J Intell Inf Syst
Mark
DOI 10.1007/510844-017-0462-7 @ CrossMar

Tree-based methods for online multi-target regression

Aljaz Osojnik!2 @ . Panée Panov! - Saso Dzeroskil*>3

Received: 3 July 2016 / Revised: 4 January 2017 / Accepted: 18 April 2017
© Springer Science+Business Media New York 2017

Abstract Methods that address the task of multi-target regression on data streams are rela-
tively weakly represented in the current literature. We present several different approaches
to learning trees and ensembles of trees for multi-target regression based on the Hoeffd-
ing bound. First, we introduce a local method, which learns multiple single-target trees to
produce multiple predictions, which are then aggregated into a multi-target prediction. We
follow with a tree-based method (iISOUP-Tree) which learns trees that predict all of the tar-
gets at once. We then introduce iSOUP-OptionTree, which extends iSOUP-Tree through the
use of option nodes. We continue with ensemble methods, and describe the use of iISOUP-
Tree as a base learner in the online bagging and online random forest ensemble approaches.
We describe an evaluation scenario, and present and discuss the results of the described
methods, most notably in terms of predictive performance and the use of computational
resources. Finally, we present two case studies where we evaluate the introduced methods
in terms of their efficiency and viability of application to real world domains.
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1 Introduction

A common approach of solving complex data mining tasks is to transform them into sim-
pler tasks, and then use known methods that solve the simple tasks. In this context, problem
transformation approaches have been used to address a large variety of predictive mod-
elling tasks, such as multi-label classification (MLC) and multi-target regression (MTR). A
multi-label classification task can thus be transformed into a collection of binary classifica-
tion tasks (Tsoumakas and Katakis 2007), while a multi-target regression task, which deals
with predicting multiple numeric variables simultaneously, can be decomposed into several
single-target regression tasks (Struyf and Dzeroski 2005; Kocev et al. 2013).

However, there are methods that forego the reduction to simpler tasks and address the
complexity head-on. For example, in the case of the task of multi-target regression, methods
that consider and predict all of the continuous targets at once have received considerable
coverage in the literature (Struyf and Dzeroski 2005; Kocev et al. 2013). Almost exclusively,
though, these methods have been introduced in the batch setting.

Recently, the streaming setting is becoming more and more prominent, due to the ever
increasing presence of the Big Data paradigm. The streaming setting emphasizes several
of the Big Data characteristics , i.e., the “V”’s of Big Data. More specifically, streaming
methods need to address Velocity — data arriving with high speed; Volume — potentially
unbounded number of data instances; and Variability — potential changes in the data itself.
Hence, it is of extreme importance to take these aspects into consideration when developing
a method to be used in the streaming setting.

Methods that address the task of multi-target regression in a streaming setting are few
and far between (e.g., Ikonomovska et al. (2011a)), especially those that predict all of the
targets at the same time. In our early work, we introduced a new tree-based method, capable
of addressing the task of multi-target regression by predicting all of the targets at the same
time (Osojnik et al. 2016a). We performed a preliminary comparison to the simpler problem
transformation approach of using a single-target tree-based method in a streaming setting
and to an ensemble method, by using the proposed tree method as a base model in an online
bagging ensemble setting.

In this paper, we build upon our early work. More specifically, we first discuss our
adaptation of the local FIMT-DD method, which uses single-target trees for each target
separately. Next, we present in depth our tree-based method for online MTR, named iSOUP-
Tree, focusing on the heuristic function used in the tree induction process and the selection
of the best split. The proposed method uses a single tree to predict all of the targets. More-
over, we introduce an option tree extension of our method, iSOUP-OptionTree, as well as
the ensemble methods of online bagging and online random forests, which both use iSOUP-
Trees as base models. Furthermore, we experimentally compare all of the methods with a
focus on the predictive performance and the trade-off between the predictive performance
and the consumption of resources. Finally, we present two case studies which we evaluate
the introduced methods in terms of their efficiency and viability of application to real world
domains.

The structure of the paper is as follows. First, we present the background and related
work (Section 2). Next, we present several tree-based approaches for multi-target regression
on data streams (Section 3). Furthermore, we present the research questions we address and
the experimental design employed to answer them (Section 4). Finally, we conclude with a
discussion of the results (Section 5), followed by two case studies from real world domains
(Section 6), conclusions, and directions for further work (Section 7).
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2 Background and related work

In essence, we can look at the task of multi-target regression as an extension of the single-
target regression task. In the latter, only one continuous variable needs to be predicted.
The task of multi-target regression (MTR) deals with predicting multiple numeric variables
simultaneously, or, formally, with making a prediction y from R”, where 7 is the number of
targets, for a given instance X from an input space X.

Generally, the quickest way of solving a complex task, such as multi-target regression,
is to transform it into a set of simpler tasks that we know how to solve. In the case of multi-
target regression, specifically, this is achieved by training a regressor for each of the targets
separately, essentially resulting in a collection of regressors. The other option for addressing
the task of multi-target regression is to produce a regressor which gives predictions for all
of the targets simultaneously.

To distinguish between these two approaches we refer to them as local and global, respec-
tively (Silla and Freitas 2011). Specifically, a method that uses one regressor per target is
using the local approach, while a method that uses one regressor to predict all of the targets
simultaneously is using the global approach.

Recent studies show, that in the batch case, the global approaches outperform the local
ones (Kocev et al. 2013). Global methods tend to (implicitly) exploit the dependencies
between the targets. The global approach has been considered in the batch setting by Struyf
and Dzeroski (2005). In addition, Appice and DzZeroski (2007) proposed a method for
step-wise induction of multi-target model trees.

Unlike the batch context, where a fixed and complete dataset is given as input to a learn-
ing method, the streaming context presents several constraints that a stream learning method
must consider. The most relevant are (Bifet and Gavalda 2009):

the examples arrive sequentially in a specific order;

the number of examples can be arbitrarily large;

the distribution of examples need not be stationary; and
after an example is processed, it is discarded or archived.

bl

The fact that the distribution of examples is not assumed to be stationary means that meth-
ods learning in a streaming context should be able to detect and adapt to changes in the
distribution (concept drift).

In the streaming context, some recent work has already addressed the task of single-
and multi-target regression. Ikonomovska et al. (2011b) introduced an instance-incremental
streaming tree-based single-target regressor (FIMT-DD) that utilizes the Hoeffding bound.
This work was later extended by Ikonomovska et al. (2011a) for the task of multi-target
regression (FIMT-MT). However, both of these methods had the drawback of ignoring nom-
inal input attributes. Recently, there has been some theoretical debate whether the use of
the Hoeffding bound is appropriate (Rutkowski et al. 2013), however, a recent study by
Ikonomovska and Gama (2015) has shown that in practice the use of the Hoeffding bound
produces good results.

Shaker and Hiillermeier (2012) introduced an instance-based system for classifica-
tion and regression (IBLStreams), which can be, in principle, used for the task of
multi-target regression. Recently, Duarte and Gama (2014) adressed the task of multi-
target regression from high-speed data streams by using adaptive model rules (AMRules)
(Duarte et al. 2016).
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3 Tree-based methods for multi-target regression on data streams

In this section, we present several tree-based methods for multi-target regression, which
utilize the local approach, as well as the global approach. Tree-based methods are often
used, as they generally provide good results in terms of predictive performance, while also
yielding interpretable models.

First, we introduce an adaptation of the FIMT-DD method that uses adaptive models
in the leaves and an implementation that facilitates the use of the method for the task of
multi-target regression. Next, we present four tree-based methods for multi-target regres-
sion, which use the global approach. More specifically, we describe the single-tree method
(iSOUP-Tree), the option tree method (iISOUP-OptionTree), and two ensemble methods —
online bagging (iISOUP-Bagging) and online random forests (iISOUP—RandomForest).

3.1 Adaptation of the FIMT-DD method for multi-target regression

One of the best known single-target tree-based regressors in the stream setting is the FIMT-
DD method (Ikonomovska et al. 2011b). It is based on the Hoeffding bound, which allows
the generalization of observations from small samples to the underlying distribution. Simi-
larly to Hoeffding trees for classification (Domingos and Hulten 2000), FIMT-DD uses the
Hoeffding bound to determine the best splits at each node of the regression tree.

We have re-implemented the FIMT-DD method in the Java-based MOA stream-mining
framework (Bifet et al. 2010) and extended it to use adaptive models in the leaves, simi-
larly as Duarte and Gama (2014). Specifically, each leaf of the tree contains a perceptron.
The perceptron is a linear function of the values of the input attributes X that produces the
prediction, i.e., § = W - X + b, where 1 and b are a learned weight vector and a constant,
respectively.

In the original implementation of FIMT-DD (Ikonomovska et al. 2011b), the perceptron
was always used to make the prediction. However, the adaptive model records the errors of
the perceptrons and compares them to the errors of the mean target predictors. They predict
the value of the target by computing the average value of the target over the examples
observed in a given leaf. In essence, each leaf has two learners, the perceptron and the target
mean predictor. The prediction of the learner that (at a given point in time) has a lower error
is then used as a final prediction.

To monitor the errors, we use the faded absolute error which is calculated as

721095153 = y()I

fMAElearner(m) = Z;_n:10-95m—j >

where m is the number of observed examples in a leaf, y(j) and y(j) are the predicted and
real value for the j-th example, respectively, and learner € {perceptron, targetMean}. In
essence, the faded error is weighted towards more recent examples. Intuitively, the numer-
ator of the fraction is the faded sum of absolute errors, while the denominator is the faded
count of examples. For example, the most recent (m-th) example contributes with a weight
of 1, the previous example with weight 0.95, and the first example with weight 0.95"~!.
This places an emphasis on the more recent examples and generally benefits the perceptron,
as we expect its errors to decrease as it learns the weight vector.

In addition to the adaptation of the FIMT-DD method, we have also implemented a
meta-learning method in the MOA framework that creates a collection of single-target
regressors, one regressor for each target, and combines their single-target predictions into
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a multi-target prediction in real-time to facilitate the use of FIMT-DD for the task of
multi-target regression. This combination is referred to as the local FIMT-DD method.

3.2 The iSOUP-Tree method

As noted earlier, the global approach has been shown to yield good predictive performance
in the case of tree-based methods in the batch setting. This has motivated the introduction
of global tree-based methods for data streams, i.e., the FIMT-MT method introduced by
Ikonomovska et al. (2011a). The FIMT-MT method extends FIMT-DD by replacing the use
of the variance reduction heuristic with the intra-cluster variance reduction heuristic, which
captures some of the dependencies of the targets. However, one of the major downsides of
the FIMT-MT method, is the fact that it completely ignores nominal input attributes.

We have extended the FIMT-MT method by adding the support for nominal input
attributes. In addition, we have also proposed the use of this extension to address other struc-
tured output prediction tasks, such as the task of multi-label classification (Osojnik et al.
2016b). The newly proposed method is named incremental Structured OQutput Prediction
Tree (iISOUP-Tree).

3.2.1 Tree induction

The regular top-down induction of decision trees (TDIDT) by Breiman et al. (1984) is not
directly applicable in the streaming scenario. As the data examples are not all available at
once, the tree induction procedure is modified to grow the tree incrementally. Specifically,
as examples arrive one-by-one they are sorted into a leaf according to the (current) tree.
Learning from an a single example is composed of recording of both the values of the input
attributes as well as target variables. The procedure is the same as in Ikonomovska et al.
(2011a), except that it occurs for each of the targets separately.

3.2.2 Heuristics

Once enough examples, or specifically, records of attribute values, accumulate in a leaf, we

check weather we have sufficient statistical support to split the leaf. From the records of the

values of attributes, we construct all possible (binary) splits and evaluate them according

to a heuristic. In our case, we use the intra-cluster variance reduction heuristic (ICVarR),
which is defined as follows

n
ICVarR = > _ <Var,-(D) 1Pl Dy — 12F]
n = Var; (D) |D| |D|

Vari(DF)> ;

where i indexes the target variables, D is the set of the accumulated instances in the given
leaf, D1 and D are the subsets of D, which correspond to the sets of instances on which
the considered split test is evaluated either as true or false, respectively. Var; is the variance
of to the i-th target. Note that D, D7 and DF are not actually maintained, as we do not store
the actual instances. We record the statistics of the instances that are sufficient to calculate
the ICVarR heuristic, i.e., the variances of each target on D, D, and DrF.

3.2.3 Best split selection
The splits on numeric input attributes take the form A < ¢, for some numeric value c of the

attribute A. The splits on nominal attributes take the form A = n for some discrete value n
of the attribute A.
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For each input attribute, the best split is selected and observed, according to the above
heuristic. Let us denote the heuristic value of the overall best split with /1, i.e., this is the
best split on some attribute, which is also the best among the splits on other attributes.
Similarly, we denote the heuristic value of the second best split as /,. Let us observe the
ratio Z—f as more examples become available — this ratio obviously falls in the [0, 1] interval.
We can observe the following sequence

ha(k) hatk+1) ha(k +2)
T ) e+ 1) h(k+2) 7
where k denotes the number of instances considered in the calculation of 41 (k) and h> (k).

Let us consider the ratio Z?Eg as arandom variable X ;. What we record with each incom-
ing instance is a sample x; from the distribution of X;. When we have recorded enough
samples, we can compute the observed average of X,ps = % (x1 +x2 4+ x D|).
The corresponding probability distribution from which X, is sampled is then X,.q, =
ﬁ (X 1+Xo+--+ X D‘). We then apply the Hoeffding bound (Hoeffding 1963), which
allows us to make (e, §)-estimation in the following form

2
P (IXobs — E(Xrear)| > &) < 2e72IPIE" =i 5. (1)

Note that this is already a simplified form of the Hoeffding bound. We can express ¢ in

terms of § as
[ 1 2
e=_|——In-.
2|D| §

¢ is then inferred from § which is given as a parameter to the learner and | D|.
Following from (1), E[X,eai] € [Xobs — €, Xobs + €] with probability 1 — §. It follows
that, if X,ps + & < 1, then E(X,.q;) < 1. Finally, this implies that o (with probability

1 —9), i.e., we have support to choose the best split according to V\;hiCh we calculated /7.
P!

In the implementation of iSOUP-Trees, we use ﬁ as an approximation of X ;.

While all of the theoretical prerequisites forlthe use of the Hoeffding bound are not
(necessarily) met as shown by Rutkowski et al. (2013), the use of the Hoeffding bound still
produces good empirical results, as shown by Ikonomovska and Gama (2015).

As we have stated before, the splitting criteria are only checked when enough examples
have accumulated. Specifically, we check a given leaf each time an N,,;,, = 200 additional
examples have accumulated, i.e., at 200, 400, 600, ...examples. From the above formula,
it is clear that ¢ decreases as the number of accumulated examples increases. As more
examples accumulate, we have additional support for the split.

3.2.4 Making predictions

In each leaf, the iISOUP-Tree method uses an adaptive multi-target model, which consists
of a multi-target perceptron and a multi-target target mean predictor. As in the single-target
case, the multi-target perceptron produces the prediction vector as § = WX + b, where
W is the weight matrix and b is the additive vector of constants. On the other hand, the
multi-target target mean predictor computes the prediction as the mean value of each of the
targets observed at a given leaf. Individually, these learners can be seen as local, however,
in conjunction with a tree building method, they constitute a global method.

For each target y;, the errors fMAE;ercepmm and jMAEﬁarge,Mean are recorded and the
decision which of the predictions to use is made for each variable separately. Formally, for

. . . Al . i i
eachi € {1,..., n} the prediction Y., i,y 18 used when fMAE, . o0n < MAE,00ipteqns
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otherwise we use fzfarg etMean- COnsequently, a final prediction ; = (!,..., $") can contain
predictions made by the perceptron (for some targets), the target mean predictor (for other
targets), or both.

3.3 The iSOUP-OptionTree method

While the TDIDT approach is not directly applicable in the streaming setting, the proposed
iSOUP-Tree method emulate the process over time as more examples accumulate. Conse-
quently, similarly to TDIDT approach in the batch setting, the proposed method suffer from
myopia. One way of potentially addressing this problem is the use of option trees in this
setting.

3.3.1 Option trees

An option tree is an extension of a regular decision (or regression tree) in that it intro-
duces an additional type of node, i.e., the option node. This was first introduced (in the
batch scenario) by Buntine (1992) and later expanded by Kohavi and Kunz (1997). In the
streaming setting, option trees have been used in for the task of single target regression by
Ikonomovska and Gama (2015).

The myopia of the TDIDT approach results from selecting only the best split at the
time, even though, this choice might not be optimal. In the batch case, this may be due
to sampling artifacts or noise. In the streaming setting, this can be caused by insufficient
statistical evidence for the selection of a given split.

3.3.2 Option nodes

Option trees address this shortsightedness by selecting multiple candidate splits when cer-
tain conditions are met. Specifically, an option node is introduced when we do no have
enough heuristic-based support to split the leaf. In that case, instead of a split node, an
option node is created from a leaf the tree. Each of its children, called options, is a split
node with the split corresponding to one of the selected candidate splits. Each of the split
nodes is further split into leaf nodes as is the case in regular trees. When enough support is
present, a single split is constructed, much in the same way as in a regular tree.

Following from the more complex learning procedure, using an option tree for learning
and prediction is also more complex. In a regular tree, each example reaches exactly one
leaf. In an option tree, however, an option node can cause an example to reach multiple
leaves. Specifically, when an example passes through an option node, it does not choose
only one of the paths as in a split node. Instead, the example is copied once for each option.
Each copy is then traversed down one of the option nodes. Therefore, for learning, the
example is affecting all of the options (and their associated subtrees) of an option node.

In this way, an example can reach one or more leaves. If more than one leaf is reached,
this means that the example passed through at least one option node. Each of the leaves
reached produces a prediction which is then aggregated through the option node in a bottom-
up manner. Specifically, an option node will receive one prediction from each of its options.
The prediction of the option node is then an aggregation of the set of predictions. In regres-
sion, averaging of the predictions is commonly used. This prediction is then passed further
up, where it may be further aggregated in an option node at a higher level.

The property of one example reaching multiple leaves is present also in tree ensembles.
There, however, an example reaches the multiple leaves in separate (base) models, while in
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an option tree the leaves an example reaches are all part of the same option tree. For this
reason we sometimes refer to option trees as a pseudo-ensemble method, i.e., an option tree
can be seen as a compact representation of an ensemble. If the option tree was expanded
into its “embedded trees”, we would get a proper ensemble, as seen in Fig. 1.

3.3.3 Extension of the iSOUP-Tree method to utilize option nodes

The iSOUP-OptionTree method is the option tree extension of the iSOUP-Tree method for
the task of multi-target regression. The extension is done in a similar way to the way Online
Regression Trees with Options (ORTO) extends the FIMT-DD approach in the single-target
scenario (Ikonomovska and Gama 2015).

As in the case of iISOUP-Trees, the Hoeffding bound is used to grow the tree. In addition
to it being used to split leaf nodes into split nodes, it is also used as a criterion when to
introduce an option node. If, when evaluating splits, we encounter the case where X ,p5+¢ <
1, a split node is grown as in a regular tree. However, if X, + & > 1, we haven’t enough
evidence to split the node according to the best split, i.e., we don’t have enough evidence
to differentiate between the best and second best splits. Therefore, we introduce an option
node, with options for which the following holds

—j>1—8,
hy

Ly Ly L7| |Ls| | Lo
Ly| | L3 Lg Lio| |Lu
Ls| |Ls

Fig. 1 An option tree (a) and the ensemble of its embedded trees (b). O; are option nodes, S; split nodes
and L leaf nodes
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where j enumerates all of the input attributes. The reasoning behind this is the following:

all splits for which X,p5 +6 < 1 ~ Z—; + & < 1 does not hold, are approximately equally
discriminative, i.e., they are about as discriminative as the best split. The fact that the con-
dition is not met is interpreted as the lack of evidence towards discarding of this split. This
concisely determines the candidates for the options in an option node, however, only up to 5
candidates are selected to avoid the combinatorial explosion of the number of option nodes
in the tree.

However, we do not (necessarily) select all of the options, i.e., candidate splits. Kohavi
and Kunz (1997) have suggested that option nodes are best induced higher in the tree, where
they affect more of the data examples. To this end we select only a portion of the candidate
splits, in order to decrease the heuristic score, until K - ,Ble”e’ are selected, where K is the
number of candidate splits, 8 € (0, 1] is the option decay factor and level determines the
level of the leaf we are splitting. Option nodes are only induced above level L, ;.

The parameter B regulates how fast should the induction rate of option nodes be as we
descend lower into the tree. The root note is designated level 0, with each split or leaf node
contributing 1 to the count. Option nodes do not increase the level count, as they are used
only to represent several “parallel” splits. The construction of these parallel splits (contained
within the option nodes) is the mechanism through which option trees attempt to address
the myopia of the greedy tree building procedure.

As a consequence of the above, each node above level L,,,, is (generally) tested for
splitting only once, as one of two things happen. Either there is enough evidence to grow
a split node, or there are at least two candidate splits, the best split and the second best
split, which satisfy the condition for the split candidates. The only case where this does not
happen, is when g'v¢ falls below % In that case, the leaf node can go through multiple
split evaluations. This means that the option tree grows faster than a regular tree.

Note that, this is only one of the possible ways to grow an option tree. Specifically,
options are selected through a relatively restrictive statistical test. Instead of using a statis-
tical test, we could also evaluate the merit of candidate splits based on other metrics. For
example, we could use the relative value of the heuristic of the candidate split compared to
the heuristic of the best candidate split and select all candidates which fall within a certain
percentage, e.g., select all candidates whose heuristic values are within 10% of the heuristic
vale of the best split.

3.4 Online bagging of iSOUP trees (iSOUP-Bagging)

A popular method for learning ensembles in the batch setting is the bootstrap aggregation
approach — bagging (Breiman 1996). To introduce variability the constituents of the ensem-
ble, each base models is learned on a bootstrap replicate of the original data. Each bootstrap
replicate is in fact a re-sampling with replacement of the original data.

The use of the batch approach for constructing bagging ensembles is not feasible in the
streaming setting, as the data is not fully available at any given point in time. To address
this problem Oza and Russel (2001) have introduced the online bagging procedure, which
maintains several properties from the batch approach. Notably, a given data example in a
data set of m examples can appear multiple times in a bootstrap replicate. The probability
that it does not appear can easily be calculated as

1 m
P (given example does not appear) = 1 — (1 — —) .
m
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If m — oo, this converges to 1 — é Similarly, when m — 0o we can expect % repeated
instances in each bootstrap replicate. The number of repetitions of a given example in a
bootstrap replicate is distributed according to the binomial distribution B(m, %). When
m — 00, this distribution tends to the Poisson distribution with A = 1, i.e., to Poisson(1).

This motivates the following use of online bagging and using our developed iSOUP-
Trees as base models. For each incoming data example and each base model in the ensemble,
we sample the number of repetitions k according to the Poisson(1) distribution for that
example-model pair. The selected base model then learns from the current data example &
times, which introduces variety in the base models.

3.5 Online random forest of iSOUP trees (iSOUP-RandomForest)

Oza and Russel (2001) also introduced an extension of the random forest methodology
(Breiman 2001) for data streams. Where online bagging is agnostic to the selection of the
base learner, the random forest requires an adaptation of the base tree-based model learner.

In order to develop an online random forest method for our setting, we modified our
proposed iSOUP-Tree method, which is used as a base method, as follows. Whenever a leaf
node is constructed, i.e., at the beginning of the learning procedure or when a leaf node is
split into two leaf nodes, a subset of the input attributes is randomly selected. The statistics
are then recorded only for the selected input attributes. Consequently, only the selected
attributes can be selected as splits.

The random forest methodology greatly alleviates the stress on the consumption of
resources, as only a portion of the statistics are stored, requiring less memory. Additionally,
fewer splits are considered when splitting a leaf, making this approach much faster.

There are several suggested values for the portion of input attributes to be considered in
a given leaf. The most common are /N4, [log N41+ 1 and « - N4, where Ny is the total
number of attributes and o € (0, 1). In addition to the randomization of the base model, the
online random forest procedure includes the online bagging procedure, i.e., we randomly
sample the attribute space as well as the space of data examples.

4 Experimental setup

In this section, we first present the experimental questions that we want to answer in this
paper. Next, we describe the datasets and the methods used in the experiments. Finally,
we discuss the evaluation measures used in the experiments and present the experimental
methodology.

4.1 Experimental questions

Given the introduced methods, we first explore how they compare among themselves in
terms of predictive performance. However, another key aspect of the streaming setting are
the potential constraints on the available resources. In our case, we observe the perfor-
mance of different methods through the lens of the use of resources, i.e., the use of time and
memory.

We additionally make specific comparisons between some of the introduced methods.
In particular, we are interested in how the option tree compare to both single trees and
ensembles of trees, as option trees show aspects of both approaches. We are also specifically
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interested in how the newly introduced methods, i.e., option trees and online random forests
of iSOUP trees, compare to the methods considered in our earlier work.

In a single-target study, Ikonomovska and Gama (2015) have shown no particular dif-
ferences in predictive performance between the basic model tree method and the bagging
method (therein referred to as FIMT-DD and OBag, respectively). Additionally, the random
forest methodology produced worse results than a single tree, while the option tree variant
(ORTO) of FIMT-DD outperformed all of the other methods.

In this work, we wish to investigate whether similar conclusions can be drawn in the
multi-target case. To that end, we study the differences in predictive performance between
the iISOUP-Tree, iSOUP-OptionTree, iSOUP-Tree bagging and the iSOUP-Tree random
forest methods.

As noted before, we are interested in the differences in consumption of resources
between the different methods. While the resource consumption of the bagging method in
comparison to a single tree is extrapolated trivially, other comparisons are more meaningful.
In particular, we are interested in the resource consumption/predictive performance trade-
off which occurs in larger, more complex models, i.e., in option trees, bagging and random
forests (as compared to the basic single tree approach). The knowledge about this trade-off
is especially important when selecting a proper approach for a given real-world application.

4.2 Datasets

For the experiments, we have selected a total of 8 datasets, based on their size, looking for
diversity in the number of input and target attributes. We consider the datasets under the
assumption of no concept drift, given that these datasets are generally considered as batch
datasets. A summary of the datasets and their properties is shown in Table 1.

The Bicycles dataset is concerned with the prediction of demand for rental bicycles on
an hour-by-hour basis (Fanaee-T and Gama 2013). The 3 targets represent the number of
casual (non-registered) users, the number of registered users and the total number of users
for a given hour, respectively.

The EUNITEO3" dataset was used for the competition at the 3rd European Symposium
on Intelligent Technologies, Hybrid Systems and their implementation on Smart Adaptive
Systems in 2003. The data describes a complex process of continuous manufacturing of
glass products, i.e., the input attributes describe various influences (which can or can not be
changed by an operator), while the target attributes describe the glass quality.

The data in the Forestry Kras dataset was derived from multi-spectral multi-temporal
Landsat satellite images and 3D LiDAR recordings of a part of the Kras region in Slovenia
(Stojanova et al. 2010). The input attributes and target variables were derived from the
Landsat and LiDAR recordings, corresponding to spatial units of 25 meters by 25 meters.
For specifics on the data preparation procedure, see Stojanova et al. (2010). The task is to
predict 11 target variables which correspond to properties of the vegetation of an observed
spatial unit.

The Forestry Slivnica dataset was, as in the previous case, constructed from multi-
spectral multi-temporal Landsat satellite images and 3D LiDAR recordings of a part of the
Slivnica region in Slovenia (Stojanova 2009). In this dataset, the task is to predict only 2
target variables: vegetation height and canopy cover.

Thttp://www.eunite.org/eunite/news/Summary %20Competition.pdf.
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Table 1 Datasets used in the

experiments and their properties. ~ Dataset N Input attr. T

N — number of instances, T —

number of targets Bicycles (Fanaee-T and Gama 2013) 17379 12 numeric 3
EUNITEO3 8064 29 numeric 5
Forestry Kras (Stojanova et al. 2010) 60607 160 numeric 11
Forestry Slivnica (Stojanova 2009) 6218 149 numeric
RF1 (Xioufis et al. 2012) 9005 64 numeric
RF2 (Xioufis et al. 2012) 7679 575 numeric
SCM1d (Xioufis et al. 2012) 9803 280 numeric 16
SCM20d (Xioufis et al. 2012) 8966 61 numeric 16

The river flow datasets, RF'/ and RF2, concern the prediction of river network flows for
48 hours at 8 locations on the Mississippi River network (Xioufis et al. 2012). Each data
example comprises observations for each of the 8 locations at a given time point, as well as
time-lagged observations from 6, 12, 18, 24, 36, 48 and 60 hours in the past. In RF1, each
location contributes 8 input attributes, for a total of 64 input attributes and 8 target variables.
The RF2 dataset extends RF1 with the precipitation forecast information for each of the 8
locations and 19 other meteorological sites. Specifically, the precipitation forecast for 6 hour
windows up to 48 hours in the future is added, which nets a total of 280 input attributes.

The SCM1d and SCM20d are datasets derived form the Trading Agent Competition in
Supply Chain Management (TAC SCM) conducted in July 2010. The preparation (prepro-
cessing) of the datasets is described by Xioufis et al. (2012). The data instances correspond
to daily updates in a tournament — there are 220 days in each game and 18 games per tourna-
ment. The 16 targets are the predictions of the next day and the 20 day mean price for each
of the 16 products in the simulation, for the SCM1d and SCM20d datasets, respectively.

The Bicycles dataset is available at the UCI Machine Learning Repository? and the RF1,
RF2, SCM1d and SCM20d datasets are available at the Mulan multi-target regression data-
set repository.> The examples with missing values (on some input attributes) in the RF1 and
RF2 datasets were removed, so the resulting datasets were somewhat smaller than reported
in the repository.

4.3 Compared methods

For our experiments, we consider the tree-based methods described in Section 3. Specifi-
cally, we consider the local FIMT-DD-based method for MTR (denoted Local), and the
global methods, iISOUP-Tree, the iSOUP-OptionTree (iISOUP-OT), iSOUP-Tree online bag-
ging (ISOUP-Bag) and the online random forest of iSOUP-Trees (iISOUP-RF). The parame-
ters of the methods are described in Table 2. All of the considered methods are implemented
in the Massive Online Analysis (MOA) framework introduced by Bifet et al. (2010).

The FIMT-DD method is capable of detecting changes in the concept and adapting to
them. However, iSOUP-Tree is not. As this study is oriented towards comparing all of the
tree-based approaches on equal grounds, the change detection and adaptation mechanisms
in FIMT-DD have been disabled for this study.

Zhttps://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset.
3http://mulan.sourceforge.net/datasets-mtr.html.
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Table 2 The parameters of the compared methods, their values and descriptions

Shared parameters

) 0.0000001 The § used for the (g, §)-estimation of the splits.

Nmin 200 The number of examples of checking for leaf splitting.
iSOUP-OptionTree

B 0.9 The interval of checking for leaf splitting.

Lax 10 The lowest depth which allows option nodes.
iSOUP-Bagging and iSOUP-RF

T 100 The number of base models (iISOUP-Trees).
iSOUP-RF

f(Na) [logNaTl+1 The number of attributes to consider in a node.

4.4 Evaluation measures and experimental methodology

To evaluate the predictive performance we define the average relative mean absolute error
(RM AFE) measure on an evaluation dataset D as

> '
RMAE = — Z%
i=1 Z i=1 ¥

where y; is the true values of the target i for example j, &; are the predictions of the

evaluated model and y" is the average value of the i-th target variable. The use of the average
in the denominator normalizes the errors of the predictions for the different target variables,
which allows us to average the relative mean absolute errors to obtain RM AE. Lower values
of the error are desired.

We are using the prequential (Gama 2010) approach for evaluating the methods. An
incoming instance is first used to make a prediction, which is used in the evaluation. After-
wards, the model is updated using the instance. Since the reported errors on data streams can
be volatile if reported on an instance by instance basis, due to, e.g., the sampling of different
parts of the input space , we calculate the evaluation measures on the entire dataset. After-
wards, we apply the Friedman test with Nemenyi post-hoc analysis to assess the statistical
significance of differences in performance (DemSar 2006).

To evaluate the time consumption, we will consider the running time of the methods.
The memory consumption is measured by using the size (in megabytes) of the learned
models. We observe the evolution of both the time and memory consumption as the number
of processed instances increases, to compare the different methods. Both time and memory
consumption are reported at intervals of 1000 examples.

5 Results and discussion
In this section, we present the experimental results and use them to answer our experimen-
tal questions. We first look at the predictive performance and the at the use of resources.

Finally, we discuss the trade-off between the use of additional resources and obtaining better
predictions.
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5.1 Predictive performance

The discussion of our results will follow the experimental questions. The results of the
experiments in terms of RM AE are presented in Table 3. We note that all of the RM AE are
below 1, which means that each of the observed tree-based methods performs better as the
mean predictor, i.e., a regressor that always predicts the mean of the observed target values.

When comparing option trees (iISOUP-OT) with a regular iSOUP-Tree, we notice that
using option trees produces better results than regular trees. This can be seen on most of
the datasets (excluding of the EUNITE(O3, RF1 and SCM20d datasets). However, the dif-
ferences between iSOUP-Tree and iSOUP-OT on these datasets are relatively small. On the
other hand, neither regular nor option trees outperform the local method in performance,
which is a strong baseline for this problem.

Option trees do not compare favorably to ensemble methods in terms of predictive perfor-
mance. Specifically, they lose (on almost all datasets) to bagging (iISOUP-Bag) and online
random forests (iSOUP-RF), though in the latter case their results are closer. The results of
comparing bagging and random forests are as expected, i.e., bagging generally outperforms
random forests. This not surprising, however, since we expect the random forest approach
to have a better trade-off between the predictive performance and use of resources. Random
forests also notably beat the local approach.

Overall, the bagging method outperforms all of the competitors, with random forests
coming in second. These results are not unexpected, as these types of ensembles generally
bring an increase in predictive performance. Both iSOUP-Tree and iSOUP-OT perform
worse than the local FIMT-DD-based approach.

Through the use of the Friedman test and Nemenyi post-hoc analysis, we can also
determine that the predictive performance is statistically significantly different between
iSOUP-Tree and iISOUP-Bag as seen in Fig. 2. We need further evidence to statistically con-
firm or deny any of the other observed differences. We also note that the local approach is
hard to beat using a single tree approach.

5.2 Use of resources

The results in terms of the use of resources are shown in Figs. 3 and 4. For brevity, only the
results on four of the selected datasets (Bicycles, Forestry Slivnica, RF1 and SCM20d) are

Table 3 Predictive performance results on RMAE

Local iSOUP-Tree iSOUP-OT iSOUP-Bag iSOUP-RF
Bicycles 04717 (3) 0.5257 (4) 0.4039 (1) 0.4144 (2) 0.6408 (5)
EUNITEO3 0.8199 (4) 0.7014 (2) 0.7504 (3) 0.5976 (1) 0.8916 (5)
RF1 0.1946 (5) 0.1861 (3) 0.1923 (4) 0.1832(2) 0.1761 (1)
RF2 0.3834 (2) 0.5814 (5) 0.5454 (4) 0.5246 (3) 0.3711 (1)
Forestry Kras 0.6190 (4) 0.6461 (5) 0.5988 (3) 0.4766 (1) 0.4838 (2)
Forestry Slivnica 0.6397 (2) 0.7417 (5) 0.7028 (4) 0.6043 (1) 0.6569 (3)
SCM1d 0.3866 (1) 0.5360 (5) 0.5026 (4) 0.4084 (2) 0.4765 (3)
SCM20d 0.5283 (5) 0.3890 (3) 0.3903 (4) 0.2931 (2) 0.2825 (1)
Avg. rank 3.25 4.0 3.375 1.75 2.625

The table contains the values of RM AE (and the rank) of each method on each of the datasets

@ Springer



J Intell Inf Syst

Critical Distance = 2.15667

R R R S
iSOUP-Bag

iSOUP-Tree iISOUP-RF

iISOUP-OT

Local

Fig. 2 Average rank diagrams for the RM A E measure

presented. The results on the remaining datasets are very similar. Additionally, each dataset
is represented on two graphs, as the scales for the single tree and the local approaches are
drastically different from those of the ensemble methods. We first discuss the use of memory
and then the use of time.

When comparing the memory use of the local approach and the single iSOUP-Tree, we
can see that (even when the number of targets is low) iISOUP-Tree uses less memory than
the local FIMT-DD approach. This is also the case on the Forestry Slivnica dataset, which
only has 2 targets, and as such represents the simplest multi-target regression problem.

Option trees use more memory than both the single tree and the local approach. However,
the growth rate of memory usage shows that they do not reach a size (e.g., in terms of the
number of leaves) comparable to the size of the models produced by bagging. As compared
to the 100 trees in the bagging ensemble, the option tree is composed only of a smaller
number of embedded trees.

As expected, random forests use much less memory than bagging. Their memory use is
more similar to that of option trees, however, they mostly use more memory than option trees.

When studying results of the use of memory, we notice several steep decreases in the
memory used. This occurs when multiple leaves are split in the observed time period. When-
ever a leaf is split, the statistics it was storing for use with the Hoeffding bound are forgotten,
which frees up a lot of memory.

With regards to time, we again note that iSOUP-Tree generally outperforms (i.e., is
quicker) the local approach. Notably, option trees are slower than the local approach. The
results of the ensemble methods in terms of time use entirely follow from our observations
on memory use.

5.3 Discussion

In the streaming setting, our desire for better predictive performance is often held back by
strict constraints on the available resources. The presented methods have different factors
of trade-off between the predictive performance and the use of resources.

Specifically, iSOUP-Tree is the quickest, least memory intensive method. However, it
also produces comparatively the worst results. iISOUP-OT uses more memory and time and
on average achieves better results than iISOUP-Tree, but the additional use of resources
could be better “spent” on using the local approach which produces better results with less
memory and time. However, if the number of targets increased drastically, e.g.,10- or 100-
fold, this result would most likely tip in favor of the option trees.

As we have noted earlier, option trees never really grow to the size of the ensembles,
which also explains their lower predictive performance. iSOUP-Bag, the winner in terms
of predictive performance, uses a 100-times the resources used by a single iSOUP-Tree.
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If resources are unbounded, bagging should be the method of choice. However, if the
resources are bounded, random forests provide a good trade-off between the predictive per-
formance and the use of resources. Specifically, they produce reasonable results, while using
considerably less resources than the bagging method.

Many of our findings run in opposition to the results and findings of Ikonomovska and
Gama (2015) in the single-target scenario. There, both bagging and random forests per-
formed equally to or worse than a single FIMT-DD tree, while option trees (ORTO) clearly
outperformed the regular FIMT-DD tree. This discrepancy in the results motivates us to fur-
ther explore how the characteristics of single-target regression relate to those of multi-target
regression.

6 Case studies

In addition to the evaluating the proposed method on benchmark datasets, as described in
Sections 4 and 5, we consider two case studies. In the first, we predict the power consump-
tion of the European Space Agency’s Mars Express probe, currently in orbit around Mars.
In the second, we learn to predict photo-voltaic (PV) power generation in US from the data
provided by the National Renewable Energy Laboratory (NREL). For these two case stud-
ies, we provide some insights into the practicality of applying predictive modelling in a data
streaming setting, in addition to performing the performance comparisons described earlier
(Sections 4 and 5).

6.1 Predicting the power consumption of the mars express probe

Dataset The Mars Express dataset is derived from the data provided by the European Space
Agency for the Mars Express Power Challenge.* The data describes the operation of the
Mars Express Orbiter, a probe that has been in Mars’ orbit, for around 12 years (or 4 Martian
years). The probe must maintain a proper thermal balance to allow for the operation of its
scientific instruments. However, different instruments require different thermal ranges to
operate properly. In essence, the amount of power available for scientific experiments is
equal to the total amount of energy produced minus the energy requirements of the thermal
system and the energy requirements of the satellite platform, i.e., the energy required for
maintaining the operation of the satellite itself.

The task of the challenge was to predict the electric current at 33 different thermal heaters
in the satellite for each operating hour, corresponding to the power consumption of the
thermal regulation system. The data for 3 Martian years was provided as a training set, while
the data from the fourth Martian year served as the testing/evaluation set. The raw data’
was composed from information about the spatial orientation and alignment of the probe
with regards to the Sun, Mars and the Earth including eclipses (umbras), as well as from the
probe’s flight dynamics and information about the (de)activations of its internal systems.
This data also suffers from concept drift, as the probe’s different systems degrade in time
resulting in different thermal properties.

“https://kelvins.esa.int/mars-express- power-challenge/.

Shttps://kelvins.esa.int/mars-express- power-challenge/data/.
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The features used in this dataset are the apparent influx of solar energy for each of the six
sides of the approximate cuboid probe, as well as the influx of energy to its solar panels. The
features take into account the solar angle of incidence to a particular surface of the probe,
the position of the probe in relation to the Sun and the solar constant at a given time point
that takes into account the distance to the Sun. Specifically, the features are calculated as

feat(t;) = /IH] Ap(t)c(t)U(¢)dt,
t

where feat € {front,back, left, right, up, down, panels}, t; and t;1 are the
time of the i-th and (i + 1)-th measurement, respectively, Ag(¢) is the apparent area of
the given surface, c(¢) is the solar constant and U (¢) is the umbra coefficient. Ag(?) is
calculated as

Afr = Amax{cosa, 0},

where « is the angle of incidence for the given surface and A is the area of the surface.
However, since the values of the features are always compared only relative to the values
of the same feature and never to the values of the other features, we can, without loss of
generality for the learning process, assume that A = 1. The umbra coefficient conveys
whether the probe is partially or completely in the Mars’ shadow (or in the shadow of one
of Mars’ two moons, Phobos and Deimos), i.e., U (f) = 0 when the probe is fully in Mars’
umbra (shadow) and U () = 0.5 when the probe is in Mars’ penumbra (partial shadow).
Otherwise, U (1) = 1.
Additionally, the dataset also contains the sums of the above features, calculated as

ti-N
feat-sumN(t) = Z feat(r),

1=t

for N € {4, 16, 32, 64, 128} describing the probe’s history. This yields a total of 7+ 7 %5 =
42 continuous descriptive features, We calculate the values of the features for each minute
of operation, producing a total of around 2.6 million examples. Note that the competition
called for hourly predictions. Our dataset is constructed at the one minute granularity to
match the actual recordings of the target variables, which were recorded at a rate of about
one measurement per minute. In the competition setting, the predictions for 60 consecutive
minutes would then be aggregated to obtain the hourly predictions. For the purposes of
this paper, we only use the first 100k (of 2.6 milion) examples, as the experimental setup,
specifically the measurement of the memory usage (which takes up to 80% of the total
experimental time) makes the learning on the entire dataset unfeasible.

Task In this case study, we are concerned specifically with how well the different methods
cope with the requirement of producing real-time minute-by-minute predictions. In this
case, re-learning a model, e.g., a decision tree, from all data for each new example quickly
becomes unfeasible, as we soon reach the point where the learning process itself takes more
than the one minute time window in which a prediction must be made.

Results The results for the Mars Express dataset are presented in Fig. 5. In addition to
the metrics used in the earlier sections, we also show the average time spent processing an
example. Specifically, this time includes the time to make the prediction for the example, as

@ Springer



J Intell Inf Syst

B |
—

075 Lt 1

-

Al Sl ol Sk e

L Il L

-

—
-

e e e

Il L Il L Il L Il L Il L

0@&\002960“ 3@(\00 @09“ 50000 6\\000'( Q0 %QQQQQQQQQ{QQQQQ

9000

(a) RMAE - all methods

. 20000
8000 F P 18000 | T
7000 | P w00 F e 1
/
6000 | I ] 14000 | ]
= - = L ]
o 5000 - i | =m0
£ 000 b y; 1 g 10000 | 1
Eoob - 1 & so00 [ o
3000 J 6000 L ot - ]
2000 - 4 1 4000 | ‘ ]
w00 - 1 2000 | 1
-+ ———T_’ L L L A n L L A
0 o
O 0000000 0000 0700 0 50009000000 000 0000010008000 00 e
ime consumption — single tree ime consumption — ensembles
b) T t le t c)T t bl
4500 8000
= 4000 F s o 0 F 1
= ;Zgg r _’_,/’ 1 = 6000 b
T 00 | e 130 ]
3 L Z 4000 - -
2. 2000 F e 1 =
g 1500 e 1 ¢ 3000 1 ]
- | .
Z o0 1 g 2000
= 500 [ 1 o0 p ]
0 F====1 0 B | . | | | | | |

(d) Memory consumption — single tree

0 X\\““Q 2“\\““3“““0 A\\\\\\Q 5\\\\QQ Q‘\\(\(\Qq Q000 g(\\\\\“ \)\\\\“QX“\\(\“Q

Q\“\\\\Qﬁ“‘\@ ?’\\“\\Q 20000000000, . “QQQ$““009““QQ\“““QQ

(e) Memory consumption — ensembles

(f) Time used per example — all methods

T T T T T T T
o= 18 F R
s 16F e 7]
S8 uf E
g9+ 12 F ]
% o 3 ]
(D] = 10 r ]
&7 8p e
5g 6f = 1
= 3 ]
o ok ]
< & 0 Fdenssannis STz ‘ ‘ ‘ N
VU O O O 0O

S T T T LT TS

S T T OV PO

RN RS I NIE I N

— Local
===- iSOUP-Tree
--=-- iISOUP-OT

iSOUP-Bag
iSOUP-RF

Fig.5 The results on the Mars Express dataset. The horizontal axes show the numbers of processed examples

@ Springer



J Intell Inf Syst

well as the time it takes to learn from the example, i.e., the time to update the model. The
processing time naturally increases due to the tree growing larger and larger as the model is
updated.

The local, FIMT-DD based, approach has the worst performance of all of the observed
methods. Given the proximity of the different elements of the heating apparatus, it is rea-
sonable to expect that the targets (electric currents/power consumption at these elements)
are quite correlated, which explains the better performance of the multi-target models. Of
the observed multi-target iISOUP-Tree based models, iSOUP option trees and bagging of
iSOUP trees achieve comparable results, with iSOUP option trees notably outperforming
bagging in terms of efficiency.

All of the models use on average less than a minute to process one example, even at the
end of the dataset. This would theoretically allow for the models to be used in real-time to
predict the electric currents within the Mars Express probe. We expect the processing time
to be in a linear relation to the depth of the tree, i.e., O(logn) where n is the number of
processed examples. Note, however, that the results presented are for the first 100k (of the
2.6 milion) examples. If the processing time were to exceed one minute, a less complex
model would have to be used to reduce the processing time. There are two obvious options;
i.e., to learn a less complex model like a single tree which has very low example processing
time, or to reduce the complexity of the ensemble/option tree, by discarding some members
of the ensemble/options, respectively.

6.2 Predicting photo-voltaic (PV) power generation

Dataset The raw data provided by NREL contains power production forecasts of about
6,000 simulated PV plants. We use the version of the dataset used by Ceci et al. (2016)
as a starting point. This dataset has been narrowed down to 48 representative plants and
the associated measurements and forecasts. For this version of the dataset the following 24
features are provided for each of the 48 plants: (1) historical data on power production,
(2) current weather information, (3) weather forecasts from numerical weather predictions
(NWP) models and (4) geographic coordinates of the plant. The features are recorded at
hourly intervals, for each hour between 2:00 and 20:00.

Unlike Ceci et al. (2016), who produce predictions for each plant separately in an effort
to explore the effects of spatial and temporal correlation, we join all of the data for a single
time point, i.e., for a given hour. This reduces the number of examples from around 280k
(one per time point per site) to about 7k (one per time point for all sites). Examples joined in
this way have a large number of features, as well as targets. Namely, each example contains
a total of 1152 features and 48 target values.

In terms of features, this dataset has more than twice the number of features of any other
dataset in our experiments. In terms of targets, its number of targets is three times greater
than the highest number of targets in the other experiments. This means that each example
contains a large quantity of information.

Task We use the NREL dataset as a “stress test” in terms of the size of each individual
example. We are interested in how this impacts the time and memory consumption, as well
as the average example processing time of the different methods. With the predictions being
made at hourly intervals, there is less pressure to achieve a low processing time. Given the
relatively large distances between the different PV sites, we also expect the targets to be less
correlated than in the Mars Express case study, which should favor the local approach.
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Fig. 6 The results on the NREL dataset. The horizontal axes show the numbers of processed examples
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Results The results for the NREL case study are presented in Fig. 6. As expected, the local
approach performs very well (i.e., the best) in this setting. Random forests of iSOUP trees
achieve a comparable performance, which is likely the result of the large number of features.
Option trees are better than bagging, while the single iISOUP tree is worse than both of these.

The local approach, as well as the iISOUP tree and random forest of iSOUP trees process
the dataset rather quickly, unlike option trees which require around 90 minutes, while bag-
ging takes more than 22 hours to process the whole dataset. Similarly, option trees trees and
bagging use considerably larger amounts of memory, reaching more than 20 GB of memory
use at the end of the dataset.

Since the predictions are made at hourly intervals and neither model uses nowhere near
an hour to process an example, the models could also be used alongside a human domain
expert, which could analyze the models’ predictions and potentially improve the predictive
performance. In a purely automated setting, it would be advisable to use either the local
approach or the random forest of iSOUP trees, given their better performance, their higher
speed and their lower memory usage.

7 Conclusions and further work

In this paper, we have presented several tree-based methods for multi-target regression.
Specifically, we introduced the local FIMT-DD-based method, which uses single-target
trees for each target separately, the iSOUP-Tree method, which uses a single tree to pre-
dict all of the targets, its option tree extension iSOUP-OptionTree, as well as the ensemble
methods of online bagging and online random forests, which both use iISOUP-Trees as
base models. Our experimental comparison focused on the predictive performance of the
methods and the trade-off between the predictive performance and the use of resources.

In terms of predictive performance, we have found that bagging of iSOUP-Trees per-
forms the best, followed by random forests of iSOUP-Trees. The local FIMT-DD-based
method outperformed both iSOUP-Tree and iSOUP-OptionTree, while iSOUP-OptionTree
performed slightly better than iSOUP-Tree. According to the Friedman test with Nemenyi
post-hoc analysis, only the difference between the performance of bagging iSOUP-Trees
and a single iISOUP-Tree is statistically significant.

In terms of the use of resources, the results were not surprising, with bagging consuming
more time and memory than random forests and single trees. Notably, the single iSOUP-
Tree tends to use less resources than the local FIMT-DD-based approach, which produces
multiple single-target trees.

Given the results on predictive performance and resource use, we also considered the
trade-off between using more time and memory to obtain better performance. Specifically,
we have observed the following pairs where trade-offs occur. iISOUP-Tree generally uses
less resources than the local FIMT-DD-based method, while performing worse. By design,
random forests sacrifice some of the predictive performance of the bagging method to
achieve a much faster learning time and lower memory consumption.

Overall, bagging of iISOUP-Trees is the best method in terms of pure predictive per-
formance, while the random forests of iSOUP-Tree provides the best trade-off between
predictive performance and use of resources. In a real world scenario, however, any of the
selected methods could be appropriate given the constraints of the learning task, e.g., in
terms of running time or memory. Learning on, for example, a hand-held device would
impose memory constraints on the learning process, while on a data analytics platform we
might be constrained by the need for a fast response.
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We additionally performed two case studies to evaluate the compared methods in terms
of their applicability to real life problems in addition to observing how they deal with large
numbers of examples and/or large numbers of input/target features. The studies show that
the methods can cope with a large number of examples in a reasonable time frame, with
a medium number of features. On the other hand, a large number of input features com-
bined with a large number of targets slows down the methods considerably, requiring longer
intervals between examples.

In their study Ikonomovska and Gama (2015) found option trees to (overwhelmingly)
have the best predictive performance, while the bagging and random forest performed
comparatively badly. As our experimental results are notably different from those of their
single-target study, we intend to explore whether this is an intrinsic property of the multi-
target learning setting or it is caused by other factors. Note, for example, that Ikonomovska
and Gama (2015) use a VFDT implementation of FIMT-DD and ORTO, while we use a
MOA implementation of the multi-target extension of these two approaches.

Furthermore, we plan to extend the comparison of multi-target regression methods on
data streams by including also non-tree-based methods into the comparison. Additionally,
we plan to consider a larger number of datasets, which will allow for additional testing of
statistical significance.

We plan to extend and utilize multi-target regression methods for other tasks by employ-
ing the proper task transformation methodologies. For example, we have used MTR for the
task of multi-label classification on data streams (Osojnik et al. 2016b). Other data stream
mining tasks that we plan to consider include (but are not limited to) hierarchical multi-label
classification, hierarchical multi-target regression, semi-supervised multi-target regression,
feature ranking for multi-target regression, etc.

Acknowledgments The authors are supported by The Slovenian Research Agency (Grant P2-0103 and a
young researcher grant) and the European Commission (Grants ICT-2013-612944 MAESTRA and 720270
HBP SGALl).

References

Appice, A., & Dzeroski, S. (2007). Stepwise induction of multi-target model trees. In /8th European
conference on machine learning (pp. 502-509).

Bifet, A., & Gavalda, R. (2009). Adaptive learning from evolving data streams. In 8th international
symposium on advances in intelligent data analysis (pp. 249-260).

Bifet, A., Holmes, G., Kirkby, R., & Pfahringer, B. (2010). MOA: Massive online analysis. Journal of
Machine Learning Research, 11, 1601-1604.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.

Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, C.J. (1984). Classification and regression trees. New
York: Chapman & Hall.

Buntine, W. (1992). Learning classification trees. Statistics and Computing, 2(2), 63-73.

Ceci, M., Corizzo, R., Fumarola, F., Malerba, D., & Rashkovska, A. (2016). Predictive modeling of PV
energy production: How to set up the learning task for a better prediction? IEEE Transactions on
Industrial Informatics, PP(99), 1-1. doi:10.1109/T11.2016.2604758.

Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning
research, 7, 1-30.

Domingos, P., & Hulten, G. (2000). Mining high-speed data streams. In 6th ACM SIGKDD (pp. 71-80).

Duarte, J., & Gama, J. (2014). Ensembles of adaptive model rules from high-speed data streams. In 3rd
international workshop on big data, streams and heterogeneous source mining (pp. 198-213).

Duarte, J., Gama, J., & Bifet, A. (2016). Adaptive model rules from high-speed data streams. ACM
Transactions on Knowledge Discovery from Data (TKDD), 10(3), 30.

@ Springer


http://dx.doi.org/10.1109/TII.2016.2604758

J Intell Inf Syst

Fanaee-T, H., & Gama, J. (2013). Event labeling combining ensemble detectors and background knowledge.
Progress in Artificial Intelligence, 2(2), 113-127.

Gama, J. (2010). Knowledge discovery from data streams. CRC Press.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301), 13-30.

Ikonomovska, E., Gama, J., & DZeroski, S. (2011a). Incremental multi-target model trees for data streams.
In 2011 ACM symposium on applied computing (pp. 988-993).

Tkonomovska, E., Gama, J., & Dzeroski, S. (2011b). Learning model trees from evolving data streams. Data
Mining and Knowledge Discovery, 23(1), 128-168.

Ikonomovska, E., & Gama, J. (2015). Online tree-based ensembles and option trees for regression on evolving
data streams. Neurocomputing, 150, 458-470.

Kocev, D., Vens, C., & Struyf, J. (2013). Tree ensembles for predicting structured outputs. Pattern
Recognition, 46(3), 817-833.

Kohavi, R., & Kunz, C. (1997). Option decision trees with majority votes. In 14th international conference
on machine learning, ICML *97 (pp. 161-169).

Osojnik, A., Panov, P., & DZeroski, S. (2016a). Comparison of tree-based methods for multi-target regression
on data streams, pp 17-31.

Osojnik, A., Panov, P., & DZeroski, S. (2016b). Multi-label classification via multi-target regression on data
streams. Machine Learning. doi:10.1007/s10994-016-5613-5.

Oza, N.C., & Russel, S.J. (2001). Experimental comparisons of online and batch versions of bagging and
boosting. In 7th ACM SIGKDD international conference on knowledge discovery and data mining
(pp. 359-364).

Rutkowski, L., Pietruczuk, L., Duda, P., & Jaworski, M. (2013). Decision trees for mining data streams based
on the McDiarmid’s bound. IEEE Transactions in Knowledge and Data Engineering, 25(6), 1272-1279.

Shaker, A., & Hiillermeier, E. (2012). IBLStreams: a system for instance-based classification and regression
on data streams. Evolving Systems, 3(4), 235-249.

Silla, C.N., & Freitas, A.A. (2011). A survey of hierarchical classification across different application
domains. Data Mining and Knowledge Discovvery, 22(1-2), 31-72.

Stojanova, D. (2009). Estimating forest properties from remotely sensed data by using machine learning.
Master’s thesis, Ljubljana: JoZef Stefan International Postgraduate School.

Stojanova, D., Panov, P., Gjorgjioski, V., & Kobler, A. (2010). Estimating vegetation height and canopy cover
from remotely sensed data with machine learning. Ecological Informatics, 5(4), 256-266.

Struyf, J., & Dzeroski, S. (2005). Constraint based induction of multi-objective regression trees. In 4th
international workshop on knowledge discovery in inductive databases (pp. 222-233).

Tsoumakas, G., & Katakis, I. (2007). Multi-label classification: an overview. International Journal of Data
Warehousing and Mining, 2007, 1-13.

Xioufis, E.S., Groves, W., Tsoumakas, G., & Vlahavas, I.P. (2012). Multi-label classification methods for
multi-target regression. arXiv:1211.6581.

@ Springer


http://dx.doi.org/10.1007/s10994-016-5613-5
http://arxiv.org/abs/1211.6581

	Tree-based methods for online multi-target regression
	Abstract
	Introduction
	Background and related work
	Tree-based methods for multi-target regression on data streams
	Adaptation of the FIMT-DD method for multi-target regression
	The iSOUP-Tree method*-.3pt
	Tree induction*-.3pt
	Heuristics*-.3pt
	Best split selection*-.3pt
	Making predictions

	The iSOUP-OptionTree method
	Option trees
	Option nodes
	Extension of the iSOUP-Tree method to utilize option nodes*-.5pt

	Online bagging of iSOUP trees (iSOUP–Bagging)
	Online random forest of iSOUP trees (iSOUP–RandomForest)

	Experimental setup
	Experimental questions
	Datasets
	Compared methods
	Evaluation measures and experimental methodology

	Results and discussion
	Predictive performance
	Use of resources
	Discussion

	Case studies
	Predicting the power consumption of the mars express probe
	Dataset
	Task
	Results


	Predicting photo-voltaic (PV) power generation
	Dataset
	Task
	Results



	Conclusions and further work
	Acknowledgments
	References


