. A bootstrap replicate
S∗ of a dataset S, is again a dataset, that has been randomly sampled from S. Sampling with
replacement is repeated until both datasets are of equal size (i.e., |S| = |S∗|).

Random forests (Breiman 2001)work in a similar fashion to bagging. This ensemblemethod
also starts with bootstrap replicates, that introduce randomization in the instance space. How-
ever, it additionally introduces randomization in the predictive attribute space by randomizing

123

1682 Machine Learning (2018) 107:1673–1709

Algorithm 7 Building the ensemble
Func BuildEnsemble(S, γ, δc,G)
In: Dataset S
In: γ function for sampling data instances
In: δc function for sampling predictive variables
In: List of generated subspaces G
Out: Ensemble
1: F ← ∅
2: for i ∈ {1, . . . , |G|} do
3: Si ← γ (S)

4: pcti ← PCT (Si , δc,Gi)
5: F ← F ∪ {pcti }
6: end for
7: return F

Table 1 Ensemble building parameters

Ensemble method δc(D) γ (X) BestT est

Bag of PCTs D bootstrap(X) Algorithm 2

RF of PCTs θ
(
D, 1√|D|

)
bootstrap(X) Algorithm 2

Extra-PCTs D X Algorithm 3

the algorithm for the base predictive models. The δc parameter of the PCT induction algo-
rithm (see Algorithm 1) is instantiated as shown in Table 1. This causes the random forest
ensemblemethod to only consider a subset of randomly selected predictive attributes from the
set D of all predictive attributes, while searching for the best split for a node. This process
of random selection of predictive attributes is then repeated afresh at each node, yielding
different subsets of predictive attributes. The function δc(D) can be defined to return any
number of items from the set D between 1 and |D|, but the recommended setting by Breiman
(2001) is

√|D|, which is what we use.

Extremely randomized trees (Geurts et al. 2006) are very unstable decision trees. It therefore
only makes sense to use them in the ensemble setting. It has two distinctive properties with
respect to the other two methods: (i) the dataset is not perturbed by applying bootstrapping
and (ii) the Best Spli t method used by extra-PCTs is shown in Algorithm 3. Extra trees select
at random k predictive attributes and for each of them, randomly select a split point.1 Each
split is then evaluated and the one with the best heuristic value h∗ is selected. Algorithm 4
shows how the random split points are determined. The recommended number (Geurts et al.
2006) of predictive attributes to be considered at every split is |D|, which is reflected in our
ensemble initialization for extra trees (see Table 1).

3.3.3 Making predictions

An ensemble makes predictions by combining the predictions of its base models. Each base
predictive model gives its predictions to the aggregation function, which takes all the votes

1 This is in contrast to the normal procedure of considering multiple/all possible split points for each attribute,
before selecting the best one.

123

Machine Learning (2018) 107:1673–1709 1683

and decides on the final prediction of the ensemble. In general, the aggregation function is a
parameter and there are many ways to combine the votes of the base predictive models: aver-
aging the predictions, majority vote, introducing weights for individual models, introducing
preferences based on domain knowledge, and so on. In this paper, we propose two different
aggregation functions used in conjunction with the proposed method: (i) total averaging and
(ii) subspace averaging.

Total averaging takes all the predictions of the base models and averages them. Each base
model gives predictions for all of the |T | targets. We calculate the average as the arithmetic
mean: Final predictions for the i th target attribute (̂yi) are computed as ŷi = 1

b

∑b
j=1 y

j
i ,

where y j
i represents the prediction of j th base model for the i-th target attribute.

Subspace averaging considers only the predictions made by the base predictive models for
the targets used to learn them. In other words, the prediction for a given target is averaged
over only those base models, for which that target was considered in the heuristic during
learning (see the input parameter Rt in Algorithm 2). The final predictions for the i th target
attribute are computed as

ŷi =
∑b

j=1 1(ai ∈ G j) · y j
i

∑b
j=1 1(ai ∈ G j)

(2)

where 1(X) is an indicator function, which returns 1, if the argument X is true and 0 other-
wise; G j (see Sect. 3.3.1) is the subspace of target attributes, considered when learning the
j th ensemble constituent, and ai denotes the i th target. The denominator is the number of
ensemble constituents for which ai was considered during learning and is non-zero because
every target attribute is considered by at least subspace G1.

3.4 Computational complexity analysis

From the work of Kocev et al. (2013) and the assumption that the decision tree is balanced
and bushy (Witten and Frank 2005), it follows that the computational complexity of learning
a single multi-target PCT is O(dNlog2N) + O(dt NlogN) + O(NlogN), where N is the
number of instances, d is the number of predictive attributes and t is the number of target
attributes in the dataset. Similarly, from the work of Kocev and Ceci (2015) andwith the same
assumption, it follows that the computational complexity of learning a single multi-target
extra-PCT is O(kt NlogN) + O(NlogN), where k is the number of randomly sampled
predictive attributes at each split. In general, learning an ensemble of b base models has the
complexity of learning all of its constituents. In our case, that amounts to b(O(dNlog2N)+
O(dt NlogN)+O(NlogN)) for bagging and random forests of PCTs and b(O(kt NlogN)+
O(NlogN)) for random forests of extra-PCTs.

The computational complexity also depends on the use bootstrapping and the amount
of predictive and/or target attributes considered for each base model. Computational cost
of bootstrapping is O(N) and the number of instances considered in that case equals N ′ =
0.632 · N (Breiman 1996). Bootstrapping is not used for learning extra-PCTs.

Taking into account the fact that random forests also sample the input space (through the
sampling function δc(D)), the number of predictive variables actually considered by the base
models is d ′ = c (see the definition of δc in Sect. 3.2). The sampling of predictive variables
happens at every node split, so the complexity of data subsampling is O(d ′logN ′).

123

1684 Machine Learning (2018) 107:1673–1709

ROSuses additional sampling of the target space. The function θ(X , v) (seeAlgorithm6)
is used to sample from the target space. The sampled subsets are always of equal cardinality,
which is controlled by the parameter v ∈ (0.0, 1.0). However, the first subset always includes
all target attributes (see line 2 in Algorithm 5). We define the variable t ′ as the average target
subspace cardinality considered by the base models as: t ′ = 1

b

(
(b − 1) ·
v · t� + t

)
. The

complexity of the sampling function θ(X , v) (see Algorithm 6) is low. All operations of the
sampling algorithm have complexity ofO(1). The while loop in line 2 is executed
v · |X |�-
times. Each randomly sampled attribute a has equal probability of being included in the
resulting set Q. Thus, the complexity of the sampling algorithm, which samples b− 1 times,
is linear and proportionate to (b − 1) ·O(v · t). Considering all of the above, the complexity
of the ROS ensembles is

Bag-ROS or RF-ROS = b · [O(d ′N ′log2N ′) + O(d ′t ′N ′logN ′)
+O(N ′logN ′) + O(d ′logN ′) + O(N)

]

+ (b − 1) · O(v · t) (3)

ET-ROS = b · [O(d ′t ′NlogN) + O(NlogN)

+O(d ′logN ′)
] + (b − 1) · O(v · t) (4)

The ratio between the full output space size and the one considered by ROS is constant
and is proportionate to t ′

t = (b−1)·v·t+t
b·t = lim

b→∞
(b−1)·v+1

b = v. The overall complexity of

ROS is consequently reduced in the parts that correspond to the selection of the best split.
We expect a linear decrease in complexity in those terms. Otherwise, the overall complexity
is still as described by Kocev et al. (2013), Kocev and Ceci (2015).

Ensembles usually contain many base models which results in longer times to make
a prediction. Therefore, we also address the complexity of making predictions. Under the
previously mentioned assumption about decision trees being balanced and bushy, the average
depth of a decision tree is actually the average length of the path that has to be traversed by an
instance in order to get to the prediction. The complexity ofmaking a predictionwith a single-
target decision tree is therefore O(log(N)). In a global MTR scenario, all target variables
are predicted simultaneously with the same complexity as that of making a prediction with a
single-target tree. When we switch to the ensemble setting, the complexity increases linearly
with the number of base models in the ensemble: b · O(log(N)). If we are approaching the
problem of MTR locally, each target is predicted with its own ensemble and that additionally
increases the complexity in proportion to the number of target variables: bT · O(log(N)).

4 Experimental design

To evaluate the performance of the ROS ensembles forMTR, we performed extensive experi-
ments on benchmark datasets. This section presents: (i) the experimental questions addressed,
(ii) the evaluation measures used, (iii) the benchmark datasets and (iv) the experimental setup
(including the parameter instantiations for the methods used in the experiments).

4.1 Experimental questions

In our experiments, we construct PCT ensembles for MTR by using the described ensemble
extension method ROS. In order to better understand the effects of ROS, we investigate the
resulting ensemble models across three dimensions.

123

Machine Learning (2018) 107:1673–1709 1685

First, we are interested in the convergence of their predictive performance as we increase
the number of PCTs in the ensemble. We want to establish the number of base models
needed in an ensemble to reach the point of performance saturation.We consider an ensemble
saturated, when adding additional base models to it would not bring statistically significant
improvement in terms of predictive power.

Next, we are interested, whether the proposed extension can improve the predictive per-
formance over the performance of the original ensembles. Learning on subsets of targets
could exploit additional structural relations that may be overlooked by the original ensemble
approaches.

Finally, as we have theoretically derived in Sect. 3.4, we expect that the dimensionality
reduction of the output space will yield improvements in terms of computational efficiency.
Specifically, we are interested in the running times of the ROS ensemble approaches and the
sizes of the resulting models.

The specific experimental questions we pose relate to the above three dimensions we are
interested in. The experiments and their evaluation have been designed with the following
research questions in mind:

1. How many base models do we need in ROS ensembles in order to reach the point of
performance saturation?

2. What is the best value for the portion of target space to be used within such ensembles?
Is this portion equal for all evaluated ensemble methods?

3. Does it make sense to change the default aggregation function of the ensemble that uses
the prediction for all targets? Can this improve predictive performance?

4. Considering predictive performance, how do ROS ensemble methods compare to the
original ensemble methods?

5. Is ROS helpful in terms of time efficiency?
6. Do ROS models use less memory than the models trained with the original ensemble

methods?
7. How ROS models compare to other output transformation methods?

4.2 Evaluationmeasures

In order to understand the effects that ROS has on the learning process, we first need to
evaluate themodels induced by theROSensemble approaches. Inmachine learning, empirical
evaluation is most commonly used to achieve this goal, that assesses the performance of a
given model in terms of evaluation measures. Below we describe the measures that we use
for assessing predictive power, time and space complexity.

The predictive performance of a MTR model is assessed by using the average relative
root mean squared error (aRRMSE), which averages the relative root mean squared errors
(RRMSE) for the individual target variables. RRMSE is a relative measure calculated against
the baseline model that predicts the arithmetic mean of all values of a given target in the
learning set. Specifically, the value yi in Eq. 5 is the prediction of the baseline model for
the i th target variable, while the value ŷ(e)

i represents the predicted value for the i th target
variable of the example e.

aRRMSE = 1

t

t∑

i=1

RRMSEi = 1

t

t∑

i=1

√
√
√
√

∑Ntest
e=1 (y(e)

i − ŷ(e)
i)2

∑Ntest
e=1 (y(e)

i − yi)2
(5)

123

1686 Machine Learning (2018) 107:1673–1709

Table 2 Properties of the considered MTR datasets with multiple continuous targets: number of examples
(N), number of predictive attributes (discrete/continuous, d/c), and number of target attributes (t)

No. Name of dataset N d/c t

1 Forestry-Kras (Džeroski et al. 2006) 60,607 0/160 11

2 Vegetation clustering (Gjorgjioski et al. 2008) 29,679 0/65 11

3 Vegetation condition (Kocev et al. 2009) 16,967 1/39 7

4 Water quality (Blockeel et al. 1999; Džeroski et al. 2000) 106 0/16 14

5 ATP 1D (Spyromitros-Xioufis et al. 2016) 337 0/441 6

6 ATP 7D (Spyromitros-Xioufis et al. 2016) 296 0/441 6

7 RF1 (Spyromitros-Xioufis et al. 2016) 9125 0/64 8

8 RF2 (Spyromitros-Xioufis et al. 2016) 9125 0/576 8

9 Sales (Kaggle 2008; Spyromitros-Xioufis et al. 2016) 639 0/401 12

10 SCM 1D (Spyromitros-Xioufis et al. 2016) 9893 0/280 16

11 SCM 20D (Spyromitros-Xioufis et al. 2016) 8966 0/61 16

12 OES 10 (Spyromitros-Xioufis et al. 2016) 403 0/298 16

13 OES 97 (Spyromitros-Xioufis et al. 2016) 334 0/263 16

14 Soil resilience (Debeljak et al. 2009) 26 1/7 8

15 Prespa diatoms lake top 10 (Kocev et al. 2010) 218 0/16 10

16 PPMI (Marek et al. 2011) 713 0/148 35

17 ADNI (Gamberger et al. 2016) 659 0/232 14

We alsomonitor howmuch ourmodels overfit the training data by calculating their relative
decrease of performance on the testing data with respect to that on the training data. Smaller
values mean less overfitting, with zero being the ideal score. We calculate the overfitting
score with Eq. 6.

OS = aRRMSEtest − aRRMSEtrain

aRRMSEtrain
(6)

The efficiency is measured in terms of execution times and sizes of the induced models.
Time efficiency is measured with the CPU time needed to induce (train) the model (i.e.,
learning time). For ROS ensembles, this includes the target space decomposition. We also
measure the average time needed tomake a prediction (i.e., prediction time). Space efficiency
ismeasuredwith the total number of nodes in the treemodel (intermediate and leaf nodes): the
smaller the better. Induction times andmodel sizes are summedover all ensemble constituents.

4.3 Data description

To evaluate the proposedmethod, we use 17 benchmark datasets that contain multiple contin-
uous target attributes and are mainly from the domain of ecological modeling. Table 2 shows
the main characteristics of the considered datasets. In order to have as general evaluation
as possible, we use datasets of different sizes in terms of number of instances, number of
predictive and number of target attributes.

123

Machine Learning (2018) 107:1673–1709 1687

Table 3 Parameter values used to build ensembles with ROS

Location of use Parameter Used values

BuildEnsemble(S, γ, δc,G) γ, δc See Table 1

GenSubspaces(b, T , θ) b 10, 25, 50, 75

100, 150, 250

θ(X , v) v 1
4 , 1

2 , 3
4 , 1√|T |

Making predictions Averaging function Total, subspace

4.4 Experimental setup

We designed the experimental setup according to the experimental questions posed in
Sect. 4.1. First, we describe all parameter settings of the ROS ensemble methods. We then
outline the procedures for statistical analysis of the results.

We consider three types of ensembles: bagging and random forests of PCTs and extra-
PCTs. In order for Algorithm 7 to simulate these three ensemble methods, we set its
parameters to the values given in Table 1. Following the recommendations from Bauer and
Kohavi (1999), the trees in the ensembles are unpruned. Our experimental study considers
different ensemble sizes, i.e., different numbers of base models (PCTs) in the ensemble, in
order to investigate the saturation of ensembles and to select the saturation point.

First, we construct ensembles without ROS (Bag, RF, ET) that use the full output space
for learning the base predictive models. This means that the list G contains b sets, where
each set contains all the attributes from the set T (target attributes), i.e., G = {T , T , . . . , T },
where |G| = b.

The second part of our experiments is concerned with the proposed extension—Random
Output Selections. We start with the parametrization of the GenSubspaces function (Algo-
rithm 5), which takes as input b, T and the sampling function θ(X , v) (see Algorithm 6). We
consider four values for v in the allowed range (0.0, 1.0), namely 1√|T | ,

1
4 ,

1
2 ,

3
4 . Addition-

ally, we use two ensemble predictions aggregation functions: total averaging and subspace
averaging. Table 3 summarizes the parameter values considered in our experiments.

The third part of our study focuses on the comparison of our ROS ensemble meth-
ods to baseline methods. To that end, we also train multi-target PCTs and ensembles of
single-target PCTs on each of the 17 benchmark datasets. F-test pruning is applied to single
multi-target PCTs. The F value is selected using internal 3-fold cross-validation. We build
one ensemble for each target variable. Ensembles contain 100 base models and are built by
using the same parameters as the original ensembles.

We estimate the predictive performance of the considered methods by using 10-fold
cross-validation. All methods use the same folds. For statistical evaluation of the obtained
results, we follow the recommendations from Demšar (2006). The Friedman test (Friedman
1940), with the correction by Iman and Davenport (1980), is used to determine statistical
significance. In order to detect statistically significant differences, we calculate the critical
distances (CD) by applying the Nemenyi (1963) or Dunn (1961) post-hoc statistical tests.
Both post-hoc tests compute critical distance between the ranks of considered algorithms. The
difference is that Nemenyi post-hoc test compares the relative performance of all considered
methods (all vs. all), whereas Bonferroni–Dunn post-hoc test compares the performance of
a single method to other methods (one vs. all). The results of these tests are presented with
average rank diagrams (Demšar 2006), where methods connected with a line have results

123

1688 Machine Learning (2018) 107:1673–1709

that are not statistically significantly different. All statistical tests were conducted at the
significance level α = 0.05. Statistical tests have been calculated for two variants of the
results: per dataset (using aRRMSE value for each dataset) and per target (using the RRMSE
values for all targets of all datasets). We used the Bonferroni–Dunn (CD is shown as a dotted
blue line) post-hoc test to present results in Sect. 5.4 and Nemenyi post-hoc test otherwise
(CD is shown as a solid red line).

The experiments were executed on a heterogeneous computing infrastructure, i.e., the
SLING grid, which can affect time-sensitive evaluations. To avoid having incomparable
measurements of running times, we run time-sensitive experiments separately by using a
single computational node.

5 Results and discussion

Here we present the results of our comprehensive experimental study. Considering a large
number of datasets (17) and several ensemble methods, we present the results in terms of
predictive performance (aRRMSE, overfitting score—OS), time complexity (learning and
prediction time) and space complexity (model size). In the presentation of time complexity
results, we focus on two datasets Forestry Kras andOES 10, that have relatively large output
spaces (11 and 16 targets, respectively). The selected datasets also differ in the number of
examples: Forestry Kras has many whereas OES 10 has few. For reference, all other results
are available in “Appendix”.

The presentation and discussion of the results follows the experimental questions from
Sect. 4.1. First, we examine the convergence of original and ROS ensembles. Next, we focus
on selecting the output space size. We experiment with four different output space sizes (see
Table 3), that have consequently been used. This parameter is crucial because it introduces
additional point of randomization in all three considered ensemble methods. In that sense,
ROS can also be seen as a localization process: the constructed base models are tailored
to a specific output subspace. We recommend values for this parameter for each ensemble
learning method. Furthermore, we show the effects of changing the aggregation functions in
our ensembles. Finally, we use the recommended parameters for ROS and provide an overall
evaluation, by comparing the extended ensembles to the original ones. We compare the ROS
methods to the baseline methods in terms of predictive power, running times andmodel sizes.

5.1 Ensemble convergence

The saturation points of the original ensembles (Bag, RF and ET) are located between 50
and 75 base models (Fig. 1). These findings are in line with the work of Kocev et al. (2013),
where Bag and RF saturate with 50 base models and Kocev and Ceci (2015), RF and ET
saturate with 100 and 75 base models respectively. We attribute this difference to two factors:
(i) we use a different and larger number of datasets and (ii) the number of target attributes
per dataset in our study is considerably larger. All in all, we consider the original ensembles
with 75 base models saturated.

We next investigate the saturation of the ROS ensembles. A subset of the results for
ensembles with 50, 100, 150 and 250models are reported in Fig. 2 and illustrate the saturation
of ROS ensembles for all three considered ensemble methods. Lines on the plots represent
different output space sizes. Values in brackets indicate the value for the v parameter. Left and
right sides of the plots depict votingwith total averaging and subspace averaging respectively.

123

Machine Learning (2018) 107:1673–1709 1689

7 6 5 4 3 2 1

Bag250

Bag150

Bag100

Bag75Bag50

Bag25

Bag10

Critical Distance = 2.18509

7 6 5 4 3 2 1

RF250

RF150

RF100

RF75RF50

RF25

RF10

Critical Distance = 2.18509

7 6 5 4 3 2 1

ET250

ET150

ET75

ET100ET50

ET25

ET10

Critical Distance = 2.18509

(a)

(c)

(b)

Fig. 1 Saturation of original ensemble methods. The average rank diagrams compare the performance
(aRRMSE) of ensembles with different size. The saturation point is the lowest number of trees in the ensemble
for which the performance is not significantly different than the best: this is 75 for Bag and RF and 50 for ET.
a Saturation of Bag, b saturation of RF, c saturation of ET

The y axis shows aRRMSEvalues averaged over all considered datasets. The results show that
Bag-ROS and ET-ROS ensembles saturate between 50 and 100 base models while RF-ROS
ensembles saturate a bit later, between 75 and 100 base models. Figure 2 suggests that
ROS ensembles saturate at a large number of base models when subspace averaging is used
to aggregate the predictions of the base models. Performance in terms of aRRMSE and
overfitting scores of all discussed ensembles with 100 trees (multi-target and single-target
variants) and single multi-target regression trees is presented in “Appendix B”.

5.2 ROS parameter selection

This section describes the selection of the best performing output subspace size and aggrega-
tion function. The considered ensemble methods introduce different randomizations in their
learning processes, so we cannot assume that ROS has the same influence on all three types
of ensemble methods. Figure 2 also suggests that the choice of the aggregation function has
a direct effect on performance. We therefore analyze the effect of output subspace size and
aggregation function for each ensemble type separately.

We selected candidate values for the ROS parameters based on the curves given in Fig. 2.
With both aggregation functions, candidate parameter values for subspace sizes are v = 1

2 for
Bag-ROS and v = 3

4 for RF-ROS and ET-ROS.We selected these values because they exhibit
the lowest aRRMSE averaged over all datasets used in this study. The averaged saturation
curves in Fig. 2 sometimes intertwine and make it difficult to make this decision. In those
cases, we selected the parameter values based on the averaged performance of ensembleswith
100 trees. Next, we performed a simple analysis by comparing the wins of the two considered
aggregation functions using the candidate output space size. For Bag-ROS, it turned out that
total averaging had most wins, whereas subspace averaging was dominant for RF-ROS and
ET-ROS. Our final parameter recommendation is therefore to use total averaging with v = 1

2
for Bag-ROS and subspace averaging with v = 3

4 for RF-ROS and ET-ROS.

123

1690 Machine Learning (2018) 107:1673–1709

gnigarevaecapsbuSgnigarevalatoT

100 150 200 250 100 150 200 250

0.5750

0.5775

0.5800

0.5825

Ensemble size

A
ve

ra
ge

 a
R

R
M

S
E

Bag−ROS (0.25) Bag−ROS (0.5) Bag−ROS (0.75) Bag−ROS (sqrt)

aRRMSE averaged over all datasets

gnigarevaecapsbuSgnigarevalatoT

gnigarevaecapsbuSgnigarevalatoT

100 150 200 250 100 150 200 250
0.5825

0.5850

0.5875

0.5900

0.5925

Ensemble size

A
ve

ra
ge

 a
R

R
M

S
E

RF−ROS (0.25) RF−ROS (0.5) RF−ROS (0.75) RF−ROS (sqrt)

aRRMSE averaged over all datasets

100 150 200 250 100 150 200 250

0.566

0.567

0.568

0.569

0.570

0.571

Ensemble size

A
ve

ra
ge

 a
R

R
M

S
E

ET−ROS (0.25) ET−ROS (0.5) ET−ROS (0.75) ET−ROS (sqrt)

aRRMSE averaged over all datasets

(a)

(b)

(c)
Fig. 2 Saturation of all three ensemble methods extended with ROS. The different (color) lines on the plots
represent different output space sizes. The values in the brackets after an ensemble method name indicate the
value for the v parameter. The left and right panels of the plots show results for voting with total averaging and
subspace averaging respectively. The y axis shows aRRMSE values averaged over all 17 considered datasets.
a Bagging, b random forests, c extra PCTs (Color figure online)

123

Machine Learning (2018) 107:1673–1709 1691

10 9 8 7 6 5 4 3 2 1

ET100-ROS
ET100-ST
Bag100-ROS
RF100-ST
Bag100-STET100

RF100
Bag100
RF100-ROS

MTRT

Critical Distance = 3.28574
10 9 8 7 6 5 4 3 2 1

ET100-ROS
ET100-ST
Bag100-ROS
ET100
RF100-STBag100-ST

Bag100
RF100
RF100-ROS
MTRT

Critical Distance = 0.926084

(a) (b)

Fig. 3 Overall average rank diagrams for predictive performance. a Per dataset (aRRMSE), b per target
(RRMSE)

5.3 Predictive performance and computational efficiency

Here, we compare the original ensemble methods (Bag, RF, ET) to the ones that use the
ROS extension. In addition, ROS is also compared to multi-target PCTs and ensembles of
single-target PCTs. We show the relative performance of the different methods by using the
average rank diagrams shown in Fig. 3.

Figure 3 depicts two average rank diagrams: one per dataset and one per target.
The per dataset diagram is based on aRRMSE value, one per dataset. Both analyses
show that ensembles statistically significantly outperform individual multi-target PCTs, i.e.,
multi-target PCTs perform significantly worse than the ensemble methods. The per dataset
analysis shows no statistically significant difference in terms of predictive performance
among the other methods. We can however note that Bag-ROS and ET-ROS outperform their
original counterparts and ensembles of single-target PCTs. RF-ROS performs on par with
the original bagging and random forest ensembles, but worse than the other ROS ensembles
(Bag-ROS and ET-ROS). The best performing of all methods is ET-ROS.

The per target analysis detects two statistically significant differences in performance.
First, with the exception of ET-ST, ET-ROS outperforms all other methods with statistical
significance. Second, Bag-ROS outperforms RF-ROS, which performs worst of all ensemble
methods.All original ensembles (Bag,RFandET) showno statistically significant differences
in performance. All in all, looking at the big picture, ROS ensembles generally perform better
than their original counterparts, with the exception of random forests.

In Table 4, we show the predictive performance (aRRMSE) for two highlighted datasets:
Forestry Kras and OES 10. The table contains results for the baseline ensembles (Bag,
RF and ET) as well as the extended ROS ensembles, individual multi-target PCTs and
ensembles of single-target PCTs. All ensembles contain 100 base models. The ensembles
of single-target PCTs contain 100 base models per target.

For the Forestry Kras dataset, the proposed ROS methods do not have a notable effect
on the predictive performance (aRMMSE) of the three ensemble methods. Similar findings
are observed when calculating the overfitting score (OS): the ROS ensembles overfit the
training data to the same extent as their original counterparts. Next, multi-target PCTs and
ensembles of single-target PCTs have the worst predictive performance. The difference in
predictive performance between ensembles of single-target PCTs and other ensembles is
minimal. However, notable differences exist in terms of time needed for learning the model
andmaking predictions. Namely, themulti-target ensembles have significantly lower learning
andprediction times than the single-target ensembles.TheROSensembles train the ensembles
faster (for Bagging and Extra trees) but still in the same order of magnitude as the original
methods. Not surprisingly, single multi-target PCTs have the shortest learning times at the
cost of lowest predictive performance. Similar findings are observedwhen consideringmodel

123

1692 Machine Learning (2018) 107:1673–1709

Table 4 Performance of ensembles and single trees on two datasets (Forestry Kras and OES 10) measured in
terms of aRRMSE, overfitting score, average learning times, average per-instance prediction time and model
complexity (total number of nodes)

Dataset Method aRRMSE OS LT (s) PT (μs) Complexity

Forestry Kras Bag 0.55 0.476 394 272 3.22 · 106
Bag-ROS 0.548 0.471 267 274 3.20 · 106
Bag-ST 0.551 0.494 34,500 3960 34.61 · 106
RF 0.545 0.44 34.15 259 3.16 · 106
RF-ROS 0.546 0.44 36.87 273 3.15 · 106
RF-ST 0.546 0.457 2250 2300 17.13 · 106
ET 0.557 0.575 450 264 3.67 · 106
ET-ROS 0.557 0.579 281 274 3.67 · 106
ET-ST 0.56 0.611 73,780 3450 39.96 · 106
Multi-target PCT 0.61 0.169 76.68 2.39 2.59 · 103

OES 10 Bag 0.531 1.114 19 157 3.15 · 104
Bag-ROS 0.527 1.052 17 159 3.14 · 104
Bag-ST 0.487 1.556 412 3960 21.5 · 104
RF 0.517 1.093 1.59 189 3.15 · 104
RF-ROS 0.518 1.132 1.49 208 3.16 · 104
RF-ST 0.492 1.525 69 4760 43.51 · 104
ET 0.514 0.986 18.27 180 3.48 · 104
ET-ROS 0.496 1.156 18.57 201 3.50 · 104
ET-ST 0.467 2.654 480 4410 51.29 · 104
Multi-target PCT 0.616 0.704 0.80 2.81 0.45 · 103

complexity (measured as total number of nodes in all of the trees in an ensemble or in a
multi-target PCT). Average prediction times per instance do not differ across the different
approaches. This is expected since all base models are trees and no additional computation
overhead is needed to calculate the predictions. Ensembles of single-target PCTs always have
an order of magnitude higher learning and prediction times, as well as model complexity as
a separate ensemble is learned for predicting each target.

For theOES10 dataset, improvements in predictive performance are present. The proposed
ROS ensembles outperform their original counterparts. Furthermore, the original ensembles
were outperformed by the ensembles of single-target PCTs. The predictive performance gain
with ET-ROSw.r.t. ET is substantial. This is an interesting observation and suggests that ROS
could lift predictive performance on smaller datasets with larger output spaces, especially for
heavily randomizedmethods such as extra trees. One possible explanation is that the sampling
of input variables inET, coupledwith the small number of examples in the dataset and absence
of bootstrapping, introduces a relatively high level of noise in the learning process. The ROS
ensemble then actually reduces the effect of this noise at the level of individual base models
by specializing them for a smaller output space. This can also explain the small gains for
bagging and random forestswith theROS extension on this dataset, because the bootstrapping
actually negatively impacts the overall ensemble performance. By inspecting the overfitting
score, we note that ROS ensembles consistently exhibit a decreased score w.r.t. ensembles of

123

Machine Learning (2018) 107:1673–1709 1693

single-target PCTs and perform comparably w.r.t. ensembles of multi-target PCTs. Learning
and prediction times, as well as model complexity, follow similar patterns as for the Forestry
Kras dataset.

5.4 Comparison with other output space transformationmethods

In order to putROS in the broader context ofMTRmethodswith output space transformations,
we compare the predictive performance of ROS ensembles and ensembles built with the
competing methods proposed in Joly et al. (2014) and Tsoumakas et al. (2014). We have
selected these specific methods because they all specialize individual models in the ensemble
to a subset of target variables.

Joly et al. (2014) propose ensembles of multi-output regression trees, where each indi-
vidual tree is built by using a projected output space. Gaussian, Rademacher, Hadamard
and Achlioptas projections are used. The goal is to truncate the output space in order to
reduce the number of calculations needed to find the best split, which is the main com-
putational burden while building a decision tree. While learning the ensemble, each tree
is given a different output space projection. They use two different ensemble methods:
Random forests and Extra trees. We dubbed their method Random projections and its
two variants as RP-RF and RP-ET. Note that Random projections can not handle nomi-
nal attributes and missing values. Hence, the nominal attributes have been converted to
numeric scales and missing values have been imputed with the arithmetic mean of that fea-
ture.

Tsoumakas et al. (2014) propose an ensemble method called Random Linear Target
Combinations for MTR (RLC). They construct new target variables via random linear
combinations of existing ones. The data must be normalized in order for the linear com-
binations to make sense, i.e., to prevent targets on larger scales dominating over the ones
with lower scales and thus deteriorating the learning process. The output space is trans-
formed in such a way that each linear combination consists of k original output features.
Each combination is then considered for learning one ensemble member. The transforma-
tion of the output space matrix Y (m × q) is achieved via a coefficient matrix C of size
q × r filled with random values uniformly chosen from [0, 1]. Columns of the matrix C
represent coefficients of the linear combination of the target variables. By multiplying the
two matrices, we get the transformed output space Y ′ = YC (m × r) that is then used
for training. A user-selected regression algorithm can then be applied on the transformed
data.

We present the results using average rank diagrams in Fig. 4, while the complete exper-
imental results are available in “Appendix C” (Table 11). Figure 4 depicts two average
rank diagrams: one per dataset and one per target. The per dataset diagram is based on
the aRRMSE values, one per dataset. The per target diagram is based on RRMSE values
with multiple targets per dataset. The per dataset analysis shows no statistically significant
differences between the predictive performances of the considered ensemble methods. We
can however note, that performances of ET-ROS and RP-ET ensembles seem to be on par
(with a minimal advantage of the ET-ROS ensemble). The per target analysis detects two
statistically significant differences. First, ET-ROS statistically significantly outperforms all
other methods with the exception of RP-ET. Second, RLC and RF-ROS ensembles are on par
and both are statistically significantly outperformed by the other methods. Third, Bag-ROS,
RP-RF and RP-ET perform equally well. All in all, ET-ROS ensembles generally perform
better than the other considered ensemble methods.

123

1694 Machine Learning (2018) 107:1673–1709

6 5 4 3 2 1

ET100-ROS
RP-ET
Bag100-ROSRP-RF

RF100-ROS
RLC

Critical Distance = 1.65299
6 5 4 3 2 1

ET100-ROS

RP-ET

RP-RF

Bag100-ROSRF100-ROS

RLC

Critical Distance = 0.465895

(a) (b)

Fig. 4 Average rank diagrams showing the predictive performance of ROS (ET-ROS, Bag-ROS and RF-ROS),
Random projections (RP-ET andRP-RF) andRLC ensembles. a Per dataset (aRRMSE),b per target (RRMSE)

5.5 Summary of the results

We summarize the main findings of the extensive experimental work presented in the paper
by answering the experimental questions posed in Sect. 4.1.

1. How many base models do we need in ROS ensembles in order to reach the point
of performance saturation?
The saturation point of the original PCT ensembles is between 50 and 75 base models.
Bag-ROS and ET-ROS ensembles saturate between 50 and 100 base models. Especially
RF-ROS ensembles saturate a bit later, at 75 to 100 base models learned. In the compar-
ative analysis of performance, we consider ensembles with 100 base models (in order to
make the comparison fair for all considered methods).

2. What is the best value for the portion of target space to be used within such ensem-
bles? Is this portion equal for all evaluated ensemble methods?
The most appropriate size of the portion of target space to be used varies with the ensem-
ble method. The results suggest to use v = 1

2 for Bag-ROS and v = 3
4 for RF-ROS and

ET-ROS.
3. Does it make sense to change the default aggregation function of the ensemble that

uses the prediction for all targets? Can this improve predictive performance?
Changing the aggregation function changes the behaviour of the ROS ensembles. For
Bag-ROS, it can even decrease the predictive performance, so we recommend using
the standard aggregation function, i.e., total averaging. For RF-ROS and ET-ROS we
recommend making predictions with subspace averaging.

4. Considering predictive performance, how do ROS ensemble methods compare to
the original ensemble methods?
Using ROS can improve the predictive performance of PCT ensembles. This is especially
notable when using ET-ROS with small datasets with larger output spaces.

5. Is ROS helpful in terms of time efficiency?
The observed learning times for ROS methods can be substantially lower than the ones
of their original counterparts. This especially holds for large datasets. Prediction times,
however, do not change.

6. DoROSmodels use lessmemory than themodels trainedwith the original ensemble
methods?
Ensemble models obtained with ROS have sizes comparable to the ensemble models
produced by the original ensemble models.

123

Machine Learning (2018) 107:1673–1709 1695

7. How ROS models compare to other output transformation methods?
ET-ROS ensembles generally perform better than ensembles of other competing output
transformation methods.

6 Conclusions

This work has addressed the task of learning predictive models that can predict the values of
multiple continuous variables for a given input tuple, referred to as multi-target regression
(MTR): MTR is a task of predicting structured outputs, i.e., structured output prediction.
There are two general approaches to solving tasks of such nature. The first, local approach,
learns separate models for every component of the predicted structure, whereas the second,
global approach, learns one model capable of predicting all components of the structure
simultaneously.

We have proposed novel ensemble methods for MTR. An ensemble is a set of predictive
models whose predictions are combined and yield the model output. The proposed methods
build further on of well known methods for learning ensembles that have been extended
to structured outputs. The base models we have considered are predictive clustering trees
(PCTs) for MTR. The methods we have proposed are based on the ensemble extension
method, i.e., ROS—Random Output Selections. For each ensemble constituent (PCT), the
proposed extension randomly selects targets that are considered while learning that particular
base model. We perform an extensive experimental evaluation of three ensemble methods
extended with ROS, i.e., bagging, random forests and extra-PCTs. The performance has been
evaluated on 17 benchmark datasets of varying sizes in terms of number of examples, number
of predictive attributes and number of target attributes.

The results show that the proposed extension has a favorable effect, yielding lower error
rates and shorter running times. ROS coupledwith bagging and extra trees can outperform the
original ensemble methods. Random forests do not benefit from ROS in terms of predictive
power, but do benefit in terms of shorter learning time. ET-ROS (extra trees with ROS)
statistically significantly outperform all original ensemble methods and their ROS (when
analyzing predictive performance on a per target basis). We also conducted experiments with
three competing methods showing that the proposed method yields the best performance.

We have also provided a computational complexity analysis for the proposed ensemble
extension. Our experiments confirm the results of the theoretical analysis. Ensembles with
ROS can yield better predictive performance, as well as reduce learning times, whereas the
sizes of the induced models do not change notably.

We plan future work along several possible directions. To begin with, the aggregation
function has an effect on the ensemble predictive performance, as the present work demon-
strates. We plan to design a new aggregation function by combining total averaging and
subspace averaging, hoping to achieve better performance and better understanding of the
effect of subspace averaging. Additionally, we can use out-of-bag errors to derive aggregation
weights, such that ensemble constituents with higher error rates would make a smaller con-
tribution to the final prediction. Furthermore, we could perform bias-variance decomposition
of the error of all the investigated methods and investigate the sources of errors.

Following an alternative direction, the process of generating target subspaces could also be
adapted. The current approach generates target subspaces at random, which is not necessarily
the best approach. The relations between target variables could be exploited in order to
generate a smaller set of more sensible subspaces.

123

1696 Machine Learning (2018) 107:1673–1709

The final direction we intend to follow is the adaptation of the proposed approaches to
other structured output prediction tasks, such as multi-target classification, (hierarchical)
multi-label classification, and time-series prediction. For all of these tasks, global random
forests are alreadybeingused to obtain feature rankings (in the context of predicting structured
outputs). ROS could improve this approach/ranking, by considering subsets of the set of target
attributes in the process of producing ranks.

Acknowledgements We acknowledge the financial support of the Slovenian Research Agency via the grants
P2-0103 and a young researcher grant to MB, as well as the European Commission, through the grants
MAESTRA (Learning from Massive, Incompletely annotated, and Structured Data) and HBP (The Human
Brain Project), SGA1 and SGA2. SD also acknowledges support by Slovenian Research Agency (via grants
J4-7362, L2-7509, and N2-0056), the European Commission (project LANDMARK) and ARVALIS (project
BIODIV). The computational experiments presented here were executed on a computing infrastructure from
the Slovenian Grid (SLING) initiative.

Appendix A: Average rank diagrams for ROS variants

Below we provide average rank diagrams for all considered ROS variants (Bag-ROS,

RF-ROS, ET-ROS) for all considered values of the parameter v ∈
{
1
4 ,

1
2 ,

3
4 ,

1√
T

}
and the

two types of prediction averaging functions. One average rank diagram corresponds to one
combination of values of the above parameters, for which it compares ensembles of different
sizes (10, 25, 50, 75, 100, 150 and 250 base models). The saturation point is the lowest
number of trees in the ensemble for which the performance is not significantly different than
the best. Saturation points are shown in brackets next to value for parameter v.

A.1 Bag-ROS variants saturation

The average rank diagrams for the Bag-ROS variants are given in Figs. 5 and 6.

7 6 5 4 3 2 1

Bag250-TotAvg-0.25

Bag150-TotAvg-0.25

Bag100-TotAvg-0.25

Bag75-TotAvg-0.25Bag50-TotAvg-0.25

Bag25-TotAvg-0.25

Bag10-TotAvg-0.25

Critical Distance = 2.18509

7 6 5 4 3 2 1

Bag150-TotAvg-0.50

Bag250-TotAvg-0.50

Bag100-TotAvg-0.50

Bag75-TotAvg-0.50Bag50-TotAvg-0.50

Bag25-TotAvg-0.50

Bag10-TotAvg-0.50

Critical Distance = 2.18509

7 6 5 4 3 2 1

Bag250-TotAvg-0.75

Bag150-TotAvg-0.75

Bag100-TotAvg-0.75

Bag75-TotAvg-0.75Bag50-TotAvg-0.75

Bag25-TotAvg-0.75

Bag10-TotAvg-0.75

Critical Distance = 2.18509
7 6 5 4 3 2 1

Bag250-TotAvg-SQRT

Bag150-TotAvg-SQRT

Bag100-TotAvg-SQRT

Bag75-TotAvg-SQRTBag50-TotAvg-SQRT

Bag25-TotAvg-SQRT

Bag10-TotAvg-SQRT

Critical Distance = 2.18509

(a)

(c) (d)

(b)

Fig. 5 Bag-ROS saturation with total averaging. a With v = 1
4 (50), b with v = 1

2 (75), c with v = 3
4 (50),

d with v = 1√|T | (75)

123

Machine Learning (2018) 107:1673–1709 1697

7 6 5 4 3 2 1

Bag250-SubAvg-0.25

Bag150-SubAvg-0.25

Bag100-SubAvg-0.25

Bag75-SubAvg-0.25Bag50-SubAvg-0.25

Bag25-SubAvg-0.25

g10-SubAvg-0.25

Critical Distance = 2.18509

7 6 5 4 3 2 1

Bag250-SubAvg-0.50

Bag150-SubAvg-0.50

Bag100-SubAvg-0.50

Bag75-SubAvg-0.50Bag50-SubAvg-0.50

Bag25-SubAvg-0.50

g10-SubAvg-0.50

Critical Distance = 2.18509

7 6 5 4 3 2 1

Bag250-SubAvg-0.75

Bag150-SubAvg-0.75

Bag100-SubAvg-0.75

Bag75-SubAvg-0.75Bag50-SubAvg-0.75

Bag25-SubAvg-0.75

g10-SubAvg-0.75

Critical Distance = 2.18509
7 6 5 4 3 2 1

Bag250-SubAvg-SQRT

Bag150-SubAvg-SQRT

Bag100-SubAvg-SQRT

Bag75-SubAvg-SQRT

Bag50-SubAvg-SQRT

Bag25-SubAvg-SQRT

g10-SubAvg-SQRT

Critical Distance = 2.18509

(a) (b)

(c) (d)

Fig. 6 Bag-ROS saturation with subset averaging. aWith v = 1
4 (50), bwith v = 1

2 (75), c with v = 3
4 (50),

d with v = 1√|T | (100)

A.2 RF-ROS variants saturation

The average rank diagrams for the RF-ROS variants are given in Figs. 7 and 8.

7 6 5 4 3 2 1

RF250-TotAvg-0.25

RF150-TotAvg-0.25

RF100-TotAvg-0.25

RF75-TotAvg-0.25RF50-TotAvg-0.25

RF25-TotAvg-0.25

RF10-TotAvg-0.25

Critical Distance = 2.18509

7 6 5 4 3 2 1

RF250-TotAvg-0.50

RF150-TotAvg-0.50

RF100-TotAvg-0.50

RF75-TotAvg-0.50RF50-TotAvg-0.50

RF25-TotAvg-0.50

RF10-TotAvg-0.50

Critical Distance = 2.18509

7 6 5 4 3 2 1

RF250-TotAvg-0.75

RF150-TotAvg-0.75

RF100-TotAvg-0.75

RF75-TotAvg-0.75RF50-TotAvg-0.75

RF25-TotAvg-0.75

RF10-TotAvg-0.75

Critical Distance = 2.18509
7 6 5 4 3 2 1

RF250-TotAvg-SQRT

RF150-TotAvg-SQRT

RF100-TotAvg-SQRT

RF75-TotAvg-SQRTRF50-TotAvg-SQRT

RF25-TotAvg-SQRT

10-TotAvg-SQRT

Critical Distance = 2.18509

(a) (b)

(c) (d)

Fig. 7 RF-ROS saturation with total averaging. a With v = 1
4 (75), b with v = 1

2 (75), c with v = 3
4 (75), d

with v = 1√|T | (75)

123

1698 Machine Learning (2018) 107:1673–1709

7 6 5 4 3 2 1

RF250-SubAvg-0.25

RF150-SubAvg-0.25

RF100-SubAvg-0.25

RF75-SubAvg-0.25RF50-SubAvg-0.25

RF25-SubAvg-0.25

F10-SubAvg-0.25

Critical Distance = 2.18509

7 6 5 4 3 2 1

RF250-SubAvg-0.50

RF150-SubAvg-0.50

RF100-SubAvg-0.50

RF75-SubAvg-0.50RF50-SubAvg-0.50

RF25-SubAvg-0.50

F10-SubAvg-0.50

Critical Distance = 2.18509

7 6 5 4 3 2 1

RF250-SubAvg-0.75

RF150-SubAvg-0.75

RF100-SubAvg-0.75

RF75-SubAvg-0.75RF50-SubAvg-0.75

RF25-SubAvg-0.75

RF10-SubAvg-0.75

Critical Distance = 2.18509
7 6 5 4 3 2 1

RF250-SubAvg-SQRT

RF150-SubAvg-SQRT

RF100-SubAvg-SQRT

RF75-SubAvg-SQRT

RF50-SubAvg-SQRT

RF25-SubAvg-SQRT

F10-SubAvg-SQRT

Critical Distance = 2.18509

(a) (b)

(c) (d)

Fig. 8 RF-ROS saturationwith subset averaging. aWith v = 1
4 (100), bwith v = 1

2 (100), cwith v = 3
4 (75),

d with v = 1√|T | (100)

A.3 ET-ROS variants saturation

The average rank diagrams for the ET-ROS variants are given in Figs. 9 and 10.

7 6 5 4 3 2 1

ET250-TotAvg-0.25

ET150-TotAvg-0.25

ET100-TotAvg-0.25

ET75-TotAvg-0.25ET25-TotAvg-0.25

ET50-TotAvg-0.25

ET10-TotAvg-0.25

Critical Distance = 2.18509

7 6 5 4 3 2 1

ET250-TotAvg-0.50

ET150-TotAvg-0.50

ET50-TotAvg-0.50

ET75-TotAvg-0.50

ET100-TotAvg-0.50

ET25-TotAvg-0.50

ET10-TotAvg-0.50

Critical Distance = 2.18509

7 6 5 4 3 2 1

ET250-TotAvg-0.75

ET150-TotAvg-0.75

ET100-TotAvg-0.75

ET75-TotAvg-0.75ET50-TotAvg-0.75

ET25-TotAvg-0.75

ET10-TotAvg-0.75

Critical Distance = 2.18509
7 6 5 4 3 2 1

ET250-TotAvg-SQRT

ET150-TotAvg-SQRT

ET75-TotAvg-SQRT

ET100-TotAvg-SQRTET50-TotAvg-SQRT

ET25-TotAvg-SQRT

ET10-TotAvg-SQRT

Critical Distance = 2.18509

(a) (b)

(c) (d)

Fig. 9 ET-ROS saturation with total averaging. a With v = 1
4 (75), b with v = 1

2 (50), c with v = 3
4 (75), d

with v = 1√|T | (75)

123

Machine Learning (2018) 107:1673–1709 1699

7 6 5 4 3 2 1

ET250-SubAvg-0.25

ET150-SubAvg-0.25

ET100-SubAvg-0.25

ET75-SubAvg-0.25ET50-SubAvg-0.25

ET25-SubAvg-0.25

10-SubAvg-0.25

Critical Distance = 2.18509

7 6 5 4 3 2 1

ET250-SubAvg-0.50

ET150-SubAvg-0.50

ET100-SubAvg-0.50

ET75-SubAvg-0.50

ET50-SubAvg-0.50

ET25-SubAvg-0.50

10-SubAvg-0.50

Critical Distance = 2.18509

7 6 5 4 3 2 1

ET250-SubAvg-0.75

ET150-SubAvg-0.75

ET100-SubAvg-0.75

ET75-SubAvg-0.75ET50-SubAvg-0.75

ET25-SubAvg-0.75

ET10-SubAvg-0.75

Critical Distance = 2.18509
7 6 5 4 3 2 1

ET250-SubAvg-SQRT

ET150-SubAvg-SQRT

ET100-SubAvg-SQRT

ET75-SubAvg-SQRTET50-SubAvg-SQRT

ET25-SubAvg-SQRT

10-SubAvg-SQRT

Critical Distance = 2.18509

(a) (b)

(c) (d)

Fig. 10 ET-ROS saturation with subset averaging. aWith v = 1
4 (75), bwith v = 1

2 (50), c with v = 3
4 (75),

d with v = 1√|T | (100)

Appendix B: Performance results

The complete performance results for the different ensemble types (bagging, RF, ET) and
variants (ST,MT,ROS) are given below.Tables 5, 6 and 7 contain results in terms of aRRMSE,
while Tables 8, 9 and 10 contain results in terms of overfitting scores.

123

1700 Machine Learning (2018) 107:1673–1709

Ta
bl
e
5

Pr
ed
ic
tiv

e
pe
rf
or
m
an
ce

of
ba
gg

in
g
en
se
m
bl
es

in
te
rm

s
of

aR
R
M
SE

D
at
as
et

M
T
R
T

B
ag
-S
T

B
ag

B
ag
-R
O
S

To
ta
la
ve
ra
gi
ng

Su
bs
pa
ce

av
er
ag
in
g

v
=

1 4
v

=
1 2

v
=

3 4
v

=
1 √ |T

|
v

=
1 4

v
=

1 2
v

=
3 4

v
=

1 √ |T
|

A
D
N
I

1.
08

6
0.
92

3
0.
91

7
0.
91

9
0.
92

3
0.
92

1
0.
91

9
0.
92

6
0.
92

6
0.
92

1
0.
92

6

A
T
P
1D

0.
51

5
0.
36

9
0.
38

5
0.
37

8
0.
38

0.
38

2
0.
38

0.
36

9
0.
37

4
0.
38

1
0.
37

4

A
T
P
7D

0.
58

5
0.
48

6
0.
47

3
0.
47

4
0.
46

7
0.
46

1
0.
46

7
0.
45

8
0.
46

4
0.
46

2
0.
46

4

Fo
re
st
ry

K
ra
s

0.
61

0.
55

1
0.
55

0.
54

8
0.
54

8
0.
54

9
0.
54

8
0.
55

3
0.
55

0.
54

9
0.
55

1

O
E
S
10

0.
61

6
0.
48

7
0.
53

1
0.
53

1
0.
52

7
0.
53

0.
53

1
0.
52

2
0.
52

6
0.
53

0.
52

2

O
E
S
97

0.
70

4
0.
52

0.
58

5
0.
56

5
0.
57

2
0.
57

8
0.
56

5
0.
56

6
0.
57

3
0.
58

1
0.
56

6

Sa
le
s

0.
86

7
0.
68

1
0.
69

1
0.
68

7
0.
69

0.
69

1
0.
68

9
0.
68

2
0.
68

8
0.
69

2
0.
69

PP
M
I

0.
86

8
0.
75

1
0.
73

9
0.
73

8
0.
73

9
0.
73

8
0.
74

1
0.
74

6
0.
74

2
0.
73

9
0.
74

9

Pr
es
pa

di
at
om

s
la
ke

to
p
10

0.
99

5
0.
96

8
0.
94

6
0.
93

5
0.
93

7
0.
94

4
0.
93

7
0.
95

9
0.
94

4
0.
94

8
0.
94

6

R
F
1

0.
19

0.
15

3
0.
15

6
0.
14

8
0.
14

5
0.
14

4
0.
14

3
0.
14

0.
14

2
0.
14

3
0.
14

1

R
F
2

0.
19

9
0.
15

7
0.
16

0.
15

0.
14

7
0.
14

7
0.
14

7
0.
14

5
0.
14

6
0.
14

8
0.
14

8

SC
M

1D
0.
43

3
0.
29

8
0.
30

7
0.
31

8
0.
30

5
0.
30

4
0.
31

8
0.
30

3
0.
30

1
0.
30

3
0.
30

3

SC
M

20
D

0.
52

7
0.
36

3
0.
35

9
0.
36

3
0.
35

4
0.
35

3
0.
36

3
0.
36

0.
35

4
0.
35

3
0.
36

So
il
re
si
lie

nc
e

0.
92

6
0.
88

9
0.
88

3
0.
87

4
0.
87

2
0.
88

0.
88

0.
88

5
0.
88

3
0.
88

3
0.
89

3

V
eg
et
at
io
n
co
nd

iti
on

0.
65

8
0.
60

2
0.
60

3
0.
60

8
0.
60

3
0.
60

2
0.
60

5
0.
60

7
0.
60

2
0.
60

2
0.
60

4

V
eg
et
at
io
n
cl
us
te
ri
ng

0.
80

9
0.
69

9
0.
70

6
0.
70

2
0.
69

9
0.
70

2
0.
69

9
0.
70

2
0.
69

9
0.
70

2
0.
7

W
at
er

qu
al
ity

0.
95

2
0.
91

3
0.
90

1
0.
90

1
0.
89

9
0.
9

0.
90

1
0.
90

8
0.
90

1
0.
90

1
0.
90

8

M
T
R
T
re
pr
es
en
ts
m
ul
ti-
ta
rg
et
PC

T
s.
B
ag
-S
T
re
pr
es
en
ts
en
se
m
bl
es
of
si
ng
le
-t
ar
ge
tr
eg
re
ss
io
n
tr
ee
s.
B
ag

ar
e
or
ig
in
al
ba
gg
in
g
en
se
m
bl
es
.B

ag
-R
O
S
ar
e
th
e
R
O
S
va
ri
an
ts
.E

ns
em

bl
es

co
nt
ai
n
10
0
tr
ee
s
(S
T
en
se
m
bl
es

co
nt
ai
n
10
0
tr
ee
s/
ta
rg
et
)

123

Machine Learning (2018) 107:1673–1709 1701

Ta
bl
e
6

Pr
ed
ic
tiv

e
pe
rf
or
m
an
ce

of
ra
nd

om
fo
re
st
en
se
m
bl
es

in
te
rm

s
of

aR
R
M
SE

D
at
as
et

M
T
R
T

R
F-
ST

R
F

R
F-
R
O
S

To
ta
la
ve
ra
gi
ng

Su
bs
pa
ce

av
er
ag
in
g

v
=

1 4
v

=
1 2

v
=

3 4
v

=
1 √ |T

|
v

=
1 4

v
=

1 2
v

=
3 4

v
=

1 √ |T
|

A
D
N
I

1.
08

6
0.
92

0.
91

9
0.
91

6
0.
91

6
0.
91

7
0.
91

6
0.
91

9
0.
91

7
0.
91

8
0.
91

9

A
T
P
1D

0.
51

5
0.
39

8
0.
41

0.
41

3
0.
41

8
0.
41

4
0.
41

8
0.
40

4
0.
41

0.
41

2
0.
41

A
T
P
7D

0.
58

5
0.
51

8
0.
52

1
0.
54

5
0.
53

5
0.
52

1
0.
53

5
0.
52

8
0.
53

0.
51

7
0.
53

Fo
re
st
ry

K
ra
s

0.
61

0.
54

6
0.
54

5
0.
54

5
0.
54

5
0.
54

5
0.
54

5
0.
55

0.
54

7
0.
54

6
0.
54

8

O
E
S
10

0.
61

6
0.
49

2
0.
51

7
0.
52

5
0.
51

9
0.
51

8
0.
52

5
0.
52

1
0.
51

5
0.
51

8
0.
52

1

O
E
S
97

0.
70

4
0.
49

1
0.
51

9
0.
52

0.
53

2
0.
52

6
0.
52

0.
52

3
0.
53

4
0.
52

8
0.
52

3

Sa
le
s

0.
86

7
0.
72

1
0.
73

5
0.
73

8
0.
73

5
0.
73

2
0.
73

3
0.
74

3
0.
73

3
0.
73

3
0.
73

5

PP
M
I

0.
86

8
0.
75

9
0.
74

8
0.
75

1
0.
74

9
0.
74

9
0.
75

7
0.
75

8
0.
75

1
0.
75

0.
76

6

Pr
es
pa

di
at
om

s
la
ke

to
p
10

0.
99

5
0.
94

2
0.
93

7
0.
93

6
0.
93

2
0.
93

7
0.
93

6
0.
94

4
0.
93

8
0.
93

9
0.
94

7

R
F
1

0.
19

0.
14

4
0.
15

4
0.
15

7
0.
15

5
0.
15

4
0.
15

4
0.
15

5
0.
15

2
0.
15

2
0.
15

R
F
2

0.
19

9
0.
16

1
0.
16

7
0.
17

3
0.
16

9
0.
16

9
0.
17

0.
17

0.
16

8
0.
16

8
0.
16

6

SC
M

1D
0.
43

3
0.
29

2
0.
31

0.
32

3
0.
31

4
0.
31

2
0.
32

3
0.
31

2
0.
31

0.
31

0.
31

2

SC
M

20
D

0.
52

7
0.
37

8
0.
37

8
0.
39

0.
38

0.
37

9
0.
39

0.
39

0.
38

0.
37

9
0.
39

So
il
re
si
lie

nc
e

0.
92

6
0.
86

0.
86

4
0.
87

1
0.
86

5
0.
87

2
0.
86

9
0.
88

7
0.
88

4
0.
87

2
0.
87

V
eg
et
at
io
n
co
nd

iti
on

0.
65

8
0.
60

1
0.
60

2
0.
61

0.
60

4
0.
60

3
0.
60

6
0.
60

9
0.
60

3
0.
60

3
0.
60

5

V
eg
et
at
io
n
cl
us
te
ri
ng

0.
80

9
0.
69

6
0.
70

3
0.
71

1
0.
70

5
0.
70

3
0.
70

8
0.
70

9
0.
70

4
0.
70

3
0.
70

6

W
at
er

qu
al
ity

0.
95

2
0.
90

2
0.
89

8
0.
90

1
0.
89

9
0.
89

9
0.
90

1
0.
90

5
0.
90

1
0.
89

9
0.
90

5

M
T
R
T
re
pr
es
en
ts
m
ul
ti-
ta
rg
et
PC

T
s.
R
F-
ST

re
pr
es
en
ts
en
se
m
bl
es

of
si
ng
le
-t
ar
ge
t
re
gr
es
si
on

tr
ee
s.
R
F
ar
e
or
ig
in
al

ra
nd
om

fo
re
st
en
se
m
bl
es
.
R
F-
R
O
S
ar
e
th
e
R
O
S
va
ri
an
ts
.

E
ns
em

bl
es

co
nt
ai
n
10
0
tr
ee
s
(S
T
en
se
m
bl
es

co
nt
ai
n
10
0
tr
ee
s/
ta
rg
et
)

123

1702 Machine Learning (2018) 107:1673–1709

Ta
bl
e
7

Pr
ed
ic
tiv

e
pe
rf
or
m
an
ce

of
ex
tr
a
tr
ee

en
se
m
bl
es

in
te
rm

s
of

aR
R
M
SE

D
at
as
et

M
T
R
T

E
T-
ST

E
T

E
T-
R
O
S

To
ta
la
ve
ra
gi
ng

Su
bs
pa
ce

av
er
ag
in
g

v
=

1 4
v

=
1 2

v
=

3 4
v

=
1 √ |T

|
v

=
1 4

v
=

1 2
v

=
3 4

v
=

1 √ |T
|

A
D
N
I

1.
08

6
0.
91

7
0.
92

2
0.
91

4
0.
91

3
0.
91

6
0.
91

4
0.
91

8
0.
91

5
0.
91

6
0.
91

8

A
T
P
1D

0.
51

5
0.
36

5
0.
43

5
0.
37

2
0.
37

8
0.
37

6
0.
37

8
0.
36

4
0.
37

0.
37

4
0.
37

A
T
P
7D

0.
58

5
0.
46

8
0.
52

3
0.
45

3
0.
44

8
0.
43

8
0.
44

8
0.
44

1
0.
44

2
0.
43

6
0.
44

2

Fo
re
st
ry

K
ra
s

0.
61

0.
56

0.
55

7
0.
55

6
0.
55

7
0.
55

7
0.
55

6
0.
56

0.
55

8
0.
55

7
0.
55

9

O
E
S
10

0.
61

6
0.
46

7
0.
51

4
0.
51

1
0.
49

9
0.
49

7
0.
51

1
0.
50

2
0.
49

5
0.
49

6
0.
50

2

O
E
S
97

0.
70

4
0.
46

4
0.
52

0.
51

7
0.
51

7
0.
51

8
0.
51

7
0.
51

3
0.
51

4
0.
51

8
0.
51

3

Sa
le
s

0.
86

7
0.
73

3
0.
76

3
0.
70

2
0.
7

0.
69

8
0.
7

0.
70

9
0.
70

4
0.
69

8
0.
70

1

PP
M
I

0.
86

8
0.
75

9
0.
74

3
0.
74

5
0.
74

5
0.
74

5
0.
74

6
0.
75

0.
74

7
0.
74

6
0.
75

4

Pr
es
pa

di
at
om

s
la
ke

to
p
10

0.
99

5
0.
93

4
0.
92

9
0.
92

2
0.
92

3
0.
92

6
0.
92

3
0.
93

5
0.
93

2
0.
92

8
0.
93

1

R
F
1

0.
19

0.
13

7
0.
14

4
0.
15

1
0.
14

8
0.
14

7
0.
14

7
0.
14

6
0.
14

5
0.
14

7
0.
14

4

R
F
2

0.
19

9
0.
14

7
0.
14

9
0.
15

4
0.
15

1
0.
15

2
0.
15

2
0.
14

9
0.
15

2
0.
15

3
0.
15

2

SC
M

1D
0.
43

3
0.
27

4
0.
28

9
0.
29

3
0.
28

4
0.
28

2
0.
29

3
0.
28

3
0.
28

1
0.
28

1
0.
28

3

SC
M

20
D

0.
52

7
0.
32

2
0.
33

0.
32

6
0.
31

9
0.
31

6
0.
32

6
0.
32

5
0.
31

9
0.
31

6
0.
32

5

So
il
re
si
lie

nc
e

0.
92

6
0.
88

4
0.
92

9
0.
86

9
0.
87

7
0.
87

3
0.
87

1
0.
88

4
0.
88

0.
87

3
0.
87

V
eg
et
at
io
n
co
nd

iti
on

0.
65

8
0.
6

0.
60

5
0.
60

6
0.
60

1
0.
59

9
0.
60

2
0.
60

6
0.
60

1
0.
59

9
0.
60

2

V
eg
et
at
io
n
cl
us
te
ri
ng

0.
80

9
0.
68

8
0.
69

5
0.
70

2
0.
69

8
0.
69

6
0.
7

0.
69

9
0.
69

6
0.
69

6
0.
69

7

W
at
er

qu
al
ity

0.
95

2
0.
89

6
0.
9

0.
89

5
0.
89

3
0.
89

4
0.
89

5
0.
9

0.
89

3
0.
89

4
0.
9

M
T
R
T
re
pr
es
en
ts
m
ul
ti-
ta
rg
et
PC

T
s.
E
T-
ST

re
pr
es
en
ts
en
se
m
bl
es

of
si
ng
le
-t
ar
ge
tr
eg
re
ss
io
n
tr
ee
s.
E
T
ar
e
or
ig
in
al
ex
tr
a
tr
ee

en
se
m
bl
es
.E

T-
R
O
S
ar
e
th
e
R
O
S
va
ri
an
ts
.E

ns
em

bl
es

co
nt
ai
n
10
0
tr
ee
s
(S
T
en
se
m
bl
es

co
nt
ai
n
10
0
tr
ee
s/
ta
rg
et
)

123

Machine Learning (2018) 107:1673–1709 1703

Ta
bl
e
8

Pr
ed
ic
tiv

e
pe
rf
or
m
an
ce

of
ba
gg

in
g
en
se
m
bl
es

in
te
rm

s
of

ov
er
fit
tin

g
sc
or
e

D
at
as
et

M
T
R
T

B
ag
-S
T

B
ag

B
ag
-R
O
S

To
ta
la
ve
ra
gi
ng

Su
bs
pa
ce

av
er
ag
in
g

v
=

1 4
v

=
1 2

v
=

3 4
v

=
1 √ |T

|
v

=
1 4

v
=

1 2
v

=
3 4

v
=

1 √ |T
|

A
D
N
I

0.
95

9
0.
83

2
0.
59

3
0.
55

5
0.
58

7
0.
60

1
0.
55

5
0.
65

9
0.
63

9
0.
61

7
0.
65

9

A
T
P
1D

0.
36

8
1.
46

4
1.
21

6
0.
93

3
1.
06

9
1.
18

1
1.
06

9
1.
25

5
1.
25

7
1.
24

6
1.
25

7

A
T
P
7D

2.
13

1
1.
51

1
1.
30

7
1.
05

2
1.
17

3
1.
36

9
1.
17

3
1.
46

4
1.
44

4
1.
40

7
1.
44

4

Fo
re
st
ry

K
ra
s

0.
16

9
0.
49

4
0.
47

6
0.
46

4
0.
47

1
0.
47

4
0.
46

7
0.
47

6
0.
47

5
0.
47

5
0.
47

6

O
E
S
10

0.
70

4
1.
55

6
1.
11

4
1.
03

4
1.
05

2
1.
10

8
1.
03

4
1.
23

8
1.
15

2
1.
11

7
1.
23

8

O
E
S
97

0.
74

5
1.
42

7
0.
97

3
0.
83

9
0.
93

3
0.
95

8
0.
83

9
1.
05

5
1.
03

8
1.
01

3
1.
05

5

Sa
le
s

0.
79

2
1.
12

8
0.
78

1
0.
66

7
0.
72

8
0.
76

3
0.
69

8
0.
87

5
0.
83

0.
81

4
0.
86

7

PP
M
I

0.
38

3
0.
52

9
0.
46

7
0.
44

9
0.
46

0.
46

2
0.
43

8
0.
48

0.
47

2
0.
46

6
0.
47

8

Pr
es
pa

di
at
om

s
la
ke

to
p
10

0.
22

6
1.
18

2
0.
98

8
0.
74

5
0.
85

7
0.
92

7
0.
80

3
1.
07

8
1.
03

8
0.
98

2
1.
04

2

R
F
1

1.
08

5
1.
03

4
0.
74

8
0.
54

5
0.
65

0.
68

5
0.
58

4
0.
53

9
0.
67

9
0.
65

6
0.
75

1

R
F
2

1.
21

9
1.
04

6
0.
80

6
0.
53

2
0.
65

4
0.
69

9
0.
60

8
0.
56

8
0.
68

3
0.
69

5
0.
8

SC
M

1D
0.
68

1
1.
48

2
0.
97

5
0.
84

6
0.
92

3
0.
95

8
0.
84

6
1.
10

5
1.
03

1
0.
99

9
1.
10

5

SC
M

20
D

0.
59

5
1.
46

9
1.
05

4
0.
96

1
1.
01

1
1.
03

2
0.
96

1
1.
13

8
1.
09

6
1.
06

1
1.
13

8

So
il
re
si
lie

nc
e

0.
21

7
1.
15

3
0.
79

1
0.
67

9
0.
74

6
0.
78

4
0.
69

7
0.
94

4
0.
87

8
0.
85

2
0.
87

2

V
eg
et
at
io
n
co
nd

iti
on

0.
07

5
1.
35

2
1.
06

1
0.
62

8
0.
90

3
1.
02

1
0.
8

1.
20

5
1.
13

6
1.
08

1.
17

2

V
eg
et
at
io
n
cl
us
te
ri
ng

0.
08

5
1.
17

9
1.
01

8
0.
83

9
0.
93

2
0.
99

3
0.
87

8
1.
06

1.
03

6
1.
02

3
1.
05

W
at
er

qu
al
ity

0.
01

8
1.
24

5
0.
91

5
0.
64

3
0.
78

8
0.
87

1
0.
64

3
1.
04

1
0.
97

6
0.
93

8
1.
04

1

M
T
R
T
re
pr
es
en
ts
m
ul
ti-
ta
rg
et
PC

T
s.
B
ag
-S
T
re
pr
es
en
ts
en
se
m
bl
es
of
si
ng
le
-t
ar
ge
tr
eg
re
ss
io
n
tr
ee
s.
B
ag

ar
e
or
ig
in
al
ba
gg
in
g
en
se
m
bl
es
.B

ag
-R
O
S
ar
e
th
e
R
O
S
va
ri
an
ts
.E

ns
em

bl
es

co
nt
ai
n
10
0
tr
ee
s
(S
T
en
se
m
bl
es

co
nt
ai
n
10
0
tr
ee
s/
ta
rg
et
)

123

1704 Machine Learning (2018) 107:1673–1709

Ta
bl
e
9

Pr
ed
ic
tiv

e
pe
rf
or
m
an
ce

of
ra
nd

om
fo
re
st
en
se
m
bl
es

in
te
rm

s
of

ov
er
fit
tin

g
sc
or
e

D
at
as
et

M
T
R
T

R
F-
ST

R
F

R
F-
R
O
S

To
ta
la
ve
ra
gi
ng

Su
bs
pa
ce

av
er
ag
in
g

v
=

1 4
v

=
1 2

v
=

3 4
v

=
1 √ |T

|
v

=
1 4

v
=

1 2
v

=
3 4

v
=

1 √ |T
|

A
D
N
I

0.
95

9
0.
64

5
0.
48

1
0.
44

7
0.
46

2
0.
47

9
0.
44

7
0.
51

4
0.
49

5
0.
49

0.
51

4

A
T
P
1D

0.
36

8
1.
31

1.
11

5
0.
98

2
1.
12

7
1.
18

6
1.
12

7
1.
24

3
1.
29

2
1.
21

6
1.
29

2

A
T
P
7D

2.
13

1
1.
41

1
1.
17

7
1.
00

2
1.
17

6
1.
20

5
1.
17

6
1.
24

2
1.
30

9
1.
22

5
1.
30

9

Fo
re
st
ry

K
ra
s

0.
16

9
0.
45

7
0.
44

0.
43

4
0.
43

8
0.
44

0.
43

5
0.
44

3
0.
44

0.
44

0.
44

1

O
E
S
10

0.
70

4
1.
52

5
1.
09

3
1.
05

9
1.
07

4
1.
10

8
1.
05

9
1.
27

6
1.
10

5
1.
13

2
1.
27

6

O
E
S
97

0.
74

5
1.
29

1
0.
88

0.
80

4
0.
87

7
0.
87

1
0.
80

4
1.
00

9
0.
97

4
0.
91

8
1.
00

9

Sa
le
s

0.
79

2
0.
56

3
0.
45

8
0.
46

2
0.
46

8
0.
47

5
0.
43

7
0.
55

6
0.
50

3
0.
48

4
0.
49

6

PP
M
I

0.
38

3
0.
53

1
0.
47

1
0.
46

4
0.
47

0.
47

5
0.
46

2
0.
48

7
0.
47

8
0.
47

9
0.
49

5

Pr
es
pa

di
at
om

s
la
ke

to
p
10

0.
22

6
1.
07

1
0.
91

7
0.
71

8
0.
78

2
0.
85

9
0.
76

4
0.
91

3
0.
92

6
0.
90

2
0.
94

1

R
F
1

1.
08

5
0.
67

8
0.
51

1
0.
49

3
0.
52

1
0.
55

2
0.
47

9
1.
00

5
0.
51

5
0.
53

0.
61

4

R
F
2

1.
21

9
0.
53

0.
47

9
0.
42

7
0.
48

8
0.
50

7
0.
46

2
0.
71

8
0.
50

8
0.
50

1
0.
52

4

SC
M

1D
0.
68

1
1.
36

6
0.
95

5
0.
87

0.
92

5
0.
95

1
0.
87

1.
04

7
1

0.
97

8
1.
04

7

SC
M

20
D

0.
59

5
1.
35

6
1.
03

4
0.
95

8
0.
99

7
1.
01

5
0.
95

8
1.
06

1
1.
04

5
1.
03

6
1.
06

1

So
il
re
si
lie

nc
e

0.
21

7
1.
01

2
0.
76

6
0.
67

9
0.
73

2
0.
76

3
0.
70

8
0.
94

4
0.
86

5
0.
80

1
0.
80

3

V
eg
et
at
io
n
co
nd

iti
on

0.
07

5
1.
24

1
0.
98

2
0.
65

4
0.
86

6
0.
95

1
0.
78

7
1.
09

7
1.
03

6
0.
99

7
1.
06

5

V
eg
et
at
io
n
cl
us
te
ri
ng

0.
08

5
1.
02

9
0.
88

5
0.
76

7
0.
82

7
0.
86

6
0.
79

4
0.
92

2
0.
89

8
0.
88

7
0.
91

W
at
er

qu
al
ity

0.
01

8
1.
12

0.
83

6
0.
65

9
0.
76

1
0.
81

2
0.
65

9
0.
94

6
0.
89

8
0.
85

7
0.
94

6

M
T
R
T
re
pr
es
en
ts
m
ul
ti-
ta
rg
et
PC

T
s.
R
F-
ST

re
pr
es
en
ts
en
se
m
bl
es

of
si
ng
le
-t
ar
ge
t
re
gr
es
si
on

tr
ee
s.
R
F
ar
e
or
ig
in
al

ra
nd
om

fo
re
st
en
se
m
bl
es
.
R
F-
R
O
S
ar
e
th
e
R
O
S
va
ri
an
ts
.

E
ns
em

bl
es

co
nt
ai
n
10
0
tr
ee
s
(S
T
en
se
m
bl
es

co
nt
ai
n
10
0
tr
ee
s/
ta
rg
et
)

123

Machine Learning (2018) 107:1673–1709 1705

Ta
bl
e
10

Pr
ed
ic
tiv

e
pe
rf
or
m
an
ce

of
ex
tr
a
tr
ee

en
se
m
bl
es

in
te
rm

s
of

ov
er
fit
tin

g
sc
or
e

D
at
as
et

M
T
R
T

E
T-
ST

E
T

E
T-
R
O
S

To
ta
la
ve
ra
gi
ng

Su
bs
pa
ce

av
er
ag
in
g

v
=

1 4
v

=
1 2

v
=

3 4
v

=
1 √ |T

|
v

=
1 4

v
=

1 2
v

=
3 4

v
=

1 √ |T
|

A
D
N
I

0.
95

9
1.
27

4
1.
02

2
0.
70

8
0.
74

6
0.
76

5
0.
70

8
0.
92

3
0.
84

4
0.
79

3
0.
92

3

A
T
P
1D

0.
36

8
4

2.
61

6
1.
69

4
2.
14

7
2.
50

4
2.
14

7
3.
50

7
3.
49

5
2.
85

6
3.
49

5

A
T
P
7D

2.
13

1
5.
39

7
2.
76

6
2.
18

6
2.
67

9
3.
17

6
2.
67

9
4.
71

3
4.
18

8
3.
48

1
4.
18

8

Fo
re
st
ry

K
ra
s

0.
16

9
0.
61

1
0.
57

5
0.
56

7
0.
57

5
0.
57

6
0.
57

0.
59

5
0.
58

4
0.
57

9
0.
58

9

O
E
S
10

0.
70

4
2.
65

4
0.
98

6
1.
25

4
1.
15

6
1.
10

4
1.
25

4
1.
90

8
1.
34

4
1.
15

6
1.
90

8

O
E
S
97

0.
74

5
3.
31

0.
82

7
1.
13

1.
19

5
1.
21

7
1.
13

2.
02

8
1.
60

9
1.
39

2.
02

8

Sa
le
s

0.
79

2
1.
32

1.
00

6
0.
78

3
0.
83

3
0.
85

0.
80

4
1.
04

7
0.
94

8
0.
89

4
0.
97

2

PP
M
I

0.
38

3
0.
61

4
0.
51

7
0.
53

1
0.
53

5
0.
53

8
0.
52

5
0.
56

3
0.
54

9
0.
54

2
0.
57

4

Pr
es
pa

di
at
om

s
la
ke

to
p
10

0.
22

6
1.
99

1.
41

9
1.
01

8
1.
16

7
1.
35

6
1.
09

5
1.
65

1
1.
54

8
1.
48

9
1.
57

R
F
1

1.
08

5
0.
76

3
0.
64

8
0.
53

9
0.
56

3
0.
6

0.
53

8
0.
76

5
0.
66

1
0.
64

3
0.
62

3

R
F
2

1.
21

9
0.
60

5
0.
57

2
0.
51

0.
51

6
0.
55

6
0.
56

6
0.
55

4
0.
54

1
0.
58

1
0.
60

1

SC
M

1D
0.
68

1
5.
23

5
1.
41

5
1.
25

6
1.
39

1.
43

2
1.
25

6
2.
44

3
1.
83

6
1.
58

5
2.
44

3

SC
M

20
D

0.
59

5
4.
43

9
1.
52

4
1.
38

7
1.
46

9
1.
50

3
1.
38

7
2.
24

2
1.
80

7
1.
62

3
2.
24

2

So
il
re
si
lie

nc
e

0.
21

7
1.
3

0.
90

8
0.
80

2
0.
86

6
0.
85

0.
84

1.
10

6
0.
97

7
0.
89

1.
01

8

V
eg
et
at
io
n
co
nd

iti
on

0.
07

5
4.
32

1
1.
93

5
1.
16

6
1.
61

6
1.
88

6
1.
42

1
3.
14

3
2.
45

1
2.
10

8
2.
73

9

V
eg
et
at
io
n
cl
us
te
ri
ng

0.
08

5
2.
56

2
1.
78

5
1.
29

3
1.
55

8
1.
73

1.
40

4
2.
15

9
1.
95

3
1.
83

9
2.
07

1

W
at
er

qu
al
ity

0.
01

8
2.
55

8
1.
32

5
0.
98

1
1.
12

4
1.
24

1
0.
98

1
1.
78

5
1.
55

5
1.
39

1.
78

5

M
T
R
T
re
pr
es
en
ts
m
ul
ti-
ta
rg
et
PC

T
s.
E
T-
ST

re
pr
es
en
ts
en
se
m
bl
es

of
si
ng
le
-t
ar
ge
tr
eg
re
ss
io
n
tr
ee
s.
E
T
ar
e
or
ig
in
al
ex
tr
a
tr
ee

en
se
m
bl
es
.E

T-
R
O
S
ar
e
th
e
R
O
S
va
ri
an
ts
.E

ns
em

bl
es

co
nt
ai
n
10
0
tr
ee
s
(S
T
en
se
m
bl
es

co
nt
ai
n
10
0
tr
ee
s/
ta
rg
et
)

123

1706 Machine Learning (2018) 107:1673–1709

Appendix C: Performance results compared to other output space trans-
formationmethods

This section includes the results of the comparison of the performance ofROS ensembleswith
the performance of three competing methods: two variants of Random projections method
which were proposed by Joly (2017) and RLC ensembles, proposed by Tsoumakas et al.
(2014). The predictive performance is measured in terms of aRRMSE.

Method parameters All ensembles contain 100 base models. ROS ensembles were
parametrized as described in Sect. 5.2. Random projections variants (RP-RF, RP-ET) use
m = log(|T |) components in the projected output space where T is the set of target attributes.
In addition, Rademacher random projections were used for output space transformations.
RP-RF used k = sqrt(|X |) randomly chosen input features to calculate splits where X is
the set of all input features. RP-ET used k = |X |. Minimal number of allowed instances in
a leaf node was set to 1 for both variants. The code for both variants of Random projections
is available at https://github.com/arjoly/random-output-trees. RLC was parametrized to use
gradient boosting with 4-terminal node regression tree as the base regressor with learning
rate of 0.1 and 100 boosting iterations. Number of targets that participate in the random linear
combinations was set to k = 2. RLC is implemented as part of the MULAN library, available
at http://mulan.sourceforge.net (Table 11).

Table 11 Predictive performance of ROS ensembles, ensembles of Random projections variants (RP-RF,
RP-ET) and RLC ensembles in terms of aRRMSE. Lower values mean better performance

Dataset RP-RF RP-ET RLC Bag-ROS RF-ROS ET-ROS

ADNI 0.941 0.936 0.94 0.923 0.918 0.916

ATP 1D 0.435 0.427 0.415 0.38 0.412 0.374

ATP 7D 0.413 0.326 0.358 0.467 0.517 0.436

Forestry Kras 0.558 0.583 0.629 0.548 0.546 0.557

OES 10 0.468 0.467 0.447 0.527 0.518 0.496

OES 97 0.535 0.513 0.513 0.572 0.528 0.518

Sales 0.646 0.647 0.707 0.69 0.733 0.698

PPMI 0.73 0.757 0.767 0.739 0.75 0.746

Prespa diatoms lake top 10 0.831 0.827 0.811 0.937 0.939 0.928

RF 1 0.14 0.136 0.238 0.145 0.152 0.147

RF 2 0.145 0.151 0.241 0.147 0.168 0.153

SCM 1D 0.311 0.285 0.376 0.305 0.31 0.281

SCM 20D 0.366 0.324 0.595 0.354 0.379 0.316

Soil resilience 0.847 0.845 0.761 0.872 0.872 0.873

Vegetation condition 0.605 0.603 0.647 0.603 0.603 0.599

Vegetation clustering 0.702 0.702 0.79 0.699 0.703 0.696

Water quality 0.902 0.901 0.91 0.899 0.899 0.894

Win count 3 3 4 0 1 7

Bold values indicate the best performing method on a given dataset

123

https://github.com/arjoly/random-output-trees
http://mulan.sourceforge.net

Machine Learning (2018) 107:1673–1709 1707

References

Abraham, Z., Tan, P. N., Winkler, J., Zhong, S., Liszewska, M., et al. (2013). Position preserving multi-output
prediction. In Joint European conference on machine learning and knowledge discovery in databases
(pp. 320–335), Springer.

Aho, T., Ženko, B., Džeroski, S., & Elomaa, T. (2012). Multi-target regression with rule ensembles. Journal
of Machine Learning Research, 13, 2367–2407.

Alvarez, M. A., Rosasco, L., Lawrence, N. D., et al. (2012). Kernels for vector-valued functions: A review.
Foundations and Trends® in Machine Learning, 4(3), 195–266.

Appice, A., & Džeroski, S. (2007). Stepwise induction of multi-target model trees. In Machine Learning:
ECML 2007, LNCS (Vol. 4701, pp. 502–509). Springer.

Appice, A., & Malerba, D. (2014). Leveraging the power of local spatial autocorrelation in geophysical
interpolative clustering. Data Mining and Knowledge Discovery, 28(5–6), 1266–1313.

Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging, boost-
ing, and variants.Machine Learning, 36(1), 105–139.

Blockeel, H. (1998). Top-down induction of first order logical decision trees. Ph.D. thesis, Katholieke Uni-
versiteit Leuven, Leuven, Belgium.

Blockeel, H., Džeroski, S., & Grbović, J. (1999). Simultaneous prediction of multiple chemical parameters of
river water quality with TILDE. In Proceedings of the 3rd European conference on PKDD—LNAI (Vol.
1704, pp. 32–40). Springer.

Blockeel, H., Raedt, L. D., & Ramon, J. (1998). Top-down induction of clustering trees. In Proceedings of the
15th international conference on machine learning (pp. 55–63), Morgan Kaufmann.

Blockeel, H., & Struyf, J. (2002). Efficient algorithms for decision tree cross-validation. Journal of Machine
Learning Research, 3, 621–650.

Borchani, H., Varando, G., Bielza, C., & Larrañaga, P. (2015). A survey on multi-output regression. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 5(5), 216–233.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Breiman, L., & Friedman, J. (1997). Predicting multivariate responses in multiple linear regression. Journal

of the Royal Statistical Society: Series B (Statistical Methodology), 59(1), 3–54.
Debeljak, M., Kocev, D., Towers, W., Jones, M., Griffiths, B., & Hallett, P. (2009). Potential of multi-objective

models for risk-basedmapping of the resilience characteristics of soils: Demonstration at a national level.
Soil Use and Management, 25(1), 66–77.

Deger, F., Mansouri, A., Pedersen, M., Hardeberg, J. Y., & Voisin, Y. (2012). Multi-and single-output support
vector regression for spectral reflectance recovery. In 2012 eighth international conference on signal
image technology and internet based systems (SITIS) (pp. 805–810). IEEE.

Demšar, D., Džeroski, S., Larsen, T., Struyf, J., Axelsen, J., Bruns-Pedersen, M., et al. (2006). Using multi-
objective classification to model communities of soil. Ecological Modelling, 191(1), 131–143.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning
Research, 7, 1–30.

Dunn, O. J. (1961). Multiple comparisons among means. Journal of the American Statistical Association,
56(293), 52–64.

Džeroski, S., Demšar, D., & Grbović, J. (2000). Predicting chemical parameters of river water quality from
bioindicator data. Applied Intelligence, 13(1), 7–17.

Džeroski, S., Kobler, A., Gjorgjioski, V., & Panov, P. (2006). Using decision trees to predict forest stand height
and canopy cover from LANSAT and LIDAR data. In Managing environmental knowledge: EnviroInfo
2006: Proceedings of the 20th international conference on informatics for environmental protection (pp.
125–133). Aachen: Shaker Verlag.

Džeroski, S. (2007). Towards a general framework for data mining (pp. 259–300). Berlin: Springer. https://
doi.org/10.1007/978-3-540-75549-4_16.

Friedman, M. (1940). A comparison of alternative tests of significance for the problem of m rankings. Annals
of Mathematical Statistics, 11, 86–92.

Gamberger, D., Ženko, B., Mitelpunkt, A., Shachar, N., & Lavrač, N. (2016). Clusters of male and female
alzheimers disease patients in the Alzheimers disease neuroimaging initiative (ADNI) database. Brain
Informatics, 3(3), 169–179.

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 63(1), 3–42.
Gjorgjioski, V., Džeroski, S., & White, M. (2008). Clustering analysis of vegetation data. Technical report

10065, Jožef Stefan Institute.
Han, Z., Liu, Y., Zhao, J., & Wang, W. (2012). Real time prediction for converter gas tank levels based on

multi-output least square support vector regressor. Control Engineering Practice, 20(12), 1400–1409.

123

https://doi.org/10.1007/978-3-540-75549-4_16
https://doi.org/10.1007/978-3-540-75549-4_16

1708 Machine Learning (2018) 107:1673–1709

Ikonomovska, E., Gama, J., & Džeroski, S. (2011). Incremental multi-target model trees for data streams. In
Proceedings of the 2011 ACM symposium on applied computing (pp. 988–993). ACM.

Iman, R. L., & Davenport, J. M. (1980). Approximations of the critical region of the Friedman statistic.
Communications in Statistics: Theory and Methods, 9(6), 571–595.

Izenman, A. J. (1975). Reduced-rank regression for the multivariate linear model. Journal of multivariate
analysis, 5(2), 248–264.

Jančič, S., Frisvad, J. C., Kocev, D., Gostinčar, C., Džeroski, S., & Gunde-Cimerman, N. (2016). Production
of secondary metabolites in extreme environments: Food- and airborne Wallemia spp. produce toxic
metabolites at hypersaline conditions. PLoS ONE, 11(12), e0169116.

Joly, A. (2017). Exploiting random projections and sparsity with random forests and gradient boosting
methods—Application to multi-label and multi-output learning, random forest model compression and
leveraging input sparsity. arXiv preprint arXiv:1704.08067

Joly, A., Geurts, P., Wehenkel, L. (2014). Random forests with random projections of the output space for high
dimensional multi-label classification. In Joint European conference onmachine learning and knowledge
discovery in databases (pp. 607–622). Springer.

Kaggle. (2008). Kaggle competition: Online product sales. https://www.kaggle.com/c/online-sales/data.
Accessed July 19, 2017.

Kocev, D. (2011). Ensembles for predicting structured outputs. Ph.D. thesis, Jožef Stefan International Post-
graduate School, Ljubljana, Slovenia.

Kocev, D., & Ceci, M. (2015). Ensembles of extremely randomized trees for multi-target regression. In
Discovery science: 18th international conference (DS 2015), LNCS, (Vol. 9356, pp. 86–100).

Kocev,D.,Džeroski, S.,White,M.,Newell, G.,&Griffioen, P. (2009).Using single- andmulti-target regression
trees and ensembles to model a compound index of vegetation condition. Ecological Modelling, 220(8),
1159–1168.

Kocev, D., Naumoski, A., Mitreski, K., Krstić, S., & Džeroski, S. (2010). Learning habitat models for the
diatom community in Lake Prespa. Ecological Modelling, 221(2), 330–337.

Kocev, D., Vens, C., Struyf, J., & Džeroski, S. (2007). Ensembles of multi-objective decision trees. In ECML
’07: Proceedings of the 18thEuropean conference onmachine learning—LNCS (Vol. 4701, pp. 624–631).
Springer.

Kocev, D., Vens, C., Struyf, J., &Džeroski, S. (2013). Tree ensembles for predicting structured outputs.Pattern
Recognition, 46(3), 817–833.

Kriegel, H. P., Borgwardt, K., Kröger, P., Pryakhin, A., Schubert, M., & Zimek, A. (2007). Future trends in
data mining. Data Mining and Knowledge Discovery, 15, 87–97.

Levatić, J., Ceci, M., Kocev, D., & Džeroski, S. (2014). Semi-supervised learning for multi-target regression.
In International workshop on new frontiers in mining complex patterns (pp. 3–18). Springer.

Madjarov, G., Gjorgjevikj, D., Dimitrovski, I., & Džeroski, S. (2016). The use of data-derived label hierarchies
in multi-label classification. Journal of Intelligent Information Systems, 47(1), 57–90.

Marek, K., Jennings, D., Lasch, S., Siderowf, A., Tanner, C., Simuni, T., et al. (2011). The Parkinson Progres-
sion Marker Initiative (PPMI). Progress in Neurobiology, 95(4), 629–635.

Micchelli, C. A., & Pontil, M. (2004). Kernels for multi-task learning. In Advances in neural information
processing systems 17—Proceedings of the 2004 conference (pp. 921–928).

Nemenyi, P. B. (1963). Distribution-free multiple comparisons. Ph.D. thesis, Princeton University, Princeton,
NY, USA.

Panov, P., Soldatova, L. N., & Džeroski, S. (2016). Generic ontology of datatypes. Information Sciences, 329,
900–920.

Slavkov, I., Gjorgjioski, V., Struyf, J., & Džeroski, S. (2010). Finding explained groups of time-course gene
expression profiles with predictive clustering trees. Molecular BioSystems, 6(4), 729–740.

Spyromitros-Xioufis, E., Tsoumakas, G., Groves, W., & Vlahavas, I. (2016). Multi-target regression via input
space expansion: Treating targets as inputs. Machine Learning, 104(1), 55–98.

Stojanova, D., Ceci, M., Appice, A., & Džeroski, S. (2012). Network regression with predictive clustering
trees. In Data mining and knowledge discovery (pp. 1–36).

Stojanova, D., Panov, P., Gjorgjioski, V., Kobler, A., & Džeroski, S. (2010). Estimating vegetation height and
canopy cover from remotely sensed data with machine learning. Ecological Informatics, 5(4), 256–266.

Struyf, J., &Džeroski, S. (2006). Constraint based induction ofmulti-objective regression trees. InProceedings
of the 4th international workshop on knowledge discovery in inductive databases KDID—LNCS (Vol.
3933, pp. 222–233). Springer.

Szymański, P., Kajdanowicz, T., & Kersting, K. (2016). How is a data-driven approach better than random
choice in label space division for multi-label classification? Entropy, 18(8), 282.

123

http://arxiv.org/abs/1704.08067
https://www.kaggle.com/c/online-sales/data

Machine Learning (2018) 107:1673–1709 1709

Tsoumakas,G., Spyromitros-Xioufis, E.,Vrekou,A.,&Vlahavas, I. (2014).Multi-target regression via random
linear target combinations. In Machine learning and knowledge discovery in databases: ECML-PKDD
2014, LNCS (Vol. 8726, pp. 225–240).

Tsoumakas, G., & Vlahavas, I. (2007). Random k-labelsets: An ensemble method for multilabel classification.
In Proceedings of the 18th European conference on machine learning (pp. 406–417).

Vens, C., Struyf, J., Schietgat, L., Džeroski, S., & Blockeel, H. (2008). Decision trees for hierarchical multi-
label classification. Machine Learning, 73(2), 185–214.

Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools and techniques. Los Altos:
Morgan Kaufmann.

Xu, S., An, X., Qiao, X., Zhu, L., & Li, L. (2013). Multi-output least-squares support vector regression
machines. Pattern Recognition Letters, 34(9), 1078–1084.

Yang, Q., & Wu, X. (2006). 10 challenging problems in data mining research. International Journal of Infor-
mation Technology & Decision Making, 5(4), 597–604.

Ženko, B. (2007). Learning predictive clustering rules. Ph.D. thesis, Faculty of Computer Science, University
of Ljubljana, Ljubljana, Slovenia.

Zhang, W., Liu, X., Ding, Y., & Shi, D. (2012). Multi-output LS-SVR machine in extended feature space.
In 2012 IEEE international conference on computational intelligence for measurement systems and
applications (CIMSA) (pp. 130–134). IEEE.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

123

	Ensembles for multi-target regression with random output selections
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Task definition
	2.2 Related work

	3 Ensembles for multi-target regression with random output selections
	3.1 Predictive clustering
	3.2 Learning a single PCT
	3.3 Ensembles with ROS
	3.3.1 Generating output space partitions
	3.3.2 Building the ensembles
	3.3.3 Making predictions

	3.4 Computational complexity analysis

	4 Experimental design
	4.1 Experimental questions
	4.2 Evaluation measures
	4.3 Data description
	4.4 Experimental setup

	5 Results and discussion
	5.1 Ensemble convergence
	5.2 ROS parameter selection
	5.3 Predictive performance and computational efficiency
	5.4 Comparison with other output space transformation methods
	5.5 Summary of the results

	6 Conclusions
	Acknowledgements
	Appendix A: Average rank diagrams for ROS variants
	A.1 Bag-ROS variants saturation
	A.2 RF-ROS variants saturation
	A.3 ET-ROS variants saturation

	Appendix B: Performance results
	Appendix C: Performance results compared to other output space transformation methods
	References

