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1. Introduction

The traditional problem of single-label classification is concerned with learning from instance, each associated
with a single label A; from a finite set of disjoint labels £ = {1}, A2, ..., 4p}, Q > 1. For Q > 2, the learning problem is
referred to as a multi-class classification. On the other hand, the task of learning a mapping from an instance x € X
(X denotes the domain of instances) to a set of labels Y C L is referred to as a multi-label classification. Thus, in
contrast to multi-class classification, alternatives are not assumed to be mutually exclusive such that multiple labels
may be associated with a single instance i.e., each instance can be a member of more than one class. The set of labels
Y are called relevant, while the set £\ represents irrelevant labels for a given instance.

Label ranking studies the problem of learning a mapping from a set of instances to rankings over a finite number
of predefined labels. It can be considered a natural generalization of conventional (multi-class) classification, where
instead of requesting only a single label (a top label), a ranking of all the labels is performed.

Besides the concept of multi-label classification, the multi-label learning introduces the concept of multi-label
ranking [1], which is understood as learning a model that the query instance x associates both with a ranking of the
complete label set and a bipartite partition of this set into relevant and irrelevant labels.

In recent years, many different approaches have been developed to solve the multi-label learning problems.
Tsoumakas and Katakis [2] summarize them into two main categories: a) algorithm adaptation methods, and b)
problem transformation methods. Algorithm adaptation methods extend specific learning algorithms to handle multi-
label data directly. Examples include lazy learning [3] [4] [5], neural networks [6] [7], boosting [8] [9], classification
rules [10], etc. Problem transformation methods, on the other hand, transform the multi-label learning problem into
one or more single-label classification problems. The single-label classification problems are solved with a commonly
used single-label classification approach and the output is transformed back into a multi-label representation via some
reverse process. A common approach for problem transformation is to use class binarization methods, i.e. decom-
position of the problem into several binary sub-problems that can then be solved using a binary base classifier. The
simplest strategies in the multi-label setting are the one-against-all and one-against-one strategies, also referred to as
the binary relevance method [2] and pair-wise method [11] [12] respectively.

The issue of learning from multi-label data has recently attracted significant attention from many researchers.
They are motivated from an increasing number of new applications, such as semantic annotation of images and video
(news clips, movies clips), functional genomics (gene and protein function), music categorization into emotions, text
classification (news articles, web pages, patents, emails, bookmarks, ...), directed marketing and others. In the last



G. Madjarov et al. | Procedia Computer Science 00 (2011) 1-19 2

few years, several workshops concerning multi-label learning are being organized in order to present the deep impact
of theese kind of problems.

The work we present in this paper concerns the learning of multi-labeled data. We do not propose a new algorithm;
we do not even present a highly non-trivial way of using an existing algorithm. In this paper we compare the predictive
performace and the computational complexities of the state of the art algorithms in multi-label learning and provide
usefull conclusions about them. The contributions of this paper are:

e Providing an extensive experimental comparison of existing state of the art systems for multi-label learning
(classification and ranking) for a wide range of evaluation criteria.

Section 2 defines the tasks of multi-label classification and label ranking and surveys the related previous work.
The state of the art methods for multi-label learning compared in this paper are presented in Section 3. Section 4
presents the multi-label problems and the experimental setup while the section 5 shows the experimental results that
compare the performance of the competing methods. The conclusions are given in Section 5.

2. Background

2.1. Task description
Given:

e An istance space X that consists of tuples of values of primitive data types (boolean, discrete or continuous),
ie., Vx; € X, x; = (x;,, Xi,, ..., Xi,, ), Where D is the size of the tuple (or number of descriptive attributes),

e alabel space L = {4;, A2, ..., Ao} which is a tuple of Q discrete variables (with values 0 or 1),

e aset of examples E, where each example is a pair of tuples from the instance and label space, respectively, i.e.,
E={(x;,Y)Ixj e X,Y; € L,1 <i< N}and N is the number of examples of E (N = |E|), and

e a quality criterion g, which rewards models with high predictive accuracy and low complexity.

The task of multi-label classification formally is defined as follows:
Find: a function 4: X — 2£ such that 7 maximizes g.

On the other hand the task of label ranking is defined:

Find: a function f: X X £ — R such that f maximizes g.

2.2. Related work

In this section, we will give an overview of different methods for solving multi-label learning problems. These
methods can be summarized in three main categories: Algorithm adaptation methods, problem transformation meth-
ods and ensemble methods. The later as ensemble tehniques use base classifiers that belong to the first two methods.

2.2.1. Algorithm adaptation methods

AdaBoost.MH and AdaBoost.MR [8] are two extensions of AdaBoost for multi-label data. While AdaBoost. MH
is designed to minimize Hamming loss, AdaBoost.MR is designed to find a hypothesis which places the correct labels
at the top of the ranking. A combination of AdaBoost. MH with an algorithm for producing alternating decision trees
has been proposed in [9], with the motivation of producing multi-label models that can be understood by humans.

ML-kNN [3] [4] [5]is based on the popular k Nearest Neighbors (kNN) lazy learning algorithm. The first step of
the algorithm proposed in [3] is the same as in kNN, i.e., retrieving the k nearest examples. It uses the maximum a
posteriori principle in order to determine the label set of the test example, based on prior and posterior probabilities
i.e. the frequency of each label within the k nearest neighbors. A hybrid approach of logistic regression and k-nearest
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neighbor was proposed by Cheng et al.[13]. Clare et al. [14] adapted the C4.5 algorithm for multi-label data (ML-
C4.5). Other decision tree based methods for multi-label classification are predictive clusering trees (PCT) proposed
by Blockeel et al. [15].

Neural networks have also been adapted for multi-label classification [6] [7]. BP-MLL [7] is an adaptation of the
popular back-propagation algorithm for multi-label learning. The main modification to the algorithm is the introduc-
tion of a new error function that takes multiple labels into account. An SVM approach for multi-label classification is
proposed in [16].

2.2.2. Problem transformation methods

Problem transformation methods can be grouped in three subcategories: Binary relevance methods, label power-
set methods and pair-wise methods.

Binary relevance methods An extensive bibliography of learning algorithms for problem transformation meth-
ods is given by Tsoumakas and Katakis [2]. The simplest strategy in the multi-label setting is the one-against-all
strategy also referred to as the binary relevance method (BR) [2]. A method closely related to the BR method is the
Classifier Chain method (CC) proposed by Read et al. [17]. Godbole et al. [18] present algorithms which use existing
discriminative classification techniques as building blocks to perform multi-label classification.

Label power-set methods Second problem transformation method is the label combination method, or label
power-set method, (LP), which has been the focus of several recent studies [19] [20] [2]. The basis of this method
is to combine entire label sets into atomic (single) labels to form a single-label problem for which the set of possible
single labels represents all distinct label subsets in the original multi-label representation. Each (x, Y) is transformed
into (x,/) where [ is the atomic label representing a distinct label subset. In this way, LP based methods directly
take into account label correlations. To solve the problem of the large number of label combinations, Read [21]
developed a pruned problem transformation method (PPT), that selects only the transformed labels that occur more
than predefined number of times. Another label power-set method is HOMER [22]. It is a computationally efficient
multi-label classification method specifically designed for large multi-label dataset.

Pair-wise methods Third problem transformation approach to solving the multi-label learning problem by using
binary classifiers is pair-wise classification or round robin classification [11] [12]. Its basic idea is to use Q*(Q —1)/2
classifiers covering all pairs of labels. Each classifier is trained using the samples of the first label as positive examples
and the samples of the second label as negative examples. To combine these classifiers, the pairwise classification
method naturally adopts the majority voting algorithm. Given a test example, each classifier delivers a prediction
for one of the two labels. This prediction is decoded into a vote for one of the labels. After the evaluation of all
0 *(Q — 1)/2 classifiers, the labels are ordered according to their sum of votes. To predict only the relevant labels for
each example a label ranking algorithm is used.

Brinker et al. [1] propose a conceptually new technique for extending the common pair-wise learning approach
to the multi-label scenario named Calibrated Label Ranking (CLR). The key idea of calibrated label ranking is to
introduce an artificial (calibration) label Ay, which will represent the split-point between relevant and irrelevant labels.

Besides majority voting in CLR, Park et al. [23] propose another, more effective voting algorithm named Quick
Weighted Voting (QWeighted) for multi-class classification. QWeighted computes the class with the highest accumu-
lated voting mass, while avoiding the evaluation of all possible pairwise classifiers. An adaptation of QWeighted to
multi-label learning (QWML) is proposed by Mencia et al. [24].

2.2.3. Ensemble methods

Several ensemble approaches have been developed based on the common problem transformation methods. The
most well known are the RAKEL system by Tsoumakas et al. [19], ensembles of classifier chains (ECC) [17] and
ensemble of pruned sets (EPS) [25]. For m iterations of the training data, RAKEL draws a random subset of size k
from all labels L and trains a label power-set classifier using these labels. A simple voting process determines the
final classification set. EPS uses pruning to reduce the computational complexity of label power-set methods, and
an instance duplication method to reduce error rate as compared to label power-set and other methods. This method
proved to be particularly competitive in terms of efficiency. Note that binary methods are occasionally referred to as
ensemble methods because they involve multiple binary models. However, none of these models is multi-label itself
and therefore we use the term ensemble strictly in the sense of an ensemble of multi-label methods.
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3. Compared methods

In this section, we brifely introduce the state of the art methods for multi-label learning that are compared in this
paper. The predicitve performance and the computational complexity of one label power-set method, two binary, two
pair-wise, two algorithm adaptation methods and four ensemble methods are compared. One of the ensemble methods
is label pawer-set based, while the other methods are algorithm adaptation based.

3.1. Binary relevance

Binary Relevance (BR) [2] is the well known one-against-all strategy. It addresses the multi-label learning
problem by learning one classifier for each class, using all the examples labeled with that class as positive examples
and all remaining examples as negative examples. At query time, each binary classifier predicts whether its class
is relevant for the query example or not, resulting in a set of relevant labels. In the ranking scenario, the labels are
ordered according to the probability association of each label from each binary classifier.

The Chaining method (CC) [17] involves Q binary classifiers as in BR. Classifiers are linked along a chain where
each classifier deals with the binary relevance problem associated with label 4; € L, (1 <i < Q). The feature space of
each link in the chain is extended with the 0/1 label associations of all previous links. The ranking and the prediction
of the relevant labels in the CC method are the same as in the BR method.

3.2. Pair-wise methods

Calibrated Label Ranking (CLR) [23] is a new technique for extending the common pair-wise learning approach
to the multi-label scenario. It introduces an artificial (calibration) label 1y, which represents the split-point between
relevant and irrelevant labels. The calibration label A is assumed to be preferred over all irrelevant labels, but all
relevant labels are preferred over it. It is represented by the binary relevance classifiers, that are introduced as pair-
wise classifiers in the context of pair-wise learning. At prediction time (majority voting is usually used), one will get
a ranking over Q + 1 labels (the Q original labels plus the calibration label 1j). CLR is considered a combination of
multi-label classification and ranking.

Quick Weighted voting method (QWML) proposed by Park et al. [23] is a variant of the CLR method that
introduces more effective voting startegy than the majority voting used by the CLR method. Quick Weighted Voting
exploits the fact that during voting some classes can be excluded from the set of possible top rank classes early in
the process, when it becomes clear that even if they reach the maximal voting mass in the remaining evaluations they
can not exceed the current maximum. Pairwise classifiers are selected depending on a voting loss value, which is the
number of votes that a class has not received. The voting loss starts with a value of zero and increases monotonically
with the number of performed preference evaluations. The class with the current minimal loss is the best candidate
for the top ranked class. If all preferences involving this class have been evaluated (and it still has the lowest loss),
it can be concluded that no other class can achieve a better ranking. Thus, the QWeighted algorithm always focuses
on classes with low voting loss. The adaptation of QWeighted to multi-label learning (QWML) [24] is to repeat the
process while all relevant labels are not determined, i.e., until the returned label is the artificial label, which means
that all remaining labels will be considered to be irrelevant.

3.3. Label power-set method

Hierarchy Of Multi-label classifiERs (HOMER) [22] is a novel algorithm for effective and computationally
efficient multi-label learning in domains with a large number of labels. HOMER constructs a hierarchy of multi-label
classifiers, each one dealing with a much smaller set of labels compared to Q (the total number of labels) and a
more balanced example distribution. This leads to improved predictive performance and also to linear training and
logarithmic testing complexities with respect to 0. One of the main processes within HOMER is the even distribution
of a set of labels into k disjoint subsets so that similar labels are placed together and dissimilar apart. The best
predictive performance is reported utilizing the balanced k means algorithm proposed by the author. The authors
showed that HOMER (using binary relevance as the multi-label classifier at each node) outperforms the BR method
in terms of predictive performance and computational complexity. In both methods (HOMER and BR), Naive Bayes
is used as a base classifier for the decomposed binary tasks.
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3.4. Algorithm adaptation methods

Multi-Label C4.5 (ML-C4.5) [14] is an adaptation of the well known C4.5 algorithm for multi-label learning.
Clare et al. modified the formula of entropy calculation (equation 1) in order to solve multi-label problems. They also
allowed multiple labels in the leaves of the tree. The modified entropy sums the entropies for each individual class
label.

N
entropy(S) = = ¥ (p(ci)log p(ci) + q(ci) log q(c:)) (M
i=1
where S is the set of examples, p(c;) is the relative frequency of class label ¢; and g(c;) = 1 — p(c;).

The key property of ML-C4.5 is its computational efficiency. It is among the fastest and the most computationally
efficient multi-label classifiers available today. On the other hand, SVMs are among the most powerful classifiers,
widely used in classification and regression problems.

Multi-Label k-Nearest Neighbors (ML-kNN) [3] is derived from the popular k-Nearest Neighbor (kNN) algo-
rithm. Firstly, for each test instance, its k nearest neighbors in the training set are identified. Then, according to
statistical information gained from the label sets of these neighboring instances, i.e. the number of neighboring in-
stances belonging to each possible class, maximum a posteriori principle is utilized to determine the label set for the
test instance.

3.5. Ensemble methods

The RAndom k-labELsets (RAKEL) [19] is an ensemble method for multilabel classification. It constructs each
member of the ensemble by considering a small random subset of labels and learning a single-label classifier for
the prediction of each element in the powerset of this subset. In this way, the proposed algorithm aims to take into
account label correlations using single-label classifiers that are applied on subtasks with manageable number of labels
and adequate number of examples per label.

Ensembles of Classifier Chains (ECC) [17] are ensemble multi-label classification technique that uses CC as a
base classifier. ECC trains m CC classifiers Cy, Ca, ..., C,,. Each Cy is trained with:

e arandom chain ordering (of £)

e arandom subset of X.

Hence each C; model is likely to be unique and able to give different multi-label predictions. These predictions
are summed by label so that each label receives a number of votes. A threshold is used to select the most popular
labels which form the final predicted multi-label set.

Random Forest of ML-C4.5 (RFML-C4.5) A random forest [26] is an ensemble of trees, where diversity among
the predictors is obtained by using bagging, and additionally by changing the feature set during learning. More
precisely, at each node in the decision trees, a random subset of the input attributes is taken, and the best feature is
selected from this subset. The number of attributes that are retained is given by a function f of the total number of
input attributes x (e.g., f(x) = 1, f(x) = vx, f(x) = Llog>(x) + 1] ...). The first random forest ensemble method that
was included in the comparison is the RFML-C4.5 method (ML-C4.5 is used as a base classifier).

Random Forest of Predictive Clustering Trees (RF-PCT) In the predictive clustering trees (PCT) framework
[15], a decision tree is seen as a hierarchy of clusters: the top-node corresponds to one cluster containing all data,
which is recursively partitioned into smaller clusters while moving down the tree. PCTs can be constructed with a
standard top-down induction of decision trees algorithm. The main difference with standard tree learners is that PCTs
use a generalized notion of variance to guide the tree construction, and a generalized notion of prototype to determine
the value or model stored in the leaf of a tree. Both variance and prototype can be instantiated according to the task
at hand. The trees can also easily be combined into ensembles, just like regular trees [27]. The last method that was
included in this general comparison of the state of the art multi-label methods is the random forest ensemble method
of predictive clustering trees (RF-PCT) [27].
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4. Experiments

In this section, we present the predictive performace and the computational complexities of the methods explained
in the previous section on a number of multi-label classification problems. The problems come from the areas of
classification of text, music, images and gene function. Also, we breafly introduce the evaluation measures used in
the experiments.

4.1. Evaluation measures

Performance evaluation for multi-label learning systems differs from that of classical single-label learning systems.
In any multi-label experiment, it is essential to include multiple and contrasting measures because of the additional
degrees of freedom that the multi-label setting introduces. In our experiments we used various evaluation measures
that have been proposed in [28]. They are grouped in two separate groups: bipartitions-based and rankings-based
with respect to the ground truth of multi-label data. Some of the measures that evaluate bipartitions called example-
based are calculated based on the average differences of the actual and the predicted sets of labels over all examples
of the evaluation data set. Others, called label-based evaluation measures decompose the evaluation process into
separate evaluations for each label, which they subsequently average over all labels. In our experiments we used six
example-based evaluation measures (Hamming loss, accuracy, precision, recall, F1 and subset accuracy), six label-
based (micro precision, micro recall, micro F1, macro precision, macro recall and macro F1) and four ranking-based
measures (one-error, coverage, ranking loss and averge precision). Note that most models predict a numerical value
for each label; the label is predicted to be present if that value exceeds some threshold 7. For the example-based
and label-based evaluation measures, the performance of the model directly depends on 7. To compare the methods
according to the threshold-dependent measures (example and label based measures) we applied a threshold calibration
method by choosing the threshold that minimizes the difference in label cardinality between the training data and the
predictions for the test data [17].

4.2. Datasets

Eleven different multi-label classification problems were addressed in our experiments. The predictive perfor-
mance in terms of the metrics defined above and the training and testing times were recorded for every method for
each classification problem. The problems considered in the experiments include:

image classification: scene [29] and corelSk [30];

gene function classification: yeast [16];

text classification: enron [31], medical !, bibtex [32], delicious [22], bookmarks [32] and tmc2007 [33];
music classification: emotions [34];

video classification: mediamill [35]

A

The complete description of the datasets in terms of the number of training (#tr.e.) and test (#t.e.) examples, the
number of features (D), the total number of labels (Q) and label cardinality (/.) [2] are shown in Table 1.

We strived to include a considerable variety and scale of multi-label datasets. In total we use eleven datasets,
with dimensions ranging from 6 to 983 labels, and from less than 1,000 examples to almost 80,000. The datasets are
roughly ordered by complexity (#tr.e. X D X Q).

4.3. Experimental setup

The training and the testing of the compared methods was performed using the MULAN 2 library under the
machine learning framework Weka [36] except for the CC, ECC and RF-PCT methods. For the first two metohds we
used the MEKA 3 extension for the WEKA framework, while the third method (RF-PCT) was evaluated under the
predictive clusering framework CLUS *. All experiments were performed on a server with an Intel Xeon processor at
2.50GHz on 64GB of RAM with the Fedora 14 operating system.

! http://www.cs.waikato.ac.nz/~jmr30/
thtp ://mulan.sourceforge.net/
3http://meka.sourceforge.net/
4http://dtai.cs.kuleuven.be/clus/
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Table 1: Dataset description.

#tr.e. #t.e. D 0 I
emotions 391 202 72 6 1.87
scene 1211 1159 294 6 1.07
yeast 1500 917 103 14 424
medical 645 333 1449 45 1.25
enron 1123 579 1001 53 3.38
corel5k 4500 500 499 374 352

tmc2007 21519 7077 500 22 2.16
mediamill 30993 12914 120 101  4.38
bibtex 4880 2515 1836 159 240
delicious 12920 3185 500 983 19.02
bookmarks 60000 27856 2150 208  2.03

4.3.1. Base classifiers

The LIBSVM library [37], and in particular SVMs with a radial basis kernel, were used for solving the partial
binary classification problems for all datasets in all problem transformation methods and the ensemble methods ECC
and RAKEL. The kernel parameter gamma and the penalty C for the datasets for each method were determined by
10-fold cross validation using only the training sets. The exception to this is the ensemble method RAKEL where
the kernel parameter gamma and the penalty C were determined by 5-fold cross validation for the tmc2007 and
mediamill datasets because of its computational complexity. The values 2713,2713 ... 2!, 23 were consider for gamma
and 27°,273,...,213, 215 for the penalty C. After determining the best parameters values for each method on every
dataset the classifiers were trained using all available training examples and were evaluated by recognizing all test
examples from the corresponding dataset.

4.3.2. Methods parameters

For the ensemble methods based on decision trees (RFML-C4.5 and RF-PCT), the number of models (classifiers)
used in the ensemble was 100. This value is proposed in the literature closed to ensembles of decision trees. The
number of models in the ECC method was set to 10 as proposed by the original authors. On the other hand, the
number of models in RAKEL was set to min(2 * Q, 100) (Q is the number of labels) for all datasets, except for the
mediamill, delicious and bookmarks datasets, where this parameter was 10 as a result of the memory constraints.

The RAKEL method requires one additional parameter over the ensemble size: the size of the labelsets k. For each
dataset, this parameter was set to half of the number of labels (Q/2). Previous work has shown this to be a reasonable
choice, since it provides a balance between computational complexity and predictive performance [19][17].

The ML-C4.5 method uses subtree raising with a pruning confidence of 0.25 as a post pruning strategy in all
classification problems. The minimal number of examples in the leaves in each model of the RFML-C4.5 was set
to 10. The number of neighbors in the ML-kNN method for each dataset was determined from the values 6 to 20
with step 2 for which the best results were obtained. HOMER also requires one aditional parameter to be configured:
number of clusters. For this parameter five different values (2-6) were considered in the experiments. These values
were used by the original authors [22]. The best obtained results are presented in the Results subsection.

5. Results

Tables 1 to 18 give the performance of each method on each of the datasets measured in terms of the sixteen
performance measures, training and testing speed. The first column of the tables lists the method, while the remaining
columns show the performance of each method for every dataset. Tables 1 to 6 show the predictive performance
in terms of the example based measures, Tables 7 to 12 in terms of the label bases measures, while the ranking
performance are presented in Tables 13 to 16. The training and testing times of each method on each of the datasets



G. Madjarov et al. | Procedia Computer Science 00 (2011) 1-19 8

measured in seconds, are given in Tables 17 and 18. The best results per dataset in these tables are shown in boldface.
DNF in the result tables indicates that the experiment Did Not Finish within one week under the available resources.

To assess whether the overall differences in performance across the ten different approaches are statistically signif-
icant, we employed the corrected Friedman test [38] and the post hoc Nemenyi test [39] as recommended by Demsar
[40]. The Friedman test is a non-parametric test for multiple hypotheses testing. It ranks the algorithms according to
their performance for each dataset separately, thus the best performing algorithm gets the rank of 1, the second best
the rank of 2, etc. In case of ties, it assigns average ranks. Then, the Friedman test compares the average ranks of the
algorithms and calculates the Friedman statistic )(12;, distributed according to the X% distribution with k — 1 degrees of
freedom (k being the number of algorithms). Iman and Davenport [41] show that the Friedman statistic is undesir-
ably conservative and derive a corrected F-statistic that is distributed according to the F-distribution with k — 1 and
(k— 1) X (N — 1) degrees of freedom (k being the number of algorithms and N being the number of datasets).

If a statistically significant difference in the performance is detected, than we can proceed with a post hoc test. The
Nemenyi test is used to compare all the classifiers to each other. In this procedure, the performance of two classifiers
is significantly different if their average ranks differ more than some critical distance. The critical distance depends
on the number of algorithms, the number of datasets and the critical value (for a given significance level - p) that is
based on the Studentized range statistic and can be found in statistical textbooks.

We present the result from the Nemenyi post hoc test with average rank diagrams as suggested by Demsar [40].
These are given on Figures 6 to 6. The ranks are depicted on the axis, in such a manner that the best ranking algorithms
are at the right-most side of the diagram. The algorithms that do not differ significantly (at the significance level of
p = 0.05) are connected with a line.

5.1. Results on the example based measures

L0

<t
: & 3 : g > b
r o % £ % 31 5 2 2 8 2 &
n O o o T = i ¥ u rr o

emotions 0.257 0.256 0.257 0.254 0.361 0.247 0.267 0.294 0.282 0.281 0.198 0.189

scene 0.079 0.082 0.080 0.081 0.082 0.141 0.129 0.099 0.077 0.085 0.116 0.094
yeast 0.190 0.193 0.190 0.191 0.207 0.234 0.219 0.198 0.192 0.207 0.205 0.197
medical 0.077 0.077 0.017 0.012 0.012 0.013 0.023 0.017 0.012 0.014 0.022 0.014
enron 0.045 0.064 0.048 0.048 0.051 0.053 0.058 0.051 0.045 0.049 0.047 0.046
corel5k 0.017 0.017 0.012 0.012 0.012 0.010 0.009 0.009 0.009 0.009 0.009 0.007
tmc2007 0.013 0.013 0.014 0.014 0.015 0.093 0.075 0.058 0.021 0.026 0.037 0.011
mediamill 0.032 0.032 0.043 0.043 0.038 0.044 0.034 0.031 0.035 0.035 0.030 0.029
bibtex 0.012 0.012 0.012 0.012 0.014 0.016 0.014 0.014 DNF 0.013 0.014 0.013

delicious 0.018 0.018 DNF DNF 0.022 0.019 0.019 0.018 DNF DNF 0.018 0.018
bookmarks DNF DNF DNF DNF DNF 0.009 0.009 0.009 DNF DNF 0.009 0.009

Figure 1: The performance of the multi-label learning approaches in terms of the Hamming loss measure

5.2. Results on the label based measures
5.3. Results on the ranking based measures
5.4. Training and testing times

6. Conclusions
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Figure 2: The performance of the multi-label learning approaches in terms of the accuracy measure
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Figure 14: The performance of the multi-label learning approaches in terms of the coverage measure
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Figure 15: The performance of the multi-label learning approaches in terms of the ranking loss measure
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Figure 16: The performance of the multi-label learning approaches in terms of the average precision measure

0
1 © L =z 0 El‘l) [
S = O Sz g 8
x &) & = o - 5 - P4 8 2 W
m Q Q o I = a = 04 w 4 74
emotions 4.0 6.0 10.0 10.0 4.0 0.3 0.1 0.4 5.0 49 1.2 2.5
scene 71.0 99.0 195.0 195.0 68.0 8.0 2.0 14.0 79.0 319.0 10.0 50.0
yeast 145.0 206.0 672.0 672.0 101.0 14.0 15 8.2 157.0 497.0 19.0 169.0
medical 18.0 28.0 40.0 40.0 16.0 3.0 0.6 1.0 82.0 103.0 7.0 15.0
enron 318.0 440.0 971.0 971.0 158.0 15.0 11 6.0 493.0 1467.0 25.0 41.0
corel5k 926.0 1225.0 2388.0 2388.0 771.0 369.0 30.0 389.0 3380.0 20073.0 385.0 1355.0
tmc2007 42645.0 46704.0 52427.0 52427.0 31300.0 469.0 115 737.0 102394.0 92169.0 460.0 31600.0
mediamill 85468.0 100435.0 260156.0 260156.0 78195.0 2030.0 440.0 1094.0 33554.0 188957.0 4056.0 62915.0
bibtex 11013.0 12434.0 13424.0 13424.0 2896.0 566.0 16.4 124.0 DNF 29578.0 645.0 802.0

delicious 57053.0 84903.0 DNF DNF 21218.0 2738.0 70.0 236.0 DNF DNF 21776.0 7562.0
bookmarks DNF DNF DNF DNF DNF 4039.0 965.0 15990.0 DNF DNF 5602.0 13420.0

Figure 17: The performance of the multi-label learning approaches in terms of the training time measures in seconds
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Appendix A. Evaluation measures

In this section we present the measures that are used in the experiments for evaluation the predictive performance
of the compared methods.
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Figure 18: The performance of the multi-label learning approaches in terms of the testing time measures in seconds

Appendix A.I1. Example based measures

1.

Hamming loss evaluates how many times an example-label pair is misclassified, i.e., throughout a label not
belonging to the instance is predicted or a label belonging to the instance is not predicted. The smaller the value
of hamming _loss(h), the better the performance. The performance is perfect when hamming _loss(h) = 0. This
metric is defined as:

N
1 1
h ing loss(th)y = — > — |h(x)AY; A.l
amming_loss(h) N;Q|(X) Yil (A.1)
where A stands for the symmetric difference between two sets, N is the number of examples and Q is the total
number of possible class labels.

. Accuracy is measured by the Hamming score which symmetrically measures how close A(x;) is to Y, for an

example x;. Accuracy is micro-averaged across all examples.

N
1 |h(xi) N Yil
accuracy(h) = — _— (A2)
TN Zl ) U]
Precision in multi-label setting is defined as:
1 <n ) N i
recision(h) = — — (A3)
g N Zl &z
. Recall is defined as:
1 O Jh(x) N i
recall(h) = — — -t (A4)
N £ Thx)

=1
where A stands for the symmetric difference between two sets, N is the number of examples and Q is the total
number of possible class labels.

F score is the harmonic mean between precision and recall and in the multi-labeled classification setting is
defined as:

N

1 Z 2 X |h(xi) N Y|

Fi=—
: (x| + Y]

I (A.5)

i=1
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F, is example based metric and its value is an average over all exampes in the dataset. F| reaches its best value
at 1 and worst score at 0.
6. Subset accuracy or classification accuracy is defined as follows:

N
subset_accuracy(h) = % Z I(h(x;) = Y;) (A.6)
i=1

where I(true) = 1 and I(false) = 0. This is a very strict evaluation measure as it requires the predicted set of
labels to be an exact match of the true set of labels.

Appendix A.2. Label based measures

1. Macro precision (precision averaged across all labels) is defined as:

.. 1 ZQ: Ipj (A7)
macro_precision = — .
0 =

d1pj+ fpj
where tp;, fp; are the number of true positives and false positives after binary evaluation for the label 4;.
2. Macro recall (recall averaged across all labels) is defined as:

=1 EQ: il (A.8)
macro_recatl = — _— .
Q & tpj+ fn;

where tp;, fp; are defined as for the macro precision and fn; is the number of false negatives after binary
evaluation for the label 4;.

3. Macro F is the harmonic mean between precision and recall where the average is calculated per label and then
averaged across all labels. If p; and r; are the precision and recall for all A; € h(x;) from A; € Y, the macro F
is

1 Q 2 X Dj Xr i

macro_F| = — _ (A9)
Q = pj + T

4. Micro precision (precision averaged over all the example/label pairs) is defined as:

o
2o 1P

micro_precision = (A.10)
X2 i+ 22, fp
where tp;, fp; are defined as for macro precision.
5. Micro recall (recall averaged over all the example/label pairs) is defined as:
. ZJQ:1 Ip;
micro_recall = (A.11)

0 , 0 A
2]‘:1 Ipj+ Zj:] fn;
where tp; and fn; are defined as for macro recall.
6. Micro F is the harmonic mean between micro precision and micro recall. Micro F is defined as:
2 X micro_precision X micro_recall

micro_F| = - — - (A.12)
micro_precision + micro_recall
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Appendix A.3. Ranking based measures
1. One error evaluates how many times the top-ranked label is not in the set of relevant labels of the example.

The metric one_error(f) takes values between 0 and 1. The smaller the value of one_error(f), the better the
performance. This evaluation metric is defined as:

N

one_error(f) = %ZH [arg 1}123( f(xi,/l)} ¢ yi]l (A.13)
i=1 €

where 1 € L = {4, 15, ..., /lQ} and [[7]] equals 1 if 7 holds and O otherwise for any predicate nr. Note that, for
single-label classification problems, the One Error is identical to ordinary classification error.

2. Coverage evaluates how far, on average we need to go down the list of ranked labels in order to cover all the
relevant labels of the instance. The smaller the value of coverage(f), the better the performance.

N
1
coverage(f) = N ; r/ga}/x ranks(xj, 4) — 1 (A.14)

where rank¢(x;, A) maps the outputs of f(x;, 1) for any 1 € L to {41, 12, ...,/IQ} so that f(xi, 4,) > f(Xi, An)
implies rank (i, An) < ranks(xi, A,). The smallest possible value for coverage(f) is I, i.e., the label cardinality
of the given dataset.

3. Ranking loss evaluates the average fraction of label pairs that are reversely ordered for the particular example
given by:

D
Vil ||

where D; = {(Ay, A Xi, ) < fXiy A0), (Amy 4,) € Yi X Y;}, while Y denotes the complementary set of Y
in L. The smaller the value of ranking_loss(f), the better the performance, so the performance is perfect when
ranking_loss(f) =0

4. Average Precision is the average fraction of labels ranked above an actual label A € Y, that actually are in Y;.
The performance is perfect when avg_precision(f) = 1; the larger the value of avg_precision(f), the better the
performance. This metric is defined as:

ranking loss(f) = ¥ Z (A.15)

N A
N |Lil

. —_— .16
avg_precision(f) = 21: R Z mnkf(xi,/l) ( )

where L; = {A|rank (X, ') < ranks(Xi, 1), A’ € Y;} and rank(x;, 1) is defined as in coverage above.



