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a b s t r a c t 

Semi-supervised learning (SSL) aims to use unlabeled data as an additional source of information in order 

to improve upon the performance of supervised learning methods. The availability of labeled data is often 

limited due to the expensive and/or tedious annotation process, while unlabeled data could be easily 

available in large amounts. This is particularly true for predictive modelling problems with a structured 

output space. In this study, we address the task of SSL for multi-target regression (MTR), where the 

output space consists of multiple numerical values. We extend the self-training approach to perform SSL 

for MTR by using a random forest of predictive clustering trees. In self-training, a model iteratively uses 

its own most reliable predictions, hence a good measure for the reliability of predictions is essential. 

Given that reliability estimates for MTR predictions have not yet been studied, we propose four such 

estimates, based on mechanisms provided within ensemble learning. In addition to these four scores, we 

use two benchmark scores (oracle and random) to empirically determine the performance limits of self- 

training. We also propose an approach to automatically select a threshold for the identification of the 

most reliable predictions to be used in the next iteration. An empirical evaluation on a large collection of 

datasets for MTR shows that self-training with any of the proposed reliability scores is able to consistently 

improve over supervised random forests and multi-output support vector regression. This is also true 

when the reliability threshold is selected automatically. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

The major machine learning paradigms are supervised learning

e.g., classification, regression), where all the data are labeled, and

nsupervised learning (e.g., clustering), where all the data are un-

abeled. Semi-supervised learning (SSL) [1] examines how to ex-

loit both labeled and unlabeled data, aiming to benefit from the

nformation that unlabeled data bring. SSL is of a practical rel-

vance because, in many real-world scenarios, labeled data are

carce due to a costly and/or time-consuming labelling procedure;

hile unlabeled data abound and are easy to obtain. For exam-

le, such scenarios are encountered in life sciences (gene function

rediction, quantitative structure-activity relationship modelling), 

cology (habitat and community modeling), multimedia (annota-

ion of images and videos) and semantic web (categorization and

nalysis of text and web). 

Intuitively, SSL yields best results when there are few labeled

xamples as compared to unlabeled ones (i.e., large-scale labelling
∗ Corresponding author. 
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s not affordable). Such a scenario is especially relevant for ma-

hine learning tasks with structured outputs where, due to the

ncreased complexity of the output, labelling of the data is even

ore difficult. Consider, for example, the problem of natural lan-

uage parsing, where the aim is to predict the parse tree that gen-

rates a given input sentence. To label the data, linguists need to

etermine the parse tree for input sentences. This is feasible for

 few sentences, but for large number of sentences the process

ecomes very tedious and expensive: It took 2 years to manually

onstruct parse trees for 40 0 0 sentences of Penn Chinese Treebank

2] . At the same time unlabeled input sentences are readily avail-

ble in vast amounts. Another prominent example comes from the

cological modelling domain, where some attribute values are eas-

ly available (e.g. temperature, humidity) whereas some other at-

ribute values have to be manually collected/measured by experts

nd thus, can be the subject of the prediction process (e.g. water

ollution in a river, or abundance of specific species which popu-

ate the river). Obviously, in the latter case, data collection is very

xpensive and time consuming, so only few observations can be

btained with limited resources [3] . 

In this study, we are concerned with SSL for the task of multi-

arget regression (MTR). MTR is a structured output prediction task

http://dx.doi.org/10.1016/j.knosys.2017.02.014
http://www.ScienceDirect.com
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where the goal is to predict multiple continuous target variables

(also known as multi-output or multivariate regression). In many

real-life problems, we are interested in simultaneously predict-

ing multiple continuous variables. Prominent examples of this task

come from ecology: predicting the abundance of different species

occupying the same habitat [4] , assessing different properties of

forests [5] , or estimating vegetation quality indices [6] . We argue

that SSL, as for classical machine learning tasks, can lead to im-

proved predictive capabilities also for MTR by leveraging the con-

tribution of unlabeled examples and, at the same time, by exploit-

ing the possible dependencies among the multiple target variables.

The handful of existing SSL methods for structured output

prediction almost exclusively deal with discrete outputs. Here, a

prominent work was done by Brefeld [7] , who used the co-training

paradigm and the principle of maximizing the consensus among

multiple independent hypotheses to develop semi-supervised sup-

port vector learning algorithm for joint input-output spaces and

arbitrary loss. Zhang and Yeung [8] proposed a semi-supervised

method based on Gaussian processes for a task related to MTR:

multi-task regression. In multi-task learning the aim is to predict

multiple single-target variables with different training sets (in gen-

eral, with different descriptive attributes) at the same time. The

few existing SSL methods for MTR are highly specialized for indi-

vidual applications. For example, Navaratnam et al. [9] have pro-

posed a SSL method for MTR specialized for computer vision. On

the other hand, SSL for single-target regression has received more

attention in the past [10–13] . While it is possible to decompose a

MTR problem into several (local) single-target ones and use such

methods, there are several advantages of learning a global multi-

target model over learning a separate local model for each target

variable. Global models have better computational efficiency, typ-

ically perform better and overfit less than a collection of single-

target models [14,15] . 

We propose a global SSL method for MTR. More specifically, we

extend the self-training approach [16] to the task of MTR. The main

advantage of this iterative SSL approach is that it can be “wrapped”

around any existing (supervised) method. In the past, several stud-

ies have proposed supervised methods for solving the task of MTR

directly and demonstrated their effectiveness [6,14,17,18] . We pro-

pose to use predictive clustering trees (PCTs), or more precisely,

random forests [19] of PCTs for MTR, as base predictive models

[14] for the self-training approach. PCTs are a generalization of

standard decision trees towards predicting several types of struc-

tured outputs: tuples of continuous/discrete variables, hierarchies

of classes, and time series. 

The main principle of self-training is iterative usage of its own

most reliable predictions for the unlabeled data as additional data

in the training process. The most reliable predictions are selected

by applying a threshold on the reliability scores of predictions. A

good reliability scoring function assigns a high score to the predic-

tions with low error and a low score to the predictions with high

error. Obviously, a proper reliability scoring function is crucial for

the success of self-training, since an error once made can reinforce

itself in the subsequent iterations. However, developing a good re-

liability scoring function is not a simple task [20] : This has not yet

been entirely resolved in the single-target regression and classifi-

cation, and even less for the task of MTR. 

In this paper, we propose and evaluate several reliability scor-

ing functions for MTR, which are based on the mechanisms pro-

vided by ensemble learning. Namely, we use the variance of the

votes of an ensemble and random forest proximities to estimate

the reliability of predictions [19,20] . These reliability estimates are

by-products of ensemble learning. Hence, they impose almost no

additional computational overhead, as opposed to some other re-

liability estimates for regression [20] . This aspect is especially im-

portant in SSL, where we can expect to deal with huge amounts
f unlabeled data and/or to re-train the model several times (as in

elf-training). In order to empirically determine the performance

imitations of the proposed approach to self-training for MTR, we

se oracle scoring (the best possible scoring function) and random

coring as benchmark scoring functions. Finally, we explore the in-

uence of two strategies for merging per-target scores into a global

core (normalized averaging and ranked averaging) on the perfor-

ance of self-training. 

We also consider the problem of automatically determining the

hreshold on the reliability scores of predictions. The threshold-

ng is crucial for the selection of the unlabeled examples with

he most reliable predictions. The selected unlabeled examples to-

ether with the predictions are then considered as training exam-

les in the next iteration. To this end, we propose an automatic

hreshold selection algorithm for SSL that exploits the out-of-bag

rror obtained when learning the ensemble. 

Our study investigates three important questions: (1) Can un-

abeled data improve predictive performance on MTR tasks in a

elf-training setting? (2) Which reliability scoring function yields

he best predictive performance in this setting? (3) Can we ex-

loit the advantage introduced by the self-training setting for MTR

hen an automatic threshold selection algorithm is used? To ad-

ress these questions, we perform experimental evaluation of self-

raining with the various reliability scoring functions using 9 MTR

atasets from various domains. The evaluation reveals that self-

raining, coupled with any of the proposed reliability scoring func-

ions, is able to outperform a supervised random forest and multi-

utput support vector regression (MSVR) [21,22] . In particular, all

f the proposed reliability scoring functions performed better than

andom scoring. The best results, excluding the upper (oracle) lim-

ts on the performance of self-training, were achieved by using a

eliability score based on the variance of the votes of ensemble

embers. 

We summarize the major contributions of this paper as follows:

• A SSL method tailored for the task of MTR based on the predic-

tive clustering framework for predicting structured outputs. 

• Two reliability scoring functions for MTR predictions, two nor-

malization strategies, and two strategies for merging per-target

scores into a global score. 

• Empirical determination of the upper bounds on the perfor-

mance, i.e., the potential of SSL with self-training. 

• An automatic threshold selection algorithm, i.e., a practical so-

lution for exploiting the potential of SSL with self-training. 

• Empirical evaluation of the proposed method on 9 MTR

datasets. 

An initial investigation of the proposed SSL method for MTR

as been presented in a workshop paper [23,24] . We extend that

ork along six major dimensions. First, we propose a new reli-

bility scoring function based on the random forest proximities,

n addition to the one based on the variance of the votes of the

nsemble members. Second, we propose four strategies for ob-

aining a single global score from the per-target scores. Third, we

ropose an oracle score to test the performance bounds of the

elf-learning paradigm. Fourth, we propose an algorithm for the

utomatic selection of the threshold for reliability of predictions.

ifth, we consider a more sophisticated stopping criterion for self-

raining, which automatically stops learning if the performance be-

ins to degrade. Finally, the empirical evaluation is performed on a

arger collection of MTR datasets. 

The remainder of the paper is organized as follows. In the next

ection, we present the background of the work presented here.

his includes a discussion on related work on the topics of MTR

nd SSL, and a brief description of the predictive clustering frame-

ork. Next, in Section 3 we describe the self-training approach and

he proposed reliability scores for MTR. The experimental design
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nd key experimental questions are outlined in Section 4 . The re-

ults of the empirical investigations are presented and discussed

n Section 5 . Finally, we draw the main conclusions and give direc-

ions for further work in Section 6 . 

. Background 

.1. Related work 

Within SSL, there are different classes of algorithms [16] :

ow-density separation methods, graph-based methods, generative

odels, and methods based on iterative training. The last group

f methods consists of two main paradigms: self-training and co-

raining. These paradigms have established themselves as the main

pproaches to SSL for practical reasons: They are based on a con-

enient extension of existing supervised methods towards SSL. 

Self-training [16] and co-training [25] are iterative approaches

hat, in addition to labeled data, use unlabeled data and their

wn predictions of its labels, in the learning process. The latter

pproach trains models on independent feature sets (i.e., views):

hese models help one another to avoid biasing to their own

rediction errors. In this paper, we are concerned with the self-

raining paradigm and thus introduce it in more detail. 

Self-training was first proposed by Yarowsky [26] for word

ense disambiguation. Since then, it has had a number of success-

ul applications, including detection of objects in images [27,28] ,

dentification of subjective nouns [29] and learning human motion

ver time [30] . Abney [31] and Haffari & Sarkar [32] proposed a

heoretical analysis of the self-training algorithm. It showed that

he self-training framework minimizes the same objective function

f the base model (but in a different way). In the specific case con-

idered by the authors it minimizes a cross-entropy based objec-

ive function, given that the base model reduces the same objec-

ive function. 

An overwhelming majority of studies relying on self-training to

erform SSL are concerned with the task of classification. How-

ver, there are handful of methods based on self-training (or co-

raining) for the task of (single-target) regression [10–13] . Recently,

ousa and Gama [33] proposed a self-training method based on

daptive model rules for MTR from data streams [34] . To the best

f our knowledge, self-training has not yet been implemented for

he task of MTR in the batch learning setting. 

Multi-label classification is a machine learning task somewhat

elated to MTR. There the goal is to simultaneously predict multi-

le binary labels, while in MTR the goal is to simultaneously pre-

ict multiple continuous variables. Contrary to MTR, several semi-

upervised methods for multi-label classification were previously

ublished [35–37] . However, such methods are not directly appli-

able for MTR, and are thus not comparable to the method pro-

osed in this paper. 

Independently of the self-training paradigm, MTR has recently

eceived increasing attention [38] . An early method for MTR was

roposed by Brown and Zidek [39] who adapted the standard

idge regression to multivariate ridge regression. Later, Breiman

nd Friedman [40] proposed the Curds&Whey method, where cor-

elations between the target variables are modelled in a post-

rocessing phase. Recently, several machine learning methods,

opular for regression, have been implemented also for the task

f MTR, such as decision trees [17,18] , support vector machines

21,22,41] and k-nearest neighbours [42] . Ensemble methods for 

TR include rule ensembles [43] , bagging and random forests [14] .

 different approach is followed by Tsoumakas et al. [44] , who pro-

osed another ensemble-based method for MTR, where new target

ariables are constructed as random linear combinations of exist-

ng target variables. 
In principle, any of the listed MTR methods could be used

s the base model of self-training for MTR – given that a mea-

ure for the reliability of its predictions is defined. As already

oted in the introduction, our ideas for development of reliability

cores are based on the mechanisms provided by ensemble learn-

ng, and in particular by random forests. This is the main reason

hy we choose random forests of PCTs for MTR [14] as base mod-

ls for self-training. As self-training relies on its own predictions, a

ethod with state-of-the-art predictive performance, such as ran-

om forests, is needed. Moreover, random forests of PCTs were

ound to perform better than or comparable to other ensemble ap-

roaches for MTR, while being computationally efficient [43,44] . 

In this study, we propose several scoring functions for the re-

iability of MTR predictions based on the studies of Bosni ́c and

ononenko [20] and Briesemeister et al. [45] . The first extensively

tudies different reliability scores for regression, based on sensi-

ivity analysis, local cross-validation, analysis of the density of the

istribution of learning examples, and the variance of bagged mod-

ls. The empirical evaluation highlighted the variance of bagged

odels as the most successful reliability score. The second study

roposes a reliability score for regression predictions based on es-

imating the examples’ error by considering its local environment

n the training set. In a similar fashion, our reliability score also

onsiders the neighbourhood of the examples as defined by the

istance function intrinsic to random forests, and estimates errors

ith out-of-bag examples. 

.2. Ensembles of predictive clustering trees for MTR 

The basis of the semi-supervised method proposed in this study

s the use, in an ensemble learning fashion, of PCTs. In this section,

e first briefly describe PCTs for MTR, and then the method for

earning a random forest of PCTs. Both are described in more detail

n Kocev et al. [14] . 

.2.1. Predictive clustering trees for MTR 

The PCT framework views a decision tree as a hierarchy of clus-

ers, where the top-node corresponds to one cluster containing all

ata. This cluster is recursively partitioned into smaller clusters

hile moving down the tree. The PCT framework, including PCTs

or MTR and ensembles thereof, is implemented in the CLUS sys-

em [14] , available at http://sourceforge.net/projects/clus . 

PCTs are induced with a standard top-down induction of decision

rees (TDIDT) algorithm, which takes as input a set of examples E

nd outputs a tree. The heuristic that is used for selecting the tests

o put in internal tree nodes is the reduction in variance caused

y partitioning the examples according to the tests. By maximizing

he variance reduction, the cluster homogeneity is maximized and

he predictive performance is improved. 

The main difference between the algorithm for learning PCTs

nd a standard decision tree learner is that the former considers

he variance function and the prototype function (that computes

 label for each leaf) as parameters that can be instantiated for

 given learning task. So far, PCTs have been instantiated for the

ollowing tasks [14] : multi-target prediction (which includes MTR),

ierarchical multi-label classification and prediction of time-series.

n this article, we focus on the task of MTR. 

The variance and prototype functions of PCTs for MTR are in-

tantiated as follows. The variance is calculated as the sum of the

ariances of the target variables, i.e., V ar(E) = 

∑ T 
i =1 V ar(Y i ) , where

 is the number of target variables, and Var ( Y i ) is the variance of

arget variable Y i . The variances of the targets are normalized, so

ach target contributes equally to the overall variance. The normal-

zation is performed by dividing the estimates with the standard

eviation for each target variable on the available training set. The

rototype function (calculated at each leaf) returns as a prediction

http://sourceforge.net/projects/clus
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Table 1 

The learning algorithm for self-training with random forests of 

PCTs ( Clus-SSL ). Here, E l is a set of the labeled examples, E u 
is a set of unlabeled examples, k is the number of trees in the 

forest, D is the total number of descriptive attributes, f ( D ) is a 

function which gives the size of the feature subset for random 

forests considered at each node during tree construction, and τ

is the threshold for the reliability of predictions. 
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the vector of mean values of the target variables, calculated by us-

ing the training examples that belong to the given leaf. 

2.2.2. Ensembles of predictive clustering trees 

We consider random forests of PCTs for structured output pre-

diction, as implemented by Kocev et al. [14] in the CLUS system.

The individual PCTs in a random forest are constructed by the

approach proposed by Breiman [19] . A random forest is an en-

semble of trees, where diversity among the predictors is obtained

by using bootstrap replicates of the training set (as in bagging)

and by changing the set of descriptive attributes during learn-

ing. Bootstrap samples are obtained by randomly sampling train-

ing examples, with replacement, from the original training set, un-

til an equal number of examples as in the training set is sampled.

Breiman [46] showed that bagging can give notable gains in pre-

dictive performance, when applied to unstable learners (for which

small changes in the training set result in large changes in the pre-

dictions), such as classification and regression tree learners. 

To learn a random forest, the classical PCT algorithm for tree

construction is randomized by replacing the standard selection of

attributes with a randomized selection. More precisely, at each

node in a decision tree, a random subset of the descriptive at-

tributes is taken, and the best attribute is selected from this sub-

set. The number of attributes that are retained is given by a func-

tion f of the total number of descriptive attributes D (e.g., f (D ) =
� log 2 (D ) + 1 � ). 

In random forest of PCTs, the prediction for a new example is

obtained by combining the predictions of all PCTs in the forest. For

the MTR task, the prediction for each target variable is computed

as the average of the predictions for that target variable obtained

from each tree in the forest. 

3. Self-training for MTR with ensembles of PCTs 

In this section, we present our approach to semi-supervised

learning for the task of MTR. The approach is based on the pre-

dictive clustering framework and the self-training paradigm. In a

nutshell, the proposed approach works as follows. To begin with,

a predictive model (i.e., a random forest of PCTs) is constructed

by using all of the available labeled examples (the training set).

Next, the predictive model is applied to the unlabeled examples,

i.e., it produces labels for the unlabeled examples. The examples

with the most reliable predictions are then selected and added to

the training set. Next, a new predictive model is constructed using

the updated training set. The learning algorithm continues until a

stopping criterion is satisfied. The pseudo-code of the self-training

algorithm for MTR with ensembles of PCTs (named Clus-SSL ) is

outlined in Table 1 . 

In the description of the Clus-SSL algorithm, three key notions

require a precise definition: the reliability scoring function, the

threshold on the reliability scores and the stopping criterion. First,

self-training relies strongly on the assumption that its own (most

reliable) predictions are correct. Hence, the most crucial part of the

algorithm is to define an appropriate reliability scoring function. A

good reliability scoring function should be able to discern correct

predictions (thus assigning them high scores) from wrong predic-

tions (thus assigning them low scores). 

We define the reliability score of a predictive model M as a

function: 

Rel iabil ity M : E u → [ 0 , 1 ] , (1)

where E u is a set of unlabeled examples. For a given example e ∈
E u , Rel iabil ity M (e ) denotes an estimate of the probability that the

prediction M (e ) is correct, i.e., the reliability score is a kind of a

proxy for the accuracy of the prediction. 
Next, a user-defined threshold ( τ ∈ [0, 1]) on the reliability

core needs to be set to select the unlabeled examples that should

e added to the training set. If the reliability of the prediction for

n unlabeled example is greater than τ , the example is moved

rom the unlabeled set ( E u ) to the training set ( E l ), together with

he predicted values of its target variables. This procedure is iter-

ted until the stopping criterion is met (see Section 3.5 for more

etails on stopping criteria). 

Within each iteration of the self-training algorithm (see

able 1 ), we solve a MTR problem with m continuous targets. The

xisting reliability scoring functions are tailored for single-target

roblems [20] . We propose to calculate the reliability scores for a

iven unlabeled example as follows. We first calculate m per-target

eliability scores, i.e., we apply a reliability scoring function to each

f the targets separately. Next, the m reliability scores are aggre-

ated into a single reliability score. The threshold τ is then applied

o the aggregated reliability score. We explore two aggregation

chemes for the per-target reliability scores: averaging-based and

inimum-based aggregation. The averaging-based scheme consists

f simple averaging of the per-target reliability scores, whereas the

inimum-based aggregation scheme is more conservative. There,

he examples’ prediction is considered as reliable as the prediction

f its least reliable target. The two aggregation schemes are defined

s follows: 

el iabil ity A v g (e ) = 

1 

m 

m ∑ 

i =1 

Rel iabil ity i (e ) , (2)

el iabil ity Min (e ) = min 

i =1 , ... ,m 

(
Rel iabil ity i (e ) 

)
, (3)

here Rel iabil ity i (e ) is a normalized (in [0,1]) reliability score for

he i th target variable of an example e . 

We consider two strategies of normalization of per-target

cores: min-max normalization and ranking-based normalization.

ormally: 

el iabil ity 
Norm 

i (e u ) 

= 

Rel iabil ity i (e u ) − min j=1 ... | E u | Rel iabil ity i (e j ) 

max j=1 ... | E u | Rel iabil ity i (e j ) − min j=1 ... | E u | Rel iabil ity i (e j ) 
, (4)

el iabil ity 
Rank 

i (e u ) = 1 − Rank i ( Rel iabil ity i (e u ) ) − 1 

| E u | − 1 

, (5)

here Reliability i ( e u ) is the reliability score for the i th target vari-

ble of the example e u , | E u | is the number of unlabeled examples,

nd the Rank i function gives ranks to unlabeled examples accord-

ng to the reliability scores of the i th target variable. 
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Table 2 

An illustrative example of using the procedure for calculating of the reliability 

scores according to different aggregation and normalization schemes. The same ex- 

amples e 1 , e 2 and e 3 are used in both the upper and lower part of the Table. 

Normalized per-target reliability scores 

Reliability scores Aggregated scores 

Rel iabil ity Norm 
1 Rel iabil ity Norm 

2 Rel iabil ity Norm 
1 , 2 A v g Rel iabil ity Norm 

1 , 2 Min 

e 1 0 .8 0 .1 0 . 8+0 . 1 
2 

= 0 . 45 0 .1 

e 2 0 .3 0 .5 0 . 3+0 . 5 
2 

= 0 . 4 0 .3 

e 3 0 .9 0 .4 0 . 9+0 . 4 
2 

= 0 . 65 0 .4 

Ranked per-target reliability scores 

Reliability scores Aggregated scores 

Rel iabil ity Rank 
1 Rel iabil ity Rank 

2 Rel iabil ity Rank 
1 , 2 A v g Rel iabil ity Rank 

1 , 2 Min 

e 1 1 − 2 −1 
3 −1 

= 0 . 5 1 − 3 −1 
3 −1 

= 0 0 . 5+0 
2 

= 0 . 25 0 

e 2 1 − 3 −1 
3 −1 

= 0 1 − 1 −1 
3 −1 

= 1 0+1 
2 

= 0 . 5 0 

e 3 1 − 1 −1 
3 −1 

= 1 1 − 2 −1 
3 −1 

= 0 . 5 1+0 . 5 
2 

= 0 . 75 0 .5 
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The use of the ranking-based normalization strategy is moti-

ated by the following. It can happen that the distributions of the

er-target scores can be very different, thus introducing different

iases to the aggregated reliability score. Ranking-based normal-

zation, instead of considering the absolute values of the per-target

eliability scores (as in min-max normalization), considers the rela-

ive differences between the per-target ranks. Issues related to the

ifferent distributions for different target variables are illustrated

n Fig. 4 and discussed in more detail in Section 5 . 

In Table 2 , we give an illustrative example of the procedure for

alculating the reliability scores according to the previously de-

ned aggregation schemes and normalization strategies. The task

onsidered in this example is a MTR task with two target variables.

et us take three examples e 1 , e 2 and e 3 , with their per-target reli-

bility scores (0.8, 0.1), (0.3, 0.5) and (0.9, 0.4), respectively. These

cores are used to calculate four different reliability scores, with

espect to the two different normalization schemes (min-max nor-

alization and ranking-based normalization), and the two differ-

nt aggregations schemes (averaging-based and minimum-based

ggregation). 

First, based on the (min-max) normalized reliability scores, we

how the aggregation of the reliability scores using averaging-

ased and minimum-based aggregation. We see that with the av-

raging aggregation the examples have the order e 3 , e 1 , e 2 , while

ith the minimum aggregation the examples have the e 3 , e 2 , e 1 (as

llustrated in the last two columns of the upper part of Table 2 ). 

Second, using the ranking of the per-target reliability scores and

q. (5) , we produce the ranking-based per-target scores (illustrated

n the first column in the lower part of Table 2 ). For the first target,

he order of the examples is e 3 , e 1 , e 2 , while for the second tar-

et the ordering is e 2 , e 3 , e 1 . We next aggregate these scores using

he two aggregation schemes and obtain the following orderings:

or the averaging-based aggregation, the order is e 3 , e 2 , e 1 , for the

inimum based aggregation e 3 is top-ranked, while e 2 and e 1 are

ied. 

The reliability scores for MTR ( Reliability i ( e )) are obtained by

xploiting some mechanisms provided directly by the ensemble

earning paradigm. More specifically, we define two scores based

n (1) the variance of the votes of the base predictive mod-

ls in an ensemble and (2) random forest proximities [19] . We

lso propose two benchmark scores: a random and an oracle

core. While the random score assigns random reliability scores

o the examples, the oracle score assigns reliability scores based

n the true labels of the unlabeled data (see Section 3.3 for more

etails). 

These two benchmark scores determine the potential of the

elf-training approach and of the reliability scoring function. The
andom score provides information on whether using reliability

cores improves the predictive performance of self-training or not.

f the use of a random reliability scoring function yields similar re-

ults as the use of a non-random reliability scoring function, this

eans that the reliability scoring function is not useful. The or-

cle score provides insight into whether the performance of self-

raining improves if the ‘true’ reliabilities of the predictions are

iven. 

The four reliability scores (variance score, random forest prox-

mity score, random score and oracle score), coupled together with

he two aggregation schemes (avg and min) and two normaliza-

ion schemes (norm and rank) yield to 13 reliability scores in to-

al (the different aggregation/normalization schemes lead to the

ame results for the random score). The various reliability scor-

ng functions are explained in more detail in the remainder of this

ection. 

Finally, we emphasize that self-training is, in principle, a

eneric approach. We argue that the instantiation of self-training

roposed in this study is effective specifically for the task of MTR,

ue to the (1) base model we use (i.e., random forest of PCTs),

hich was shown to successfully handle MTR [14] , and (2) the pro-

osed reliability scoring functions, developed specifically for the

redictions of this base model. Obviously, self-training could be ex-

ended to types of structured outputs other than MTR, given ap-

ropriate base models are used, and reliability scoring function are

roperly defined for the prediction of these models. 

.1. Variance score 

The variance score exploits the voting mechanism of the en-

emble model [47] . Namely, when a prediction is made for an un-

abeled example by a random forest, we consider it reliable if the

redictions of the individual trees in the ensemble are coherent.

his variance measure has been previously used in the context of

agging, where it was found to perform the best among a vari-

ty of approaches for estimating the reliability of regression pre-

ictions (in an extensive empirical comparison [20] ). 

In each iteration of our self-training approach, a random forest

 with k PCTs is built. The PCTs are trained on a set of labeled ex-

mples E l and applied to a set of unlabeled examples E u . First, for

ach unlabeled example e u ∈ E u , the per-target standard deviation

 

i 
u of votes of the ensemble is calculated as: 

 

i 
u = 

√ √ √ √ 

1 

k − 1 

k ∑ 

j=1 

(
tree i 

j 
(e u ) − M 

i (e u ) 
)2 

, i = 1 , . . . , m, (6)

here tree i 
j 
(e u ) is the vote (i.e., prediction) for e u returned by the

 th tree for the i th target, M 

i is the prediction for e u returned by

he ensemble for the i th target (i.e., the average of the votes across

ll trees for the i th target), and m is the number of target variables.

In this case, in order to give high reliability scores for small

tandard deviation we define: 

el iabil ity i (e u ) = −r i u , i = 1 , . . . , m, (7)

This reliability score can be theoretically motivated by the prop-

rties of variance. In fact, the variance represents (informally) how

uch the predictions differ from the mean. If we assume that the

rrors of the ensemble are distributed according to a normal dis-

ribution (this assumption is reasonable for most of the ensemble

earning approaches and follows the central limit theorem [48] ), r i u 
an be considered as a good approximation of the variance of the

rrors, which we can directly associate to the concept of reliability.

ctually, our approach follows some previous studies [20] where

he variance of predictions obtained by bagging of artificial neural

etworks was used to estimate reliability. 
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Combining this reliability score with the two normalization

schemes and with the two aggregation schemes leads to four con-

figurations, named VarianceNormAvg, VarianceNormMin, VarianceR-

ankAvg and VarianceRankMin . 

3.2. Random forest proximities score 

This reliability scoring function relies heavily on the random

forest inner mechanisms. More specifically, we exploit two such

mechanisms: the measure of proximity between examples and the

out-of-bag error estimation. A random forest has an intrinsic prox-

imity measure [19] : For two examples e and f , proximity p ( e, f ) is

defined as the proportion of trees in the forest where e and f end

in the same leaf. 

When constructing ensembles from bootstrap replicates of the

training data, the performance can be estimated using the out-of-

bag error, i.e., the error on the examples that were not used to con-

struct the individual base models. Breiman [49] presented empiri-

cal evidence that the out-of-bag error is a very accurate estimate

of a nodes’ errors in a regression tree. More generally, out-of-bag

error is a good estimate of the error which an ensemble model will

make on unseen examples. 

We propose to join these two mechanisms (proximity between

examples and out-of-bag error estimation) into a reliability scoring

function. Namely, we extrapolate the expected error of unlabeled

examples by using the out-of-bag errors of the labeled examples in

their proximity. In this way, we obtain an estimate of the ensem-

bles’ predictive performance (and conversely error) for that exam-

ple. In particular, we first compute the out-of-bag error for each la-

beled example and then, for each unlabeled example, we calculate

its proximities to all the labeled examples. If the unlabeled exam-

ple e u often falls in the same leaf with a labeled example e l (i.e.,

p ( e u , e l ) is high), according to the above discussion, the out-of-bag

error of the labeled example e l is a good estimate of the error of

the unlabeled example e u . Thus, if the out-of-bag errors of labeled

examples in the close proximity of the unlabeled example e u are

low, then it is expected that the error of e u will also be low (i.e.,

the prediction is correct). 

More formally, the per-target expected error ( expEr r i u ) for each

example ( e u ∈ E u ) is calculated as follows: 

expEr r i u = 

∑ 

e l ∈ E l 
( p(e u , e l ) · OOBError i (e l ) ) , i = 1 , . . . , m, (8)

where OOBError i ( e l ) is the out-of-bag error for the i th target of the

labeled example e l , m is the number of targets and p ( ·, ·) is the

proximity function. 

Our reliability scoring function based on the random forest

proximities is similar to reliability estimation based on local neigh-

bourhoods [20] – both functions consider the local neighbourhood

of an example to estimate the reliability of its prediction. How-

ever, none of the scores there takes prediction errors into account.

Briesemeister et al. [45] proposed a reliability estimate based on

the errors in the local environment in the training set. This method

is model-independent and requires estimation of errors on the

training set, optimization of the number of neighbours and calcula-

tion of distances among examples. In contrast, the score proposed

in this paper is tailored to random forests and adds no additional

computational overhead, except for counting the number of times

a pair of examples ended in the same leaf. 

As an error measure for OOBError i ( e l ), we use the root-mean-

square error (RMSE). Moreover, in order to give high reliability

scores for small out-of-bag errors, we define: 

Rel iabil ity i (e u ) = −expEr r i u , i = 1 , . . . , m, (9)

Combining this reliability score with the two normalization

schemes and the two aggregation schemes leads to four configura-
ions, named as RForestProxNormAvg, RForestProxNormMin, RForest-

roxRankAvg and RForestProxRankMin . 

.3. Benchmark reliability scores 

To assess the potential of the self-training paradigm and the re-

iability scoring function, we propose two benchmark scores: the

andom and the oracle scores. When self-training is performed

ith the random score, unlabeled examples are added to the train-

ng set in a random order. With the oracle score, they are added in

he best possible order, that is, examples where the model makes

he smallest actual error are added first. A good reliability score

or self-training yields performance better than that of the random

core, and as close as possible to the one of the oracle score. The

andom score assigns a random number between 0 and 1 to each

nlabeled example. 

For this purpose, we generate pseudo-random numbers accord-

ng to the uniform distribution in [0,1]. New random scores are

enerated at each iteration of self-training and are assigned to the

xamples remaining in the unlabeled set. 

The oracle score is defined on the basis of the actual error a pre-

ictive model makes on unlabeled examples. The SSL algorithms

re typically evaluated by using the set of entirely labeled data,

here unlabeled data are simulated by temporarily ignoring the

abels. Knowing the exact labels of all data enables us to measure

he errors made on the unlabeled data. Note that this score can

ot be used in practical applications of SSL. We use this score to

ssess how far the proposed reliability scoring functions are from

he theoretically optimal score. 

The oracle score is calculated as follows. In each iteration of

elf-training, predictions are made for the unlabeled examples. For

ach unlabeled example, we measure its per-target errors using the

redicted and the real labels. The obtained per-target errors are

hen normalized to [0, 1] the same way as in the other two re-

iability scores, so that small (per-target) error leads to high (per-

arget) reliability. 

Random reliability scores and oracle reliability scores with the

wo normalization schemes and the two aggregation schemes lead

o five configurations, named Random, OracleNormAvg, OracleNorm-

in, OracleRankAvg and OracleRankMin . 

.4. Automatic threshold selection 

Once the predictions on unlabeled examples are made and reli-

bility scores are calculated, it is necessary to choose the examples

hich will be considered as training examples in the next iteration

i.e., the ones with reliable predictions). For this purpose, a thresh-

ld on the reliability scores is needed. In Section 5 , we demon-

trate that a properly selected threshold is of great importance for

he optimal performance of the self-training approach. If an inap-

ropriate threshold is selected, such that it allows examples with

rroneous predictions to enter the training set, the performance of

elf-training can deteriorate. 

In this work, we propose an approach to automatically identify

 an appropriate threshold for the reliability of predictions. A sim-

le solution, already proposed and empirically evaluated for simple

inary classification in [50] , is to select 10% of the most-reliable

redictions and use the mean of their reliability score as a thresh-

ld. Henceforth, we will call this solution Tavg10% . A variant of this

olution is to include the top 10% most-reliable predictions in the

ext iteration. Henceforth, we will call this solution Ttop10% . Note

hat, we adapted these procedures for the task of MTR. 

A more sophisticated alternative, which we propose in this pa-

er, is to simultaneously exploit the errors and reliability scores of

ut-of-bag examples. In particular, at each iteration of self-training,

ut-of-bag reliability scores for labeled examples are calculated.
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Table 3 

The learning algorithm for self-training with automatic threshold selection based on out-of-bag errors ( Clus-SSL-Auto ). Here, E l is a set of labeled examples, E u 
is a set of unlabeled examples, k is the number of trees in the forest, D is the total number of descriptive attributes, f ( D ) is a function which gives the size of 

the feature subset for random forests considered at each node during tree construction, and initial is an indicator variable specifying whether the threshold is 

automatically selected only after the first iteration of throughout all the iterations. 
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ut-of-bag reliability scores of labeled examples are calculated in

 similar way as the reliability scores of unlabeled examples, with

he difference that, for each labeled example, only the trees for

hich that example was out-of-bag are considered. Then, for each

andidate threshold on the reliability score, our approach evaluates

f the mean of the out-of-bag error between the examples with re-

iability score greater than the considered threshold is significantly

ifferent (according to a statistical test) from the mean of the out-

f-bag error of all the examples. Note that, in this procedure, we

se only ’original’ labeled examples, i.e., unlabeled examples which

re added to the training set are not considered. 

The basic idea is that, at each iteration, the algorithm should

elect the threshold such that examples with reliability scores

reater than the threshold contribute to significant reduction in er-

or. Candidate thresholds are all the out-of-bag reliability scores of

abeled examples, taken in descending order. When the test ac-

epts the hypothesis that the means are different, the algorithm

tops and returns the last considered threshold. The threshold

ound is such a way is then applied to select unlabeled examples

o be added to the training set. If statistical significance cannot be

eached for any of the candidate thresholds, the algorithm returns

, meaning that all of the unlabeled examples will be added to the

raining set at the next iteration. 

The statistical test we consider is the two sample t -test for

qual means (with a significance level of 0.05). In this algorithm

or automatic threshold selection, we do not only consider trees

of the random forest) obtained at the last iteration, but all the

rees obtained over all the considered iterations, thus guarantee-

ng stability of the threshold values. Henceforth, we will call this

olution T _ OOB and we will compare this solution with the vari-

nt T _ OOBInitial that determines the threshold only after the first

teration of the self-training framework, and uses this threshold

hroughout all the following iterations. The pseudo-code of the

elf-training method with the proposed algorithms for automatic

hreshold selection is presented in Table 3 . 

.5. Stopping criteria 

In this work, we consider two different stopping criteria for

elf-training. The first one is the commonly used stopping crite-

ion which stops self-training if no unlabeled example is moved

rom the set of unlabeled examples ( E u ) to the training set ( E l ).

his stopping criterion is satisfied when one of the following con-

itions is met: (1) the reliability scores for all the unlabeled ex-
mples are lower than the threshold, or (2) all unlabeled examples

ave been moved to the training set. 

The second stopping criterion we consider, named Airbag [28] ,

s designed to automatically stop the self-training procedure in

he case of predictive performance degradation. This criterion has

een evaluated on simple classification tasks, while here we con-

ider it for MTR tasks. At each iteration, the out-of-bag error of the

odel is recorded. If an increase in the out-of-bag error is detected

rom one iteration to the next one, then the self-training proce-

ure does not continue, the current model is discarded, and the

odel learned in the previous iteration is considered as the final

odel. Similarly to the procedure for automatic threshold selec-

ion ( Section 3.4 ), the calculation of the out-of-bag error is based

n the ’original’ labeled examples (and not on examples labeled

uring the self-training procedure). Note that, in the case of Airbag

topping criteria, the first stopping criterion is also used in con-

unction. 

.6. Computational complexity 

The computational complexity of the self-training approach is

he product of the number of iterations and the complexity of

earning the base predictive model at each iteration. The theoreti-

al upper bound for the number of iterations is equal to the num-

er of unlabeled examples, assuming one unlabeled example is

dded to the training set per iteration. Note that this upper bound

s typically never reached. 

The complexity of learning the base model in this study, i.e.,

raining random forests for predicting structured outputs, depends

inearly on the number of decision trees, logarithmically on the

umber of descriptive attributes and N log N on the number of

raining instances [14] . Note that (1) the number of training in-

tances is not constant in self-training, as it increases with each

teration when unlabeled examples are added to the training set

nd (2) the cost of the automatic threshold selection algorithm is

inear in the number of training instances N . 

. Experimental design 

In this section, we first describe the datasets used in the exper-

mental evaluation. Next, we present the performance metrics, the

valuation procedure and the specific parameter settings of the al-

orithms. Finally, we state the main experimental questions of the

tudy and describe the strategies used to answer them. 
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Table 4 

Characteristics of the datasets. N : number of in- 

stances, D / C : number of descriptive attributes (dis- 

crete/continuous), T : number of target variables. 

Dataset (Reference) N D / C T 

RF1 [51] 9125 0/64 8 

SCM1D [51] 9803 0/280 16 

SCM20D [51] 9803 0/61 16 

SIGMEA real [52] 817 0/4 2 

SIGMEA simulated [52] 10 ,368 2/9 2 

Soil quality [4] 1944 0/142 3 

Solar flare-2 [53] 1066 10/0 3 

Vegetation condition [6] 16 ,967 1/39 7 

Water quality [54] 1060 0/16 14 
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4.1. Data description 

We use nine datasets with multiple continuous target variables

to evaluate the predictive performance of the proposed methods.

The datasets come from two different domains: environmental sci-

ences and economy. 

The majority of the data are from the area of environmental

sciences. To begin with, the task in the RF1 dataset is to predict

river network flows 48 h ahead. Next, the SIGMEA real and SIG-

MEA simulated datasets consist of data about pollen dispersal rates

on fields with genetically modified oilseed rape. Furthermore, the

Soil quality and Water quality datasets concern habitat modelling of

soil and water microorganisms, respectively. Next, the Solar flare-2

dataset is about the number of solar flares of a certain class that

occur over a 24 h period. Finally, the Vegetation condition dataset

contains remote sensed vegetation data. From the domain of econ-

omy, we consider the SCM1D and SCM20D datasets, where the task

is to predict the price of 16 products for the next day and their

mean price over the next 20 days, respectively. We can observe

(see Table 4 ) that the datasets vary in their size, number of at-

tributes and number of target variables. 

4.2. Experimental setup and evaluation procedure 

The SSL method for MTR proposed in this study ( Clus-SSL ) it-

eratively trains random forest ensembles for MTR. Hence, we com-

pare the predictive performance of the self-training approach to

the performance of a supervised random forest ( Clus-RF ) – a base-

line in the experimental evaluation. Additionally, we compare the

proposed self-training approach to supervised multi-output sup-

port vector regression 

1 (MSVR) [21,22] . A schematic representation

of the self-training pipeline is presented in Fig. 1 . 

In all of the experiments, we construct random forests con-

sisting of 100 predictive clustering trees for MTR. The trees are

not pruned and the number of random features at each internal

node is set to � log 2 (D ) + 1 � , where D is the total number of fea-

tures [19] . We used MSVR with a radial basis kernel while opti-

mizing the C ( 2 −5 , 2 −3 , . . . , 2 13 ) and σ ( 2 −2 , 2 −1 , . . . , 2 7 ) parameters

in a grid search procedure by performing 10 fold cross-validation

on the labeled part of the data. The epsilon parameter was fixed

( ε = 0 . 001 ) [55] . 

The experimental evaluation uses different amounts of labeled

data for both the supervised and SSL methods. To this end, we vary

the proportion of labeled data used. The ratio of labeled (relative

to unlabeled) data ranges in the following set: [1%, 5%, 10%, 15%,

20%, 30%, 50%]. 

For the Clus-SSL algorithm, a threshold τ on the reliability

score needs to be set. In order to estimate the potential perfor-

mance of the various reliability scoring functions (independently
1 https://github.com/wjb19/mimo-svr . 

t  

a  

r  
rom the threshold), we consider 15 manually defined thresh-

lds: τ = { 0.1, 0.2, 0.3, 0.4, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85,

.9, 0.95, 0.99}, resulting in 15 executions of the Clus-SSL algo-

ithm. From these executions, we report the best predictive perfor-

ance. Obviously, we also evaluate performances obtained when

he threshold is automatically set according to the four algorithms

escribed in Section 3.4 (baselines: Tavg 10%, Ttop 10%; our algo-

ithms: T _ OOBInitial and T _ OOB ). For these four algorithms, we

lso investigate the effect of the Airbag stopping criterion. 

The labeled data used for training the predictive models (both

upervised and semi-supervised) are randomly selected from the

vailable training data, while the remaining examples serve both

s unlabeled data and as a test set. Namely, we temporarily re-

ove their labels and provide the examples to the algorithm to

erve as unlabeled data during training. At the end of self-training,

he performance of the obtained model is evaluated on the test set

omposed of the unlabeled examples with the true labels restored

i.e., we consider a transductive-learning-setting). For fair compari-

on, supervised random forests are trained only on the labeled part

f the data and evaluated on the same test set. 

Note that the performance of self-training depends on the dis-

ribution of the initial labeled training data. For this reason, the

erformance of semi-supervised methods is, in general, known to

e domain dependent [56] . To evaluate the robustness of our ap-

roach to the effect of possible different distributions of the la-

eled data, we repeated the random selection of labeled data (as

escribed above) 10 times with different random initialization,

o create 10 different labeled training sets. The predictive perfor-

ance reported in the results is the average of the performance

alues obtained from the 10 runs. 

We assess the predictive performance of the algorithms by us-

ng the root-mean-square-error (RMSE) defined as follows: RMSE =
 

1 
m 

∑ m 

i =1 RMSE 2 
i 
, where m is the number of target variables and

MSE i is root mean square error of the i th target variable. 

To investigate whether the observed differences in performance

mong the methods are statistically significant, we follow recom-

endations given by Demšar [57] . More specifically, to statistically

ompare the predictive performance of two methods over multi-

le datasets, we use the Wilcoxon signed ranks test [58] , while for

omparison of multiple methods, we use the corrected Friedman

est and the post-hoc Nemenyi test [59] . We present the result

rom the Nemenyi post-hoc test with an average ranks diagram.

he ranks are depicted on an axis, in such a manner that the best

anking algorithms are at the right-most side of the diagram. The

lgorithms that do not differ significantly (in performance) for a

ignificance level of 0.05 are connected with a line. 

All experiments were performed on a computer cluster which

as 44 nodes and 984 central processing units (CPUs) in total: 9

odes with 16 CPUs with an AMD Opteron processor at 800GHz on

4GB of RAM with the Fedora 24 operating system, 10 nodes with

4 CPUs with an AMD Opteron processor at 1900GHz on 128GB

f RAM with the Fedora 24 operating system, and 25 nodes with

4 CPUs with an AMD Opteron processor at 1400GHz on 256GB of

AM with the Fedora 24 operating system. The Clus-SSL and Clus-

F algorithms are implemented in the Java programming language

version 1.6.), while MSVR is implemented in the C++ programming

anguage. 

.3. Experimental questions 

The principal goal of SSL is to improve the predictive perfor-

ance of supervised learning by exploiting the information con-

ained in unlabeled data. Therefore, the first question we want to

nswer in this study is: Can self-training with any of the proposed

eliability scores for MTR improve over the performance of supervised

https://github.com/wjb19/mimo-svr
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Fig. 1. The self-training approach to MTR. The left panel gives a schematic representation of the self-training approach, with all of its components. The right panel summa- 

rizes all of the possible choices we consider with respect to reliability scores, thresholding procedures, and stopping criteria. 
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earning? We address this question by comparing the predictive

erformance of the proposed method with the predictive perfor-

ance of a supervised random forest. 

If the answer to the first question is favourable, we are then in-

erested in the following two questions: (1) Is the performance in-

rease due to the usage of reliability scores? , and (2) Which reliability

core produces the largest improvement in performance? To this end,

e compare the proposed reliability scores (variance-based and

anking-based) to the benchmark scores (random score and oracle

core). For question (1), we compare the performance of the pro-

osed reliability scores with the performance obtained using ran-

om scores. If the proposed reliability scores have better predic-

ive performance than random scores, then it is worthwhile to use

 reliability scoring function and to look for an optimal function

or this purpose. As for question (2), we compare the performance

f the proposed reliability scores with the performance obtained

sing oracle scores. We expect that the oracle score performs best

nd we are optimistic that the performance of the proposed reli-

bility scores is reasonably close to the performance of the oracle

core. 

Finally, we address the following question: Is an automatic

hreshold selection algorithm able to exploit the advantage (if any)

ntroduced by the reliability scores used in self-training? To answer

his question we evaluate the four different automatic threshold

election algorithms implemented in CLUS-SSL and compare them

ith the supervised random forest. 

. Results and discussion 

In this section, we present the results obtained from the empir-

cal evaluation of the various reliability scoring functions. We first

resent the evaluation of the methods’ performance obtained us-

ng various portions of the data as training. Second, we compare

he performance of SSL ( Clus-SSL ) with the best performing reli-

bility score with supervised learning ( Clus-RF and MSVR). Third,

e illustrate a complete run of the Clus-SSL method on a single

ataset. Next, we compare the performance of Clus-SSL with su-

ervised learning ( Clus-RF and MSVR) when automatic threshold

election algorithms are used. Finally, we examine the per-target

erformance of the proposed method. In this section we only re-

ort summarized results: The complete and raw results are re-

orted in Appendix . 

The first results we present are summarized in Figs. 2 and

ig. 3 . Fig. 2 gives the statistical evaluation of the performance of

arious methods using different portions of labeled data. The Ne-
enyi post-hoc analysis is performed for each portion of labeled

ata separately. Fig. 3 summarizes the average rank diagrams and

resents a global overview of the experimental evaluation. More

pecifically, this figure is obtained by plotting the multiple criti-

al diagrams from the Nemenyi post-hoc test (from Fig. 2 ) jointly

s follows. On the x-axis we depict the percentage of labeled data

sed, while on the y-axis we depict the average rank of a given

ethod when applied to such data. These lines should not be

reated as curves but as a parallel coordinate representation of the

esults of the statistical analysis. Fig. 3 thus facilitates easier inter-

retation and understanding of the statistical analysis. 

From the results, we can make several interesting observations.

irst of all, a major conclusion is that using unlabeled data (SSL)

learly improves the predictive performance of supervised ran-

om forests ( Clus-RF ). Moreover, SSL using the benchmark ora-

le score with ranking-based aggregation ( OracleRankAvg and Or-

cleRankMin ) is statistically significantly better than the supervised

ethod in all of the settings with different percentages of labeled

ata. Furthermore, as hypothesized, the results of the proposed

eliability scores are bounded by the results of the benchmark

cores: Random is always ranked the lowest, while OracleRankAvg

nd OracleRankMin are always ranked the highest ( Fig. 3 ). Finally,

s expected, Clus-RF and Random show similar behaviours. 

A comparison of supervised and semi-supervised random

orests to support vector regression (MSVR) reveals that both su-

ervised and semi-supervised random forests outperform MSVR by

 large margin. MSVR is better than Clus-SSL and Clus-RF only on

 out of 9 datasets (Soil quality), while on the other 8 datasets,

andom forests are superior to MSVR across all percentages of la-

eled data ( Tables A .9 –A .15 ). 

Next, we examine the contributions of the specific reliability

coring functions to the predictive performance ( Fig. 3 ). All the

roposed reliability scores (in all their variants) perform better

han the Random score. This observation confirms that the used

stimators of the reliability of predictions help to discern cor-

ect from erroneous predictions. Considering this and the fact that

he oracle score with ranking-based averaging yields the best re-

ults, we conclude that instance selection in self-training for MTR

trongly influences the predictive performance. In other words, if

nlabeled instances are selected based on the reliability of their

redictions during self-training, rather than selected randomly,

etter performance is achieved. 

This finding is somewhat in disagreement with the empirical

valuation of self-training and co-training performed in the con-
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Fig. 2. Average ranks diagrams for the performance of the supervised algorithms ( Clus-RF and MSVR ) and semi-supervised self-training with various reliability scores. The 

percentage of labeled data varies from 1% to 50%. Each graph represents two different kinds of information: the ranking among the algorithms (the algorithms positioned 

at the rightmost side of each graph are the best performing) and the statistical significance of the difference between pairs of algorithms (if their distance is less than the 

critical distance (at p-value = 0.05) there is no statistically significant difference between the two). The critical distance for all diagrams is 7.14886. 
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text of classification by Guo et al. [60] . They concluded that se-

lecting the most confident unlabeled examples is not necessarily

superior to random selection. In our study, random selection typ-

ically led to degradation of performance of the base model, and

performed worse than the proposed reliability scores. Our results

suggest that a proper reliability measure (i.e., one able to discern

correct from erroneous predictions) will yield better performance

of self-training than random instance selection. 

The better ranking of SSL methods with the proposed reliability

scores as compared to the supervised method is consistent across

the different percentages of labeled data. Reliability scores based

on the variance of votes of an ensemble, in most of the cases, per-

form better than reliability scores based on random forest prox-

imities. Among the variance-based reliability scores, VarianceNor-

mAvg is clearly one of the best performing. Moreover, the differ-

ence in performance between the two best scoring functions ( Ora-

cleRankAvg and OracleRankMin ) is not statistically significant. 

The proposed reliability scores use two aggregation schemes

(average and minimum), and two normalization schemes (min-

max and ranking-based normalization) for the per-target scores.
he results suggest that the two aggregation schemes do not show

ignificant differences in performance. On the other hand, be-

ween the two normalization approaches, min-max normalization

s favourable, since VarianceNorm and RForestProxNorm are (in most

f cases) ranked better than their counterparts based on ranking

 VarianceRank and RForestProxRank ). However, this is not the case

ith the benchmark oracle score: OracleRank has better predictive

erformance than OracleNorm . We find this to be an artefact of the

skewed) distribution of errors on unlabeled examples. We further

llustrate this phenomenon in Fig. 4 for the RF1 dataset (similar

bservations are made also for other datasets). In particular, we

eport the frequencies of the RMSE errors discretized into bins in

ig. 4 a and b. We see that the distributions of per-target errors of

nlabeled examples are highly skewed, where few examples have

uch higher errors than the rest of examples. 

Next, recall that the oracle scores ( OracleRank and OracleNorm )

re calculated by using the actual errors on unlabeled examples.

he OracleNorm reliability score averages (or takes the minimum

f) the normalized per-target errors, therefore, such distributions

f per-target errors yield reliability scores biased towards high re-



J. Levati ́c et al. / Knowledge-Based Systems 123 (2017) 41–60 51 

Fig. 3. Average ranks for different percentages of labeled data (from 1% to 50%) of supervised methods (red lines), self-training with the proposed reliab ility scores (black 

and orange lines) and self-training with benchmark scores (blue and green lines). (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 4. The distributions of per-target errors (discretized into bins) made on unlabled examples after the initial iteration of self-training are very skewed for the target 

variables of the RF1 dataset when 10% of the data are labeled. These are depicted for the first two target variables (a, b), similar distributions are observed also for the other 

six target variables of the RF1 dataset. The reliability scores (discretized into bins) for unlabeled examples calculated by averaging normalized per-target errors are biased 

towards high reliability (c, e), while the scores calculated by averaging ranks of per-target errors are normally distributed (d, f). 
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Table 5 

Results of the Wilcoxon signed-rank test applied to the performance of self-training with VarianceNormAvg 

reliability score and the performance of supervised random forest ( Clus-RF ) on the 9 datasets considered in 

this study. In bold, we report significant p -values ( < 0.05). 

% Labeled 1% 5% 10% 15% 20% 30% 50% 

p -value 1 . 5 × 10 −5 1 . 7 × 10 −8 2 . 2 × 10 −6 4 × 10 −8 1 . 7 × 10 −6 4 . 2 × 10 −5 4 . 8 × 10 −6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

Average number of iterations (across the 9 dataset considered in this study) of the 

self-training with different algorithms for automatic reliability threshold selection 

and manual threshold selection ( VarianceNormAvg ). 

Method Percentage labeled 

1% 5% 10% 15% 20% 30% 50% 

VarianceNormAvg 15 .3 37 .4 21 .0 64 .5 31 .2 34 .9 45 .2 

T _ OOB 22 .3 42 .3 36 .8 35 .2 34 .7 34 .9 31 .1 

T _ OOB + Airbag 6 .6 7 .2 6 .7 7 .6 8 .3 8 .5 7 .9 

T _ OOBInitial 21 .2 67 .5 49 .6 51 .3 52 .1 58 .3 40 .0 

T _ OOBInitial + Airbag 3 .4 3 .5 3 .5 3 .2 3 .2 3 .1 2 .8 

Ttop 10% 11 .0 11 .0 11 .0 11 .0 11 .0 11 .0 11 .0 

T top10% + Airbag 3 .8 3 .3 3 .2 3 .1 3 .4 2 .9 2 .7 

Tavg 10% 77 .5 90 .0 82 .0 73 .8 69 .3 63 .4 40 .0 

Ta v g10% + Airbag 4 .1 2 .8 2 .7 2 .5 2 .7 2 .4 2 .4 
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liability scores (i.e., the majority of unlabeled examples are given

a reliability score close to one, Fig. 4 c). In other words, during

the initial iterations of self-training, erroneously predicted unla-

beled examples are easily deemed reliable, and are thus likely to

be added to the training set. A prediction error made in early it-

erations of self-training can propagate itself in the next iterations,

leading to a degradation of the performance. 

Regardless of the relatively poor performance of self-training

with the OracleNorm score, the reliability scores given by Ora-

cleNorm are still “oracle” scores, i.e., from two unlabeled examples,

the one with the smaller error will always get the higher reliability

score. It can be expected that fine tuning the reliability threshold

in the region of high reliability (from 0.9 to 0.99) would likely re-

sult in improved performance of OracleNorm . The OracleRank reli-

ability score does not suffer from this problem, since the ranks of

the per-target errors are averaged (and not the errors themselves),

which yields normally distributed (i.e., unbiased) scores ( Fig. 4 d). 

An additional observation we can make from Fig. 4 e and f is

that the frequency distribution of the (Norm and Rank) variance

reliability scores conforms to the frequency distribution of the cor-

responding (Norm and Rank) oracle reliability scores. This is an in-

dication that our reliability scores, in this particular dataset, ap-

proximate the real distributions of the errors and, thus, identify

the best predictions to be considered as reliable. 

Based on this analysis, we select the best performing aggre-

gation scheme for each of the different types of reliability scores

(Variance, Random forest proximities and Oracle) as follows: Vari-

anceNormAvg, RForestProxNormMin and OracleRankMin . To better il-

lustrate the difference in the performance, we compare the per-

formance of these against the performance of supervised random

forests ( Clus-RF ) and random scores ( Random ). The results of the

statistical analysis (Friedman test and Nemenyi post-hoc analysis)

are given in Fig. A1 . The findings from this simplified analysis con-

cur with the findings above. 

As noted before, among the proposed reliability scores, one of

the best performing ones is VarianceNormAvg . To inspect if the dif-

ferences in performance at the various percentages of labeled data

between this reliability score and supervised learning ( Clus-RF ) are

statistically significant, we use the Wilcoxon signed-rank test. The

results of the Wilcoxon test are given in Table 5 . They show that

self-training with VarianceNormAvg is statistically significantly bet-

ter than Clus-RF ( p -value < 0.05) for all percentages of labeled

data. 

In order to demonstrate the possible effects of the value of

the reliability threshold on the performance of self-training, we

present an example of results obtained on the RF1 dataset by ap-

plying the different thresholds ( Fig. 5 ). These results show that

selecting a too permissive threshold (i.e., smaller value for the

threshold) can allow wrongly predicted examples to enter into the

training set, leading to a degradation of the performance. For ex-

ample, if a threshold smaller than 0.85 on the VarianceNormAvg

reliability score at 1% of labeled data is chosen, a performance

worse than with the random instance selection can be observed

( Fig. 5 ). On the other hand, a too stringent threshold can prevent

self-training to learn from unlabeled data, i.e., self-training will not

improve the performance of supervised learning. For example, if

a threshold greater than 0.8 is set for the OracleRankAvg reliabil-

e  
ty score at 1% or 5% of labeled data on the RF1 dataset, none, or

ery few, of the unlabeled examples enter the training set, mean-

ng that we miss the opportunity to improve performance by using

nlabeled data ( Fig. 5 ). 

After this discussion, it is clear that the reliability threshold se-

ection is critical to the success of the self-training approach to

SL. We next investigate the effectiveness of the algorithms for

utomatic threshold selection that we have proposed. Fig. 6 , al-

ows us to compare results obtained by Clus-RF and MSVR with

esults obtained when the four automatic threshold selection al-

orithms ( Tavg 10%, Ttop 10%, T _ OOBInitial and T _ OOB ) are used in

lus-SSL (with the VarianceNormAvg reliability score). The results

onfirm that automatic threshold selection is not an easy task in

elf-training and that choosing the best algorithm for this task is

rucial to profit from the semi-supervised learning framework. In

he specific case we consider, we can see that the algorithm pro-

osed by Tanha et al. [50] (i.e., Tavg 10%) in most of cases, puts

emi-supervised learning at a disadvantage. This is not the case for

he algorithms we propose in this paper ( T _ OOB and T _ OOBInitial).

hese algorithms materialize the SSL advantage by exploiting the

ut-of-bag error of the random forest (even if, according to the

ilcoxon signed rank test, there is no clear statistical evidence that

 _ OOB and T _ OOBInitial outperform Clus-RF ). Moreover, adapting

he threshold at each iteration is generally better than choosing it

nly once after the initial iteration ( T _ OOB vs T _ OOBInitial). 

A good indication of how close the automatically identified

hresholds are to the optimal ones is provided by the number of

terations. As we can see from Table 6 , the algorithms T _ OOB and

 _ OOBInitial lead to convergence in a number of iterations which

s similar to the number of iterations when the threshold is ‘hand-

icked’. This is not true for the other algorithms for the automatic

dentification of the threshold. 

When we consider automatic threshold selection in combina-

ion with the Airbag stopping criterion ( Fig. 6 ), we can see that

e are able to considerably improve performance and outperform,

lso with a statistically significant difference, Clus-RF . This is espe-

ially true for T _ OOBInitial when the percentage of labeled exam-

les is greater than 10% (see Table 8 ). When we have a small per-

entage of labeled examples, the simple algorithm Tavg 10% outper-

orms T _ OOBInitial. This difference between the two algorithms for

utomatic threshold selection was expected. In fact, the out-of-bag

rror is computed only on labeled examples and this can lead to
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Fig. 5. A comparison of the predictive performance of random forests ( Clus-RF ) and self-training with different reliability scores ( VarianceNormAvg, Random and OracleR- 

ankAvg ) on the RF1 dataset illustrates the possible effects of threshold selection: A too permissive threshold for the VarianceNormAvg reliability score leads to worse per- 

formance than random instance selection, while a too strict threshold for the OracleRankAvg reliability score does not allow self-training to benefit from the unlabeled 

data. 

Fig. 6. Average ranks for different percentages of labeled data (from 1% to 50%) of supervised algorithms (red lines), and self-training VarianceNormAvg with the baseline 

automatic thresholding algorithms (orange and green lines) and self-training VarianceNormAvg with the proposed automatic thresholding algorithms (black and blue lines). 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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2 MSVR performs a quasi-Newton approach in which each iteration better ap- 
rong decisions about thresholds when we have very few labeled

xamples. Moreover, Tavg 10% outperforms Clus-RF when the per-

entage of labeled examples is very small ( = 1% , see Table 8 and

ig. 6 ). We notice from Table 6 that the Airbag stopping criteria

trongly reduces the average number of iterations, confirming that

 large number of iterations, without an optimal threshold, is not

eneficial. 

Since the self-training method iteratively re-trains the base

ethod, obviously, potential predictive performance of self-

raining comes with a cost of increased learning time. Table 7 re-

orts learning times of Clus-RF , MSVR and self-training. We can

bserve that learning time of self-training can be up to several

undred times larger than the one of Clus-RF (e.g, for Tavg 10%

r T _ OOBInitial). However, as we previously stated, the Airbag

topping criterion is not only beneficial for predictive perfor-

ance, but it also greatly reduces the number of iterations of

elf-training. Since the learning time of self-training is strongly

orrelated with the number of iterations ( Tables 6 and 7 ), the

earning time of self-training with the Airbag stopping criterion

s greatly reduced if compared to self-training without this stop-

p

ing criterion. The learning time of the best performing methods

i.e., T_OOBInitial+Airbag and Tavg10%+Airbag ) is typically only 3–

 times larger than the learning time of Clus-RF . The MSVR al-

orithm typically runs faster than Clus-RF or self-training. This is

n line with the time complexity analysis reported in Section 3.6 ,

here we point out that the time complexity of our approach is

logN in the number of training instances, logarithmic in the num-

er of attributes and linear in the number of iterations, whereas

he time complexity of MSVR is linear in the number of training

nstances, linear in the number of descriptive attributes and lin-

ar in the number of iterations 2 [21] . However, much more time is

sed in MSVR for parameter optimization, especially as the amount

f labeled data increases. Note that the predictive performance of

SVR can vary extremely depending on parameter values; there-

ore, it is advisable to perform parameter optimization. 

Finally, Fig. 7 presents a different perspective on the results,

ighly relevant to MTR problems, by illustrating the per-target
roximates the model. 
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Table 7 

Average learning time in seconds (across the 9 dataset considered in this study) of supervised methods (CLUS-RF and MSVR), self-training with different 

algorithms for automatic reliability threshold selection and manual threshold selection ( VarianceNormAvg ). For the MSVR algorithm, learning time spent for 

parameter optimization is presented in brackets. 

Method Percentage labeled 

1% 5% 10% 15% 20% 30% 50% 

CLUS-RF 2 .4 3 .5 4 .5 5 .8 6 .6 9 .5 13 .9 

MSVR 0 .01(256.5) 0 .1(1437.4) 0 .2(1864.2) 0 .5(3113.1) 1 .7(6972.1) 2 .4(13354.4) 8 .5(31843.7) 

VarianceNormAvg 116 .9 872 .8 464 .9 667 .9 625 .9 1133 .6 1989 .6 

T _ OOB 542 .7 1205 689 .2 671 .5 649 .5 781 .7 867 .5 

T _ OOB + Airbag 149 .9 163 .6 72 .5 88 .1 98 .2 128 167 .5 

T _ OOBInitial 588 .4 2118 .1 1281 .6 1518 1548 1704 .3 1001 .8 

T _ OOBInitial + Airbag 69 .5 32 .7 24 .2 20 .3 22 .3 24 .9 40 .4 

Ttop 10% 189 .8 195 .8 205 .8 201 .1 207 .5 225 .3 238 .3 

T top10% + Airbag 10 .3 12 .2 16 .7 18 .5 25 .2 26 .3 37 .7 

Tavg 10% 1871 .3 2365 .9 2104 .2 1847 .8 1745 .4 1577 .3 1013 .3 

Ta v g10% + Airbag 10 .6 8 .6 10 .7 13 .4 16 .8 21 .1 37 .2 

Table 8 

P-values of the Wilcoxon signed-rank test applied to the performances (RMSE) of a supervised random forest ( Clus- 

RF ) and self-training with algorithms for automatic threshold selection ( T _ OOBInitial + Airbag and Ta v g10% + Airbag) 

on the 9 datasets considered in this study. In bold, we report significant p -values ( < 0.05). The ‘ −’ sign denotes that 

Clus-RF is better, while ‘+’ that self-training is better. 

% Labeled 1% 5% 10% 15% 20% 30% 50% 

T _ OOBInitial + Airbag 0 .41 ( + ) 0.162 ( −) 0.251 ( −) 0 .034 ( + ) 0 .01 ( + ) 0 .008 ( + ) 0 .012 ( + ) 

Ta v g10% + Airbag 0 .13 ( + ) 0.075 ( −) 0.286 ( −) 0 .33 ( + ) 0 .32 ( + ) 0.186 ( −) 0 .015 ( + ) 

Fig. 7. Analysis of per-target performance for the RF1 dataset, in terms of difference in performance ( �RMSE) between Clus-RF and self-training with the VarianceNor- 

mAvg reliability score. Positive values suggest that self-training is better, while negative that Clus-RF is better. Zero means that there is no difference in performance. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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RMSE performance of self-training. More specifically, it presents

the per-target RMSE improvements of self-training with the Vari-

anceNormAvg reliability score over supervised random forest ( Clus-

RF ). These results show that the improvement provided by the SSL

setting is not necessarily uniform across all of the different tar-

get variables. Self-training improves performance over Clus-RF for

all of the targets when the percentage of labeled examples is rel-

atively small. Otherwise it improves the performance for most of

the target variables, but can degrade the performance for some tar-

get variables (e.g., target no. 7 for > 5% of labeled data). 

6. Conclusions 

In this paper, we address the task of semi-supervised learning

for multi-target regression – a type of structured output predic-

tion, where the goal is to simultaneously predict multiple continu-

ous variables. To the best of our knowledge, general purpose semi-
upervised methods dealing with this task do not exist thus far.

e propose a self-training approach to semi-supervised learning

y using a random forest of predictive clustering trees for multi-

arget regression. In the proposed approach, a model uses its own

ost reliable predictions in an iterative fashion. Therefore, a proper

easure for the reliability of predictions is of crucial importance. 

We propose two reliability scoring functions for multi-target

redictions, two aggregation schemes for merging per-target scores

nto a global score and two normalization techniques, resulting in a

otal of eight distinct scores. The proposed reliability scoring func-

ions are based on the mechanisms provided by ensemble learn-

ng: the variance of the votes of an ensemble and the estimate of

rrors of unlabeled examples by using out-of-bag labeled examples

n their random forest proximities. 

Our empirical evaluation conducted on real datasets for multi-

arget regression, shows that self-training with any of the eight

roposed reliability measures is able to consistently improve
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Fig. A1. Average ranks for different percentages of labeled data (from 1% to 50%) of supervised methods (red lines), self-training with the best reliability score based on 

variance (black), the best score based on random forest proximities (orange), the best benchmark score (green), and random score (blue). (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 
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ver supervised random forests and outperform supervised multi-

utput support vector regression. Among the two strategies for

erging per-target scores, the averaging of the scores showed to

e more favourable than the averaging of their ranks. The averaged

ariance-based reliability score ( VarianceNormAvg ), which is based

he variance of votes of an ensemble, is the best performing reli-

bility score among the proposed reliability scores. Random selec-

ion during self-training is clearly inferior to the use of reliability

cores: Better performance is achieved if unlabeled examples are

elected on the basis of reliability scores, than if they are selected

andomly. 

Despite this potential superiority of self-training over super-

ised approaches when learning random forests, choosing the best

hreshold for the reliability of predictions still remains an issue:

he best threshold depends on the specific domain and can vary

rom iteration to iteration. In this respect, we proved that auto-

atic identification of the threshold is possible but, depending

n the amount of labeled examples we have, different algorithms

hould be used. The algorithm automatic threshold selection based

n the exploitation of out-of-bag errors ( T _ OOBInitial) is recom-

ended when more than 5% of labeled (as compared to unlabled)

ata is available. For very small amounts of labeled data ( < 5%)

stimates of out-of-bag errors are not reliable; therefore, a simple

olution is more suitable: using the average score of the top 10%

f most reliable predictions. The use of the Airbag stopping criteria

uring the automatic threshold selection proved to be beneficial in

ll cases. 

There are several directions to extend our work in the future.

 first possible direction concerns handling per-target reliability

cores separately: Losses of accuracy related only to individual tar-

et variables could be avoided by optimizing thresholds specifi-
ally for each target. This would require the development of meth-

ds capable of dealing with partially labeled data. Dealing with

uch type of data has not received much attention in the semi-

upervised learning community, but it is particularly relevant for

he task of structured output prediction. We would like to perform

 more extensive evaluation on more MTR datasets and achieve

etter understanding of when SSL (i.e., at which datasets) improves

erformance (as compared to SSL). Moreover, we would like to ex-

end our self-training approach to other tasks of structured out-

ut prediction, such as (hierarchical) multi-label classification and

redicting time-series, and evaluate its performance on practically

elevant tasks of these types, e.g., gene function prediction. 
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ppendix 

In this appendix, we report the RMSE results according to

hich the figures and tables reported in this paper have been

rawn. In particular, Table A.9 shows results obtained with 1%

f labeled data, Table A.10 shows results obtained with 5% of la-

eled data, Table A.11 shows results obtained with 10% of la-

eled data, Table A.12 shows results obtained with 15% of labeled

ata, Table A.13 shows results obtained with 20% of labeled data,

able A.14 shows results obtained with 30% of labeled data, and

able A.15 shows results obtained with 50% of labeled data. 
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Table A.9 

RMSE on the 9 considered datasets obtained with 1% of labeled data by supervised methods (CLUS-RF and MSVR), self-training with the proposed reliability scores 

(VarianceNormAvg, VarianceNormMin, VarianceRankAvg, VarianceRankMin, RForestProxNormAvg, RForestProxNormMin, RForestProxRankAvg and RForestProxRankMin), and 

self-training with benchmark scores (Random, OracleNormAvg, OracleNormMin, OracleRankAvg and OracleRankMin). The lower sub-table presents the performance of self- 

training with the VarianceNormAvg reliability score and several procedures for automatic selection of a threshold for the reliability score ( T _ OOB, T _ OOBInitial, Ttop 10% 

and Tavg 10%), with or without the Airbag stopping criteria. The best result for each column of each sub-table is marked in bold. The last column presents the average rank 

of the methods according to their performance on the 9 datasets (calculated separately for each sub-table). 

Dataset 

Method Sigmea Real Sigmea Sim. Soil Quality Solar Flare-2 Water Quality Vegetation Cond. SCM20D SCM1D RF1 Average rank 

CLUS-RF 6 .422 0 .062 0 .547 45909 .739 1 .372 2 .871 206 .99 175 .969 13 .136 10.833 ± 4.430 

MSVR 6 .555 0 .185 0 .217 47440 .970 1 .354 3 .105 230 .765 265 .669 22 .911 13.278 ± 4.631 

VarianceNormAvg 6 .4 0 .036 0 .536 45886 .432 1 .352 2 .866 206 .832 175 .924 13 .136 5.333 ± 4.077 

VarianceNormMin 6 .408 0 .036 0 .538 45913 .693 1 .354 2 .864 206 .99 175 .969 12 .998 6.222 ± 3.465 

VarianceRankAvg 6 .406 0 .037 0 .541 46016 .187 1 .348 2 .868 207 .276 176 .801 13 .048 9.611 ± 3.018 

VarianceRankMin 6 .388 0 .039 0 .538 45962 .634 1 .346 2 .869 208 .656 176 .555 12 .968 7.944 ± 3.321 

RForestProxNormAvg 6 .408 0 .047 0 .54 45870 .267 1 .341 2 .866 206 .99 175 .969 13 .127 7.167 ± 2.681 

RForestProxNormMin 6 .405 0 .048 0 .54 45909 .739 1 .343 2 .866 206 .99 175 .969 13 .156 7.889 ± 3.286 

RForestProxRankAvg 6 .405 0 .047 0 .536 45934 .234 1 .34 2 .872 207 .323 176 .772 13 .115 8.722 ± 3.759 

RForestProxRankMin 6 .416 0 .046 0 .539 45850 .644 1 .346 2 .871 210 .392 176 .134 13 .064 8.944 ± 3.283 

Random 6 .38 0 .055 0 .54 46262 .372 1 .346 2 .866 207 .383 176 .883 13 .155 10.4 4 4 ± 3.787 

OracleNormAvg 6 .421 0 .04 0 .543 46224 .958 1 .341 2 .864 207 .229 176 .619 13 .061 8.889 ± 3.765 

OracleNormMin 6 .421 0 .038 0 .541 460 0 0 .04 1 .336 2 .86 207 .242 176 .626 13 .069 8 ± 4.493 

OracleRankAvg 6 .375 0 .03 0 .54 45765 .407 1 .338 2 .867 206 .99 175 .969 12 .676 4 ± 3.260 

OracleRankMin 6 .375 0 .032 0 .537 45694 .472 1 .337 2 .864 206 .99 175 .969 12 .878 2.722 ± 1.325 

CLUS-RF 6 .422 0 .062 0 .547 45909 .739 1 .372 2 .871 206 .99 175 .969 13 .136 4.5 ± 4.031 

MSVR 6 .555 0 .185 0 .217 47440 .97 1 .354 3 .105 230 .765 265 .669 22 .911 8 ± 3.708 

T _ OOB 6 .422 0 .036 0 .545 46251 .345 1 .368 2 .93 207 .341 178 .391 13 .427 5.222 ± 1.970 

T _ OOB + Airbag 6 .422 0 .046 0 .545 46251 .345 1 .368 2 .905 207 .341 178 .391 13 .461 5.611 ± 1.387 

T _ OOBInitial 6 .422 0 .04 0 .545 46251 .345 1 .368 3 .037 207 .332 178 .662 13 .927 6.111 ± 2.205 

T _ OOBInitial + Airbag 6 .422 0 .046 0 .545 46251 .345 1 .368 2 .912 207 .331 178 .526 13 .332 5.278 ± 1.716 

Ttop 10% 6 .432 0 .044 0 .542 46337 .764 1 .351 3 .027 216 .671 189 .056 13 .672 6 ± 2.872 

T top10% + Airbag 6 .439 0 .059 0 .544 46114 .348 1 .366 2 .867 209 .574 177 .558 13 .204 4.833 ± 2.598 

Tavg 10% 6 .408 0 .037 0 .543 46433 .652 1 .355 3 .109 221 .755 207 .888 13 .403 5.722 ± 3.528 

Ta v g10% + Airbag 6 .422 0 .059 0 .543 45926 .363 1 .363 2 .875 209 .183 177 .029 13 .134 3.722 ± 2.063 

Table A.10 

RMSE on the 9 considered datasets obtained with 5% of labeled data by supervised methods (CLUS-RF and MSVR), self-training with the proposed reliability scores 

(VarianceNormAvg, VarianceNormMin, VarianceRankAvg, VarianceRankMin, RForestProxNormAvg, RForestProxNormMin, RForestProxRankAvg and RForestProxRankMin), and 

self-training with benchmark scores (Random, OracleNormAvg, OracleNormMin, OracleRankAvg and OracleRankMin). The lower sub-table presents the performance of self- 

training with the VarianceNormAvg reliability score and several procedures for automatic selection of a threshold for the reliability score ( T _ OOB, T _ OOBInitial, Ttop 10% 

and Tavg 10%), with or without the Airbag stopping criteria. The best result for each column of each sub-table is marked in bold. The last column presents the average rank 

of the methods according to their performance on the 9 datasets (calculated separately for each sub-table). 

Dataset 

Method Sigmea Real Sigmea Sim. Soil Quality Solar Flare-2 Water Quality Vegetation Cond. SCM20D SCM1D RF1 Average rank 

CLUS-RF 5.431 0.019 0.524 41384.376 1.262 2.678 177.182 143.124 7.422 11.222 ± 3.743 

MSVR 6.337 0.816 0.168 45561.610 1.304 2.988 230.311 229.473 23.985 13.4 4 4 ± 4.667 

VarianceNormAvg 5.241 0.018 0.513 41384.376 1.253 2.673 177.153 143.124 7.157 5.5 ± 3.873 

VarianceNormMin 5.305 0.018 0.511 41384.376 1.255 2.676 177.182 143.079 7.359 7.333 ± 2.739 

VarianceRankAvg 5.239 0.017 0.513 41334.819 1.254 2.679 178.049 144.487 7.177 8.056 ± 4.482 

VarianceRankMin 5.281 0.017 0.51 41239.703 1.256 2.676 177.207 143.582 7.269 6.611 ± 2.619 

RForestProxNormAvg 5.305 0.017 0.511 41191.135 1.255 2.677 177.182 143.124 7.394 6.833 ± 2.784 

RForestProxNormMin 5.317 0.018 0.51 41058.845 1.255 2.677 177.182 143.116 7.416 7.167 ± 3.800 

RForestProxRankAvg 5.279 0.018 0.51 41347.346 1.255 2.678 178.004 144.617 7.308 8.944 ± 2.721 

RForestProxRankMin 5.307 0.017 0.509 41366.16 1.257 2.678 177.978 145.404 7.366 9.333 ± 3.976 

Random 5.273 0.018 0.513 41865.799 1.255 2.679 178.017 144.487 7.425 11.167 ± 2.969 

OracleNormAvg 5.329 0.019 0.516 41513.983 1.251 2.677 177.716 144.101 7.173 9.5 ± 3.961 

OracleNormMin 5.286 0.018 0.515 41600.439 1.251 2.675 177.758 144.14 7.217 8.333 ± 3.865 

OracleRankAvg 5.235 0.017 0.512 41237.003 1.248 2.677 177.182 143.032 6.74 3.722 ± 2.917 

OracleRankMin 5.248 0.017 0.509 41078.147 1.25 2.676 177.182 142.967 7.013 2.833 ± 1.199 

CLUS-RF 5.431 0.019 0.524 41384.376 1.262 2.678 177.182 143.124 7.422 4.889 ± 3.209 

MSVR 6.337 0.816 0.168 45561.61 1.304 2.988 230.311 229.473 23.985 9 ± 3.0 0 0 

T _ OOB 5.414 0.019 0.518 41536.77 1.257 2.678 184.59 152.449 7.609 5.611 ± 1.799 

T _ OOB + Airbag 5.423 0.018 0.52 41567.099 1.257 2.676 184.062 148.509 7.571 5.278 ± 1.679 

T _ OOBInitial 5.418 0.017 0.517 41509.666 1.257 2.781 184.642 155.167 7.322 4.833 ± 2.634 

T _ OOBInitial + Airbag 5.418 0.017 0.52 41585.324 1.257 2.676 182.042 145.905 7.468 4.389 ± 1.635 

Ttop 10% 5.35 0.017 0.514 42109.113 1.256 2.753 185.862 153.104 7.429 4.722 ± 3.270 

T top10% + Airbag 5.451 0.017 0.524 41078.715 1.263 2.676 178.31 143.608 7.502 4.944 ± 3.330 

Tavg 10% 5.427 0.019 0.517 41721.025 1.257 2.742 189.001 161.129 7.51 6.889 ± 1.949 

Ta v g10% + Airbag 5.376 0.019 0.521 41386.025 1.263 2.678 177.726 143.052 7.424 4.4 4 4 ± 2.888 
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Table A.11 

RMSE on the 9 considered datasets obtained with 10% of labeled data by supervised methods (CLUS-RF and MSVR), self-training with the proposed reliability scores 

(VarianceNormAvg, VarianceNormMin, VarianceRankAvg, VarianceRankMin, RForestProxNormAvg, RForestProxNormMin, RForestProxRankAvg and RForestProxRankMin), and 

self-training with benchmark scores (Random, OracleNormAvg, OracleNormMin, OracleRankAvg and OracleRankMin). The lower sub-table presents the performance of self- 

training with the VarianceNormAvg reliability score and several procedures for automatic selection of a threshold for the reliability score ( T _ OOB, T _ OOBInitial, Ttop 10% 

and Tavg 10%), with or without the Airbag stopping criteria. The best result for each column of each sub-table is marked in bold. The last column presents the average rank 

of the methods according to their performance on the 9 datasets (calculated separately for each sub-table). 

Dataset 

Method Sigmea Real Sigmea Sim. Soil Quality Solar Flare-2 Water Quality Vegetation Cond. SCM20D SCM1D RF1 Average rank 

CLUS-RF 4.922 0.015 0.527 38615.185 1.231 2.601 161.061 127.894 5.089 10.4 4 4 ± 3.948 

MSVR 5.815 0.094 0.169 43551.48 1.276 2.998 220.416 219.555 22.315 13.4 4 4 ± 4.667 

VarianceNormAvg 4.918 0.014 0.519 38576.336 1.225 2.602 161.021 127.894 4.905 7.4 4 4 ± 3.820 

VarianceNormMin 4.913 0.014 0.519 38576.336 1.225 2.602 161.061 127.894 5.038 8.278 ± 3.203 

VarianceRankAvg 4.901 0.014 0.517 38653.538 1.224 2.603 160.726 129.139 4.904 7.722 ± 3.684 

VarianceRankMin 4.873 0.014 0.516 38551.846 1.225 2.601 161.312 128.189 4.955 6.556 ± 2.877 

RForestProxNormAvg 4.904 0.014 0.518 38621.215 1.226 2.601 161.061 127.894 5.129 8.833 ± 2.773 

RForestProxNormMin 4.904 0.014 0.519 38607.197 1.226 2.601 161.061 127.879 5.107 8.278 ± 3.280 

RForestProxRankAvg 4.882 0.014 0.516 38655.623 1.225 2.601 162.15 129.465 4.972 9 ± 3.354 

RForestProxRankMin 4.894 0.014 0.517 38602.015 1.227 2.601 161.273 128.512 5.036 8.278 ± 2.224 

Random 4.861 0.014 0.519 39485.778 1.225 2.604 161.948 129.231 5.115 10.667 ± 400 

OracleNormAvg 4.867 0.014 0.52 39189.14 1.223 2.601 161.687 128.902 4.929 8.611 ± 3.855 

OracleNormMin 4.866 0.014 0.519 39004.731 1.223 2.6 161.276 128.937 4.901 7.111 ± 4.053 

OracleRankAvg 4.877 0.013 0.516 38615.185 1.219 2.6 160.148 127.846 4.545 2.833 ± 2.462 

OracleRankMin 4.848 0.013 0.515 38579.84 1.221 2.597 161.023 127.894 4.684 2.5 ± 1.458 

CLUS-RF 4.922 0.015 0.527 38615.185 1.231 2.601 161.061 127.894 5.089 4.778 ± 2.938 

MSVR 5.815 0.094 0.169 43551.48 1.276 2.998 220.416 219.555 22.315 9 ± 3.0 0 0 

T _ OOB 4.901 0.014 0.525 39178.759 1.225 2.602 166.109 130.989 5.264 4.833 ± 2.449 

T _ OOB + Airbag 4.914 0.014 0.525 39148.626 1.225 2.603 164.526 129.572 5.191 4.833 ± 1.581 

T _ OOBInitial 4.915 0.014 0.525 39381.705 1.224 2.605 167.385 136.241 5.073 5.167 ± 2.716 

T _ OOBInitial + Airbag 4.916 0.014 0.523 38966.383 1.225 2.601 163.248 128.378 5.112 3.889 ± 1.341 

Ttop 10% 4.905 0.014 0.52 39856.55 1.228 2.646 166.137 134.911 5.02 5.056 ± 3.087 

T top10% + Airbag 4.953 0.014 0.526 38539.778 1.233 2.603 161.236 128.107 5.098 4.889 ± 2.559 

Tavg 10% 4.992 0.015 0.527 38890.317 1.229 2.609 16 8.4 85 136.906 5.143 7.722 ± 1.787 

Ta v g10% + Airbag 4.954 0.015 0.526 38581.027 1.232 2.603 161.014 127.805 5.085 4.833 ± 3.122 

Table A.12 

RMSE on the 9 considered datasets obtained with 15% of labeled data by supervised methods (CLUS-RF and MSVR), self-training with the proposed reliability scores 

(VarianceNormAvg, VarianceNormMin, VarianceRankAvg, VarianceRankMin, RForestProxNormAvg, RForestProxNormMin, RForestProxRankAvg and RForestProxRankMin), and 

self-training with benchmark scores (Random, OracleNormAvg, OracleNormMin, OracleRankAvg and OracleRankMin). The lower sub-table presents the performance of self- 

training with the VarianceNormAvg reliability score and several procedures for automatic selection of a threshold for the reliability score ( T _ OOB, T _ OOBInitial, Ttop 10% 

and Tavg 10%), with or without the Airbag stopping criteria. The best result for each column of each sub-table is marked in bold. The last column presents the average rank 

of the methods according to their performance on the 9 datasets (calculated separately for each sub-table). 

Dataset 

Method Sigmea Real Sigmea Sim. Soil Quality Solar Flare-2 Water Quality Vegetation Cond. SCM20D SCM1D RF1 Average rank 

CLUS-RF 4.194 0.012 0.513 37562.992 1.214 2.568 149.976 120.878 4.014 10.5 ± 3.182 

MSVR 5.194 0.219 0.165 97039.2 1.276 3.027 225.622 237.821 20.391 13.4 4 4 ± 4.667 

VarianceNormAvg 3.978 0.012 0.506 37568.513 1.208 2.568 149.825 120.892 3.882 7.389 ± 2.837 

VarianceNormMin 4.023 0.012 0.505 37562.992 1.21 2.567 149.83 120.713 3.941 7 ± 2.905 

VarianceRankAvg 4.006 0.012 0.504 37509.874 1.209 2.567 149.763 121.37 3.805 5.778 ± 2.451 

VarianceRankMin 4.028 0.012 0.504 37329.419 1.212 2.568 149.764 120.863 3.869 7.167 ± 3.152 

RForestProxNormAvg 4.006 0.012 0.506 37326.996 1.209 2.568 150.034 120.872 4.049 7.833 ± 3.072 

RForestProxNormMin 4.013 0.012 0.506 37202.539 1.21 2.568 149.976 120.878 4.038 8.056 ± 3.225 

RForestProxRankAvg 4.011 0.012 0.504 37316.548 1.209 2.568 151.037 122.386 3.973 8.389 ± 3.781 

RForestProxRankMin 4.013 0.012 0.505 37445.731 1.212 2.568 150.276 121.2 3.973 8.944 ± 1.976 

Random 4.032 0.012 0.505 38273.226 1.21 2.572 150.947 122.107 4.054 11.722 ± 2.587 

OracleNormAvg 4.035 0.012 0.507 37963.36 1.207 2.568 150.691 121.76 3.849 9.556 ± 4.065 

OracleNormMin 4.027 0.012 0.507 37829.565 1.208 2.567 150.169 121.801 3.867 8.722 ± 3.589 

OracleRankAvg 3.931 0.012 0.503 37475.782 1.204 2.558 147.849 120.768 3.505 2.944 ± 2.579 

OracleRankMin 3.974 0.012 0.502 37309.152 1.207 2.556 149.657 120.742 3.666 2.556 ± 1.895 

CLUS-RF 4.194 0.012 0.513 37562.992 1.214 2.568 149.976 120.878 4.014 4.5 ± 2.550 

MSVR 5.194 0.219 0.165 97039.2 1.276 3.027 225.622 237.821 20.391 9 ± 3.0 0 0 

T _ OOB 4.144 0.012 0.513 37789.77 1.209 2.568 152.247 122.217 4.126 5.556 ± 1.895 

T _ OOB + Airbag 4.148 0.012 0.513 37808.887 1.209 2.569 151.269 121.72 4.115 5.833 ± 1.369 

T _ OOBInitial 4.124 0.012 0.513 38108.565 1.209 2.568 154.843 126.583 4.045 5.833 ± 2.332 

T _ OOBInitial + Airbag 4.114 0.012 0.513 37653.957 1.209 2.569 150.23 120.983 4.022 4.5 ± 1.458 

Ttop 10% 4.076 0.012 0.507 38515.324 1.209 2.595 153.988 125.946 4.016 5.278 ± 2.906 

T top10% + Airbag 4.166 0.012 0.513 37584.892 1.214 2.568 149.808 120.805 4.003 4.167 ± 2.622 

Tavg 10% 4.124 0.012 0.511 37734.932 1.209 2.57 154.939 126.063 4.053 5.778 ± 2.265 

Ta v g10% + Airbag 4.202 0.012 0.513 37480.141 1.214 2.569 150.143 120.799 3.998 4.556 ± 3.167 
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Table A.13 

RMSE on the 9 considered datasets obtained with 20% of labeled data by supervised methods (CLUS-RF and MSVR), self-training with the proposed reliability scores 

(VarianceNormAvg, VarianceNormMin, VarianceRankAvg, VarianceRankMin, RForestProxNormAvg, RForestProxNormMin, RForestProxRankAvg and RForestProxRankMin), and 

self-training with benchmark scores (Random, OracleNormAvg, OracleNormMin, OracleRankAvg and OracleRankMin). The lower sub-table presents the performance of self- 

training with the VarianceNormAvg reliability score and several procedures for automatic selection of a threshold for the reliability score ( T _ OOB, T _ OOBInitial, Ttop 10% 

and Tavg 10%), with or without the Airbag stopping criteria. The best result for each column of each sub-table is marked in bold. The last column presents the average rank 

of the methods according to their performance on the 9 datasets (calculated separately for each sub-table). 

Dataset 

Method Sigmea Real Sigmea Sim. Soil Quality Solar Flare-2 Water Quality Vegetation Cond. SCM20D SCM1D RF1 Average rank 

CLUS-RF 4.14 0.011 0.512 36704.708 1.203 2.544 142.221 115.072 3.241 11.333 ± 2.958 

MSVR 5.076 0.086 0.157 41336.29 1.275 3.054 231.853 213.93 23.705 13.4 4 4 ± 4.667 

VarianceNormAvg 3.953 0.011 0.507 36704.708 1.199 2.542 141.417 115.042 3.157 6.278 ± 3.270 

VarianceNormMin 3.989 0.011 0.507 36516.581 1.2 2.543 141.502 115.042 3.187 7.4 4 4 ± 2.920 

VarianceRankAvg 3.983 0.011 0.506 36442.51 1.2 2.543 141.661 115.307 3.08 7.167 ± 2.610 

VarianceRankMin 3.966 0.011 0.506 36656.879 1.202 2.544 141.424 115.125 3.158 8.4 4 4 ± 2.242 

RForestProxNormAvg 3.963 0.011 0.506 36477.326 1.2 2.544 141.592 115.046 3.283 7.722 ± 2.852 

RForestProxNormMin 3.98 0.011 0.506 36479.676 1.201 2.544 141.811 115.072 3.279 8.778 ± 2.224 

RForestProxRankAvg 3.944 0.011 0.504 36546.452 1.2 2.544 141.901 116.016 3.234 8 ± 3.363 

RForestProxRankMin 3.949 0.011 0.505 36589.821 1.202 2.544 142.145 115.119 3.222 8.4 4 4 ± 2.811 

Random 3.958 0.011 0.505 37550.074 1.2 2.547 143.082 116.181 3.305 10.778 ± 3.890 

OracleNormAvg 4 0.011 0.507 37340.94 1.198 2.542 142.098 115.869 3.223 9.278 ± 3.589 

OracleNormMin 4.006 0.011 0.507 37032.297 1.198 2.541 141.37 115.876 3.151 7.778 ± 4.583 

OracleRankAvg 3.94 0.011 0.504 36376.513 1.194 2.528 138.857 114.778 2.932 2.167 ± 2.121 

OracleRankMin 3.935 0.011 0.504 36440.297 1.198 2.526 140.932 115.059 3.001 2.944 ± 2.098 

CLUS-RF 4.14 0.011 0.512 36704.708 1.203 2.544 142.221 115.072 3.241 5.333 ± 2.411 

MSVR 5.076 0.086 0.157 41336.29 1.275 3.054 231.853 213.93 23.705 9 ± 3.0 0 0 

T _ OOB 4.079 0.011 0.51 36946.38 1.2 2.545 142.477 115.683 3.29 5.389 ± 1.516 

T _ OOB + Airbag 4.096 0.011 0.511 36815.638 1.2 2.545 142.024 115.454 3.293 5.4 4 4 ± 1.488 

T _ OOBInitial 4.075 0.011 0.509 36991.573 1.2 2.544 145.063 118.584 3.319 5.778 ± 2.740 

T _ OOBInitial + Airbag 4.107 0.011 0.51 36811.305 1.2 2.543 141.772 115.116 3.231 3.5 ± 1.601 

Ttop 10% 4.004 0.011 0.507 37708.519 1.2 2.564 14 4.54 4 118.808 3.301 5.944 ± 3.167 

T top10% + Airbag 4.16 0.011 0.512 36596.684 1.204 2.544 141.842 115.115 3.265 5.278 ± 2.980 

Tavg 10% 4.114 0.011 0.511 36582.057 1.2 2.544 144.564 118.045 3.269 5.222 ± 2.123 

Ta v g10% + Airbag 4.123 0.011 0.511 36677.801 1.204 2.543 141.918 115.01 3.229 4.111 ± 2.859 

Table A.14 

RMSE on the 9 considered datasets obtained with 30% of labeled data by supervised methods (CLUS-RF and MSVR), self-training with the proposed reliability scores 

(VarianceNormAvg, VarianceNormMin, VarianceRankAvg, VarianceRankMin, RForestProxNormAvg, RForestProxNormMin, RForestProxRankAvg and RForestProxRankMin), and 

self-training with benchmark scores (Random, OracleNormAvg, OracleNormMin, OracleRankAvg and OracleRankMin). The lower sub-table presents the performance of self- 

training with the VarianceNormAvg reliability score and several procedures for automatic selection of a threshold for the reliability score ( T _ OOB, T _ OOBInitial, Ttop 10% 

and Tavg 10%), with or without the Airbag stopping criteria. The best result for each column of each sub-table is marked in bold. The last column presents the average rank 

of the methods according to their performance on the 9 datasets (calculated separately for each sub-table). 

Dataset 

Method Sigmea Real Sigmea Sim. Soil Quality Solar Flare-2 Water Quality Vegetation Cond. SCM20D SCM1D RF1 Average rank 

CLUS-RF 3.635 0.01 0.519 34586.338 1.192 2.507 130.013 106.865 2.45 10.611 ± 3.190 

MSVR 4.796 0.081 0.151 38370.49 1.276 3.341 222.24 218.396 18.38 13.4 4 4 ± 4.667 

VarianceNormAvg 3.613 0.009 0.513 34598.023 1.189 2.508 129.386 106.801 2.405 7.667 ± 3.640 

VarianceNormMin 3.628 0.01 0.512 34586.338 1.19 2.507 129.221 106.83 2.439 8 ± 1.871 

VarianceRankAvg 3.59 0.01 0.512 34581.316 1.189 2.509 128.981 106.769 2.326 5.944 ± 3.321 

VarianceRankMin 3.627 0.01 0.512 34554.094 1.191 2.506 129.209 106.882 2.402 7.556 ± 3.056 

RForestProxNormAvg 3.547 0.01 0.513 34591.64 1.189 2.507 129.84 106.783 2.505 8.278 ± 3.866 

RForestProxNormMin 3.607 0.01 0.513 34549.428 1.19 2.507 129.732 106.766 2.497 8.4 4 4 ± 3.137 

RForestProxRankAvg 3.588 0.01 0.511 34650.811 1.19 2.507 129.781 107.159 2.484 8.4 4 4 ± 3.292 

RForestProxRankMin 3.635 0.01 0.512 34495.345 1.191 2.507 129.715 106.844 2.466 8.778 ± 3.289 

Random 3.602 0.01 0.512 35459.71 1.19 2.511 130.77 107.674 2.526 11.4 4 4 ± 3.077 

OracleNormAvg 3.594 0.01 0.514 35135.863 1.187 2.503 129.588 107.462 2.461 8.611 ± 3.903 

OracleNormMin 3.592 0.01 0.512 34894.938 1.188 2.502 129.064 107.497 2.454 7.278 ± 3.492 

OracleRankAvg 3.591 0.01 0.511 34504.833 1.185 2.482 125.819 105.148 2.246 2.667 ± 2.449 

OracleRankMin 3.548 0.01 0.511 34479.713 1.187 2.483 127.522 106.642 2.328 2.833 ± 2.031 

CLUS-RF 3.635 0.01 0.519 34586.338 1.192 2.507 130.013 106.865 2.45 4.944 ± 2.324 

MSVR 4.796 0.081 0.151 38370.49 1.276 3.341 222.24 218.396 18.38 9 ± 3.0 0 0 

T _ OOB 3.662 0.01 0.515 34789.872 1.191 2.508 129.29 107.021 2.526 4.944 ± 1.810 

T _ OOB + Airbag 3.627 0.01 0.519 34775.811 1.191 2.507 129.227 107.058 2.469 4.278 ± 2.306 

T _ OOBInitial 3.684 0.01 0.518 34994.06 1.19 2.508 130.03 108.118 2.506 6.333 ± 2.236 

T _ OOBInitial + Airbag 3.594 0.01 0.518 34698.755 1.19 2.508 129.701 106.747 2.448 3.222 ± 1.716 

Ttop 10% 3.634 0.01 0.515 35716.041 1.19 2.519 130.866 108.944 2.498 6.111 ± 2.987 

T top10% + Airbag 3.679 0.01 0.519 34552.385 1.192 2.508 129.755 106.847 2.452 5.111 ± 2.571 

Tavg 10% 3.634 0.01 0.52 34814.006 1.191 2.509 129.646 107.423 2.541 6.389 ± 2.421 

Ta v g10% + Airbag 3.669 0.01 0.518 34556.359 1.192 2.508 129.902 106.85 2.437 4.667 ± 2.291 
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Table A.15 

RMSE on the 9 considered datasets obtained with 50% of labeled data by supervised methods (CLUS-RF and MSVR), self-training with the proposed reliability scores 

(VarianceNormAvg, VarianceNormMin, VarianceRankAvg, VarianceRankMin, RForestProxNormAvg, RForestProxNormMin, RForestProxRankAvg and RForestProxRankMin), and 

self-training with benchmark scores (Random, OracleNormAvg, OracleNormMin, OracleRankAvg and OracleRankMin). The lower sub-table presents the performance of self- 

training with the VarianceNormAvg reliability score and several procedures for automatic selection of a threshold for the reliability score ( T _ OOB, T _ OOBInitial, Ttop 10% 

and Tavg 10%), with or without the Airbag stopping criteria. The best result for each column of each sub-table is marked in bold. The last column presents the average rank 

of the methods according to their performance on the 9 datasets (calculated separately for each sub-table). 

Dataset 

Method Sigmea Real Sigmea Sim. Soil Quality Solar Flare-2 Water Quality Vegetation Cond. SCM20D SCM1D RF1 Average rank 

CLUS-RF 3.428 0.008 0.522 33734.994 1.175 2.465 114.366 96.226 1.792 10.611 ± 3.110 

MSVR 4.623 0.161 0.187 50224.72 1.258 3.242 219.344 292.572 16.619 13.4 4 4 ± 4.667 

VarianceNormAvg 3.441 0.008 0.517 33734.994 1.172 2.464 112.99 95.937 1.783 6.4 4 4 ± 3.147 

VarianceNormMin 3.399 0.008 0.517 33734.994 1.174 2.464 113.697 96.141 1.771 6.5 ± 2.550 

VarianceRankAvg 3.414 0.008 0.517 33734.994 1.173 2.465 112.907 96.026 1.746 5.944 ± 2.555 

VarianceRankMin 3.426 0.008 0.517 33734.994 1.174 2.464 113.365 96.037 1.752 6.833 ± 2.475 

RForestProxNormAvg 3.429 0.008 0.518 33784.707 1.173 2.465 114.164 96.189 1.833 10 ± 1.854 

RForestProxNormMin 3.415 0.008 0.518 33732.11 1.174 2.464 114.366 96.214 1.834 9.111 ± 3.638 

RForestProxRankAvg 3.414 0.008 0.518 33787.903 1.173 2.465 114.153 96.16 1.807 8.833 ± 2.107 

RForestProxRankMin 3.417 0.008 0.518 33844.657 1.174 2.465 114.199 96.181 1.79 9.667 ± 1.984 

Random 3.41 0.008 0.518 34551.197 1.173 2.467 114.931 96.607 1.856 11.111 ± 4.099 

OracleNormAvg 3.418 0.008 0.516 34187.455 1.171 2.455 113.596 96.453 1.825 7.722 ± 4.032 

OracleNormMin 3.432 0.008 0.517 34075.344 1.171 2.453 113.631 96.277 1.796 8.167 ± 3.649 

OracleRankAvg 3.411 0.008 0.517 33734.994 1.168 2.429 109.839 93.7 1.728 3.167 ± 2.727 

OracleRankMin 3.391 0.008 0.516 33723.302 1.17 2.431 111.569 95.147 1.731 2.4 4 4 ± 1.960 

CLUS-RF 3.428 0.008 0.522 33734.994 1.175 2.465 114.366 96.226 1.792 6.222 ± 2.108 

MSVR 4.623 0.161 0.187 50224.72 1.258 3.242 219.344 292.572 16.619 9 ± 3.0 0 0 

T _ OOB 3.404 0.008 0.522 34021.286 1.174 2.464 113.655 96.196 1.801 5.111 ± 2.329 

T _ OOB + Airbag 3.464 0.008 0.522 33820.038 1.174 2.464 114.086 96.103 1.785 5.111 ± 1.710 

T _ OOBInitial 3.422 0.008 0.521 34237.089 1.172 2.465 113.262 96.113 1.811 4.944 ± 2.480 

T _ OOBInitial + Airbag 3.439 0.008 0.522 33807.261 1.174 2.463 114.299 96.008 1.783 4.5 ± 2.291 

Ttop 10% 3.504 0.008 0.519 34671.671 1.173 2.469 114.209 96.69 1.815 6.556 ± 3.087 

T top10% + Airbag 3.406 0.008 0.521 33734.61 1.175 2.464 114.441 96.113 1.778 4.4 4 4 ± 2.732 

Tavg 10% 3.421 0.008 0.521 33992.132 1.174 2.465 113.145 95.938 1.799 4.167 ± 2.151 

Ta v g10% + Airbag 3.456 0.008 0.522 33743.407 1.175 2.464 114.226 96.079 1.773 4.944 ± 2.480 
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