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Abstract

Motivation: The number of sequenced genomes rises steadily but we still lack the knowledge
about the biological roles of many genes. Automated function prediction (AFP) is thus a necessity.
We hypothesized that AFP approaches that draw on distinct genome features may be useful for
predicting different types of gene functions, motivating a systematic analysis of the benefits gained
by obtaining and integrating such predictions.

Results: Our pipeline amalgamates 5 133 543 genes from 2071 genomes in a single massive ana-
lysis that evaluates five established genomic AFP methodologies. While 1227 Gene Ontology (GO)
terms yielded reliable predictions, the majority of these functions were accessible to only one or
two of the methods. Moreover, different methods tend to assign a GO term to non-overlapping
sets of genes. Thus, inferences made by diverse genomic AFP methods display a striking comple-
mentary, both gene-wise and function-wise. Because of this, a viable integration strategy is to rely
on a single most-confident prediction per gene/function, rather than enforcing agreement across
multiple AFP methods. Using an information-theoretic approach, we estimate that current data-
bases contain 29.2 bits/gene of known Escherichia coli gene functions. This can be increased by up
to 5.5 bits/gene using individual AFP methods or by 11 additional bits/gene upon integration,
thereby providing a highly-ranking predictor on the Critical Assessment of Function Annotation 2
community benchmark. Availability of more sequenced genomes boosts the predictive accuracy of
AFP approaches and also the benefit from integrating them.

Availability and Implementation: The individual and integrated GO predictions for the complete
set of genes are available from http://gorbi.irb.hr/.

Contact: fran.supek@irb.hr

Supplementary information: Supplementary materials are available at Bioinformatics online.

1Introduction manual curation result in high-quality function assignments, but are

Even though the number of sequenced genomes rises steadily, we still
lack the knowledge about the biological roles of many genes. Gene
function may be determined experimentally, for instance by observing
a phenotype of a mutant organism with an altered or deleted gene of
interest (Brochado and Typas, 2013), allowing curators to annotate
the gene with Gene Ontology (GO) terms (Ashburner ez al., 2000) or
with other controlled vocabularies. Experimental essays coupled to

costly, time consuming and cannot keep up with the deluge of new
genome sequences. Reliable automated function prediction (AFP)
methods are, therefore, of key importance for functional annotation
of newly sequenced genomes and metagenomes (Radivojac er al.,
2013, The CAFA Consortium, 2016).

The most common approach to AFP is transferring functions from
homologs—genes with shared ancestry—estimated by sequence
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similarity using BLAST (Altschul et al., 1990) or other tools. In add-
ition to homology, there exist many AFP methods that exploit add-
itional information extracted from the genome sequence, e.g.
conserved gene neighborhoods (Ling ez al., 2009), phylogenetic distri-
bution (Pellegrini et al., 1999), protein motifs and biophysical proper-
ties (Ofer and Linial, 2015), codon usage biases (Krisko et al., 2014),
remote homology (Hawkins et al., 2009; Sokolov and Ben-Hur,
2010) and composition of protein domains (Hunter et al., 2012;
Punta et al., 2011). Moreover, inference using genomic information
can be further supplemented by experimental data: gene expression
(Tian et al., 2008), protein—protein interactions (Cao and Cheng,
2016) or protein structure (Wass et al., 2012), and also by text mining
the scientific literature (Cozzetto et al., 2013).

Combining diverse AFP models leads to higher accuracy. This
was made evident in the analyses of gene/protein functional associ-
ation networks, constructed using various sources of large-scale
data. Integrating the individual networks resulted in gene modules
that were more functionally consistent (Lee et al., 2004; von Mering
et al., 2005) and could thus more accurately predict gene function
(Troyanskaya et al., 2003; Hu et al., 2009) or phenotypic effects of
gene perturbation (Lee et al., 2010).

One explanation for the benefits of integration is that random
error from individual data sources cancels out, enabling the signal of
gene function to surface. In addition, different sources of genomic or
experimental data may be intrinsically better suited for predicting
some gene functions than for others. For instance, physical protein—
protein interactions more directly correspond to the ‘Cellular compo-
nent’ domain of the GO, while genetic interaction experiments relate
to the ‘Biological process’ GO domain. Such rules may, however, also
extend to the deeper, more informative levels of the GO. A known ex-
ample is the contrast between ribosomal proteins and membrane pro-
teins in yeast, where the former are predictable from gene co-
expression, while in the latter case, protein compositional features are
more relevant (Lanckriet et al, 2004). More generally, assigning
function-specific weights to integrated gene networks inferred from
biological experiments improves AFP accuracy (Myers and
Troyanskaya, 2007; Mostafavi and Morris, 2010). Thus, different
high-throughput experimental assays appear to be better suited for
predicting different aspects of a gene’s role in the cell. Given that AFP
methods often draw on analysis of genome sequences to predict gene
function, it is thus important to systematically characterize the bene-
fits to combining genomic methods.

We therefore investigate to what extent five well-known se-
quence-based methodologies differ in their ability to assign particular
gene functions across many organisms. One known example concerns
stress response genes, where phylogenetic profiling was shown to be
accurate for heat, osmotic and DNA damage responses but codon
usage biases were superior for starvation and oxidative stresses
(Skunca et al., 2013; Krisko et al., 2014). We search for broader
trends of this sort by examining the overlap and complementarity be-
tween purely genome-based AFP methods. An advantage of these
approaches is that they apply to any organism with a genome se-
quence of sufficient quality and do not require costly and time-
consuming large-scale experimentation that is restricted to a handful
of model organisms.

Relying exclusively on genomic data enabled us to perform AFP
on a massive scale, considering >2000 bacterial and archaeal genomes
with >5 million genes in a single analysis, assigning 4145 different
GO functions. Since the amount of sequenced genomes will continue
to rise rapidly, there is a need to characterize the contribution of vari-
ous genomic AFP methodologies toward resolving particular func-
tions of poorly described genes. Crucially, we investigate to what

extent the methods will benefit from future availability of more gen-
omes. Using information-theoretic measures, we quantify the current
knowledge on gene function in model microorganisms, and suggest
that common AFP methods applied to the already-available genome
sequences can provide very high-confidence predictions that increase
this knowledge by at least 20%. The results of our analysis provide
guidelines for integrating predictions of diverse AFP methods. In par-
ticular, one simple but surprisingly accurate strategy is to rely on a sin-
gle most confident prediction for a given gene and function, thus best

exploiting the complementarity between individual genomic
predictors.
2 Methods

2.1 Representing gene families using diverse sets of
genomic features

Our pipeline includes five well-established AFP methods relying on
genomic data, which we examined in terms of complementarity of
their predictions (Fig. 1; implementation details in Supplementary
Material S1).

First, the phyletic profiles (PP) method represents the COG/
NOG gene families (OGs; see below) by the presence/absence pat-
terns of their member genes across 2071 genomes and then makes
inferences about gene functions by comparing such patterns via pair-
wise similarity (Supplementary Fig. Sla; Pellegrini et al., 1999;
Kensche ez al., 2008; de Vienne and Azé, 2012) or by machine learn-
ing (Tian et al., 2008; Skunca ez al., 2013).

Second, biophysical and protein sequence properties (BPS)
method includes 1170 features representing amino acid compos-
ition, particular motifs or periodicities (King et al., 2001; Jensen
et al., 2003; Lanckriet et al., 2004; Minneci et al., 2013) and
various sequence statistics (summary in Supplementary Material
S1). Features were extracted using ProFET (Ofer and Linial,
2015).
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Fig. 1. A pipeline for automated function prediction from genomic data
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Third, evolutionarily conserved gene neighborhoods (CGN) may
reflect co-regulated genes (Rogozin et al., 2002; Lemay et al., 2012)
and can thus be used to infer gene function (Ling ez al., 2009). Here,
the data consist of the average log-distance (in bp) between genes
from individual gene families, measured across all genomes
(Supplementary Fig. S1d). For computational efficiency reasons, the
feature set encompasses the 5891 most common gene families
(occurring in >100 genomes).

Fourth, signal from remote homologs may predict gene function,
because such (individually unreliable) hits may be collectively en-
riched with correct gene functions (Wass and Sternberg, 2008;
Hawkins et al., 2009). We employ the empirical kernel map (EKM)
(Tsuda, 1999; Lanckriet et al., 2004; Sokolov and Ben-Hur, 2010)
approach, wherein sequence similarity between pairs of OGs is con-
sidered by performing searches against a reference set of genomes, in
our case encompassing 6 genomes (Supplementary Material S1) and
8447 OGs therein.

Fifth, evolution of codon usage biases relates to phenotypic di-
vergence (Man and Pilpel, 2007) and can be used to predict the roles
of genes in environmental adaptation (Supek ez al., 2010; Krisko
et al., 2014). The translation efficiency profiles (TEP) (Krisko et al.,
2014) measure codon biases associated to gene expression; similarity
of such profiles suggests co-evolution of expression levels (Fraser
et al., 2004). The profiles are represented with 2071 features indicat-
ing OG’s predicted expression levels throughout genomes, and add-
itionally 5891 features that capture OGs predicted co-expression
patterns (Supplementary Material S1, Supplementary Fig. S1c).

2.2 Integrating across genomes in a single massive AFP
analysis

Importantly, prior to making inferences with each method, we amal-
gamate 5 133 543 genes from the 2071 bacterial and archaeal gen-
omes using COG/NOG gene families, here collectively referred to as
OGs. In particular, we selected 21 626 OGs from the EggNOG 4
database (Powell ez al., 2014) that were represented in at least 20
genomes. These OGs form examples in our data sets, each described
by the five distinct groups of features, as described above.

Having a single, cross-genome set of training examples facilitates
unbiased comparisons between the AFP methods, with conclusions
valid for many organisms. Such a gene family-based representation
is moreover orders of magnitude computationally more efficient
than treating thousands of organisms separately (the typically em-
ployed “focal species’ approach).

Using OGs as examples bears an implicit assumption that the
genes within an OG share functions, and thus can be represented by
a single data point obtained by integrating over all genes in the OG.
In practice, the GO term labels of the OG were obtained by propa-
gating the known functions of individual genes across the OG, if the
specific function was initially assigned to at least 50% of the OG
member genes that had any known function (as in Skunca et al.,
2013). This yielded 15 318 OGs with at least one non-root GO term
assigned, which constitute the training set of examples; the remain-
ing 6308 OGs were initially unlabeled but could receive predictions.
Thus, our pipeline first propagates GO annotations via sequence
similarity within the OGs, and then transfers GO functions across
the OGs using machine learning on five genomic representations,
which are orthogonal to the homology transfer employed in the first
step.

A classification model is constructed for each of the five AFP
methods using the supervised learning algorithm CLUS-HMC, a
Random Forest classifier adapted for hierarchical multilabel

classification. CLUS-HMC can exploit the hierarchical relationships
in GO to achieve higher predictive performance (Blockeel et al.,
2006; Vens et al., 2008) and was previously used for AFP tasks
(Schietgat et al., 20105 Slavkov et al., 2010; Skunca et al., 2013).
For each OG and GO term pair, the classifier outputs a score rang-
ing between 0 and 1, which indicates confidence in assignment of
that function to the OG.

Predictions from the individual classifiers are then combined.
One approach to this is ’early fusion’, which implies joining the five
sets of features together before constructing classification models
(Snoek et al., 2005; Dong et al., 2014). Here, we employ the ’late fu-
sion’ approach, wherein each set of features was used to train a sep-
arate classifier and the outcomes were subsequently combined using
different schemes.

The one vote’ scheme requires the support of only a single classi-
fier, meaning it reports the maximum confidence observed among
the individual classifiers. In contrast, *two votes’ and ’three votes’
schemes require independent support of more classifiers at a given
level of confidence, meaning they report the second-highest and the
third-highest score, respectively. Next, *weighted voting’ reports the
mean of individual classifiers’ confidences weighted by the classi-
fiers’ accuracy [as the area under precision-recall curve (AUPRC)
score; explained below]. Finally, ’consensus’ considers support
of >1 classifier, reporting confidence at least equal to the maximum
confidence among the individual classifiers, which can be further
increased with calls from additional classifiers. It was computed as:

Cconscnsus(OGi:Go/) =1- HPEP(l - CP(OGHGO/)) (1)

C, is a confidence of an individual predictor p that GO; is as-
signed to an OG;. P is the set of five classification models, each
trained on a set of features derived from a single AFP method.

2.3 Complementarity analysis and evaluation measures
First, a visual estimate of overall complementarity between methods
was provided by clustered heatmaps, revealing groups of GO func-
tions well-predicted by each of the methods. Second, precision-recall
(P-R) curves and the corresponding AUPRC score quantify the ac-
curacy of individual predictors and of the integration schemes.
Third, the choice of the scheme(s) is validated on the external
Critical Assessment of Functional Annotation 2 (CAFA 2) bench-
mark (The CAFA Consortium, 2016). Finally, selected scheme(s) are
evaluated in terms of the proportion of genes in model microorgan-
isms that received new GO functions, the amount of novel informa-
tion implied by these functions and the extent to which the
scheme(s) may benefit from additional genome sequences.

In the P-R analysis, the predictors’ generalization ability is esti-
mated using out-of-bag cross-validation (Breiman, 2001) performed
on 15 318 OGs with available GO annotations. For OG-GO pairs,
the confidence scores given by the classifier are converted into the
precision (Pr) scores using P-R curves obtained from cross-
validation. Importantly, unlike the confidence score, Pr has a prob-
abilistic interpretation and is equivalent to 1—false discovery rate
(FDR). Upon combining the confidence scores of the five classifica-
tion models, this integrated score is also converted to a Pr score
using the joint P-R curve. In this approach, the individual fusion
schemes are not inherently more permissive or more stringent, but
the tradeoff between the two extremes can be adjusted by choosing
a Pr threshold for the fused predictions.

The AUPRC summarizes the precision versus recall tradeoff at
various Pr levels. It is computed separately for each GO term by
varying the Pr threshold from one to zero, thus gradually relaxing
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stringency of the predictions and consequently increasing the num-
ber of OGs that receive a GO label. Classifier AUPRC is the mean of
AUPRC scores of the individual GO P-R curves.

Further, both the training set and unlabeled OGs are classified
with each of the five classifiers, following the rationale that the sets
of known functions assigned to OGs may be incomplete (Dessimoz
etal.,2013).

We validate our predictions using data from CAFA 2, an AFP
community challenge where organizers publish a benchmark set of
genes with unknown function (Jiang et al., 2016). After the submis-
sion closes, the experimentally verified annotations for these genes
are collected during a certain period of time and later used to evalu-
ate the competing methods. We benchmarked our results against
CAFA 2 Escherichia coli set of annotations, following rules of the
challenge (the ‘no-knowledge’ benchmark in ‘full evaluation’ mode).
The evaluations of accuracy of the 129 CAFA 2 participating meth-
ods and the BLAST baseline were downloaded from the CAFA web
page. The F,,,, measure was computed as the maximum F-measure
(harmonic mean of the precision and recall scores), and its stand-
ard deviation was found using bootstrapping (Supplementary
Material S1).

We estimated the total information in gene function annotations
contributed by different predictors using the information accretion
(IA) measure (Clark and Radivojac, 2013). IA of a GO term quanti-
fies the increase in specialization in the set of genes assigned to that
GO term, compared to its parent in the GO graph. In particular, IA
equals zero when the information content (IC) of a GO term is equal
to its parent. IA was computed as:

IA(GO;) = —log,P(GO;|T) 2)

T is a set of parent terms of GO; and P denotes conditional prob-
ability. We summed the IA of assigned annotations on the gene level
and expressed it in bits per gene, both for the known GO annota-
tions and also for the newly predicted ones in several representative
genomes.

3 Results

3.1 Extensive complementarity between AFP methods
Two methods that predict gene functions are complementary if one
draws on a set of features strongly associated with genes having a
certain function, while the features used by the other method are un-
informative in the context of that specific function.

A simple measure of complementarity is to consider whether a
GO function is learnable by a certain method, here defined as the
method being able to provide at least one prediction at Pr>50%
(equivalent to <50% FDR), estimated in cross-validation. In other
words, the features considered by this method can be used to con-
sistently recover one or more genes with that GO function from the
entire dataset. Out of 4145 GO functions considered in our ana-
lyses, 1227 are learnable by either of the 5 methods or some com-
bination thereof. Remarkably, 30% of these GO functions are only
learnable by a single classifier and inaccessible to the other four.
A further 25% are only learnable by two out of five classifiers (Fig.
2a). In other words, roughly half of the learnable GO terms are not
accessible to the majority of the AFP methods. On the other hand,
only 16% of the GOs are learnable by all of the five classifiers and
moreover these disparities become even more pronounced with a
more stringent threshold for learnability (<20% FDR; Fig. 2b).
This reveals a considerable complementarity between the different
methods: if methods are applied individually, some gene functions
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may be predicted highly accurately while the others not at all.
A combination of genome sequence-based predictors is able to
reach many different GO functions, consistent with the success of
past approaches that integrate across large-scale experimental data
sources (Troyanskaya et al., 2003; Lee et al., 2004; Lanckriet
et al., 2004; von Mering et al., 2005; Hu et al., 2009; Lee et al.,
2010).

Next, we compare the accuracy of individual classifiers meas-
ured by the cross-validation AUPRC score (Section 2) for each indi-
vidual GO category (Fig. 2c). A broad trend can be observed when
comparing the three GO domains: the two sequence-based methods
(EKM and BPS) are generally better at predicting molecular function
GOs than the Biological process GOs (p=3.6*10"" and 0.02 for
EKM and BPS, respectively; Mann—Whitney test). This is consistent
with their ability to capture protein sequence motifs and structural
features informative of enzymatic activity. On the contrary, the
three ‘genomic context’ methods (PP, TEP and CGN) are better at
predicting the Biological process GOs (p=10"'3, 2¢10~* and
3#107 8, respectively). This is consistent with their ability to capture
the signal emanating from genetic interactions, thus describing the
context of a protein in a functional association network.

The methods’ relative performance also broadly differs between
the generality levels of GO functions (Fig. 2d). The sequence motif-
based EKM and BPS methods are more adept at capturing broader,
more general functional categories with IC <5 than the more specific
GOs (p <2*107 %), In contrast, the genomic context PP and CGN
methods have higher overall performance for the more specific GOs
with IC> 5, in comparison to the more general GOs (p =10~ and
p<2%107 ', respectively).

These broad trends notwithstanding, the predictive accuracy of
individual methods varies widely even between GOs in the same do-
main and of similar IC (Fig. 2e and f; Supplementary Fig. S2a and
¢). We therefore next examine the comparative strengths and weak-
nesses of each AFP method with regard to the GO categories they
predict.

Of note, the overall ability to predict GO functions differs be-
tween methods: BPS has the highest AUPRC out of the five methods
for 33% of the 1227 learnable GO terms and PP for 25% of the GO
terms [example GO terms in Supplementary Fig. S2(d-g)].
Nevertheless, the other three methods prove valuable when predic-
tions for particular GO terms are sought. For instance, TEP is the
method with highest cross-validation AUPRC scores for the func-
tions ‘tRNA aminoacylation for protein translation’ and for ‘photo-
synthesis’ (Fig. 2h; Supplementary Fig. S2b) and it exhibits
comparable overall performance to other methods across a set of
other GO terms (Fig. 2g; trends across GO terms for other methods
visualized in Supplementary Fig. S2). Crucially, even two apparently
equally performing methods—exhibiting similar AUPRC for a GO
term—may provide complementary predictions in practice, assign-
ing the function to disjoint sets of genes. We further examine to
what extent this occurs and how can it be exploited to boost predict-
ive power by combining classifiers.

3.2 Method complementarity and prediction fusion

We quantified the complementarity of the five predictors described
above by testing the accuracy of combined predictions. In particular,
we evaluated five different fusion schemes in a cross-validation test
and additionally on the CAFA 2 independent validation set, while
stratifying by GO domain and by the IC of GO terms (Fig. 3;
Supplementary Fig. S3).
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Fig. 3. Comparison of predictive performance between individual methods
and integration schemes. (a) Average AUPRC scores for the Biological pro-
cess GO domain computed from precision-recall (P-R) curves, obtained in
cross-validation. Error bars are standard error of the mean. IC, information
content; lower IC denotes more general GO terms. (b) P-R curves computed
by averaging individual Biological process GO term PR curves, stratified by
IC. (¢) The Fax accuracy measure on the CAFA 2 E. coli validation set. Error
bars are standard deviation by bootstrapping the set of benchmark genes. (d,
e) Cross-validation AUPRC scores of the individual Biological process GO
terms, while comparing the ‘best precision’ versus the ‘weighted voting’
scheme (d) and a Pr-based weighted voting scheme in (e). P-values are by
Wilcoxon test. Acronyms are explained in legend of Fig. 2
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Fig. 4. Coverage of genes for predicted functions in two example microbes
(a,b) and average IA per gene of known versus newly predicted functional an-
notations (¢). Proportions of (a) and overlaps in (b) E. coliand S. aureus genes
that received at least one novel specific prediction (IC > 5) at several precision
(Pr) thresholds. Pr is equivalent to 1-FDR. Venn diagrams show approximate
overlap; complete data in Supplementary Table S1. (c) Three example gen-
omes are shown. Colors show an increase in predictions with decreasing
stringency (numbers denote Pr threshold). Method/scheme name is denoted
by the first letter of its name, except CGN = G. Acronyms are explained in le-
gend of Fig. 2

Overall, integration schemes perform substantially better than the
individual predictors, regardless of the GO term generality (Fig. 3a
and b) or of the GO domain analyzed [Fig. 3a and b; Supplementary
Fig. S3(a—d)]. For example, the AUPRC scores for the most specific
(IC>10) GO terms range between 0.04 and 0.28 for the five individ-
ual predictors, and between 0.18 and 0.40 for the five fusion schemes
(Fig. 3a; Supplementary Fig. S3d). Therefore, the methods indeed do
cover different sets of genes with their predictions, raising the com-
bined accuracy far above the individual methods.

With respect to strategies to integrate predictions, an appealing
approach is to require that an annotation be made by more than one
independent methodology. Intuitively, enforcing consistency across
the methods would be expected to imply more confidence in the
call. We tested this approach using ‘two votes’ and ‘three votes’
schemes that conservatively annotate functions only if supported
in>1 predictor (Section 2). However, such schemes were routinely
outperformed by the two commonly employed fusion schemes [Fig.
3b; Supplementary Fig. S3(a—d)] that integrate the predictions across
all methods using weights (‘weighted voting’ and ‘consensus’;
Section 2). These integration schemes allow the overall result to
stem only from a single confident prediction, even if it is not consist-
ent across individual methods. This motivated us to test a simplified
strategy where we retain the prediction of the single most confident
model as the final prediction (‘one vote’). Somewhat counterintui-
tively, this approach appears to perform equally well as the
‘weighted voting’ for the general GO terms [Fig. 3b; Supplementary

Fig.S3(a—d)], and similarly well even for the more specific GO terms
(Fig. 3b, Supplementary Fig. S3¢ and d). This observation can be ex-
plained by the very high complementarity between the methods—if
the majority of reliable annotations are predicted only by a single
method and there is little overlap, even sophisticated methods to
combine them will not improve much over the ‘one vote’ approach,
and might even be counterproductive in some instances.

We further refined the ‘one vote” scheme to first compute Pr scores
separately for each of the five methods and then to take the highest Pr
score among the methods as an integrated prediction (‘best precision’
scheme; highlighted bar in Fig 3¢). This implicitly incorporates infor-
mation, via Pr scores, on the accuracy of classifiers in making each in-
dividual prediction. Such a scheme that considers only a single
prediction with highest Pr (or, equivalently, lowest FDR) performs in-
distinguishably from the commonly ‘weighted voting’ scheme that
combines many classifiers (Fig. 3d; P =0.09, Wilcoxon signed-rank
test). Notably, a Pr-based weighted voting does not outperform the
‘best precision’ scheme either (Fig. 3¢, P = 0.45).

The results from cross-validation were further validated on the
E. coli predictions from the CAFA 2 benchmark. Of note, the two
tests are on a rather different scale: our cross-validation results were
obtained from multiple genomes (15 318 OGs) compared to a single
genome we considered from the benchmark (70 genes).
Furthermore, the number of GOs available for testing was reduced
from 713 to 232 in Biological process and 409 to 139 in Molecular
function domain. The choice of optimal strategy was confirmed on
the largest ‘Biological process’ part of the benchmark: the conserva-
tive ‘two votes” and ‘three votes’ perform worse than the other
schemes. Moreover, weighted voting does not outperform the simple
‘best precision’ scheme (Fig. 3¢). In addition, all types of integration
are beneficial: all schemes performed equally or better than the best
CAFA 2 competitor on the Biological process domain (Fig. 3c).
These trends are broadly confirmed on Molecular function domain
(Supplementary Fig. S3¢ and d), where best precision and consensus
outperform other schemes and methods. In addition, these two
schemes are in the top 25% of the CAFA 2 competitors for the
molecular function E. coli benchmark (Supplementary Fig. S3e).

3.3 The tally and overlap of newly predicted functional
annotations

We examined the genomes of several model microorganisms in
terms of how many genes could be covered with novel GO predic-
tions at a certain Pr (or equivalently FDR) threshold, given a certain
annotation method or a fusion scheme to combine them (Fig. 4a;
Supplementary Fig. S4). The individual methods could annotate
roughly ~1/6 of the genes in the genomes at Pr > 50%, e.g. 9-19%
for the different methods in E. coli and 8-16% for Staphylococcus
aureus. Strikingly, using the integration schemes can achieve at least
twice the coverage at the same FDR (36-43% and 28-34%, for E.
coli and S. aureus, respectively). Alternatively, combining classifiers
can increase the precision while achieving similar coverage as the in-
dividual methods. The various fusion schemes perform similarly in
this test, with the consensus and weighted voting having an edge at
very stringent (Pr>90%) thresholds. Of note, genes not included in
OGs cannot be annotated in our setup and contribute towards the
uncovered part of the genome.

Next, we quantified overlaps between methods in terms of par-
ticular genes in model organisms that received predictions at
various Pr thresholds. We observe that the overlap is very low at
high-stringency thresholds: at Pr>90%, 98% genes that received
any annotation in E. coli did so only by a single method (Fig. 4b);
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Fig. 5. Accuracy of classifiers increases with addition of genomic data. (a) X-
axes represent the number of randomly sampled genomes (of the 2071 total);
approx. log scale. Y-axes represent classifiers” AUPRCs (in cross-validation)
averaged over the selected subset of GO terms from the Biological process
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content. (b) Slopes of the regression lines for prediction methods/integration
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in plot; complete table in Supplementary Table S3. Acronyms are explained
in legend of Fig. 2

this percentage is 100%, 99% and 96% for S. aureus (Fig. 4b),
Bacillus subtilis and Streptomyces coelicolor (Supplementary Fig.
S5), respectively. However, as the stringency is relaxed, the overlap
between the covered genes increases, where at Pr>50% many of
the same genes receive predictions by multiple methods (Fig. 4b;
Supplementary Fig. S5 and Supplementary Table S1). Crucially, this
does not imply that the same GOs are assigned to those genes by the
different methods. Indeed, when quantifying the GO terms that
were annotated to at least one OG at Pr > 50%, we observe consid-
erable differences between methods: 36% of the GO terms are as-
signed to at least one OG only by a single method, an additional
30% by two methods and only 6% by all five methods
(Supplementary Table S2). The complementarity is also evident (at
any Pr threshold) in the increased number of GO terms assigned to
any one OG upon applying a scheme to combine the annotations
(Supplementary Fig. S6). Overall, the high accuracy of the integrated
predictors stems both from the complementary in gene functions
each method can predict and in the sets of genes that it assigns a par-
ticular gene function to.

A part of the newly predicted annotations can be validated using
the CAFA 2 E. coli benchmark and so can the overlap of the anno-
tated GO terms for particular genes. We searched for examples of E.
coli genes that received validated annotations at Pr thresholds cor-
responding to Fp.x (Supplementary Material S1). While the CAFA 2
E. coli set is not large enough to quantitate the overlap between vali-
dated predictions made by particular methods, we found individual
examples that support the trends observed previously in cross-
validation tests. For instance, the fruA/fruB genes had received cor-
rect predictions from multiple methods simultaneously, and the pre-
dictors for assigned GO terms had low levels of complementarity in
our analyses (max. excess AUPRC = 0.05; Supplementary Fig. S7).
On the other extreme, there are multiple examples of pronounced
complementarity for method-specific ~GOs
AUPRC=0.39) correctly predicted for the E. coli genes but un-
reachable to other methods, e.g. EKM-specific assignments to

(max. excess

mobB, TEP-specific to ung and BPS-specific to yciS (Supplementary
Fig. S7).

3.4 The present and future potential in function
prediction methods
Next, we turn to address the issue of how well the genes are covered
by novel annotations using different methodologies. In particular,
we measure the total amount of IA (Methods; Clark and Radivojac,
2013) that was contributed by different predictors. We estimate that
the E. coli genome has on average 29.2 bits/gene of currently known
functional annotations spanning all three GO domains (Fig. 4c).
Of that, 8.7 bits/gene is assigned directly from experimental data,
and the other 15.4 bits/gene is assigned using the commonly applied
electronic annotation methods, per the Uniprot-GOA database
(Camon et al., 2005); many of these annotations derive from
InterPro (Jones et al., 2014). We supplement this by a further 5.1
bits/gene obtained by transferring GO annotations across OG
groups (by sequence similarity). Given that the GO electronic anno-
tations are of comparable quality to the manually curated annota-
tions (Skunca et al., 2012), they are used as input to our function
prediction algorithms. At a permissive threshold of Pr>350%, the
individual prediction methods can assign between 2.8 bits (TEP) and
5.5 bits (BPS) for E. coli genes, on average. Integrating the predic-
tions raises this to a total of 11 bits/gene of newly predicted func-
tions (Fig. 4c, *consensus’ scheme) at Pr > 50%. At a more stringent
threshold of Pr>70%, 3.9 new bits/gene are still available (Fig. 4c,
consensus). Interestingly, the novel annotations apply similarly well
to both the poorly and the well-annotated E. coli genes (10.7 versus
11.8 additional bits/gene for genes in the lower versus upper quartile
by the known bits/gene; Supplementary Fig. S9). This suggests that
there are still many undiscovered biological roles even in the cur-
rently well-annotated genes of a model organism. This trend is
observed consistently across the three GO domains (Supplementary
Fig. S9). For instance, in addition to the existing 108 bits of annota-
tions of the f#sI gene, we predict a further 23 bits, 13 of which were
from the Molecular function domain and the remainder from the
other two domains. The trends above hold also for other organisms,
meaning that AFP methods can also afford great gains in medically
important microbes: S. aureus has 18.4 bits/gene of known annota-
tions but 9.7 additional bits/gene are readily available from predic-
tions; for Streptococcus pyogenes this is 20.8 plus 11.3 bits/gene,
and for Mycobacterium tuberculosis (Supplementary Fig. S8) this is
17.7 plus 8.2 bits/gene (all given at Pr > 50%).

Therefore, the established genome-based AFP methods can im-
mediately extend our knowledge of gene function using current
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data. An important question is how much of this knowledge remains
to be gained in the future, as more genomes are sequenced. We ad-
dress this by sampling from our full set of 2071 genomes and exam-
ining how the accuracy changes with the number of available
genome sequences. Interestingly, for the majority of the tested meth-
ods and integration schemes, the average AUPRC scores increase
approx. linearly with the logarithm of the number of genomes.
Some saturation is evident in the individual methods with the cur-
rent set of ~2000 genomes, mostly in the Cellular component GO
domain (Fig. 5a; Supplementary Fig. S10 and Supplementary Table
S3). Crucially, the fusion schemes display very little saturation in all
but the very general GO terms (IC < 5) of the Biological process and
Molecular function domains; Fig. 5a; Supplementary Fig. S10 and
Supplementary Table S3). In summary, many AFP methodologies
stand much to gain from increases in size of genomic databases.
Importantly, the integrated predictions generally exhibit steeper
slopes than individual classifiers (Fig. 5b). This suggests that with
more genomes, the complementarities between methods grow more
pronounced and the relative benefit of integrating across many AFP
methods increases.

4 Discussion

Automated gene function prediction is a necessity: the numbers of
sequenced genomes are growing rapidly but the function annota-
tions are not keeping up. The methods that transfer known biolo-
gical roles to homologous genes via sequence similarity searches are
well-established and appear quite successful in community evalu-
ations (Hamp et al., 2013). Thus, they present a baseline that future
methods must build and improve upon, aiming to provide predic-
tions complementary to the commonly employed methods such as
PSI-BLAST or Pfam searches. To this end, we have evaluated five
existing methodologies that produce novel GO annotations from
data orthogonal to standard sequence similarity searches, while
being based exclusively on genome sequences. We find that the
methods are highly complementary: more than half (676/1227) of
examined GO functions are inaccessible to the majority of the AFP
methods, but only to one or two individual predictors. In particular,
the protein sequence-based methods tend to be more adept at cap-
turing general GO terms and those in the Molecular function do-
main, while genomic context methods better capture the specific
GO terms and the Biological process domain. Thus, the output of
various comparative genomics-based AFP approaches needs to be
combined to find functionally coherent groups of genes.

We find that, due to the pronounced complementarity, a simple
yet viable strategy for integrating predictions is to take the predic-
tion of the single most confident model, which performs similarly to
weighted voting schemes. Recent research in machine learning
explored various classifier combination techniques, concluding that
the simple late fusion schemes—not unlike the ones employed in this
work—can double the recall at high precision, if the near-
independence of feature families is properly exploited (Madani
et al., 2013). Consistently, our data also suggest that the benefit
gained from applying and subsequently integrating multiple AFP
methods increases when a higher stringency of predictions is desired
(Fig. 4b).

The scientific community has been painstakingly accumulating
knowledge about protein function by performing experiments in
model organisms, such as E. coli, throughout the past decades. We es-
timate that our current knowledge—to the extent it can be described
by the GO and covered in the available databases—amounts to 29.2
bits per E. coli gene, on average. Established AFP methods that

operate only on genomic data, if combined properly, can increase this
by a further 11 bits/gene. Finally, we show that various integration
schemes benefit from availability of additional genomes more than the
individual methods. This highlights the increasing importance of con-
sidering multiple complementary genomic AFP methods in future
work.
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