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Abstract. We address the problem of inferring chemical parameters of river water quality from biological ones.
This task is important for enabling selective chemical monitoring of river water quality. We apply machine learning,
in particular regression tree induction, to biological and chemical data on the water quality of Slovenian rivers.
Regression trees are constructed that predict values of chemical parameters from data on the presence of bioindicator

taxa at the species and family levels.

Keywords: bioindicators, machine learning, regression trees, rivers, water quality

1. Introduction

The quality of surface waters, including rivers, depends
on their physical, chemical and biological properties.
The latter are reflected by the types of living organisms
present in the water and their density (this includes the
structure of the community and its diversity). Based
on the above properties, surface waters are classified
into (one of) several quality classes which indicate the
suitability of the water for different kinds of use.
Since Kolkwitz and Marsson [1] first proposed the
use of biota as a means of monitoring the quality
of natural waters, many different methods for map-
ping biological data to discrete quality classes or
continuous scales have been developed [2]. Most of
these approaches use indicator organisms (bioindica-
tors), which have well-known ecological requirements
and are selected for their sensitivity/tolerance to vari-
ous kinds of pollution. Given a biological sample, in-
formation on the presence and density of all indicator
organisms present in the sample is usually combined
to derive a biological index that reflects the quality of
the water at the site where the sample was taken.
Bioindicators can be identified at different taxonom-
ical levels, e.g., at the species level or the family level.
A family, a species, or any other taxonomical group can

be referred to as a taxon (plural: taxa). In the Saprobic
System [1], bioindicators are identified at the species
level, which is more demanding in terms of sample
processing effort, but also gives a more precise. pic-
ture of the water quality. The Saprobic Index, based on
the Saprobic System, is used to assess water quality in
Germany, Austria and Slovenia, among other countries.
Family-level identification is carried out for calculat-
ing the Biological Monitoring Working Party Score
[3], abbreviated as BMWP, and its derivative Average
Score Per Taxon (ASPT), which are used in the United
Kingdom.

It is well known that the physical and chemical prop-
erties give a limited picture of water quality at a partic-
ular point in time, while the biota (living organisms) act
as continuous monitors of water quality over a period
of time [4]. This has increased the relative importance
of biological methods for monitoring water quality [2].

The relation between biological and chemical pa-
rameters of river water quality is an important and
largely open research topic. We have already applied
machine learning to the task of inferring biological
parameters from chemical ones by learning rules that
predict the presence of individual bioindicator taxa
from the values of chemical measurements [5, 6]. In
this paper, we address the task of inferring chemical
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parameters from biological ones. In particular, we learn
to predict values of individual chemical parameters
from data on the presence of bioindicator taxa. We first
use bioindicator data at the species level, then bioindi-
cator data at the family level obtained by aggregating
the data at the species level. The machine learning ap-
proach of regression tree induction is used, since the
chemical measurements are real-valued.

The problem of inferring chemical parameters from
biological ones is practically relevant, especially in
countries where extensive biological monitoring is con-
ducted. Regular monitoring for a very wide range of
chemical pollutants would be very expensive, if not im-
possible. On the other hand, biological samples may,
for example, reflect an increase in pollution and indi-
cate likely causes or sources of (chemical) pollution.

The remainder of the paper is organized as follows.
Section 2 describes the measured biological and chemi-
cal data on the water quality of Slovenian rivers, as well
as the experimental setup. The results of the experi-
ments in learning regression trees with these data are
presented in Section 2.3. Section 3 describes how data
on bioindicator presence at the species level are aggre-

gated to obtain data at the family level and describes -

the experiments in learning regression trees with family
level data. Section 4 compares the predictive power of
regression trees with that of more traditional prediction
methods, namely linear regression and nearest neigh-
bor methods. Section 5 concludes with a discussion
and some directions for further work.

2. Experiments with Species Level Data
2.1. The Data

The data about Slovenian rivers come from the
Hydrometeorological Institute of Slovenia (Hidro-
metereolodki Zavod Republike Slovenije, abbreviated
as HMZ) that performs water quality monitoring for
most Slovenian rivers and maintains a database of water
quality samples. The data provided by HMZ cover the
six-year period from 1990 to 1995. Biological samples
are taken twice a year, in summer and in winter, while
physical and chemical analyses are performed several
times a year for each sampling site. The physical and
chemical samples include the measured values of six-
teen different parameters: biological oxygen demand
(BOD), chlorine concentration (Cl), CO, concentra-
tion, electrical conductivity, chemical oxygen demand
(K>Cr,07 and KMnQy), concentrations of ammonia

(NHy4), NO,, NO; and dissolved oxygen (O,), alkali-
nity (pH), POy, oxygen saturation, SiO,, water tempe-
rature, and total hardness.

The biological samples include a list of all taxa
present at the sampling site and their density. The fre-
quency of occurrence (density) of each present taxon is
recorded by an expert biologist at three different qual-
itative levels, where 1 means the taxon occurs inci-
dentally, 3-frequently, and 5-abundantly. The taxa are
identified mostly at the species level, so a sample might
state that Tubifex tubifex was present at abundance
level 3. Sometimes, however, taxa might be identified
to the genus level only (Tubifex sp.) or even the fam-
ily level only (Tubificidae). In total, 1061 water sam-
ples were available on which both physical/chemical
and biological analyses were performed: all of the ex-
periments presented here were conducted using these
samples.

2.2. The Experiments

Approximately 850 different taxa appear in the bio-
logical samples. The 415 taxa that appear in at least
ten samples were used as attributes (independent vari-
ables), while each of the sixteen physical and chemical
parameters was used as a class (dependent variable).
In this way, sixteen different learning problems were
formulated.

As the physical and chemical parameters are real-
valued, we used the system MS5.1 [7] to induce regres-
sion trees for each of the sixteen problems. Ordinary re-
gression trees (with constant predictions in the leaves)
and model trees (with linear models in the leaves) were
considered..

The default parameters of M5.1 were used in all ex-
periments. For each problem, the following methodol-
ogy was employed. First, construct a single regression
tree from the entire dataset. This tree is shown to do-
main experts to verify that it contains useful domain
knowledge.

An example regression tree induced from the whole
dataset is given in Table 1. It predicts the chemical oxy-
gen demand (K;Cr,O7) from species-level bioindicator
data.

To estimate the performance of the trees induced
from the whole dataset on unseen data, ten-fold cross-
validation is conducted. The performance, in terms of
correlation between the actual values and the predic-
tions, is averaged over the ten-folds. These average
results are given in Table 2.
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Table I. A regression tree for predicting chemical oxygen demand (K2Cr207) induced from species level data.

OLIGOCHAETA Lumbriculus variegatus <= 1 :

BACTERIA Sphaerotilus natans <= 3 :

DIPTERA Chironomus thummi > 1 : AV 29.64 (19)

DIPTERA Chironomus thummi <= 1 :

BACILLARIOPHYTA Nitzschia palea <= 0 :

OLIGOCHAETA Tubifex sp. > 1 : AV 11.72 (39)

OLIGOCHAETA Tubifex sp. <= 1 :

COLEOPTERA Elmis sp. > 0 : AV 4.49 (197)

COLEOPTERA Elmis sp. <= 0 :

HIRUDINEA Erpobdella octoculata > 0 : AV 10.21 (36)

HIRUDINEA Erpobdella octoculata <= 0 :

BACILLARIOPHYTA Diatoma hiemale v.mesodon > 1 : AV 2.86 (26)
BACILLARIOPHYTA Diatoma hiemale v.mesodon <= 1 :

|  BACTERIA Sphaerotilus natans > O : AV 9.40 (26)

|  BACTERIA Sphaerotilus natans <= 0 :

I |  AMPHIPODA Gammarus fossarum <= O : AV 4.31 (68)

| 1 | | | AVMPHIPODA Gammarus fossarum > 0 : AV 6.91 (57)
BACILLARIOPHYTA Nitzschia palea > 0 :

PLECOPTERA Leuctra sp. <= 0 :

BACILLARIOPHYTA Nitzschia sigmoidea > O : AV 8.96 (84)
BACILLARIOPHYTA Nitzschia sigmoidea <= 0 :

|  BACTERIA Sphaerotilus natans <= 0 : AV 11.17 (125)

|  BACTERIA Sphaerotilus natans > O :

I | PISCES > 0 : AV 22.18 (20)
|
|

| PISCES <=0 :
| | BACILLARIOPHYTA Nitzschia palea <= 3 : AV 12.69 (96)
| | | BACILLARIOPHYTA Nitzschia palea > 3 : AV 21.63 (17)
PLECOPTERA Leuctra sp. > 0 :
|  BACTERIA Sphaerotilus natans <= 1 : AV 7.05 (133)
| |  BACTERIA Sphaerotilus natans > 1 : AV 13.21 (19)
BACTERIA Sphaerotilus natans > 3 :
| AMPHIPODA Gammarus fossarum <= O : AV 38.24 (60) < *ok Dk >
| AMPHIPODA Gammarus fossarum > 0 : .
| | - TRICHOPTERA Rhyacophila sp. <= 0 : AV 26.25 (26)
| | TRICHOPTERA Rhyacophila sp. > O : AV 10.02 (10)
OLIGOCHAETA Lumbriculus variegatus > 1 :
| ~ BACTLLARIOPHYTA Navicula sp. <= 0 : AV 111.47 (6) < Hok ] kk >
| BACILLARIOPHYTA Navicula sp. > O : AV 8.60 (9)

2.3. Results leaves, the third for ordinary regression trees with con-

stant predictions in the leaves. There is only a slight
The correlation r between the values of parameters pre- difference between the two (in favor of the former) and
dicted by the induced trees and the actual parameter given that trees with linear models in the leaves are
values is given in Table 2: the second column lists the more difficult to interpret we only consider the ordi-

correlation for model trees with linear models in the nary regression tree results in the following.
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Table2. Correlation between actual chemical parameter val-
ues and values predicted by regression/model trees induced
from species level data.

Parameter predicted Model trees r  Regression tree r
BOD 0.659 0.652
Cl 0.590 0.570
CO, 0.426 0.405
Electrical conductivity 0.581 0.539
K>Cr, 07 0.624 0.602
KMnO,4 0.558 0.542
NH4 0.647 0.664
NO, 0.387 0.373
NO; 0.406 0.352
(07) 0.542 0.484
Alkalinity (pH) 0.409 0.397
PO, 0.457 0.461
Oxygen saturation 0.494 0.424
Si0, 0.487 0411
Water temperature 0.597 0.561
Total hardness 0.560 0.475

Highest correlations (above 0.6) are achieved when
predicting chemical oxygen demand, ammonia and
biological oxygen demand. The corresponding trees
induced from the entire dataset are given in Tables 1, 3
and 4, respectively.

Highest chemical oxygen demand (K,Cr,O7) of
(111.47 mg/1) is predicted if the taxon Lumbriculus var-
iegatus occurs frequently or abundantly and the taxon
Navicula sp. does not occur in the sample (leaf **1%*
in Table 1).

A high value (38.24 mg/l) is also predicted if
Lumbriculus variegatus occurs at most incidentally,
Sphaerotilus natans is abundant, and Gammarus
Jossarum does not occur (¥¥2%%*),

Highest ammonia concentrations are predicted when
Chironomus thummi occurs frequently or abundantly:
13.35 mg/l if Sphaerotilus natans does not occur in the
sample (leaf **3** in Table 3) or 6.72 mg/l if it does
and Beggiatoa alba occurs frequently or abundantly
(**4*%), Very high ammonia concentration (5.94 mg/1)
is also predicted if Chironomus thummi does not occur
or occurs incidentally, but Sphaerotilus natans occurs
abundantly, while Diatoma vulgare and Cymbella ven-
tricosa do not occur in the sample (**5%%),

Finally, high BOD is predicted if Sphaerotilus
natans is frequent or abundant (subtree below *¥6**
in Table 4). BOD is especially high (26.46 mg/l)

if in addition Gammarus fossarum is absent and
Nitzschia palea occurs at most incidentally (leaf
#AT*¥).  The highest value for BOD (27.91 mg/l)
is predicted when Sphaerotilus natans is not abun-
dant, Chironomus thummi is frequent or abundant, and
Cyclotella meneghiniana is present in the sample (leaf
**8** in Table 4).

In general, the trees are in agreement with expert
knowledge. The taxa Lumbriculus variegatus, Chi-
ronomus thummi, and Sphaerotilus natans emerge as
the strongest indicators of heavily polluted waters (they
appear at the top:of the regression trees). Their pres-
ence (and especially abundance) indicates very high
chemical oxygen demand, ammonia concentration,
and BOD, respectively. The taxa Beggiatoa alba and
Cyclotella meneghiniana are also used as indicators
of heavily polluted waters. The taxon Gammarus fos-
sarum is used as an indicator of clean to mildly polluted
waters. Finally, the taxa Navicula sp., Cymbella ven-
tricosa, Diatoma vulgare, and Nitzschia palea are used
as indicators of moderately polluted to polluted (but not
heavily polluted) waters.

Some expectations of the domain experts were, how-
ever, not fulfilled. For example, caddis flies do not ap-
pear in the ammonia tree, despite their tolerance of
high ammonia concentrations. Also, Tubifex tubifex
was expected to play a key role in the BOD tree. Note,
however, that the taxon Lumbriculus variegatus of the
same class (OLIGOCHAETA) plays such a role and
that the taxon Tubifex sp. also appears in the tree. It is
possible that not enough cases of Tubifex tubifex were
identified to the species level.

3. Experiments with Family Level Data

While species level bioindicator data are collected for
the Saprobic System [1], bioindicators are only iden-
tified to family level for the BMWP Score [3]. In this
section, we examine the effect of using family level
instead of species level data on the performance of re-
gression trees when predicting chemical parameters.
To this end, we aggregated data on bioindicator pres-
ence at the species level to obtain data on bioindicator
data at the family level.

3.1. The Data

Taxonomic domain knowledge specifying that certain
species belong to certain families was provided by
a riverine biology expert (J. Grbovic). For example,
the taxa Tubifex tubifex, Tubifex sp., Limnodrilus



Chemical Parameters of River Water Quality 11

Table 3. A regression tree for predicting the NH4 concentration induced from species level data.

DIPTERA Chironomus thummi <= 1 :
BACTERIA Sphaerotilus natans <= 3 :

PLECOPTERA Leuctra sp. > 0 :
PLECOPTERA Leuctra sp. <= 0 :

HIRUDINEA Helobdella stagnalis <=1 :
AV 0.19 (350)

CYANOPHYTA Oscillatoria sp. <=1 :
OLIGOCHAETA Tubifex tubifex > 0 :
OLIGOCHAETA Tubifex tubifex <= 0 :
ISOPODA Asellus aquaticus > 1 :
ISOPODA Asellus aquaticus <= 1 :
| OLIGOCHAETA Tubifex sp. > 3 :
|  OLIGOCHAETA Tubifex sp. <= 3 :
| |  COLEOPTERA Elmis sp. <= 0 :
COLEOPTERA Elmis sp. > 0 :
CYANOPHYTA Oscillatoria sp. > 1 :

|  CHLOROPHYTA Stigeoclonium tenue <= 1 : AV 0.53 (22)

AV 1.10 (17)

AV 0.57 (56)

AV 0.84 (19)

AV 0.31 (316)
AV 0.18 (147

| CHLOROPHYTA Stigeoclonium tenue > 1 : AV 2.85 (5)
HIRUDINEA Helobdella stagnalis > 1 :
| DIPTERA Simulium sp. <= O : AV 3.59 (9)
| DIPTERA Simulium sp. > O : AV 0.29 (10)
BACTERIA Sphaerotilus natans > 3 :
| BACILLARIOPHYTA Diatoma vulgare > O : AV 0.82 (50)
|  BACILLARIOPHYTA Diatoma vulgare <= 0 :
| | BACILLARIOPHYTA Cymbella ventricosa <= 0 : AV 5.94 (13) <====m===-- kK Gk >
| | BACILLARIOPHYTA Cymbella ventricosa > O : AV 1.46 (8)
DIPTERA Chironomus thummi > 1 :
|  BACTERIA Sphaerotilus natans <= 0 : AV 13.35 (9) < *k ok >
|  BACTERIA Sphaerotilus natans > O :
| | BACTERIA Beggiatoa alba <= 1 : AV 2.55 (24)
| | BACTERIA Beggiatoa alba > 1 : AV 6.72 (6) < Hok ok >

hoffmeisteri and Limnodrilus sp. belong to the family
Tubificidae. This knowledge was used to aggregate the
species level data appropriately. Only benthic macroin-
vertebrates were considered, corresponding to the
British system of biological monitoring, where ben-
thic macroinvertebrates identified to family level are
used.

Aggregation is performed as follows. Recall that
for the taxa present in a sample the abundance level is
recorded. The taxa recorded in the samples are typi-
cally below or at the family level (mostly at species,
occasionally at genus, exceptionally at family level).
For each family, we look at all taxa belonging to the
family (according to the expert knowledge) presentin a

sample and take the maximum abundance level among
them. This is then the abundance level of the family for
the given sample.

This alleviates a potential weakness of using the orig-
inal data which is a mix of family, genus, and species
level data: in the original data, presence at the fam-
ily level is recorded only where identification was not
carried out down to species level.

3.2. The Experiments and Results
The attributes in the -second series of experiments

were the abundance levels of 137 families (of
benthic macroinvertebrates) obtained by aggregating
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Table 4. A regression tree for predicting biological oxygen demand (BOD) induged from species level data.

BACTERIA Sphaerotilus natans <= 3 :

DIPTERA Chironomus thummi <= 1 : . P

TRICHOPTERA Rhyacophila sp. <= 0 :

AMPHIPODA Gammarus fossarum <= 0 : .
CHLOROPHYTA Stigeoclonium tenue > 1 : AV 8.88 (18)
CHLOROPHYTA Stigeoclonium tenue <= 1 :

OLIGOCHAETA Tubifex sp. <= 1 AR5
PLECOPTERA Leuctra sp. > O .i- AV 4.78: (B6)i =iz »
PLECOPTERA Leuctra sp. <= 0.:. - . Y
BACILLARIOPHYTA Diatome vulgare > AV’ 2,36 (42)
BACILLARIOPHYTA Diatoma vulgare <= i ° '

| BACTERIA Sphaerotilus natans:>» 0 :: AV 5.81 (29)

| BACTERIA Sphaerotilus nhatans <= 0 :

|| DIPTERA Chironomidae green <= 1 : AV 2.09 (40)

I || DIPTERA Chironomidee greem > 1 : AV:i4.13 (31)
OLIGOCHAETA Tubifex sp. > 1 : ! E

| BACILLARIOPHYTA Navicula sp. <= 0 & AV. 7,52 (21)

[ | BACILLARIOPHYTA Navicula sp. > 0 : AV 3.08 -(15).

AMPHIPODA Gammarus fossarum > O :

GASTROPODA Sadleriana fluminensis > 0 < AV '1.13:(43)

GASTROPODA Sadleriana fluminensis <= 0 : A

CHLOROPHYTA Scenedesmus acutus > 1 :- 4V, 6.00-(5)

CHLOROPHYTA Scenedesmus acutus <= 1 :

| BACTERIA Sphaerotilus natans <=0 :

[ | TRICHOPTERA Limnephilidae > 0 : AV. 1.64 (41)

| | TRICHOPTERA Limnephilidae <= 0 :

| | | CHLOROPHYTA Scenedesmus quadricaunda <= 0 : AV.2.42 (111)
I

I

I

|

| | CHLOROPHYTA Scenedesmus quadriceuda > Q : AV 3.43 (50)
BACTERIA Sphaerotilus natans > 0 :

| BACILLARIOPHYTA Nitzschia sigmoidea <= 0 . AV 4.02 (99)

I | BACILLARIOPHYTA Nitzschia sigmoidea > 0 : AV 2.32 (28)
TRICHOPTERA Rhyacophila sp. > 0 :

| CYANOPHYTA Dactylococcopsis rhaphidioides > 0:: AV §.41 (8)

| CYANOPHYTA Dactylococcopsis rhaphidioides <= 0::.: °

| | BACILLARIOPHYTA ‘SBurirella ovata <= 0 : AV 1.54 (246)

[ 1 BACILLARIOPHYTA Surirella ovata > 0 : AV 2.43 (69)

DIPTERA Chironomus thummi > 1 :

BACILLARIOPHYTA Cyclotella meneghiniana <= 0 : AV 7.47 (12)

BACILLARIOPHYTA Cyclotella meneghiniana > 0 : AV 27.91 (8) < *HGkk-

BACTERIA Sphaerotilus natang > 3 : <———~~———=lk¥Ghkkom——————m—m >

AMPHIPODA Gammarus fossarum > 0 : AV 9.09 (38)
AMPHIPODA Gammarus fossarum <= 0 :

BACILLARIOPHYTA Nitzschia palea <= 1 : AV 26.46 (14) <- HRT Rk >
BACILLARIOPHYTA Nitzschia palea > 1 :

| BACILLARIOPHYTA Naviecula cryptocephala v.cryptoceph. <= 1 : AV 12.55 (23)

| BACILLARIOPHYTA Navicula cryptocephala v.cryptoceph. > 1 : AV 20.91 (15)




Table 5. Correlations between actual chemical parameter
values and values predicted by regression trees induced in-
duced from species and family level data.

Species level » ~ Family level »

BOD 0.652 0.424
C1 0.570 0.444
CO, 0.405 0.431
Electrical conductivity 0.539 0.447
K2Cr 07 0.602 0.416
KMnOy4 0.546 0.340
NH4 0.664 0.351
NO, 0.373 0.214
NO3 0.352 0.279
(o)) 0.484 0.332
Alkalinity (pH) 0.397 0.281
PO4 0.461 0.280
Oxygen saturation 0.424 0.302
Si0; 0.411 0.359
Water temperature 0.561 0.261
Water hardness 0.475 0477

\

the original data as described above. Each of the
sixteen physical and chemical parameters was used
as a class (dependent variable), thus yielding sixteen
learning problems analogous to the ones described in
Section 2.2. Only regression trees (no linear models in
the leaves) were induced. Otherwise, the same exper-
imental setup was used as for species level data (see
Section 2.2).

The correlation r between the values of parameters
predicted by the induced trees and the actual parameter
values is listed in the third column of Table 5: the
second column lists the correlation for trees derived
from species level data for comparison.

Correlations for trees using family level data are
lower for all chemical parameters, except CO,. This
is understandable, as species level data contain more
information on the quality of water. Namely, families
comprise a number of species which can have different
tolerances to pollutants.

All correlations are below 0.5. Of the three chemi-
cal parameters considered in the previous section, the
highest drop is observed for ammonia (0.3 difference in
correlation). For comparison with Tables 1, 3 and 4, the
trees for K,Cr,O7, ammonia and BOD induced from
the entire dataset are given in Tables 6--8, respectively.

Highest chemical oxygen demand (95.66 mg/l) is
predicted if the family Lumbriculidae from the class
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OLIGOCHAETA occurs abundantly (leaf **9** in
Table 6). The tree is similar to the one in Table 1,
where the abundance of the species Lumbriculus var-
iegatus is the most important attribute. The presence
of Tubificidae indicates higher oxygen demand (sub-
tree below **10**), as does the absence of Elmidae
(**11**). This is consistent with the fact that the
former are indicators of dirty and the latter of clean
water.

The tree for predicting the ammonia concentration

- (Table 7) is substantially different from the tree in

Table 3. While the taxon Chironomus thummi is ap-
parently quite tolerant of high ammonia concentra-
tions, the Chironomidae family comprises many dif-
ferent species with different tolerances to pollution. A
recent reappraisal of BMWP scores [8] shows that Chi-
ronomidae are not a good indicator of water quality for
this very reason.

Highest ammonia concentration (9.31 mg/l, leaf
*%12%* in Table 7) is predicted when the family Baeti-
dae is absent and the family Culicidae from the class
of true flies (DIPTERA) is present. While Baetidae are
considered indicators of relatively clean waters, Culi-
cidae are currently not used as bioindicators within the
Saprobic System (in Slovenia). The tree suggests that
Culicidae are tolerant of high ammonia concentrations
and indicate low water quality.

In general, the trees are in agreement with expert
knowledge. The family Tubificidae appears at the root
of the tree (is the most important) for predicting BOD
from family level data (Table 8), thus directly address-
ing the expert comments on the species level tree for
BOD: Tubifex tubifex was namely expected to play a
key role in the species level tree, but did not. The bac-
terium Sphaerotilus natans appeared at the top of the
species level tree, meaning that it is more indicative of
high BOD than Tubificidae. Among benthic macroin-
vertebrates, however, Tubificidae are the most indica-
tive of high BOD.

It is worth noting that the trees actually complement
the expert knowledge, adding new pieces to the mosaic
of water quality. An example of this is the suggestion
that Culicidae are indicators of low water quality.

4. Comparison with Linear Regression and
Nearest Neighbor Prediction

One might argue that using more traditional prediction
methods, such as linear regression or nearest neigh-
bor methods is preferrable to the method of regression
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Table 6. A regression tree for predicting chemical oxygen demand (K2Cr207) induced from family level data.

familia_OLIGOCHAETA_Lumbriculidae > 3 :

familia_OLIGOCHAETA_Lumbriculidae <= 3 :
familia_OLIGOCHAETA Tubificidae <= 1 :

familia COLEOPTERA_Elmidae <= 0 : <
| familia EPHEMEROPTERA_ Heptageniidae <= 0 :

| | familia HIRUDINEA_Erpobdellidae <= 0 : AV 10.46 (133)
| | familia_HIRUDINEA_Erpobdellidae > 0 : AV 14.88 (113)

|  familia EPHEMEROPTERA_Heptageniidae > 0 :
I

|

|

I

AV 95.66 (7) <-—-------- Ak Gk ——m e m oo >

Aokl 1ok >

| familia_PLECOPTERA_Nemouridae > 1 : AV 3.69 (28)
|  familia_PLECOPTERA_Nemouridae <= 1 :

| |  familia TRICHOPTERA_Hydropsychidae <= 0 :
| |  familia TRICHOPTERA_Hydropsychidae > 0
familia COLEOPTERA_Elmidae > 0 :

| familia ISOPODA_Asellidae > O :
| familia_ ISOPODA_Asellidae <= 0 :
| | familia_HIRUDINEA_Erpobdellidae <= O : AV 4.89 (307)

| | familia HIRUDINEA_Erpobdellidae > O : AV 7.53 (66)
familia_OLIGOCHAETA_Tubificidae > 1 : <-=====-=-= i L >
familia AMPHIPODA Gammaridae > O : AV 13.26 (136)

familia AMPHIPODA_Gammaridae <= 0 :

AV 6.51 (45)
: AV 10.52 (63)

I
|
|
I
I
|
I
I
I
I
| AV 11.22 (52)
|

|

]

familia HIRUDINEA_Glossiphoniidae > 0
familia HIRUDINEA_Glossiphoniidae <= 0 :
familia_ OLIGOCHAETA_ Lumbricidae > 0O

: AV 17.29 (31)

: AV 15.32 (14)

familia OLIGOCHAETA Lumbricidae <= 0 :
familia DIPTERA_Chironomidae <= 1 :
| familia DIPTERA_Chironomidae > 1

AV 18.24 (14)
: AV 36.21 (52)

\

trees that we proposed to use. We briefly present here
a comparison of the three approaches on the problem
of predicting chemical parameters from species level
bioindicator data.

The M5.1 program actually also includes facilities
for linear regression and nearest neighbor prediction.
We used these capabilities of M5.1 to perform the ex-
periments reported here. Standard linear regression and
3-NN prediction (where the three nearest neighbors of
aninstance are used to predict the value of that instance)
are implemented in M5.1. The correlation between ac-
tual and predicted parameter values for each of the three
approaches is given in Table 9. The same experimental
setup (ten-fold cross-validation) was used for all three
approaches.

We see that the three approaches are very close
in terms of predictive performance, especially regres-
sion trees and nearest neighbor prediction. The regres-
sion trees, however, have the advantage of producing

reasonably-sized structured generalizations of the input
data that are understandable as well, as demonstrated
by the expert comments on the trees in Sections 2 and 3.
It is easier to interpret a regression tree of a moderate
size (as in the Tables in this paper) than 415 coefficients
in a linear squ\ation. The nearest neighbor method, on
the other hand, produces no generalization of the input
data at all.

5. Discussion

This paper addresses the problem of inferring chem-
ical parameters of river water quality from biological
ones by using regression tree induction. Initial exper-
iments indicate that ammonia concentration, biologi-
cal oxygen demand and chemical oxygen demand can
be predicted relatively successfully from bioindicator
data. One should bear in mind that changes in the biota
may be caused by short-term fluctuations of chemical




Chemical Parameters of River Water Quality 15

Table7. A regréssion tree for predicting the NH4 concentration induced from family level data.

familia EPHEMEROPTERA_Baetidae <= 0 :
familia DIPTERA_Culicidae > 0 : AV 9.
familia_DIPTERA_Culicidae <= O :

familia_DIPTERA_Chironomidae
familia_DIPTERA_Chironomidae
familia_OLIGOCHAETA Tubif
| familia HIRUDINEA_Glo
| familia HIRUDINEA_Glo
familia_OLIGOCHAETA_Tubif
|

|
|
familia EPHEMEROPTERA_Baetidae > O :

familia_AMPHIPODA_Gammaridae

|  familia_EPHEMEROPTERA
|  familia_EPHEMEROPTERA
familia_AMPHIPODA_Gammaridae

| familia_ISOPODA_Asellidae
| familia_ISOPODA_Asellidae
familia_OLIGOCHAETA_Tubificidae > 3 :
|
I

familia_OLIGOCHAETA_ Naididae <= 0 :
familia OLIGOCHAETA_Naididae > O :
familia_AMPHIPODA_Gammaridae > O :
familia_DIPTERA_Orthocladiinae <= 1 : AV 0.32 (111)
familia_DIPTERA_Orthocladiinae > 1 : AV 1.30 (8)

familia_COLEOPTERA_Elmidae > O :
familia_COLEOPTERA_Elmidae <= 0 :

familia_AMPHIPODA_Gammaridae <= O :
familia_AMPHIPODA_Gammaridae > O :

31 (10) <

k1 2%k

familia_AMPHIPODA_Gammaridae <= O :

<=1 : AV 0.79 (46)
> 1
icidae <=1 :
ssiphoniidae <= 0 : AV 0.32 (31)
ssiphoniidae > 0 : AV 3.38 (9)
icidae > 1 :
AV 4.32 (37)
AV 1.37 (13)

familia_ OLIGOCHAETA_Tubificidae <= 3 :
familia_ TRICHOPTERA_Rhyacophilidae > O :
familia_ TRICHOPTERA_Rhyacophilidae <= 0 :

AV 0.18 (326)

<=0 :
AV 0.23 (54)

_Baetidae <= 1 : AV 1.04 (38)
_Baetidae > 1 : AV 0.41 (44)

>0 : ‘
<=0 :
>0 :

AV 0.24 (225)
AV 0.52 (72)

AV 2.29 (21)
AV 0.33 (16)

parameter values, meaning that itis impossible to com-
pletely determine the latter from the former. Never-
theless, our work is a step towards enabling selective
chemical monitoring of river water quality.

We show that species level biological data carry
much more information on the chemical water qual-
ity than family level data. This is especially true for
families that include species with large differences in
tolerance to pollutants, such as Chironomidae. The
largest drop in predictive performance when moving
from species to family level data was observed for am-
monia concentrations.

While one might expect that combining species level
data with properly aggregated family level data could

further improve the predictive performane of regression
trees on the })roblem at hand, it turns out that it doesn’t.
We have conducted experiments in the same general
setup described above where both the species and the
family level data were used, but this resulted in no per-
formance gains over the species level data results. This
is in a way understandable, since all the information on
the biological state of the water is already in the species
level data.

It should be noted that the biological state of a
river at a given time is influenced by the chemical state
over some period of time up to the given point. Further
work should thus take into account several chemical
measurements preceding a given biological sample.



16 Dieroski, DemSar and Grbovié

Table 8. A regression tree for predicting the biological oxygen demand (BOD) induced from family level data.

familia OLIGOCHAETA Tubificidae <= 1 :

| familia COLEOPTERA_Elmidae <= 0 :

| | familia EPHEMEROPTERA_Heptageniidae <= 0 : AV 4.38 (246)
| | familia EPHEMEROPTERA_Heptageniidae > O : '

| | familia PLECOPTERA_Nemouridae <= 1 : AV 2.63 (108)

I I | familia PLECOPTERA Nemouridae > 1 : AV 1.30 (28)

|  familia_ COLEOPTERA_Elmidae > 0 :

| | familia GASTROPODA_Hydrobiidae > O : AV 1,15 (109)

| | familia_GASTROPODA_Hydrobiidae <= 0.:

| | | familia_PLECOPTERA_Leuctridae <= 0 : AV 2.61 (154)

| | | familia PLECOPTERA_Leuctridae > O : AV 1.67 (163)
familia OLIGOCHAETA_Tubificidae > 1 :

familia AMPHIPODA_Gammaridae > O : AV 4.05 (137)

familia AMPHIPODA_Gammaridae <= 0 :

|  familia DIPTERA_Psychodidae > 0 : AV 37.24 (5)

|  familia DIPTERA_Psychodidae <= 0 :

|| familia_HIRUDINEA_Glossiphoniidae <= 0 : AV 12.89 (80)
|

I
I
I
I
!
| | familia HIRUDINEA_Glossiphoniidae > 0O : AV 7.02 (31)

Table9. Correlations between actual chemical parameter v?l- For some chemical parameters, it might turn out that
ues and values predicted by regression trees, linear equations their cumulative effects (average values over the given
and nearest neighbor induced from species level data. . .

period) are more pronounced and thus their average

RT LR NN values are easier to predict. For others, maximum (e.g.,
BOD 0.652 0592 0577 fo.r ammonia) or minimum (e.g., for oxygen) values
cl 0.570 0.618 0.595 might be more relevant. . .
In further work, we will try to predict average, max-
O 0.405 0.409 0.398 imum or minimum values of chemical parameters over
Electrical conductivity 0.539 0.571 0.553 a period of time preceding the biological sampling,
K07 0.602 0.596 0.614 rather than the values of chemical parameters at the
KMnO4 0.546 0.485 0.577 single point in time (of biological sampling) as done
NH4 0.664 0.487 0.534 in this paper. As the abundance of some bioindicators
NO, 0.373 0.318 0.448 can be affectgzd by the seasons, seasonal effects should
NO; 0.352 0316 0.360 also be taken into account in further work.
0, ’ 0.484 0.544 0.551
Alkalinity (pH) 0.397 0.382 0.427
PO, 0.461 0.352 0.569 Acknowledgments
Oxygen saturation 0.424 0.454 0.464
Si0, . 0411 0.500 0.445 The researf;h de§01.'ibed in th.is paper was supported by
Water temperature 0.561 0.588 0479 the Slovenian Mm.lstry of $c1ence and Te_chnolqu. The
Water hardness 0.475 0472 0.533 I-I‘ydropleteorolofglcal Institute qf Slovenia provided Fhe
biological, physical and chemical data on Slovenian
Average 0.498 0.481 0.508

rivers used in this study. Thanks are due to William J.
RT = regression trees; LR = linear regression; NN = nearest Walley and Herbert A. Hawkes for comments on the
neighbor. regression trees derived from species level data.
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