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Polder lakes in Flanders are stagnant waters that were flooded by the sea in the past. Several of these
systems are colonized by exotic species, but have hardly been studied until present. The aim of the present
study was: (1) to assess the influence of exotic macrobenthic species on the outcome of the Multimetric
Macroinvertebrate Index Flanders (MMIF) and (2) to use classification trees for evaluating to what extent
physical-chemical characteristics affect the presence of exotic species.

In total, 27 mollusc and 10 macro-crustacean species were present in the monitored lakes of which
respectively five and four were exotic. The exclusion of the exotic species from the MMIF resulted in a
significant decline of this ecological index (—0.03 +0.04; p =0.00). This elimination often resulted into a
lower ecological water quality class and more samples were classified into the bad and poor ecological
water quality classes.

Single-target classification trees for Gammarus tigrinus and Potamopyrgus antipodarum were con-
structed, relating environmental parameters and ecological status (MMIF) to the occurrence of both
exotic invasive species. The major advantages of using single-target classification trees are the trans-
parency of the rule sets and the possibility to use relatively small datasets. However, this classification
technique only predicts a single-target attribute and the trees of the different species are often hard
to integrate and use for water managers. As a solution, a multi-target approach was used in the present
study. Exotic molluscs and crustaceans communities were modelled based on environmental parameters
and the ecological status (MMIF) using multi-target classification trees. Multi-target classification trees
can be used in management planning and investment decisions as they can lead to integrated decisions
for the whole set of exotic species and avoid the construction of many models for each individual species.
These trees provide general insights concerning the occurrence patterns of individual crustaceans and
molluscs in an integrated way.

Keywords:

Brackish water
Classification tree
Ecological assessment
Gammarus tigrinus

Exotic species
Potamopyrgus antipodarum

© 2010 Elsevier B.V. All rights reserved.

1. Introduction robustness of the BBI with the versatility of multimetric indices,

was developed. This new index, calculated from the taxonomic

The European Water Framework Directive (WFD) forces EU
member states to determine the ecological status of water bodies
(EU, 2000). The goal of this directive is to ensure that the quality of
surface water and groundwater in Europe reaches a good ecological
status by the year 2015. The Flemish Environment Agency (VMM)
used the Belgian Biotic Index (BBI) for more than two decades to
monitor the ecological water quality of Flemish rivers (De Pauw
and Vanhooren, 1983). Despite the reliability and robustness of this
index, a number of technical shortcomings arose about the poten-
tial application of the BBI for WFD implementation, in particular
the index was not useful for stagnant waters (Gabriels et al., 2010).
Therefore, a new type-specific multimetric index, combining the
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composition and abundance of the macroinvertebrates, is called
the Multimetric Macroinvertebrate Index Flanders (MMIF) and is
currently used to assess the ecological water quality in Flanders
(Gabriels et al., 2010). The metrics comprised in the MMIF are taxa
richness, number of Ephemeroptera, Plecoptera and Trichoptera
(EPT), number of other (i.e. non-EPT) sensitive taxa, the Shannon-
Wiener diversity index and the mean tolerance score. For each type
of river and lake, a set of reference values for all five metrics was
determined (Gabriels et al., 2010). Based on the references, a scor-
ing system was developed for each metric consisting of threshold
values needed for assigning a score ranging from zero to four (four
being nearest to the reference conditions). To obtain the final index,
ranging from zero for a very poor ecological quality to one for a
very good ecological quality, the five metric scores are summed
and subsequently divided by 20. The range of the MMIF index can
be considered as an ecological quality ratio (EQR) because the max-
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imum MMIF value of 1 can only be obtained when all metric values
are near the type-specific reference value for that metric (Gabriels
etal., 2010). In order to meet the target of the WFD in 2015, aquatic
systems should have a MMIF-score of 0.6 or 0.7, depending on the
water type (Gabriels et al., 2010).

Macroinvertebrates are identified up to genus or family level
for the calculation of the MMIF. Because of this coarse taxonomic
identification level, shifts in species composition between native
and exotic species often remain hidden (Gabriels et al., 2005). The
introduction of exotic species might decrease the alpha diversity,
which can be masked due the identification level (Gabriels et al.,
2005). For example, the invader Dikerogammarus villosus might out-
compete native gammarids (Bij de Vaate et al., 2002; Boets et al.,
2010), but this will not influence the results of the index calcula-
tion at family level of a given sample, since Gammaridae are still
present and tolerance classes are defined at family or genus level.
Additionally, the inclusion of the exotic invasive species, such as
Corbicula, can lead to an increase of the ecological water quality
index depending on the tolerance class assigned to the invader.
Previous examples suggest that the use of a standard list of taxa,
where tolerance classes are assigned at specific taxonomic levels
(e.g.genus or family level), can result in altered assessment scores if
exotic species are present (Gabriels et al., 2005). Therefore, it is nec-
essary to examine the influence of exotic species on the ecological
assessment of aquatic ecosystems.

Freshwater exotic invasive species are an issue of growing
management concern (Vander Zanden and Olden, 2008). Invasive
species have one of the most harmful and least reversible impacts
on natural ecosystems as they may change the local fauna and flora
all around the world (Vitousek et al., 1996; Ricciardi and Maclsaac,
2000). Exotic invasive species may decrease the ecological qual-
ity through changes in biological, chemical and physical properties
of aquatic ecosystems (Olenin et al., 2007). These changes include:
elimination of sensitive or rare species; alteration of native commu-
nities; algal blooms; modification of substrate conditions and the
shore zones; alterations of oxygen and nutrient content, pH and
transparency of the water; accumulation of synthetic pollutants,
etc. (Olenin et al., 2007). For instance, Boets et al. (2009) indicated
that the exotic macro-crustacean Procambarus clarkii predates on
native benthic macroinvertebrates, spreads diseases and affects the
physical habitat via burrowing activities. Our research focussed on
exotic molluscs and macro-crustaceans, because these have prob-
ably the highest impact among all aquatic freshwater invaders in
Europe (Orendt et al., 2010).

Stimulated by the expansion of the global transport of goods
and people, the numbers and costs of exotic species are rising at an
alarming rate (Lovell and Stone, 2006). Exotic species may be unin-
tentionally imported by ships discharging their ballast water (Mills
etal., 1993; Lovell and Stone, 2006; Colautti et al., 2006). Leung et al.
(2006) found that recreational boaters between lakes are an impor-
tant pathway of overland dispersal of exotic species. Pathogens
and parasites have been introduced unintentionally into the USA
via infected stock for aquaculture farms (Naylor et al., 2001). Pol-
icy makers spend a lot of money trying to control or remove
invaders from our environment (Pimentel et al., 2000; Pimentel
et al., 2005). Many USA states have recently created exotic species
advisory councils that bring together regulators, researchers and
other stakeholders to address research, policy and management
needs (Lodge et al., 2006). However, managers lack predictive tools
to help them prioritise invasion threats and to help them decide
where they should allocate the limited resources for prevention
and mitigation most effectively (Ricciardi, 2003).

One of the methods applied by managers in the USA is the
national Gap Analysis Program (GAP). This method identifies ‘gaps’
in the network of conservation land and water areas (Scott et al.,
1993). The framework documents biogeographic information and

organizational cooperation in ways meaningful to their manage-
ment and can therefore be useful in the context of exotic species
(Jennings, 2000).

Other methods, such as data mining techniques, can be help-
ful because they allow accurate predictions of species preferences
and impacts. Classification trees can give insight in complex,
unbalanced, non-linear ecological data where commonly used
exploratory and statistical modelling techniques often fail to find
meaningful ecological patterns (De’ath and Fabricius, 2000). Clas-
sification trees have been applied in numerous ecological studies
(Dakou et al., 2007; Boets et al., 2010) and have proven to have a
high potential in macroinvertebrate habitat suitability analysis as
they combine reliable classifications with a transparent set of rules
(Hoang et al., 2009).

Classification trees are decision trees that predict the value of
a discrete-valued (nominal) target variable (Breiman et al., 1984).
Decision trees are hierarchical structures, where the internal nodes
contain tests on the input attributes. Each branch of an internal
test corresponds to an outcome of the test and the prediction for
the value of the target attribute is stored in a leaf. Each leaf of a
decision tree contains a prediction for the target variable. A single-
target approach learns a model for each target attribute separately,
whereas a multi-target approach builds one model for all target
attributes simultaneously (Kocev et al., 2009). Therefore, a single-
target approach can be used to predict the possible occurrence of
individual exotic species based on physical-chemical parameters,
while possible changes in species composition can be highlighted
using a multi-target approach.

Polder lakes, situated in the north of Flanders, are brackish, stag-
nant waters situated on the inland side of the dikes (Delaunois,
1982). They find their origin in history when, due to flooding by
the sea, dikes gave way and land was washed out. The salinity of
these lakes, determining the fauna and flora, depends on their age
and the possible influence of seepage water (van Puijenbroek et
al., 2004). The salinity of polder lakes in Flanders decreases from
north to south and from west to east (Delaunois, 1982). Many
of these shallow lakes are hypertrophic and dominated by algal
blooms. The eutrophication process became problematic in the
1950s due to run-off from agriculture and discharges from indus-
try and untreated household waste (van Puijenbroek et al., 2004).
In the mid-1980s, projects on lake restoration were started in the
Netherlands (Van Huet, 1992). In Flanders, apart from a study by
Dumont and Gysels (1971), little research has been carried out on
these aquatic systems.

The aims of the present paper were (1) to assess the influence of
exotic species on the MMIF and (2) to construct single- and multi-
target classification trees to predict the presence of exotic species
based on physical-chemical parameters and occurrence of other
species.

2. Materials and methods
2.1. Study area and data collection

The dataset contained 108 samples comprising biological and
physical-chemical information of 45 polder lakes (Fig. 1). The
polder lakes, all located in the Northern part of Flanders, can be
divided in three clusters. The first, most westerly oriented cluster
of lakes, is situated close to the city of Ostend, whereas the second,
most easterly oriented cluster, is located close to the river Scheldt
nearby the city of Antwerp. The remaining polder lakes, situated
between the first two clusters, are distributed along the Dutch bor-
der. Most polder lakes are exploited for recreational purposes: the
smaller polder lakes are frequently used for fishing, whereas the
bigger lakes are suitable for sailing and windsurfing.
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Fig. 1. Location of the monitored polder lakes (black dots) in Flanders.

Physical-chemical and biological data of 28 polder lakes from
the period 1992-2006 were provided by the Flemish Environment
Agency (VMM). In 2009, 17 additional polder lakes, which were not
monitored by the VMM, were sampled to enlarge the dataset. For
each location, physical-chemical variables were recorded (Table 1)
and a biological sample was taken. Conductivity (iS/cm), pH and
water temperature (T,°C) of the polder lakes were measured in
the field using a pH (Metrohm 826 pH mobile) and conductivity
meter (WTW Cond. 315i). The dissolved oxygen (DO, mg/L) con-
centration was measured in the field using an oxygen electrode
(WTW Oxi 330 oximeter). Chloride (Cl~, mg/L), nitrate (NO3 ~-N, mg
N/L) and orthophosphate (0PO43~-P, mg P/L) concentrations were
quantified in the laboratory by means of a spectrophotometer using
the standard kit Merck spectroquant. In analogy with Costil et al.
(2001) and because the VMM provided limited data about the salin-
ity of the polder lakes, the conductivity was used as an indicator for
salinity.

All biological samples were taken according to the procedure
described by Gabriels et al. (2010). Macroinvertebrates were sam-
pled using a standard handnet. This handnet consisted of a metal
frame of approximately 0.2 m by 0.3 m to which a conical net is
attached with a mesh size of minimum 300 and maximum 500 pwm.
The frame was attached to a 2m long shaft with two handles
enabling it to be handled in a similar way as a scythe. With the
handnet, all accessible aquatic habitats within a stretch of 10-20 m
were sampled. This included the bed substrate (stones, sand or
mud), macrophytes (floating, submerged, emerged), immersed
roots of overhanging trees and all other natural or artificial sub-
strates, floating or submerged in the water. Each aquatic habitat
was explored in order to collect the highest possible diversity of
macroinvertebrates. For this purpose, kicksampling was performed
by vertically positioning the handnet on the bed and turning over
bottom material located immediately upstream by foot or hand.
Sampling effort was proportionally distributed over all accessible
aquatic habitats during 5 min. Subsequently, the identification of
the organisms is carried out up to the taxonomic level as indi-
cated by Gabriels et al. (2010). In the interest of the research,
the collected molluscs and macro-crustaceans were identified up

Table 1

to species level. In this way, it was possible to distinguish exotic
species from native ones and to evaluate their impact on the
MMIF.

The type-specific MMIF was calculated twice for each sample.
During the index calculation, polder lakes were regarded as ‘very
slightly brackish lakes’ (code Bzl). First, the MMIF was calculated
for the whole (native +exotic species) biological sample. Second,
the MMIF was recalculated exclusively based on the native species
found in the sample. Both calculations were included in the final
dataset.

Seasonality may not be neglected when monitoring aquatic
ecosystems (Gabriels et al., 2010). Using a constraining time frame
for sampling may result in missing information on the overall com-
munity at a site (Linke et al., 1999), but it can be assumed that a
large timeframe is sufficient for water quality assessment purposes
(Gabriels et al., 2010). Constraining the sampling period to spring,
summer and autumn is recommended to avoid extreme hydro-
logical regimes and temperatures in winter and to minimize the
variability of the species detection efficiency among different sam-
pling campaigns. Therefore, all the biological samples were taken
in spring.

Biocontamination of sampling sites was assessed using the inte-
grated biocontamination index (IBCI) derived from two metrics:
abundance contamination index (ACI) and richness contamination
index (RCI) at ordinal rank (Arbaciauskas etal.,2008). The IBCI could
be used because multiple calculation of ACI and RCI were available
for the same ecosystem (i.e. samples were collected in polder lakes).
The IBCI was derived by averaging ACI and RCI per sampling year
and ranking IBCI based on the thresholds for the five classes of bio-
contamination. These classes range from O (‘no’ contamination) to 4
(‘severe’ contamination). The threshold for the lowest quality limit
(‘bad’ class) is based on the assumption that when exotic species
represent more than half the detected orders or when their abun-
dance exceeds 50% of the individuals, the community/assemblage
has developed as a consequence of the occurrence of exotic species
(Arbaciauskas et al., 2008).

The final dataset comprised per sample: (1) the sampling loca-
tion and year; (2) the presence/absence of different mollusc and

Observed physical-chemical characteristics in the Flemish polder lakes, based on 108 samples.

Variable Abbreviation Unit Minimum Maximum Mean Standard deviation
Chloride Cl- mg/L 4.5 1330.0 359.7 329.5
Conductivity - nS/cm 547 8700 2110 1483

Dissolved oxygen DO mg/L 1.44 25.30 8.33 4.63

Nitrate NO3;~-N mgN/L 0.08 9.82 1.64 2.03
Orthophosphate 0PO4>~-P mgP/L 0.04 4.00 0.70 0.80

pH - - 6.36 9.32 8.10 0.54

Water temperature T °C 6.4 26.9 16.4 4.1
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Table 2
Correlation coefficients between physical-chemical properties observed in the polder lakes.

Variable Cl- Conductivity DO NO3;~-N 0P043~-P pH T

Cl- -

Conductivity 0.772 -

DO 0.08 0.15 -

NO3~-N -0.13 -0.14 0.12 -

0PO43~-P 0.24 0.26 -0.42? -0.22 -

pH 0.22 0.292 0.66? -0.16 -0.25 -

T -0.332 -0.19 0.13 -0.332 —-0.392 0.11 -

2 Correlation is significant at the level 0.05.

macro-crustacean species; (3) the quantified physical-chemical
variables; (4) the IBCI and (5) the MMIF of the sample.

2.2. Statistical data processing

The data were first processed using the Statistical Package for
the Social Sciences 16.0 (SPSS, 2008). The statistical analyses with
SPSS were performed as follows:

e First, the relations between physical-chemical characteristics
were explored using the non-parametric Spearman correlation
coefficient (Table 2).

Second, the possible difference between the two ways of

calculating the MMIF was evaluated using a non-parametric

Kruskal-Wallis test.

e Third, species preferences concerning the physical-chemical con-
ditions of the polder lakes were visualised by Box-and-Whisker
plots. These plots were made in SPSS using default settings and
comprise upper, median and lower quartiles and upper and lower
fences (excluding outliers which were unusually distant from the
median).

2.3. Modelling field data

2.3.1. Construction of single-target classification trees

Classification trees are data driven methods that are particu-
larly useful to develop ecological models based on small datasets
(Goethals et al., 2007). The outcome is noteworthy for users, as
often relatively reliable models are generated in a very short cal-
culation time and the models are transparent and easy to interpret
(Hoangetal.,2009). Classification trees were built through applying
the Waikato Environment for Knowledge Analysis (WEKA; Witten
and Frank, 2005 version 3.6.1). Rules relating the presence/absence
of Hippeutis complanatus, Gammarus tigrinus and Potamopyrgus
antipodarum with physical-chemical conditions, sample character-
istics and the occurrence of other species were created by means
of single-target classification trees using the J48 algorithm (a Java
implementation of the C4.5 algorithm) (Witten and Frank, 2005).

2.3.2. Construction of multi-target classification trees

The simultaneous occurrence of exotic molluscs and macro-
crustaceans was predicted using multi-target classification trees.
We used the CLUS system for constructing multi-target decision
trees (Blockeel and Struyf, 2002). The resulting trees are an instan-
tiation of the predictive clustering trees (PCTs) framework (Blockeel
et al., 1998). In this framework, a tree is viewed as a hierarchy of
clusters: a node corresponds to a cluster. PCTs have been used to
handle different types of targets: multiple target variables, both
discrete and continuous (Struyf and DZeroski, 2006), time series
(DZeroski et al., 2007) and hierarchies of classes, with multiple
class-labels per example (Vens et al., 2008).

Multi-target classification trees generalize classification trees
for the prediction of several discrete-valued target attributes simul-
taneously (Blockeel et al., 1998; Struyf and DZeroski, 2006). The

leaves of a multi-target classification tree store a vector of class
values, instead of storing a single class value like single-target clas-
sification trees do. This means that each component of the vector
is a prediction for one of the target attributes.

Multi-target classification trees were constructed with a recur-
sive partitioning algorithm from a training set of records. This
algorithm is known as TDIDT (top-down induction of decision
trees) (Quinlan, 1986). The records include measured values of the
descriptive and the target attributes. The tests in the internal nodes
of the tree refer to the descriptive, while the predicted values in the
leaves refer to the target attributes.

The TDIDT algorithm starts by selecting a test for the root node.
Based on this test, the training set is partitioned into subsets accord-
ing to the test outcome. In the case of binary trees, the training set
is split into two subsets: one containing the records for which the
test succeeds (typically the left subtree) and the other contains the
records for which the test fails (typically the right subtree). This
procedure is recursively repeated to construct the subtrees. The
partitioning process stops when a stopping criterion is satisfied,
then the prediction vector is calculated and stored in a leaf. The
F-test stopping criterion has been used; a node was split if a statis-
tical F-test indicated a significant (at level 0.1) reduction of variance
inside the subsets.

One of the most important steps in the tree induction algorithm
is the test selection procedure. For each node a test is selected using
a heuristic function computed on the training data. The goal of
the heuristic is to guide the algorithm towards smaller trees with
good predictive performance. The performance of the produced
trees improved based on a heuristic function called SSreduction,
which reduced the variance between the observations and the cor-
responding predictions.

2.4. Evaluation of classification trees

Classification trees can be built using a relatively small dataset.
In such cases, when all available data should be used for training
and validating the model, cross-validation is useful (Goethals et
al., 2007). This technique estimates the generalization error of a
given model and uses all data to construct and test the model.
The stability of both types of classification trees was maximized
using a 10-fold cross-validation (Witten and Frank, 2005). In 10-
fold cross-validation, the original data are randomly partitioned
into 10 subsamples of approximately equal size. Of the 10 subsam-
ples, a single subsample is retained as the validation data for testing
the model, and the remaining nine subsamples are used as training
data. The cross-validation process is then repeated 10 times (the
folds), with each of the 10 subsamples used exactly once as the
validation data, and the results from the 10-folds are averaged to
produce a single estimation.

Several single- and multi-target classification trees were built
using multiple combinations of physical-chemical variables (CI—,
DO, NO3~-N, oPO43~-P, pH, T and conductivity), sample charac-
teristics and occurrence of other species. Combinations resulting
in sufficiently reliable models were selected based on the Cohen’s



2206 G. Everaert et al. / Ecological Modelling 222 (2011) 2202-2212

(a) 6000
5000 4
.
T 4000 - -
L2
4]
< 3000 4 .
= [ ] ®
‘g [
2 [
= 2000 J
2 ¢
S
B
1000 -
0 . S —
1995 1999 2003 2007
1.00 4 O]
(b) [ ] e [ ]
° eeee
y N .
3 0.80 4 e eoecoe
= . eee
° e oo o
s ee o o
S, 0604 ® e ecee o
55 @ e esecece
Z73E {e & o0
= . . eee o o
g 0.40 4 e o °
= L[] e e [ W ]
2 °
5 . seoe
E 0.20 4 .
= ®
=
0.00 ——T———T—TT—T
1991 1995 1999 2003 2007

Fig. 2. Evolution of the yearly average conductivity (a) and the ecological status
quantified by the Multimetric Macroinvertebrate Index Flanders (MMIF) (b) of the
polder lakes between 1992 and 2009.

kappa statistic («) (Cohen, 1960) and the percentage of correctly
classified instances (CCI). CCI is calculated as the percentage of
the true positive and true negative predictions. However, CCI is
affected by the prevalence of the taxon being modelled (Fielding
and Bell, 1997; Manel et al., 2001). Various authors prefer the use
of k because it is more reliable than CCI. k measures the proportion
of all possible cases of the presence or absence that are predicted
correctly by a model after accounting for chance predictions
(Hoang et al., 2009). Models with CCI higher than 70% and « higher
than 0.4 were considered reliable (D’heygere et al., 2006; Dakou
et al., 2007; Gabriels et al., 2007; Goethals et al., 2007). However,
Sim and Wright (2005) suggest that the use of a confidence
interval around the sample estimate of « is better than focussing
on the 0.4 threshold. Earlier, Landis and Koch (1977) attempted
to indicate the degree of agreement that exists when the Cohen’s
kappa is found to be in various ranges: <0 (poor); 0-0.2 (slight);
0.2-0.4 (fair); 0.4-0.6 (moderate); 0.6-0.8 (substantial) and 0.8-1
(almost perfect).

3. Results
3.1. Environmental variables

The conductivity of the polder lakes, used as an indica-
tor for their salinity, fluctuated between 1996 and 2009. The
evolution of the yearly mean conductivity of the polder lakes
is illustrated in Fig. 2a. The conductivity was positively cor-
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Fig. 3. Multimetric Macroinvertebrate Index Flanders (MMIF) (as described by
Gabriels et al. (2010)) plotted versus the MMIF calculated after exclusion of exotic
species (a) and Multimetric Macroinvertebrate Index Flanders (MMIF) ecological
water quality classes including exotic species (black) and excluding exotic species
(white) (b).

related with pH (r=0.29; p=0.004) and chloride concentration
(r=0.77; p=0.000), whereas the oxygen concentration was pos-
itively correlated with pH (r=0.66; p=0.000) and negatively
correlated with the orthophosphate concentration (r=-0.42;
p=0.002). The water temperature was negatively correlated with
the chloride concentration (r=-0.33; p=0.011), the nitrate concen-
tration (r=-0.33; p=0.008) and the orthophosphate concentration
(r=-0.39; p=0.004) (Table 2).

3.2. Identified macroinvertebrates

In total, 27 mollusc species were found, of which five exotic
species: P. antipodarum, Physella (Costatella) acuta, Ferrissia (Pet-
tancylus) clessiniana, Lithoglyphus naticoides and Cerastoderma
glaucum. Ten macro-crustaceans were found four of which are
exotic species: G. tigrinus, Proasellus coxalis, Proasellus meridianus
and Crangonyx pseudogracilis. The most frequently found invaders
were P. acuta (found in 66% of the samples), G. tigrinus (59%)
and P. antipodarum (48%). The most frequently found native mol-
lusc species were Radix ovata (55%), Gyraulus (Armiger) crista
(33%), Bithynia tentaculata (31%), Bithynia leachii (27%) and Valvata
piscinalis (27%). The most regularly encountered native macro-
crustaceans were Asellus aquaticus (50%), Palaemonetes varians
(24%) and Neomysis integer (19%).
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3.3. Influence of exotic species on the ecological status of the
polder lakes

In Flanders, the ecological water quality is evaluated based on
the MMIF. From the years 1992 to 2006, the mean ecological quality
ofthe polder lakes increased significantly from 0.42 t0 0.72 (r=0.31;
p=0.00) (Fig. 2b). Between 1992 and 2009, the IBCI of the polder
lakes fluctuated between high and severe biocontamination, but no
trend could be derived from the data.

Although the exclusion of invaders resulted in a significant drop
in MMIF (p = 0.02), the index increased for two samples when exotic
species were excluded from the calculation (Fig. 3a). The differ-
ence between the two ways of calculation varied from —0.15 to
+0.05, with the mean difference being —0.03 + 0.04. The number of
samples classified in the moderate, good and high biological water
quality categories decreased when exotic species were excluded
from the calculation, while more samples were categorized in the
bad and poor classes (Fig. 3b).
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Hippeutis complanatus present

Hippeutis complanatus absent

Hippeutis complanatus present

(b)
Sampling year < 1996

Yes

Gammarustigrinus absent

No

@vity <1233 puS/cm
Yes No

Gammarustigrinus present

Gammarustigrinus absent

Gammarustigrinus present

Fig. 5. Single-target classification trees predicting the occurrence of Hippeutis complanatus (a) and Gammarus tigrinus (b).

3.4. Single-species prediction

Classification trees were build using several combinations
of input variables. According to this method, conductivity was
the only environmental variable containing valuable information
for predicting the occurrence of exotic molluscs and macro-
crustaceans. The other physical-chemical variables like CI~, DO,
NO3~-N, oP0O,43~-P, pH and T were not selected by the algorithms.
Apart from the conductivity, inclusion of information about the
MMIF of the sample, sampling year and presence of other species
in the sample, resulted in reliable models.

Native species like B. leachii and H. complanatus typically occur
in freshwater (Fig. 4a). Based on a single-target classification tree,
the MMIF had to reach at least a value of 0.75 for the presence of
B. leachii (CCI=87%; x =0.6), which is also reflected in the Box-and-
Whisker plot (Fig. 4b). Similarly, H. complanatus was absent as long
as the MMIF did not reach 0.6, while in waters with a score above
0.9 it was present in all seven cases (Fig. 5a). The occurrence of this
mollusc in the range between 0.6 and 0.9 depended upon the pres-
ence of P. acuta: if this exoticinvasive species lived in the considered
polder lakes, H. complanatus was absent (CCl =84%; k=0.5).

The occurrence of two dominant exotic species, G. tigrinus and
P. antipodarum, was predicted. Predicting the possible occurrence
of G. tigrinus was interesting due to its invasive behavior. Based on

the year of sampling, the conductivity and the MMIF of the sam-
pling site, it was possible to predict the occurrence of G. tigrinus
by means of a single-target classification tree (Fig. 5b) with a fair
reliability (CCI=71%; « = 0.4). The root of this classification tree con-
firms that the invader remained absent in the polder lakes until
1997. The second division was based on the conductivity of the
polder lakes.

The occurrence of P. antipodarum was predicted with moderate
reliability using the presence of P. acuta. If P. acuta was found, P.
antipodarum was also predicted as present (CCl=69%; k =0.4).

3.5. Multi-target analysis of the exotic subgroup

From our dataset, two multi-target trees predicting the exotic
macro-crustacean and mollusc communities were developed
(Fig. 6a and b). The leaves of the resulting trees represent the prob-
ability of occurrence of the selected species. An exotic species was
predicted as present if the probability of occurrence was greater
than 50%, these species are indicated in bold. The tree predicting the
exotic macro-crustacean community had the following reliabilities
per species: C. pseudogracilis (CCl=98%, x = 0), G. tigrinus (CCl=64%,
k=0.2), P. meridianus (CCI=91%, k =0), P. coxalis (CCI=86%, k=0).
The model predicting the mollusc invaders had subsequent per-
formances per species: C. glaucum (CCI=99%, k=0), F. clessiniana
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Sampling year < 1996

2209

Cp 3%) Cp (0%%) Cp (0%) Cp (2%)
Gt (5%) Gt (67%) Gt (0%) Gt (80%0)
Pm (5%) Pm (18%) Pm (0%6) Pm (8%6)
Pc(26%) Pc (31%) Pc (0%) Pc(5%)
(b)
Conductivity < 1541 uS/cm
Cg (2%)
Fc(8%%)
Ln (2%)
Pac (57%) Cg (0%0) Cg (0%%)
Pan (32%9) Fc(0%) Fc(0%)
Ln (0%) Ln (0%)
Pac(26%0) Pac (83%)
Pan (3%0) Pan (73%)

Fig. 6. Multi-target classification tree predicting the macro-crustaceans community (a) and the mollusc community (b). The probability of occurrence is indicated per species
between brackets. Cp = Crangonyx pseudogracilis, Gt = Gammarus tigrinus, Pm = Proasellus meridianus, Pc = Proasellus coxalis, Cg = Cerastoderma glaucum, Fc = Ferrissia clessiniana,

Ln = Lithoglyphus naticoides, Pac = Physella acuta, Pan = Potamopyrgus antipodarum.

(CCI=98%, k=0), L. naticoides (CCI=96%, x=0), P. acuta (CCI=69%,
k=0.3), P. antipodarum (CCl=74%, k =0.5).

4. Discussion

Between 1992 and 2006, the overall ecological water quality
of the polder lakes changed from moderate (0.50 < MMIF < 0.69) to
good (0.70 < MMIF < 0.89). During this period, a new exotic species
appeared in the polder lakes. G. tigrinus was first found in Flemish
waters in the year 1991 (Messiaen et al., 2010), but identification
of the samples taken in the polder lakes revealed that G. tigrinus
occurred in the polder lakes since 1997. Although species belonging
to the genus Gammarus were originally evaluated as quite sensitive
to pollution in our region (De Pauw and Vanhooren, 1983), Koop
and Grieshaber (2000), Normant et al. (2007) and Wijnhoven et al.
(2003) concluded that G. tigrinus was more tolerant to fluctuations
in abiotic conditions than native Gammarus species. More gener-
ally, Devin and Beisel (2007) and Karatayev et al. (2009) found that
invaders can generally live and reproduce in a wider range of envi-
ronmental conditions than native species. Although it is generally
accepted that exotic species can have direct and indirect negative
effects on ecosystems (Olenin et al., 2007; Boets et al., 2009) and
that they are more tolerant towards pollution than native species
(Wijnhoven et al., 2003, Devin and Beisel, 2007 and Normant et
al., 2007), in the MMIF calculation they are still evaluated in the
same way as native species are. Therefore the increase of the MMIF

between 1992 and 2006 can be related to the colonization of the
lakes with exotic species.

Most ecological indices have difficulties dealing with exotic
species, mainly due to the level of identification and the fixed
species list. Excluding exotic species from the ecological water
quality assessment (MMIF) resulted in a significant decline of the
ecological index, which often resulted in a lower ecological water
quality class. One of the reasons for this is that the MMIF does not
explicitly attribute a negative role and scoring to exotic species, but
assumes that negative impacts are indirectly reflected by changes
in the community metrics. Indices like the MMIF that are based on
coarse identification levels assume that all species within a given
taxon have a similar sensitivity towards pollution, so the tolerance
classes are assigned to all species that belong to the corresponding
taxa. Gabriels et al. (2005) found a similar drop of the ecological
water quality, based on the BBI, after the exclusion of the exotic
invasive mollusc Dreissena polymorpha: the index reduced in 23.8%
of the cases after recalculation. As a solution, tolerance classes
should be revised if new exotic species are identified (MacNeil and
Briffa, 2009). Similarly, Walley and Hawkes (1996) suggested that
the Biological Monitoring Working Party score (BMWP) for Gam-
maridae should be downgraded from 6 to 4, due to the presence
of pollution-tolerant exotic invasive amphipods such as G. tigrinus
(Karatayev et al., 2009).

It is clear that invaders should be more carefully considered in
ecological water quality assessment because of their influence on
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the ecological water quality evaluation. In this context, it should be
noted that different countries have dissimilar approaches to eco-
logical assessment of surface waters. In the Netherlands, where
ecological assessment is based on species-level identifications,
exotic species are excluded from the assessment scoring sys-
tems (Orendt et al., 2010). However, several researchers consider
exotic species as an integral part of the aquatic species community
(Gabriels et al., 2005; Cardoso and Free, 2008; Arndt et al., 2009;
MacNeil and Briffa, 2009). In Germany, the German Saprobic Index
(GSI), used to reflect the organic impact from wastewaters, is also
based on species-level data. For a large majority of the sites, exotic
species were so dominant that eventual differences in GSI often
remained hidden (Arndt et al., 2009). As a solution, an additional
metric was defined evaluating the native species composition in
relation to the dominance of invaders (Arndt et al., 2009). An exam-
ple of such kind of metric is the IBCI described by Arbaciauskas et
al. (2008) and is used for a similar analysis by MacNeil et al. (2010).
Starting from the relative abundance of exotic species within a
community and the proportion of exotic species within a commu-
nity at ordinal taxonomic rank the authors developed an index to
measure the biocontamination of aquatic communities. Calculat-
ing the IBCI for the different samples originating from the polder
lakes revealed that the index remained relatively constant between
1992 and 2006: the polder lakes are always evaluated as highly or
severely biocontaminated. With the arrival of G. tigrinus in the year
1997, the IBCI did not change significantly. This can be explained
by the fact that the dominant exotic molluscs P. acuta and P. antipo-
darum have been abundant in the polder lakes for decades, which
resulted in a high IBCI since the start of the monitoring.

Most polder lakes are connected through small watercourses
(Delaunois, 1982) so discharges of ballast water from ships in
nearby harbours can be an important vector for invaders (Lovell
and Stone, 2006). Additionally, due to fish stockings, exotic species
are probably unintentionally spread by fisherman (Naylor et al.,
2001). Other possible vectors such as recreational activities (water
sports or boat trips) should be followed up, because some invaders
can disperse through surfboards and boats (Leung et al., 2006). In
this context classification trees can be applied to identify polder
lakes where the physical-chemical conditions are favourable for
invaders. Suitable lakes that remained free of exotic species should
be protected.

Classification trees relate species occurrences with environmen-
tal variables and/or occurrences of other species. Illustratively, a
model was shown predicting the presence of H. complanatus. The
occurrence of this native species depended upon the occurrence
of P. acuta. Both species occupy the same type of water and can
therefore compete (Gittenberger et al., 1998). This type of single-
target classification tree can also be used to predict the occurrence
of exotic species. The constructed single-target model predicting
the occurrence of G. tigrinus confirms what is generally known
about this species in Flanders. The first observation of G. tigrinus
in Flanders was in 1991 (Messiaen et al., 2010), but currently it is
spread all over Flanders (Boets et al., unpublished data). The first
specimen of G. tigrinus in the polder lakes was found in a sam-
ple from 1997, but currently, it is a common species in Flemish
polder lakes. This information is clearly reflected in the root of
the model. Adriaenssens et al. (2006) found that conductivity was
an important factor for the distribution of Gammarus. Piscart et
al. (2005) observed that G. tigrinus was more abundant at higher
salinity sites in the Meurthe River in north-eastern France, which
suggest that rising salinity concentrations affected the species com-
position and favoured invaders. These findings are reflected in the
second division of the constructed classification tree. If the con-
ductivity, which is related to the salinity, was sufficiently high, G.
tigrinus was predicted as present, if this was not the case, its occur-
rence depended upon the MMIF. Comparing the second rule of the

single-target classification tree with the Box-and-Whiskers plots
confirms that G. tigrinus occurs in a wider range of conductivity
than the native Gammarus duebeni. However, in five samples, at
the highest conductivities, both the exotic invasive and the native
gammarid were present. Based on our results, it was impossible to
predict which equilibrium between both species will be reached.
However, in Poland, Grabowski et al. (2006) found that G. tigri-
nus outcompeted G. duebeni. In polder lakes with a low to high
conductivity (salinity), G. tigrinus was often the dominant represen-
tative of the gammarids. At even higher conductivities (salinities),
G. duebeni was also present. At the bottom of the classification tree,
the last rule was related to the ecological water quality. This final
step indicated that, if conductivity was low, G. tigrinus preferred
at least moderate water quality. In general, the combination of the
classification tree and the Box-and-Whisker plots confirmed that
G. tigrinus can live in a wide range of physical-chemical conditions.

P. acuta and P. antipodarum, with first observations in Belgium
in 1869 (Adam, 1960) and in 1927 (Keppens and Keppens, 1996),
respectively, are widely distributed in Flanders. The presence of
the mud snail P. antipodarum was related to the presence of P.
acuta. Similarly, Cope and Winterbourn (2004) found both species
together in many streams, ponds and lakes in New Zealand, where
P. antipodarum is a native and P. acuta an exotic invasive species.
They concluded that the growth and reproductive output of both
snail species were influenced more by the density of conspecifics
than by the presence and density of the other species. According
to Gittenberger et al. (1998), both exotic invasive molluscs are able
to live in water with salinities up to 8%. and are tolerant to pollu-
tion. Only their feeding habits differ: whereas P. antipodarum only
needs detritus to grow and reproduce, P. acuta also feeds on carrion.
The constructed Box-and-Whisker plots confirm that both species
prefer water with a relatively high conductivity and a poor or mod-
erate ecological status. Leppdkoski and Olenin (2000), Gérard et al.
(2003) and Alonso and Castro-Diez (2008) obtained similar con-
clusions: P. antipodarum tolerates a wide range of environmental
conditions. These findings are also reflected in the multi-target clas-
sification tree predicting the exotic mollusc community: at higher
conductivities and if the ecological water quality was poor, both
species were predicted as present.

Predicting the occurrence of one species can be relevant in cer-
tain cases, but river managers are, inspired by the WFD, interested
in the evolution of the whole macroinvertebrate community. In
our research, multi-target classification trees were built to predict
the presence of multiple exotic species at once based on envi-
ronmental conditions. This promising technique replaces a set of
different single-target classification trees with a single tree that is
easier to interpret for decision makers. However, the multi-target
classification tree predicting the exotic macro-crustacean commu-
nity resembled the single-target tree for G. tigrinus, which was
the most abundant species. Species like P. coxalis and P. meridanus
occurred in few samples and consequently, they were predicted as
absent (probability <50%). For the exotic mollusc community, simi-
lar results were found: only the most dominant species (P. acuta and
P. antipodarum) were predicted as present. Models with knowledge
rules relevant for all species can be obtained if all species have the
similar prevalences (e.g. 50%). However, the construction of such
a dataset was not convenient as it would lead to a small number
of records. Alternatively, the predictive ability of the model can be
optimized, manipulating the threshold of probability of occurrence
from 50% to 10% for example, so that less frequently encountered
species can also be predicted as present. This manipulation would
lead to better model performances for less frequently encountered
species and would not affect the predictive ability of the model
towards widespread invaders.

The reliability of the trees could be possibly further improved
by the application of optimization techniques like genetic algo-
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rithms (D’heygere etal.,2003,2006) as well as boosting and bagging
methods (Dakou et al., 2007). However this was in this stage not
relevant due to the relatively small dataset. Additionally, models
and their derived analyses could be improved by the inclusion of
other environmental variables. Dedecker et al. (2005) illustrated for
instance that the ammonium concentration and the chemical oxy-
gen demand were important variables to predict Gammarus pulex
in rivers. Other methods for the improvement of the models are
related to the integration of knowledge-based methods (Mouton
et al., 2009), information from laboratory experiments (Boets et
al., 2010) or data about extra environmental variables obtained via
water quality and other models (Merckx et al., 2009). Addition-
ally, more data points and eventually the application of modelling
techniques that can deal with a lot of zero points, such as the
zero-inflated count models, can be beneficial in terms of mod-
elling performances (Lambert, 1992). Lee and Jin (2006) proposed a
decision tree for zero-inflated count data, using a maximum of zero-
inflated Poisson likelihood as the split criterion and found this tree
more efficient than a classically grown tree. Implementing these
optimizations will lead to useful multi-target classification trees as
they integrate decisions for the whole set of exotic species. Multi-
target classification trees are an interesting tool to create a clear
juridical framework for dealing with aquatic invaders. They can
help to convince stakeholders by showing the potential risks of
several activities and the related impacts and they can be used for
management planning and investment decisions.

5. Conclusions

Ecological indices based on coarse identification levels (such as
the MMIF) assume that all species within the identification level
have a similar sensitivity towards pollution. Since the introduction
of pollution-tolerant invaders, this hypothesis is often violated and
one has to be aware that this can lead to an overestimation of the
ecological quality. As a solution, tolerance classes should be revised
in case new invaders are identified in Flemish waters.

Based on a relatively small amount of data, data driven mod-
elling techniques, such as classification trees, can be constructed
with reasonable model performances. Predicting the occurrence of
individual exotic species was possible by means of single-target
classification trees. These models gave insight in the particular
preferences of an exotic invasive species, whereas multi-target
approaches gave an integrated insight in the potential exotic
macroinvertebrate community subgroup, what is in particular rel-
evant for water managers to protect and restore surface waters.
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