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Abstract

Multi-label learning has received significant attention in the research community over the past few years: this has
resulted in the development of a variety of multi-label learning methods. In this paper, we present an extensive ex-
perimental comparison of 12 multi-label learning methods using 16 evaluation measures over 11 benchmark datasets.
We selected the competing methods based on their previous usage by the community, the representation of different
groups of methods and the variety of basic underlying machine learning methods. Similarly, we selected the eval-
uation measures to be able to assess the behavior of the methods from a variety of view-points. In order to make
conclusions independent from the application domain, we use 11 datasets from different domains. Furthermore, we
compare the methods by their efficiency in terms of time needed to learn a classifier and time needed to produce a
prediction for an unseen example. We analyze the results from the experiments using Friedman and Nemenyi tests for
assessing the statistical significance of differences in performance. The results of the analysis show that for multi-label
classification the best performing methods overall are random forests of predictive clustering trees (RF-PCT) and hier-
archy of multi-label classifiers (HOMER), followed by binary relevance (BR) and classifier chains (CC). Furthermore,
RF-PCT exhibited the best performance according to all measures for multi-label ranking. The recommendation from
this study is that when new methods for multi-label learning are proposed, they should be compared to RF-PCT and
HOMER using multiple evaluation measures.

Keywords: multi-label ranking, multi-label classification, comparison of multi-label learning methods

1. Introduction

The problem of single-label classification is concerned with learning from examples, where each example is
associated with a single label 4; from a finite set of disjoint labels L = {1}, A2, ..., Ap}, Q > 1. For Q > 2, the learning
problem is referred to as multi-class classification. On the other hand, the task of learning a mapping from an example
x € X (X denotes the domain of examples) to a set of labels Y C L is referred to as a multi-label classification. In
contrast to multi-class classification, alternatives in multi-label classification are not assumed to be mutually exclusive:
multiple labels may be associated with a single example, i.e., each example can be a member of more than one class.
Labels in the set Y are called relevant, while the labels in the set £ \ Y are irrelevant for a given example.

Besides the concept of multi-label classification, multi-label learning introduces the concept of multi-label ranking
[1]. Multi-label ranking can be considered as a generalization of multi-class classification, where instead of predicting
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only a single label (the top label), it predicts the ranking of all labels. In other words, multi-label ranking is understood
as learning a model that associates a query example x both with a ranking of the complete label set and a bipartition
of this set into relevant and irrelevant labels.

The issue of learning from multi-label data has recently attracted significant attention from many researchers,
motivated by an increasing number of new applications. The latter include semantic annotation of images and video
(news clips, movies clips), functional genomics (gene and protein function), music categorization into emotions, text
classification (news articles, web pages, patents, emails, bookmarks, ...), directed marketing and others. In the last
few years, several workshops have been organized and journal special issues edited covering the topic of multi-label
learning.

In recent years, many different approaches have been developed to solving multi-label learning problems. Tsoumakas
and Katakis [2] summarize them into two main categories: a) algorithm adaptation methods, and b) problem trans-
formation methods. Algorithm adaptation methods extend specific learning algorithms to handle multi-label data
directly. Examples include lazy learning [3] [4] [5], neural networks [6] [7], boosting [8] [9], classification rules [10],
decision trees [11] [12] etc. Problem transformation methods, on the other hand, transform the multi-label learning
problem into one or more single-label classification problems. The single-label classification problems are solved
with a commonly used single-label classification approach and the output is transformed back into a multi-label rep-
resentation. A common approach to problem transformation is to use class binarization methods, i.e., decompose
the problem into several binary sub-problems that can then be solved by using a binary base classifier. The simplest
strategies in the multi-label setting are the one-against-all and one-against-one strategies, also referred to as the binary
relevance method [2] and pair-wise method [13] [14] respectively.

In this study, we extend this categorization of multi-label methods with a third group of methods, namely, ensemble
methods. This group of methods consists of methods that use ensembles to make multi-label predictions and their
base classifiers belong to either problem transformation or algorithm adaptation methods. Methods that belong to this
group are RAKEL [15], ensembles of classifier chains (ECC) [16], random forests of predictive clustering trees [17]
[18] and random forests of multi-label C4.5 trees [11].

As new methods for multi-label learning are proposed, they are experimentally compared to existing methods.
The typical experimental evaluation compares the proposed method to a few existing ones on a few datasets. The
methods are compared on performance in terms of one or a few error metrics and the comparison typically shows that
the proposed method outperforms the other methods on some of the considered datasets and metrics. It is worth noting
that a significant number of metrics has also been proposed for evaluating the performance of multi-label methods,
which can concern the classification or ranking variant of the problem.

The number of proposed methods, datasets and metrics for multi-label learning constantly increases. As the
research area of multi-label learning matures, there is a strong need for a comprehensive overview of methods and
metrics. The need for a wider, extensive, and un-biased experimental comparison of multi-label learning methods is
even stronger. It is this need that we address with the present paper.

In this study, we experimentally evaluate 12 methods for multi-label learning using 16 evaluation measures over
11 benchmark datasets. The multi-label methods comprise 3 algorithm adaptation methods, 5 problem transforma-
tion methods and 4 ensemble methods. The benchmark datasets are from five application domains: 2 from image
classification, 1 from gene function prediction, 6 from text classification, 1 from music classification and 1 from
video classification. The predictive performance of the methods is assessed using 6 example-based measures, 6 label-
based measures and 4 ranking-based measures. Furthermore, we assess the efficiency of the methods by measuring
their training and testing times. The large number of methods, datasets and evaluation measures is enabling us to
draw some more general conclusions and to perform an unbiased assessment of the predictive performance of the
multi-label methods.

The results from our extensive experimental evaluation will facilitate further research on multi-label learning as
follows. First, this study will provide the research community with a better insight about the predictive performance
of the methods currently available in the literature. Second, this study will identify a few methods that should be
further used by the research community as benchmarks to compete against when proposing new methods. Third, this
study uses a diverse collection of publicly available datasets that can be reused by other researchers as benchmark
datasets for multi-label learning. Finally, this study will highlight the advantages of certain methods for certain types
of datasets.

The remainder of this paper is organized as follows. Section 2 defines the tasks of multi-label classification
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and label ranking and surveys the related work. The state-of-the-art methods for multi-label learning used in the
experimental evaluation are presented in Section 3. Section 4 describes the multi-label problems, the evaluation
measures and the experimental setup, while Section 5 presents and discusses the experimental results. Finally, the
conclusions are given in Section 6.

2. Background

In this section, we present the task of multi-label learning and methods for solving it. We begin by a formal
definition of the task of multi-label learning. We then present an overview of the methods for multi-label learning.

2.1. The task of multi-label learning

Multi-label learning is concerned with learning from examples, where each example is associated with multiple
labels. These multiple labels belong to a predefined set of labels. Depending on the goal, we can distinguish two
types of tasks: multi-label classification and multi-label ranking. In the case of multi-label classification, the goal is
to construct a predictive model that will provide a list of relevant labels for a given, previously unseen example. On
the other hand, the goal in the task of multi-label ranking is to construct a predictive model that will provide, for each
unseen example, a list of preferences (i.e., a ranking) of the labels from the set of possible labels.

We define the task of multi-label learning as follows:

Given:

e An example space X that consists of tuples of values of primitive data types (boolean, discrete or continuous),
ie., Vxi € X, xi = (x;, X;,, ..., X, ), Wwhere D is the size of the tuple (or number of descriptive attributes),

e alabel space L = {4;, A2, ..., Ao} which is a tuple of Q discrete variables (with values 0 or 1),

e aset of examples E, where each example is a pair of tuples from the example and label space, respectively, i.e.,
E={(x;,Y)Ixj e X, Y; € L,1 <i< N}and N is the number of examples of E (N = |E|), and

e a quality criterion g, which rewards models with high predictive accuracy and low complexity.

If the task at hand is multi-label classification, then the goal is to
Find: a function : X — 2£ such that # maximizes g.
On the other hand, if the task is multi-label ranking, then the goal is to
Find: a function f: X X £ — R, such that f maximizes ¢, where R is the ranking of the labels for a given example.

2.2. An overview of methods for multi-label learning

Tsoumakas and Katakis [2] have presented the first overview of methods for multi-label learning where the meth-
ods for multi-label learning are divided into two categories: algorithm adaptation and problem transformation meth-
ods. There, three problem transformation methods were evaluated on a small empirical study (three datasets). In this
study, we perform an extensive experimental evaluation of 12 methods for multi-label learning over 11 benchmark
multi-label datasets using 16 evaluation measures. Furthermore, besides the two categories of methods for multi-label
learning, we introduce a third category: ensemble methods. In the remainder of this section, we present the three
categories of methods for multi-label learning: algorithm adaptation, problem transformation and ensemble methods.

2.2.1. Algorithm adaptation methods

The multi-label methods that adapt, extend and customize an existing machine learning algorithm for the task of
multi-label learning are called algorithm adaptation methods. Here, we present multi-label methods proposed in the
literature that are based on the following machine learning algorithms: boosting, k-nearest neighbors, decision trees
and neural networks. The extended methods are able to directly handle multi-label data.

Boosting ApaBoosT.MH and ApaBoosT.MR [8] are two extensions of ApaBoost for multi-label data. While
AdaBoost.MH is designed to minimize Hamming loss, AbaABoosT.MR is designed to find a hypothesis which ranks
the correct labels at the top. Furthermore, ApaBoosT.MH can also be combined with an algorithm for producing
alternating decision trees [9]. The resulting multi-label models of this combination can be interpreted by humans.
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k-Nearest neighbors Several variants for multi-label learning (ML-kNN) of the popular k Nearest Neighbors
(kKNN) lazy learning algorithm have been proposed [3] [4] [5]. The retrieval of the k nearest neighbors is the same
as in the traditional k-NN algorithm. The main difference is the determination of the label set of a test example.
Typically, these algorithms use prior and posterior probabilities of each label within the k nearest neighbors. Cheng et
al. [19] have proposed a hybrid method that uses logistic regression and k-nearest neighbors.

Decision trees Clare et al. [11] adapted the C4.5 algorithm for multi-label data (ML-C4.5) by modifying the
formula for calculating entropy. Blockeel et al. [12] proposed the concept of predictive clustering trees (PCTs).
PCTs have been used for predicting tuples of variables, predicting time series and predicting classes organized into
a hierarchy or a directed acyclic graph. However, they can also be used in the context of multi-label learning, where
each label is a component of the target tuple.

Neural networks Neural networks have also been adapted for multi-label classification [6] [7]. BP-MLL [7] is an
adaptation of the popular back-propagation algorithm for multi-label learning. The main modification to the algorithm
is the introduction of a new error function that takes multiple labels into account.

Support vector machines Elisseeff and Weston [20] have proposed a ranking approach for multi-label learning
that is based on SVMs. The cost function they use is the average fraction of incorrectly ordered pairs of labels.

2.2.2. Problem transformation methods

The problem transformation methods are multi-label learning methods that transform the multi-label learning
problem into one or more single-label classification or regression problems. For smaller single-label problems, there
exists a plethora of machine learning algorithms. Problem transformation methods can be grouped into three cate-
gories: binary relevance, label power-set and pair-wise methods.

Binary relevance methods The simplest strategy for problem transformation is to use the one-against-all strategy
to convert the multi-label problem into several binary classification problems. This approach is known as the binary
relevance method (BR) [2]. A method closely related to the BR method is the Classifier Chain method (CC) proposed
by Read et al. [16]. This method involves Q binary classifiers linked along a chain. Godbole et al. [21] present
algorithms which extend the SVM binary classifiers along two dimensions: training set extension and improvement
of margin. With the first approach, the training set is extended with the predictions of the binary classifiers and then a
new set of binary classifiers is trained on the extended dataset. For the second extension, Godbole et al. remove very
similar negative training examples and remove the negative training examples of a complete class that are similar to
the positive class.

Label power-set methods A second problem transformation method is the label combination method, or label
power-set method (LP), which has been the focus of several recent studies [15] [22] [2]. The basis of these methods is
to combine entire label sets into atomic (single) labels to form a single-label problem (i.e., single-class classification
problem). For the single-label problem, the set of possible single labels represents all distinct label subsets from the
original multi-label representation. In this way, LP based methods directly take into account the label correlations.
However, the space of possible label subsets can be very large. To resolve this issue, Read [23] has developed a pruned
problem transformation (PPT) method, that selects only the transformed labels that occur more than a predefined
number of times. Another label power-set method is HOMER [24], which first constructs a hierarchy of the multiple
labels and then constructs a classifier for the label sets in each node of the hierarchy.

Pair-wise methods A third problem transformation approach to solving the multi-label learning problem is pair-
wise or round robin classification with binary classifiers [13] [14]. The basic idea here is to use Q- (Q —1)/2 classifiers
covering all pairs of labels. Each classifier is trained using the samples of the first label as positive examples and the
samples of the second label as negative examples. To combine these classifiers, the pairwise classification method
naturally adopts the majority voting algorithm. Given a test example, each classifier predicts (i.e., votes for) one of the
two labels. After the evaluation of all Q- (Q — 1)/2 classifiers, the labels are ordered according to their sum of votes. A
label ranking algorithm is then used to predict the relevant labels for each example. Besides majority voting in CLR,
Park et al. [25] propose a more effective voting algorithm. It computes the class with the highest accumulated voting
mass, while avoiding the evaluation of all possible pairwise classifiers. Mencia et al. [26] adapted the QWeighted
approach to multi-label learning (QWML).
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Figure 1: The multi-label learning methods used in this study divided into groups as discussed in the related work section above.

2.2.3. Ensemble methods

The ensemble methods for multi-label learning are developed on top of the common problem transformation or
algorithm adaptation methods. The most well known problem transformation ensembles are the RAKEL system by
Tsoumakas et al. [15], ensembles of pruned sets (EPS) [27] and ensembles of classifier chains (ECC) [16].

RAKEL constructs each base classifier by considering a small random subset of labels and learning a single-
label classifier for the prediction of each element in the power-set of this subset. EPS uses pruning to reduce the
computational complexity of label power-set methods, and an example duplication method to reduce the error rate
as compared to label power-set and other methods. This method proved to be particularly competitive in terms of
efficiency.

ECC are ensemble methods that have classifier chains (CC) as base classifiers. The final prediction is obtained
by summing the predictions by label and then applying threshold for selecting the relevant labels. Note that binary
methods are occasionally referred to as ensemble methods because they involve multiple binary models. However,
none of these models is multi-label itself and therefore we use the term ensemble strictly in the sense of an ensemble
of multi-label methods.

Algorithm adaptation ensemble methods are the ensembles whose base classifiers are themselves algorithm adap-
tation methods. An example of an algorithm adaptation ensemble method are the ensembles of predictive clustering
trees (PCTs) [18]. These ensembles use PCTs for predicting tuples of variables as base classifiers. Each base classifier
makes a multi-label prediction and then these predictions are combined by using some voting scheme (e.g., majority
or probability distribution voting).

3. Methods for multi-label learning

In this section, we briefly introduce the state-of-the-art methods for multi-label learning that are used in this study.
Figure 1 depicts how these methods are divided into groups using the categorization scheme from the related work
section. In this study, we use one label power-set method, two binary relevance and two pair-wise transformation
methods, two algorithm adaptation methods, and four ensemble methods. Moreover, one of the ensemble methods is
label power-set based, while the other methods are algorithm adaptation based.

We also divide the used multi-label learning approaches based on the type of basic machine learning algorithm
they use. The methods use three types of base algorithms: SVMs, decision trees and k-nearest neighbors. We show
this categorization in Figure 2.

3.1. Binary relevance methods

Binary relevance (BR) [2] is the well known one-against-all strategy. It addresses the multi-label learning problem
by learning one classifier for each label, using all the examples labeled with that label as positive examples and
all remaining examples as negative. When making a prediction, each binary classifier predicts whether its label is
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Figure 2: The multi-label learning methods used in this study divided into groups based on the base machine learning algorithm they use.

relevant for the given example or not, resulting in a set of relevant labels. In the ranking scenario, the labels are
ordered according to the probability associated to each label by the respective binary classifier.

The Classifier chaining method (CC) [16] involves Q binary classifiers as in BR. Classifiers are linked along a
chain where the i-th classifier deals with the binary relevance problem associated with label A; € L, (1 <i < Q). The
feature space of each link in the chain is extended with the 0/1 label associations of all previous links. The ranking
and the prediction of the relevant labels in the CC method are the same as in the BR method.

3.2. Pair-wise methods

Calibrated label ranking (CLR) [25] is a technique for extending the common pair-wise approach to multi-label
learning. It introduces an artificial (calibration) label 4y, which represents the split-point between relevant and irrel-
evant labels. The calibration label Ay is assumed to be preferred over all irrelevant labels, but all relevant labels are
preferred over it. It is represented by the binary relevance classifiers, that are introduced as pair-wise classifiers in
the context of pair-wise learning. At prediction time (majority voting is usually used), one will get a ranking over
O + 1 labels (the Q original labels plus the calibration label 4p). CLR is considered a combination of multi-label
classification and ranking.

The Quick Weighted voting method for multi-class classification, proposed by Park et al. [25], is a variant of the
CLR method that introduces a more effective voting strategy than the majority voting used by the CLR method. Quick
weighted voting exploits the fact that during voting some classes can be excluded from the set of possible top rank
classes early in the process, when it becomes clear that even if they reach the maximal voting mass in the remaining
evaluations they can not exceed the current maximum. Pairwise classifiers are selected depending on a voting loss
value, which is the number of votes that a class has not received. The voting loss starts with a value of zero and
increases monotonically with the number of performed preference evaluations. The class with the current minimal
loss is the best candidate for the top ranked class. If all preferences involving this class have been evaluated (and it
still has the lowest loss), it can be concluded that no other class can achieve a better ranking. Thus, the quick weighted
algorithm always focuses on classes with low voting loss. The adaptation of quick weighted algorithm for multi-label
learning (QWML) [26] is done by repeating the process while all relevant labels are not determined, i.e., until the
returned label is the artificial label, which means that all remaining labels will be considered irrelevant.

3.3. Label power-set method

Hierarchy Of Multi-label classifiERs (HOMER) [24] is an algorithm for effective and computationally efficient
multi-label learning in domains with a large number of labels. HOMER constructs a hierarchy of multi-label clas-
sifiers, each one dealing with a much smaller set of labels compared to Q (the total number of labels) and a more
balanced example distribution. This leads to improved predictive performance and also to linear training and logarith-
mic testing complexities with respect to Q. One of the main processes within HOMER is the even distribution of a set
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of labels into k disjoint subsets so that similar labels are placed together and dissimilar apart. The best predictive per-
formance is reported using a balanced k£ means algorithm customized for HOMER [24]. HOMER is a computationally
efficient multi-label classification method, specifically designed for large multi-label datasets.

3.4. Algorithm adaptation methods

Multi-Label C4.5 (ML-C4.5) [11] is an adaptation of the well known C4.5 algorithm for multi-label learning by
allowing multiple labels in the leaves of the tree. Clare et al. [11] modified the formula for calculating entropy (see
Equation 1) for solving multi-label problems. The modified entropy sums the entropies for each individual class label.
The key property of ML-C4.5 is its computational efficiency.

N
entropy(E) = = " (p(ci)log p(c;) + g(c) log g(c) (M
i=1

where E is the set of examples, p(c;) is the relative frequency of class label ¢; and ¢g(c;) = 1 — p(c;).

Predictive clustering trees (PCTs) [12] are decision trees viewed as a hierarchy of clusters: the top-node corre-
sponds to one cluster containing all data, which is recursively partitioned into smaller clusters while moving down
the tree. PCTs are constructed using a standard top-down induction of decision trees algorithm, where the vari-
ance and the prototype function can be instantiated according to the task at hand. Namely, PCTs can handle several
types of structured outputs: tuples of continuous or discrete variables, time series, classes organized into a hier-
archy, tuples of time series and tuples of hierarchies [18]. For the task of predicting tuples of discrete variables,
the variance function is computed as the sum of the Gini indices [28] of the variables from the target tuple, i.e.,
Var(E) = Z,-T=1 Gini(E,Y)),Gini(E,Y;)) = 1 — Z}il Pe;;» where T is the number of target attributes, c;; is the j-th class
of target attribute ¥; and C; is the number of classes of target attribute Y;. The prototype function returns a vector of
probabilities that an example belongs to a given class for each variable from the target tuple. In the case of multi-label
learning, it returns a vector of probabilities that an example is labeled with a given label.

Multi-Label k-Nearest Neighbors (ML-kNN) [3] is an extension of the popular k-nearest neighbors (kNN) algo-
rithm. Firstly, for each test example, its k nearest neighbors in the training set are identified. Then, according to
statistical information gained from the label sets of these neighboring examples, i.e., the number of neighboring ex-
amples belonging to each possible label, the maximum a posteriori principle is used to determine the label set for the
test example.

3.5. Ensemble methods

The RAndom k-labELsets (RAKEL) [15] is an ensemble method for multi-label classification. It draws m random
subsets of labels with size k from all labels £ and trains a label power-set classifier using each set of labels. A simple
voting process determines the final set of labels for a given example. In this way, the proposed algorithm aims to take
into account label correlations using single-label classifiers that are applied on subtasks with a manageable number of
labels and adequate number of examples per label.

Ensembles of Classifier Chains (ECC) [16] are an ensemble multi-label classification technique that uses classifier
chains as a base classifier. ECC trains m CC classifiers Cy, C», ..., C,,. Each Cy is trained with a random chain ordering
(of £) and a random subset of X. Hence each C; model is likely to be unique and able to give different multi-label
predictions. These predictions are summed per label so that each label receives a number of votes. A threshold is used
to select the most popular labels which form the final predicted multi-label set.

Random Forest of Predictive Clustering Trees (RF-PCT) [17] [18] and Random Forest of ML-C4.5 (RFML-C4.5)!
are ensembles that use PCTs and ML-C4.5 trees, respectively, as base classifiers. The diversity among the base
classifiers is obtained by using bagging, and additionally by changing the feature set during learning [29]. More
precisely, at each node in the decision trees, a random subset of the input attributes is taken, and the best feature is
selected from this subset. The number of attributes that are retained is given by a function f of the total number of
input attributes x (e.g., f(x) = 1, f(x) = vVx, f(x) = [0.1-x+ 1], f(x) = |loga(x) + 1] ...). The predictions of the base
classifiers are then combined using some voting scheme (typically, majority or probability distribution vote).

'We have implemented the random forest of ML-C4.5 trees within the MULAN library for multi-label learning.
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4. Experimental design

In this section, we present the experimental design used to compare the methods for multi-label learning. We
first shortly describe the benchmark multi-label datasets. We then give a short overview of the evaluation measures
typically applied to asses the predictive performance of methods for multi-label learning. Next, we present the specific
setup and the instantiation of the parameters for the used methods for multi-label learning. Finally, we present the
procedure for statistical evaluation of the experimental results.

4.1. Datasets

We use eleven different multi-label classification benchmark problems. Parts of the selected problems were used in
various studies and evaluations of methods for multi-label learning. In the process of selection of problems, we opted
to include benchmark datasets with different scale and from different application domains. Table 1 presents the basic
statistics of the datasets. We can note that the datasets vary in size: from 391 up to 60000 training examples, from
202 up to 27856 testing examples, from 72 up to 2150 features, from 6 to 983 labels, and from 1.07 to 19.02 average
number of labels per example (i.e., label cardinality [30]). From the literature, these datasets come pre-divided into
training and testing parts: Thus, in the experiments, we use them in their original format. The training part usually
comprises around 2/3 of the complete dataset, while the testing part the remaining 1/3 of the dataset.

Table 1: Description of the benchmark problems in terms of application domain (domain), number of training (#tr.e.) and test (#¢.e.) examples,
the number of features (D), the total number of labels (Q) and label cardinality (/). The problems are ordered by their overall complexity roughly
calculated as #tr.e. X D X Q.

domain #tr.e. #t.e. D (0] I
emotions [31] multimedia 391 202 72 6 1.87
scene [32] multimedia 1211 1159 294 6 1.07
yeast [20] biology 1500 917 103 14 424
medical [16] text 645 333 1449 45 1.25
enron [33] text 1123 579 1001 53 3.38
corel5k [34] multimedia 4500 500 499 374 352
tmc2007 [35] text 21519 7077 500 22 2.16
mediamill [36] multimedia 30993 12914 120 101 4.38
bibtex [37] text 4880 2515 1836 159 240
delicious [24] text 12920 3185 500 983 19.02
bookmarks [37] text 60000 27856 2150 208 2.03

The datasets come from three domains: biology, multimedia and text categorization. From the biological domain,
we have the yeast dataset [20]. It is a widely used dataset, where genes are instances in the dataset and each gene can
be associated with 14 biological functions (labels).

The datasets that belong to the multimedia domain are: emotions, scene, corel5k and mediamill. Emotions [31] is
a dataset where each instance is a piece of music. Each piece of music can be labelled with six emotions: sad-lonely,
angry-aggressive, amazed-surprised, relaxing-calm, quiet-still, and happy-pleased. Scene [32] is a widely used scene
classification dataset. Each scene can be annotated in the following six contexts: beach, sunset, field, fall-foliage,
mountain, and urban. The Corel5k [34] data set contains Corel images that are segmented using normalized cuts. The
segmented regions are then clustered into 499 bins, which are further used to describe the images. Each image can be
then assigned several of the 374 possible labels. Mediamill [36] originates from the 2005 NIST TRECVID challenge
dataset,” which contains data about annotated videos. The label space is represented by 101 “annotation concepts”,
such as explosion, aircraft, face, truck, urban, etc.

The domain of text categorization is represented with 6 datasets: medical, enron, tmc2007, bibtex, delicious and
bookmarks. Medical [16] is a dataset used in the Medical Natural Language Processing Challenge® in 2007. Each

2http://WWW.science.uva.nl/research/mediamill/cha]lcnge/
3http://www.computationalmedicine.org/challenge/
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instance is a document that contains brief free-text summary of a patient symptom history. The goal is to annotate
each document with the probable diseases from the International Classification of Diseases (ICD-9-CM) [38]. Enron
[33] is a dataset that contains the e-mails from 150 senior Enron officials. The e-mails were categorized into several
categories developed by the UCBerkeley Enron Email Analysis Project*. The labels can be further grouped into
four categories: coarse genre, included/forwarded information, primary topics, and messages with emotional tone.
Tmc2007 [35] contains instances of aviation safety reports that document problems that occurred during certain flights.
The labels represent the problems being described by these reports. We use a reduced version of this dataset with the
top 500 attributes selected, same as Tsoumakas et al. [15]. Delicious, bibtex and bookmarks are used for automatic
tag suggestion. Delicious [24] contains web pages and their tags. The web pages are taken from the del.ico.us social
bookmarking site®>. Note that the label space is greater than the size of the input space (Q > D) for this dataset.
Bibtex [37] contains metadata for bibtex items, such as the title of the paper, the authors, book title, journal volume,
publisher, etc., while bookmarks [37] contains metadata for bookmark items, such as the URL of the web page, an
URL hash, a description of the web page, etc.

4.2. Evaluation measures

Performance evaluation for multi-label learning systems differs from that of classical single-label learning systems.
In any multi-label experiment, it is essential to include multiple and contrasting measures because of the additional
degrees of freedom that the multi-label setting introduces. In our experiments, we used various evaluation measures
that have been suggested by Tsoumakas et al. [30]. Figure 3 depicts a categorization of the used evaluation measures.
Furthermore, we evaluate the algorithms by their efficiency. Namely, we measure the time needed to construct the
predictive models (training time) and the time needed to obtain a prediction for an unseen example (testing time).

The evaluation measures of predictive performance are divided into two groups: bipartitions-based and rankings-
based. The bipartitions-based evaluation measures are calculated based on the comparison of the predicted relevant
labels with the ground truth relevant labels. This group of evaluation measures is further divided into example-based
and label-based. The example-based evaluation measures are based on the average differences of the actual and the
predicted sets of labels over all examples of the evaluation dataset. The label-based evaluation measures, on the
other hand, assess the predictive performance for each label separately and then average the performance over all
labels. In our experiments, we used six example-based evaluation measures (Hamming loss, accuracy, precision,
recall, F score and subset accuracy) and six label-based evaluation measures (micro precision, micro recall, micro
Fy, macro precision, macro recall and macro F). Note that these evaluation measures require predictions stating that
a given label is present or not (binary 1/0 predictions). However, most predictive models predict a numerical value
for each label and the label is predicted as present if that numerical value exceeds some pre-defined threshold 7. The
performance of the predictive model thus directly depends on the selection of an appropriate value of 7. To this end,
we applied a threshold calibration method by choosing the threshold that minimizes the difference in label cardinality
between the training data and the predictions for the test data [16].

The ranking-based evaluation measures compare the predicted ranking of the labels with the ground truth rank-
ing. We used four ranking-based measures: one-error, coverage, ranking loss and average precision. A detailed
description of the evaluation measures is given in Appendix A.

4.3. Experimental setup

The comparison of the multi-label learning methods was performed using the implementations in the following
machine learning systems: MULAN® library under the machine learning framework WEKA [39], MEKA extension
for the WEKA] framework and CLUS® system for predictive clustering. The MULAN library was used for BR, CLR,
QWML, HOMER, ML-C4.5, REML-C4.5, ML-kNN and RAKEL; the MEKA environment was used for CC and ECC
and the CLUS system for PCT and RF-PCT. All experiments were performed on a server with an Intel Xeon processor
at 2.50GHz on 64GB of RAM with the Fedora 14 operating system. In the remainder of this section, we first state the
base classifiers that were used for the multi-label methods and then the parameter instantiations of the methods.

4http://bailando.sims.berkeley.edu/enron,email.html
5 http://del.icio.us

6http ://mulan.sourceforge.net/
"http://meka.sourceforge.net/
8http://clus.sourceforge.net
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Figure 3: Categorization of evaluation measures used to assess the predictive performance of methods for multi-label learning.

4.3.1. Base classifiers

The methods used in this study use two types of base classifiers for solving the partial binary classification prob-
lems in all problem transformation methods and the ensemble methods: SVMs and decision trees (see Figure 2). For
training the SVMs, we used the implementation from the LIBSVM library [40]. In particular, we used SVMs with a
radial basis kernel for all problem transformation methods and RAKEL and ECC. The kernel parameter gamma and
the penalty C, for each combination of dataset and method, were determined by 10-fold cross validation using only
the training sets. The exception to this is the ensemble method RAKEL where the kernel parameter gamma and the
penalty C were determined by 5-fold cross validation for the tmc2007 and mediamill datasets because of its computa-
tional complexity. The values 2715 2-13 21 23 were considered for gamma and 275 273 ... 213 215 for the penalty
C. After determining the best parameters values for each method on every dataset, the classifiers were trained using
all available training examples and were evaluated by recognizing all test examples from the corresponding dataset.

We used two implementations of decision trees: ML-C4.5 from MULAN and PCTs from CLUS. The ML-C4.5
and PCT as predictive models were pruned using a pruning method. ML-C4.5 uses a post pruning strategy based on
a confidence factor, while PCTs use a pre-pruning strategy based on the F-test (whether a given split significantly
reduces the variance). On the other hand, when they were used as base classifiers in the ensembles (RFML-C4.5 and
RF-PCT), the trees were fully grown [41].

4.3.2. Parameter instantiation

The parameters of the methods were instantiated following the recommendations from the literature. In particular,
for the ensemble methods based on decision trees (RFML-C4.5 and RF-PCT), the number of models (classifiers)
used in the ensemble was 100 as suggested by Bauer and Kohavi [41]. For the size of the feature subsets needed for
construction of the base classifiers for RFML-C4.5, we selected the f(x) = [logx(x) + 1] as recommended by Breiman
[29], while for RF-PCT we selected f(x) = |0.1-x + 1] as recommended by Kocev [18]. The number of models in
the ECC method was set to 10 as proposed by Read et al.[16]. Next, the number of models in RAKEL was set to
min(2 - Q,100) (Q is the number of labels) for all datasets [15], except for the mediamill, delicious and bookmarks
datasets, where this parameter was set to 10 as a result of the memory requirements of this method. Besides the
number of base classifiers, RAKEL requires one additional parameter: the size of the label-sets k. For each dataset,
this parameter was set to half the number of labels (Q/2). Tsoumakas et al. [15] and Read et al. [16] have shown that
this is a reasonable choice, since it provides a balance between computational complexity and predictive performance.

The ML-C4.5 method uses sub-tree raising as a post-pruning strategy with a pruning confidence set to 0.25.
Furthermore, the minimal number of examples in the leaves in each model of the RFML-C4.5 was set to 10. PCTs use
a pre-pruning strategy that employs the F-test to determine whether a given split results in a significant reduction of
variance. The significance level for the F-test was automatically selected from a predefined list of significance levels
using 3-fold cross-validation. The number of neighbors in the ML-kNN method for each dataset was determined
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from the values 6 to 20 with step 2. HOMER also requires one additional parameter to be configured: the number of
clusters. For this parameter, five different values (2-6) were considered in the experiments [24] and we report the best
results.

4.4. Statistical evaluation

To assess whether the overall differences in performance across the ten different approaches are statistically signif-
icant, we employed the corrected Friedman test [42] and the post-hoc Nemenyi test [43] as recommended by Demsar
[44]. The Friedman test is a non-parametric test for multiple hypotheses testing. It ranks the algorithms according to
their performance for each dataset separately, thus the best performing algorithm gets the rank of 1, the second best
the rank of 2, etc. In case of ties, it assigns average ranks. Then, the Friedman test compares the average ranks of
the algorithms and calculates the Friedman statistic X%, distributed according to the )(% distribution with k — 1 degrees
of freedom (k being the number of algorithms). Iman and Davenport [45] have shown that the Friedman statistic is
undesirably conservative and derive a corrected F-statistic that is distributed according to the F-distribution with k — 1
and (k— 1) - (N — 1) degrees of freedom (N being the number of datasets).

If a statistically significant difference in the performance is detected, then next step is a post-hoc test to detect
between which algorithms those differences appear. The Nemenyi test is used to compare all the classifiers to each
other. In this procedure, the performance of two classifiers is significantly different if their average ranks differ by
more than some critical distance. The critical distance depends on the number of algorithms, the number of datasets
and the critical value (for a given significance level - p) that is based on the Studentized range statistic and can be
found in statistical textbooks (e.g., see [46]).

We present the results from the Nemenyi post-hoc test with average rank diagrams [44]. These are given in
Figures 4 to 7, and Figure B.8 to B.11. A critical diagram contains an enumerated axis on which the average ranks of
the algorithms are drawn. The algorithms are depicted along the axis in such a manner, that the best ranking ones are
at the right-most side of the diagram. The lines for the average ranks of the algorithms that do not differ significantly
(at the significance level of p = 0.05) are connected with a line.

For the larger datasets, several algorithms did not construct a predictive model within one week under the available
resources °. These occurrences are marked as DNF (Did Not Finish) in the tables with the results. Considering this,
we perform the statistical analysis twice. For the first analysis, we use only the datasets for which all the methods
finished and provided results (eight datasets). For the second analysis, we penalize the algorithms that do not finish by
assigning them the lowest value (i.e., the lowest rank value for the given algorithm-dataset pair) for each evaluation
measure.

5. Results and discussion

In this section, we present the results from the experimental evaluation. For each type of evaluation measure,
we present and discuss the critical diagrams from the tests for statistical significance using the datasets on which all
algorithms provided predictive models. We give complete results over all evaluation measures and all critical diagrams
(including those for all datasets) in Appendix B.

5.1. Results on the example-based measures

The example-based evaluation measures include Hamming loss, Accuracy, Precision, Recall, | score and Sub-
set accuracy. The results of the statistical evaluation are given in Figure 4, while the complete results are given in
Tables B.2 through B.8, and Figure B.8. Considering the results that include the datasets for which all algorithms
finished (Figure 4), we can make several conclusions. The first conclusion that draws our attention is that HOMER
performs best as evaluated by recall, while RF-PCT performs best according to precision. This means that the pre-
dictions made by HOMER are more complete: the original relevant labels were correctly predicted as relevant labels
(small number of false negatives results in high recall). However, the lower precision means that besides the labels
that were originally relevant, HOMER predicts non-relevant labels as relevant (larger number of false positives results

9The experiments were performed on a server running Linux, with two Intel Quad-Core Processors running at 2.5GHz and 64GB of RAM.
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in low precision). The situation is somewhat reversed when looking at the predictions from RF-PCT. The predictions
of RF-PCT are more exact: the labels predicted as relevant were truly relevant in the original examples (small number
of false positives results in high precision). However, RF-PCT is leaving out some of the relevant labels when making
predictions (larger number of false negatives results in high recall).

Critical Distance = 5.89147
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Figure 4: The critical diagrams for the example-based evaluation measures: The results from the Nemenyi post-hoc test at 0.05 significance level
on the datasets for which all algorithms provided results. For precision and subset accuracy the differences are not statistically significant according
to the Friedman test (see Table B.8), thus we show only the average ranks of the algorithms.

We further analyze the performance of the methods across all six evaluation measures: the best performing meth-
ods on all measures are either RF-PCT or HOMER. We can further note that RF-PCT is the best performing method,
closely followed by HOMER, BR and CC. The RF-PCT method performs best according to subset accuracy, Ham-
ming loss and precision, second best according to accuracy. HOMER is the best performing as evaluated by accuracy,
recall and F score, and second best according to subset accuracy. The HOMER method has poor performance as
evaluated by Hamming loss and precision (10-th and 9-th position on the critical diagrams, respectively), while on
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these two measures RF-PCT performs the best. We hypothesize that the low performance of HOMER according
to Hamming loss is because the procedure for construction of HOMER’s hierarchical structure does not optimize
Hamming loss.

The differences in predictive performance are rarely significant at the significance level of 0.05. HOMER and RF-
PCT are often significantly better than single PCT, or single ML-C4.5 trees. From an ensemble learning point of view,
this means that the RF-PCTs lift the predictive performance of a single PCT even when the target concept is a set of
labels, similarly as for simple regression and classification. On the other hand, the increase in predictive performance
is not constrant for the ECC and RF-MLC4.5 ensembles: according to some evaluation measure, the single models
perform even better on average than the corresponding ensembles. For this we have two hypotheses: first, CC are
stable classifiers and ensemble can’t much improve over their predictive performance. Second, RF-MLC4.5 did not
perform competitively because it selects feature subsets with a logarithmic size compared to the complete set of
features. Considering that the domains we used in this study (and other multi-label domains) have a large number
of features (typically larger than 500), the logarithmic function under-samples the feature space and is missing some
useful information that can contribute to better classification.

We next focus the discussion on the different types of base machine learning algorithms. First, we can note that
the multi-label variant of k-nearest neighbors (ML-kNN) performs poor by across all evaluation measures. Next, the
SVM-based methods perform better for the smaller datasets, while tree-based methods for the larger datasets. This
is because the Gaussian kernel can handle very well the smaller number of examples: when the number of examples
increases, the performance of the kernel approaches the performance of a linear kernel. Furthermore, the SVM-based
methods are better for the domains with larger numbers of features. For instance, in text classification an example
is a document tipicaly represented as a bag-of-words, where each feature can play a crucial role in making a correct
prediction. The SVMs exploit the information from all the features, while the decision trees use only a (small) subset
of features and may miss some crucial information.

Finally, we discuss the addition of all datasets in the statistical analysis (shown in Figure B.8). This analysis shows
that RF-PCT and BR have improved predictive performance at the expense of the methods that did not finish. RF-PCT
is again the best performing method overall, followed by BR, HOMER and CC. As for the subset of datasets, RF-PCT
is best according to Hamming loss, precision and subset accuracy, while HOMER is best according to accuracy, F
score and recall. RF-PCT is second best on accuracy and F; score and has an improved performance according to
recall. Furthermore, RF-PCT is statistically significantly better than HOMER according to Hamming loss.

5.2. Results on the label-based measures

The label-based evaluation measures include micro precision, micro recall, micro Fi, macro precision, macro
recall and macro F. The results from the statistical evaluation are given in Figure 5, while complete results are given
in Tables B.9 through B.15, and Figure B.9. First, we focus on the results and the statistical analysis on the datasets
for which all methods have finished. As for the example-based measures, the best performing methods are RF-PCT,
HOMER, BR and CC. HOMER performs best according to four evaluation measures: macro Fy, macro recall, micro
F\ and micro recall and it performs worst of all methods according to micro precision and 8-th according to macro
precision. RF-PCT is the best performing using micro precision and macro precision and, according to the critical
diagrams, performs statistically significantly better than HOMER.

We next discuss the performance of the ensembles and the single models. Again, as for the example-based mea-
sures, RF-PCT is better than single PCT over all evaluation measures. On the other hand, this is not the case for
RF-MLC4.5 and ECC. The reasons for this are the same as for the example-based measures: CC is a stable classifier
and the logarithmic size of the feature subset for RF-MLC4.5 is under-sampling the feature space.

The behavior of the base machine learning algorithms remains the same as for the example-based measures. ML-
kNN again has very poor predictive performance across all evaluation measures. SVMs are better for the smaller
datasets and decision trees for the larger datasets.

Finally, the addition of the datasets for which some (but not all) of the methods finished did not change the results
much (compare Figure 5 with Figure B.9). The updated results improved the average performance of RF-PCT, BR and
CC at the expense of the methods not able to produce results. However, the relative average performance remained
the same as for the subset of datasets: HOMER is best according to macro Fi, macro recall, micro F and micro
recall, while RF-PCT is best according to micro precision and macro precision. Moreover, RF-PCT is statistically
significantly better than HOMER according to micro precision and macro precision.



G. Madjarov et al. / Pattern Recognition 00 (2011) 1-33 14

Critical Distance = 5.89147

Critical Distance = 5.89147
HOMER | RFML-C45 "Z 1“ ““ 9 3‘ 7‘ ? " 4‘ " 2‘ "
PCT 7}{] “PCT
ML-C4.5 BR ML-C4.5 RF-PCT
ECC CLR PCT BR
cc ECC cC
RAKEL ML-kNN RFML-C4.5
ML-kNN RAKEL CLR
QWML HOMER QWML
(a) micro precision (b) macro precision
Critical Distance = 5.89147 Critical Distance = 5.89147
12 11 10 9 8 7 6 5 4 3 2 1 12 11 10 9 8 7 6 5 4 3 2 1
PCT 7HOMER PCT HOMER
ML-kNN CLR RFML-C4.5 cc
RFML-C4.5 cc ML-KNN CLR
ML-C4.5 ECC RAKEL BR
RAKEL QWML ML-C4.5 QWML
RF-PCT BR RF-PCT ECC
(c) micro recall (d) macro recall
Critical Distance = 5.89147
Critical Distance = 5.89147
12 11 10 9 8 7 6 5 4 3 2 1
12 11 10 9 8 7 6 5 4 3 2 1
HOMER
RF-PCT PCT HOMER
PCT CLR RFML-C4.5 BR
ML-kNN ECC ML-kNN cc
ML-C4.5 QWML ML-C4.5 QWML
RFML-C4.5 BR RAKEL CLR
cc RAKEL ECC RF-PCT
(e) micro F, (f) macro F,

Figure 5: The critical diagrams for the label-based evaluation measures: The results from the Nemenyi post-hoc test at 0.05 significance level on
the datasets for which all algorithms provided results.

5.3. Results on the ranking-based measures

The ranking-based measures include one-error, ranking loss, coverage and average precision. The results from
the statistical evaluation are given in Figure 6, while the complete results are given in Tables B.16 through B.20, and
Figure B.10. We first focus on the results for the datasets for which all methods have finished. The best performing
method is RF-PCT, followed by BR , CC and CLR. RF-PCT is the best performing method on all four evaluation
measures, BR is second best on three measures (one-error, ranking loss and average precision) and third on coverage.
Considering ensemble learning, the ensembles based on decision trees perform better than the corresponding single
models. However, the ensembles of CC perform worse than a single CC. The ranking-based measures indicate that the
SVM-based methods perform better for smaller datasets, while tree-based measures perform better on larger datasets.

Let us further compare RF-PCT with HOMER using the ranking measures. The statistical evaluation of the
performance reveals that RF-PCT is statistically significantly better than HOMER at the significance level of 0.05
according to coverage and ranking loss (see Figure 6). Furthermore, the statistical evaluation using all datasets
(Figure B.10) shows that RF-PCT is statistically significantly better than HOMER on all four evaluation measures.
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The other results from the statistical analysis using all datasets are similar to the results on the subset of datasets.
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Figure 6: The critical diagrams for the ranking-based evaluation measures: The results from the Nemenyi post-hoc test at 0.05 significance level
on the datasets for which all algorithms provided results.

5.4. Results on the efficiency measures

We finally discuss the efficiency of the proposed methods in terms of training and testing time. The results are
given in Figures 7 and B.11, and Tables B.21 through B.23. They show that the tree-based methods are more efficient
than the SVM-based methods. Namely, PCT is the most efficient method, followed by ML-C4.5 and ML-kNN. PCTs
are faster to construct than ML-C4.5 because of the pruning strategy they employ: the former used pre-pruning and
the latter post-pruning.
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Figure 7: The critical diagrams for the efficiency measures: The results from the Nemenyi post-hoc test at 0.05 significance level on the datasets
for which all algorithms provided results.

We further discuss the methods that exhibited the best predictive performance according to the other evaluation
measures: RF-PCT and HOMER. RF-PCT is better than HOMER on the time needed to produce a prediction for an
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unseen example (festing time and on the time needed for learning a classifier (training time) for both analyses: the
first includes only the datasets with complete results and the second includes all datasets. Moreover, HOMER did not
produce results for the bookmarks dataset.

6. Conclusions

In this study, we present an extensive experimental evaluation of methods for multi-label learning. The topic
of multi-label learning has lately received significant research effort. It has also attracted much attention from the
research community, in the form of journal special issues and workshops at major conferences. This has resulted in
a variety of methods for addressing the task of multi-label learning. However, a wider experimental comparison of
these methods is still lacking in the literature.

We evaluate the most popular methods for multi-label learning using a wide range of evaluation measures on a
variety of datasets. Below we explain the dimensions of the extensive experimental evaluation. First, we selected
12 multi-label methods that were recently proposed in the literature. The selected methods are divided in three main
groups: algorithm adaptation (3 methods), problem transformation (5 methods) and ensembles (4 methods). The
methods use three types of basic machine learning algorithms: SVMs (7 methods), decision trees (4 methods) and
k-nearest neighbors (1 method). Second, we used 16 different evaluation measures that are typically used in the
context of multi-label learning. The variety of evaluation measures is necessary to provide a view on algorithm
performance from different perspectives. The evaluation measures are divided in three groups: example-based (6
measures), label-based (6 measures) and ranking-based (4 measures). Furthermore, we assess the efficiency of the
methods by measuring the time needed to learn the classifier and the time needed to produce a prediction for an unseen
example. Third, we evaluate the methods on 11 multi-label benchmark datasets from 5 application domains: text
classification (6 datasets), image classification (2 datasets), gene function prediction (1 dataset), music classification
(1 dataset) and video classification (1 dataset). We then analyze the results from the experiments using Friedman and
Nemenyi tests for assessing the statistical significance of the differences in performance. We present the results from
the statistical tests using critical diagrams.

The results of the experimental comparison revealed than the best performing methods are RF-PCT and HOMER,
followed by BR and CC. For each performance measure, the best algorithm was either RF-PCT or HOMER. The
example-based measures, which are most widely used for multi-label classification, show that RF-PCT is best ac-
cording to precision and has average performance on recall. On the other hand, HOMER is best according to recall,
while having poor performance on precision. This means that the predictions from RF-PCT are more exact than the
ones from HOMER, while the predictions from HOMER are more complete than the ones from RF-PCT. Considering
the basic machine learning algorithms underlying the compared approaches, the SVM based methods are better on
datasets with a large number of features and a smaller number of examples, since they can exploit the information
from all of the features, while the decision trees exploit only a subset of the features.

The label-based measures showed behavior similar to that of the example-based measures. However, the gap be-
tween HOMER and RF-PCT on recall and precision is now much bigger. Namely, RF-PCT is statistically significantly
better than HOMER on the two precision-based measures.

The ranking-based measures offer a different perspective on the results. RF-PCT was the best performing method,
followed by CC and BR. On these measures HOMER exhibited poor performance. RF-PCT is statistically signifi-
cantly better than HOMER on two evaluation measures (coverage and ranking loss) using the datasets for which there
are results from all methods and statistically significantly better on all four evaluation measures using all datasets.
Furthermore, these measures emphasize the advantages of the SVM-based methods on the smaller datasets and the
tree-based methods on the larger datasets.

Considering efficiency, the tree-based methods are generally faster to train a classifier and produce a prediction
for an unseen example than the SVM-based methods. We further compare the efficiency of the RF-PCT and HOMER
methods. The results show that RF-PCT is faster than HOMER on testing time (on average 194.6 times) and on
training time (on average 8.4 times).

The experimental comparison can be extended by including more methods for multi-label learning. For example.
one can also include bagging of PCTs: ensemble method that has competitive performance to random forests of PCTs
[18]. The comparison can be also extended by including other evaluation measures. One evaluation measure that can
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be easily adapted for multi-label setting is the precision-recall curve (and the area under the precision-recall curve
thereof) [47]. This will offer a better insight to the trade-off between the precision and recall performance of a given
method for multi-label learning.

All in all, the final recommendation considering the performance and the efficiency of the evaluated methods
is that RF-PCT, HOMER, BR and CC should be used as benchmark methods for multi-label learning. Over all
evaluation measures these methods performed best. Furthermore, RF-PCT and HOMER exhibited the best predictive
performance and better efficiency than the rest of the methods.
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Appendix A. Evaluation measures

In this section, we present the measures that are used to evaluate the predictive performance of the compared
methods in our experiments. In the definitions below, Y; denotes the set of true labels of example x; and /(x;) denotes
the set of predicted labels for the same examples. All definitions refer to the multi-label setting.

Appendix A.l. Example based measures

Hamming loss evaluates how many times an example-label pair is misclassified, i.e., label not belonging to the
example is predicted or a label belonging to the example is not predicted. The smaller the value of hamming_loss(h),
the better the performance. The performance is perfect when hamming_loss(h) = 0. This metric is defined as:

N
hamming_loss(h) = 1 Z 1 Ih(x)AY] (A.1)
N i=1 Q

where A stands for the symmetric difference between two sets, N is the number of examples and Q is the total number
of possible class labels.

Accuracy for a single example X; is defined by the Jaccard similarity coefficients between the label sets i(x;) and
Y;. Accuracy is micro-averaged across all examples.

_ 1 o N Yl
accuracy(h) = I 2 m (A2)

Precision is defined as:

N
precision(h) = i Z W (A3)

N i=1
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Recall is defined as:

lh(xi) N Yil
recall(h) = (A4)
Z h(xi)]
F, score is the harmonic mean between precision and recall and is defined as:
N
1 2X|h(Xi)ﬁyi|
Fi=— _— A5
= N 2 Tl 19 (A-3)

i=1

Fj is an example based metric and its value is an average over all examples in the dataset. F; reaches its best value at
1 and worst score at 0.
Subset accuracy or classification accuracy is defined as follows:

N
subset_accuracy(h) = % Z I(h(x) = Y) (A.6)
i=1

where I(true) = 1 and I(false) = 0. This is a very strict evaluation measure as it requires the predicted set of labels to
be an exact match of the true set of labels.

Appendix A.2. Label based measures
Macro precision (precision averaged across all labels) is defined as:

lpj
macro_precision = _ (A7)
Q Z tpj+ fpj
where tp;, fp; are the number of true positives and false positives for the label A; considered as a binary class.
Macro recall (recall averaged across all labels) is defined as:
1 Ip;j
macro_recall = — _ (A.8)
0 ; tpj+ fn;

where tp;, fp; are defined as for the macro precision and fn; is the number of false negatives for the label 4;
considered as a binary class.

Macro F is the harmonic mean between precision and recall, where the average is calculated per label and then
averaged across all labels. If p; and r; are the precision and recall for all A; € h(x;) from A; € Y;, the macro F is

Q
1 2XpiXr;
macro_F| = — Z nlat et (A9)
Q o pj + rj
Micro precision (precision averaged over all the example/label pairs) is defined as:
. .. Z/ 1 tp]
micro_precision = (A.10)

2] ltP;"‘Zj:lij

where tp;, fp; are defined as for macro precision.
Micro recall (recall averaged over all the example/label pairs) is defined as:

0
2y 1P
Z; 2 +Z_,%1f”j

(A.11)

micro_recall =

where tp; and fn; are defined as for macro recall.
Micro F is the harmonic mean between micro precision and micro recall. Micro F| is defined as:

2 X micro_precision X micro_recall
micro_F| = - — - (A.12)
micro_precision + micro_recall
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Appendix A.3. Ranking based measures

One error evaluates how many times the top-ranked label is not in the set of relevant labels of the example. The
metric one_error(f) takes values between 0 and 1. The smaller the value of one_error(f), the better the performance.
This evaluation metric is defined as:

N

one_error(f) = ]lV ZH [arg I/Illé}yx f(xi, /l)} ¢ yi}l (A.13)

i=1

where 4 € L = {11, 4,,..., g} and [[7]] equals 1 if 7 holds and O otherwise for any predicate n. Note that, for
single-label classification problems, the One Error is identical to ordinary classification error.

Coverage evaluates how far, on average, we need to go down the list of ranked labels in order to cover all the
relevant labels of the example. The smaller the value of coverage(f), the better the performance.

N
1
coverage(f) = ; max ranky (xi, 1) = | (A.14)

where rank¢(x;, 1) maps the outputs of f(x;, A1) for any 2 € L to {1, A, ..., Ap} so that f(xi, A,,) > f(Xi, A,,) implies
rank¢(xi, A,,) < ranky(xi, A,). The smallest possible value for coverage(f) is I, i.e., the label cardinality of the given
dataset.

Ranking loss evaluates the average fraction of label pairs that are reversely ordered for the particular example

given by:
N

. 1 |Dy|
ranking loss(f) = — —
N Z RZIVA
where D; = {(A, A Xi, ) < f(Xiy 4), (s A) € Y x M;}, while Y denotes the complementary set of Y in L. The
smaller the value of ranking_loss(f), the better the performance, so the performance is perfect when ranking_loss(f) =
0.

(A.15)

Average Precision is the average fraction of labels ranked above an actual label A € Y; that actually are in
Y. The performance is perfect when avg_precision(f) = 1; the larger the value of avg_precision(f), the better the
performance. This metric is defined as:

. L
avg_precision(f) = Z 7 Z ranllf(x D (A.16)

where L; = {A|rank(x3, ') < ranks(Xi, 1), A’ € Y;} and rank(x;, 1) is defined as in coverage above.

Appendix B. Complete results from the experimental evaluation

In this section, we present the complete results from the experimental evaluation. We present the results based on
the evaluation measures. We first present the results for the example-based evaluation measures. We then show the
results for label-based evaluation measures. We next give the results for ranking-based evaluation measure. Finally,
we present the efficiency of the methods by their training and testing times.

Appendix B.1. Results on the example-based evaluation measures
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Table B.2: The performance of the multi-label learning approaches in terms of the precision measure. DNF (Did Not Finish) stands for the
algorithms that did not construct a predictive model within one week under the available resources).

0
<t
2§ 3 z S 5
= S 9 x a
x &) o < O _ 5 o2 Z o z U
om O Q o I = a = x L o o
emotions 0.550 0.551 0.538 0.548 0.509 0.606 0.577 0.502 0.564 0.580 0.625 0.644
scene 0.718 0.758 0.714 0.711 0.746 0.592 0.565 0.661 0.768 0.770 0.403 0.565
yeast 0.722 0.727 0.719 0.718 0.663 0.620 0.705 0.732 0.715 0.667 0.738 0.744
medical 0.211 0.217 0.695 0.697 0.762 0.797 0.285 0.575 0.730 0.662 0.284 0.635
enron 0.703 0.464 0.650 0.624 0.616 0.623 0.415 0.587 0.708 0.652 0.690 0.709
corel5k 0.042 0.042 0.329 0.326 0.317 0.005 0.000 0.035 0.000 0.002 0.018 0.030
tmc2007 0.941 0.944 0.937 0.937 0.926 0.146 0.659 0.738 0.928 0.872 0.874 0.977
mediamill 0.731 0.741 0.201 0.203 0.597 0.056 0.694 0.724 0.705 0.690 0.765 0.772
bibtex 0.515 0.508 0.488 0.496 0.472 0.123 0.140 0.254 DNF 0.324 0.159 0.292
delicious 0.443 0.399 DNF DNF 0.369 0.001 0.001 0.424 DNF DNF 0.472 0.512
bookmarks DNF DNF DNF DNF DNF 0.271 0.133 0.218 DNF DNF 0.182 0.218

Table B.3: The performance of the multi-label learning approaches in terms of the recall measure. DNF (Did Not Finish) stands for the algorithms
that did not construct a predictive model within one week under the available resources).

0
Lo Z Er)
2 L 3 S o VT
c o % £ 3 3 5 2 £ 8 2 &
o O (@) o T = a = 04 L o o
emotions 0.409 0.397 0.410 0.429 0.775 0.703 0.534 0.377 0.491 0.533 0.545 0.582
scene 0.711 0.726 0.712 0.709 0.744 0.582 0.539 0.655 0.740 0.771 0.388 0.541
yeast 0.591 0.600 0.601 0.600 0.714 0.608 0.490 0.549 0.615 0.673 0.491 0.523
medical 0.735 0.754 0.795 0.801 0.760 0.740 0.227 0.547 0.679 0.642 0.251 0.599
enron 0.497 0507 0.557 0.453 0.610 0.487 0.229 0.358 0.469 0.560 0.398 0.452
corel5k 0.055 0.056 0.264 0.264 0.250 0.002 0.000 0.014 0.000 0.001 0.005 0.009
tmc2007 0.928 0.934 0.929 0.929 0.943 0.111 0.478 0.664 0.880 0.903 0.677 0.920
mediamill 0.450 0.424 0.101 0.101 0.563 0.052 0.379 0.470 0.353 0.372 0.456 0.476
bibtex 0.373 0.378 0.364 0.366 0.389 0.111 0.046 0.132 DNF 0.187 0.060 0.167
delicious 0.155 0.157 DNF DNF 0.303 0.001 0.001 0.112 DNF DNF 0.176 0.160
bookmarks DNF DNF DNF DNF DNF 0.244 0.137 0.207 DNF DNF 0.181 0.208
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Table B.4: The performance of the multi-label learning approaches in terms of the Hamming loss measure. DNF (Did Not Finish) stands for the
algorithms that did not construct a predictive model within one week under the available resources).

Lo
<t
: & 3 - 35
c o % £ 3 2 5 I £ 8 & 1
m O @) @4 T = a = o Ll o o
emotions 0.257 0.256 0.257 0.254 0.361 0.247 0.267 0.294 0.282 0.281 0.198 0.189
scene 0.079 0.082 0.080 0.081 0.082 0.141 0.129 0.099 0.077 0.085 0.116 0.094
yeast 0.190 0.193 0.190 0.191 0.207 0.234 0.219 0.198 0.192 0.207 0.205 0.197
medical 0.077 0.077 0.017 0.012 0.012 0.013 0.023 0.017 0.012 0.014 0.022 0.014
enron 0.045 0.064 0.048 0.048 0.051 0.053 0.058 0.051 0.045 0.049 0.047 0.046
corel5k 0.017 0.017 0.012 0.012 0.012 0.010 0.009 0.009 0.009 0.009 0.009 0.009
tmc2007 0.013 0.013 0.014 0.014 0.015 0.093 0.075 0.058 0.021 0.026 0.037 0.011
mediamill 0.032 0.032 0.043 0.043 0.038 0.044 0.034 0.031 0.035 0.035 0.030 0.029
bibtex 0.012 0.012 0.012 0.012 0.014 0.016 0.014 0.014 DNF 0.013 0.014 o0.013
delicious 0.018 0.018 DNF DNF 0.022 0.019 0.019 0.018 DNF DNF 0.018 0.018
bookmarks DNF DNF DNF DNF DNF 0.009 0.009 0.009 DNF DNF 0.009 0.009

Table B.5: The performance of the multi-label learning approaches in terms of the accuracy measure. DNF (Did Not Finish) stands for the
algorithms that did not construct a predictive model within one week under the available resources).

0
<
T T A
« o %5 £ 3 2 5 2 % 8 Z &
oa) O Q o I = a = 04 | 24 [+4
emotions 0.361 0.356 0.361 0.373 0.471 0.536 0.448 0.319 0.419 0.432 0.488 0.519
scene 0.689 0.723 0.686 0.683 0.717 0.569 0.538 0.629 0.734 0.735 0.388 0.541
yeast 0.520 0.527 0524 0.523 0.559 0.480 0.440 0.492 0.531 0.546 0.453 0.478
medical 0.206 0.211 0.656 0.658 0.713 0.730 0.228 0.528 0.673 0.611 0.250 0.591
enron 0.446 0.334 0.459 0.388 0.478 0.418 0.196 0.319 0.428 0.462 0.374 0.416
corel5k 0.030 0.030 0.195 0.195 0.179 0.002 0.000 0.014 0.000 0.001 0.005 0.009
tmc2007 0.891 0.899 0.889 0.889 0.888 0.110 0.436 0.574 0.852 0.808 0.663 0.914
mediamill 0.403 0.390 0.095 0.095 0.413 0.052 0.354 0.421 0.337 0.349 0.423 0.441
bibtex 0.348 0.352 0.334 0.338 0.330 0.108 0.046 0.129 DNF 0.186 0.060 0.166
delicious 0.136 0.137 DNF DNF 0.207 0.001 0.001 0.102 DNF DNF 0.151 0.146
bookmarks DNF DNF DNF DNF DNF 0.237 0.133 0.202 DNF DNF 0.176 0.204
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Table B.6: The performance of the multi-label learning approaches in terms of the F| score measure. DNF (Did Not Finish) stands for the
algorithms that did not construct a predictive model within one week under the available resources).

o
o oz 3
x w0
s 4 3 2 @ 36
n:oEECE)—"'G—"EYE(L))E&
m O O o T Z2 4o Z2 X 1w rr -

emotions 0.469 0.461 0.465 0.481 0.614 0.651 0.554 0.431 0.525 0.556 0.583 0.611

scene 0.714 0.742 0.713 0.710 0.745 0.587 0.551 0.658 0.754 0.771 0.395 0.553
yeast 0.650 0.657 0.655 0.654 0.687 0.614 0.578 0.628 0.661 0.670 0.589 0.614
medical 0.328 0.337 0.742 0.745 0.761 0.768 0.253 0.560 0.704 0.652 0.267 0.616
enron 0.582 0.484 0.600 0.525 0.613 0.546 0.295 0.445 0.564 0.602 0.505 0.552
corel5k 0.047 0.048 0.293 0.292 0.280 0.003 0.000 0.021 0.000 0.001 0.008 0.014

tmc2007 0.934 0.939 0.933 0.933 0.934 0.126 0.554 0.699 0.904 0.887 0.763 0.948
mediamill 0.557 0.539 0.134 0.135 0.579 0.054 0.490 0.570 0.471 0.483 0.572 0.589
bibtex 0.433 0.434 0.417 0.421 0.426 0.117 0.069 0.174 DNF 0.237 0.087 0.212
delicious 0.230 0.225 DNF DNF 0.343 0.001 0.001 0.017 DNF DNF 0.256 0.244
bookmarks DNF DNF DNF DNF DNF 0.257 0.135 0.213 DNF DNF 0.181 0.213

Table B.7: The performance of the multi-label learning approaches in terms of the subset accuracy measure. DNF (Did Not Finish) stands for the
algorithms that did not construct a predictive model within one week under the available resources).

0

o o) zZ S
s 4 3 2 J 5
r o 5 = % J 5 2 2 8 = W
o &) @) (@4 T = a = o w o o

emotions 0.129 0.124 0.144 0.149 0.163 0.277 0.223 0.084 0.208 0.168 0.272 0.307

scene 0.639 0.685 0.633 0.630 0.661 0.533 0.509 0.573 0.694 0.665 0.372 0.518
yeast 0.190 0.239 0.195 0.192 0.213 0.158 0.152 0.159 0.201 0.215 0.129 0.152
medical 0.000 0.000 0.486 0.480 0.610 0.646 0.177 0.462 0.607 0.526 0.216 0.538
enron 0.149 0.000 0.117 0.097 0.145 0.140 0.002 0.062 0.136 0.131 0.124 0.131
corel5k 0.000 0.000 0.010 0.012 0.002 0.000 0.000 0.000 0.000 0.001 0.008 0.000
tmc2007 0.772 0.787 0.767 0.768 0.765 0.078 0.215 0.305 0.734 0.608 0.421 0.816
mediamill 0.080 0.080 0.044 0.044 0.053 0.049 0.065 0.110 0.060 0.065 0.104 0.122
bibtex 0.194 0.202 0.183 0.186 0.165 0.095 0.004 0.056 DNF 0.109 0.011 0.098

delicious 0.004 0.006 DNF DNF 0.001 0.001 0.001 0.003 DNF DNF 0.018 0.007
bookmarks DNF DNF DNF DNF DNF 0.209 0.129 0.187 DNF DNF 0.167 0.189
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Table B.8: The p-values of the assessment of performance of the multi-label learning approaches by the Friedman test using the example-based
evaluation measures. Subset shows the calculated p-values for the datasets on which all algorithms finished. A/l shows the calculated p-values for
all datasets including those which did not finished.

All Subset
Hamming loss 0.0895 0.047
Accuracy 0.077 0.037
Precision 0.117 0.19
Recall 5.10" 7.910°
F, score 5.107 0.0013
Subset accuracy 0.555 0.343
12 11 10 9 8 7 6 5 4 3 2 1 12 11 10 9 8 7 6 5 2 1
L L L L L L L L L L L ] L L L L L " L L ]
ML-C4.5 RF-PCT PCT HOMER
PCT BR ML-kNN RF-PCT
HOMER RFML-C4.5 RFML-C4.5 cc
ECC QWML RAKEL BR
ML-kNN RAKEL ML-C4.5 CLR
cc CLR QWML ECC
(a) Hamming loss (b) accuracy
12 11 10 9 8 7 6 5 4 3 2 1
: L L L L 4 L L L L L ! Critical Distance = 5.02426
RE-PCT 12 11 10 9 8 7 6 5 2 1
PCT BR
ML-C4.5 cc HOMER
ECC RFML-C4.5 cc
ML-kNN PCT CLR
RAKEL RAKEL BR
HOMER ML-kNN RF-PCT
QWML RFML-C4.5 QWML
CLR ML-C4.5 ECC
(c) precision (d) recall
Critical Distance = 5.02426
12 11 10 9 8 7 6 5 4 3 2 1 12 11 10 9 8 7 6 5 2 1
PCT RF-PCT PCT HOMER
ML-kNN HOMER ML-kNN RF-PCT
QWML BR RFML-C4.5 BR
CLR cc RAKEL cc
RFML-C4.5 ECC ML-C4.5 ECC
RAKEL ML-C4.5 QWML CLR

(e) subset accuracy

(f) Fy score

Figure B.8: The critical diagrams for the example-based evaluation measures: The results from the Nemenyi post-hoc test at 0.05 significance level
on all the datasets. For Hamming loss, precision, accuracy and subset accuracy the differences are not statistically significant according to the

Friedman test (see Table B.8), thus we show only the average ranks of the algorithms.
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Appendix B.2. Results on the label-based evaluation measures

Table B.9: The performance of the multi-label learning approaches in terms of the micro precision measure. DNF (Did Not Finish) stands for the
algorithms that did not construct a predictive model within one week under the available resources).

Ln

x o > 3
g L 3 2 o 306
x O o = (% - s 4% S E &
m O @) o T > 8 = o | o o

emotions 0.684 0.698 0.685 0.680 0.471 0.607 0.607 0.584 0.586 0.579 0.783 0.783

scene 0.843 0.814 0.835 0.832 0.804 0.619 0.512 0.691 0.831 0.773 0.960 0.930
yeast 0.733 0.726 0.729 0.727 0.647 0.618 0.698 0.736 0.720 0.662 0.747 0.755
medical 0.225 0.229 0.669 0.667 0.807 0.796 0.826 0.807 0.881 0.834 0.884 0.885
enron 0.721 0.492 0.652 0.687 0.597 0.613 0.601 0.684 0.743 0.642 0.768 0.738
corel5k 0.061 0.061 0.338 0.339 0.308 0.160 0.000 0.730 0.000 0.333 0.750 0.696
tmc2007 0.947 0.948 0.940 0.941 0.922 0.940 0.689 0.757 0.938 0.869 0.963 0.992
mediamill 0.742 0.753 0.582 0.580 0.569 0.597 0.743 0.739 0.725 0.708 0.788 0.798
bibtex 0.753 0.744 0.734 0.736 0.547 0.359 1.000 0.819 DNF 0.948 0.940 0.957

delicious 0.658 0.660 DNF DNF 0.396 0.000 0.000 0.651 DNF DNF 0.589 0.695
bookmarks  DNF DNF DNF DNF DNF 0.632 0.947 0.850 DNF DNF 0.878 0.895

Table B.10: The performance of the multi-label learning approaches in terms of the micro recall measure. DNF (Did Not Finish) stands for the
algorithms that did not construct a predictive model within one week under the available resources).
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emotions 0.406 0.393 0.409 0.431 0.782 0.712 0.539 0.376 0.489 0.531 0.551 0.589

scene 0.694 0.708 0.695 0.692 0.727 0.570 0.521 0.634 0.721 0.751 0.572 0.523
yeast 0.587 0.588 0.595 0.595 0.702 0.603 0.492 0.543 0.602 0.655 0.491 0.521
medical 0.725 0.739 0.782 0.787 0.742 0.720 0.227 0.522 0.600 0.624 0.237 0.569
enron 0.464 0.472 0.532 0.438 0.585 0.440 0.246 0.353 0.435 0.532 0.366 0.422
corel5k 0.057 0.057 0.258 0.258 0.248 0.002 0.000 0.015 0.000 0.001 0.005 0.009

tmc2007 0.917 0.924 0.920 0.920 0.932 0.073 0.454 0.621 0.847 0.869 0.651 0.902
mediamill 0.415 0.385 0.066 0.066 0.537 0.004 0.351 0.432 0.315 0.333 0.418 0.435
bibtex 0.328 0.335 0.322 0.328 0.353 0.053 0.057 0.118 DNF 0.142 0.066 0.131
delicious 0.143 0.144 DNF DNF 0.297 0.000 0.000 0.101 DNF DNF 0.174 0.151
bookmarks DNF DNF DNF DNF DNF 0.170 0.135 0.135 DNF DNF 0.112 0.136
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Table B.11: The performance of the multi-label learning approaches in terms of the micro F; measure. DNF (Did Not Finish) stands for the
algorithms that did not construct a predictive model within one week under the available resources).

0
<
83 &g I
« o % £ 3 2 5 2 % 8 Z &
oa) O Q o I = a = 04 | 24 [+4
emotions 0.509 0.503 0.512 0.528 0.588 0.655 0.571 0.457 0.533 0.554 0.647 0.672
scene 0.761 0.757 0.758 0.756 0.764 0.593 0.516 0.661 0.772 0.762 0.717 0.669
yeast 0.652 0.650 0.655 0.654 0.673 0.610 0.577 0.625 0.656 0.658 0.593 0.617
medical 0.343 0.350 0.721 0.722 0.773 0.756 0.356 0.634 0.714 0.714 0.374 0.693
enron 0.564 0.482 0.585 0.535 0.591 0.512 0.349 0.466 0.548 0.582 0.496 0.537
corel5k 0.059 0.059 0.293 0.293 0.275 0.004 0.000 0.030 0.000 0.002 0.010 o0.018
tmc2007 0.932 0.936 0.930 0.930 0.927 0.135 0.547 0.682 0.890 0.869 0.777 0.945
mediamill 0.533 0.509 0.118 0.119 0.553 0.007 0.477 0.545 0.440 0.453 0.546 0.563
bibtex 0.457 0.462 0.448 0.454 0.429 0.093 0.108 0.206 DNF 0.247 0.123 0.230
delicious 0.234 0.236 DNF DNF 0.339 0.000 0.000 0.175 DNF DNF 0.269 0.248
bookmarks DNF DNF DNF DNF DNF 0.268 0.236 0.232 DNF DNF 0.199 0.236

Table B.12: The performance of the multi-label learning approaches in terms of the macro precision measure. DNF (Did Not Finish) stands for the
algorithms that did not construct a predictive model within one week under the available resources).

Lo
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c o % £ 3 2 5 I % 8 2 &
m O O (@X I > a = o | o o
emotions 0.721 0581 0.677 0.660 0.464 0.602 0.628 0.518 0.547 0.531 0.828 0.802
scene 0.844 0.817 0.835 0.832 0.807 0.635 0.682 0.784 0.835 0.785 0.963 0.919
yeast 0.628 0.602 0.614 0.614 0.471 0.377 0.479 0.600 0.480 0.391 0.533 0.674
medical 0.399 0.391 0.288 0.285 0.287 0.263 0.018 0.267 0.269 0.266 0.190 0.269
enron 0.258 0.260 0.205 0.242 0.241 0.142 0.023 0.170 0.222 0.249 0.245 0.233
corel5k 0.052 0.053 0.059 0.059 0.044 0.004 0.000 0.031 0.000 0.001 0.007 0.015
tmc2007 0.972 0972 0.964 0.965 0.954 0.925 0.386 0.780 0.973 0.938 0.994 0.997
mediamill 0.112 0.144 0.140 0.133 0.107 0.046 0.401 0.308 0.025 0.037 0.397 0.441
bibtex 0.528 0.539 0.503 0.490 0.391 0.128 0.006 0.192 DNF 0.121 0.080 0.127
delicious 0.299 0.303 DNF DNF 0.154 0.000 0.000 0.134 DNF DNF 0.422 0.293
bookmarks DNF DNF DNF DNF DNF 0.292 0.018 0.414 DNF DNF 0.388 0.522
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Table B.13: The performance of the multi-label learning approaches in terms of the macro recall measure. DNF (Did Not Finish) stands for the
algorithms that did not construct a predictive model within one week under the available resources).

0
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emotions 0.378 0.364 0.381 0.398 0.775 0.702 0.533 0.334 0.462 0.508 0.532 0.569

scene 0.703 0.716 0.704 0.701 0.734 0.573 0.529 0.647 0.727 0.757 0.381 0.533
yeast 0.355 0.357 0.361 0.361 0.466 0.375 0.269 0.308 0.352 0.388 0.257 0.286
medical 0.423 0.428 0.307 0.324 0.282 0.249 0.022 0.163 0.183 0.179 0.040 0.176
enron 0.120 0.146 0.139 0.120 0.163 0.107 0.030 0.075 0.097 0.129 0.082 0.100
corel5k 0.023 0.023 0.039 0.039 0.041 0.005 0.000 0.006 0.000 0.001 0.001 0.002

tmc2007 0.915 0.924 0.914 0.914 0.897 0.085 0.235 0.418 0.739 0.772 0.297 0.769
mediamill 0.049 0.044 0.028 0.028 0.074 0.002 0.029 0.088 0.020 0.023 0.065 0.080
bibtex 0.250 0.257 0.236 0.238 0.247 0.034 0.006 0.049 DNF 0.044 0.013 0.043
delicious 0.072 0.075 DNF DNF 0.103 0.000 0.000 0.039 DNF DNF 0.092 0.060
bookmarks DNF DNF DNF DNF DNF 0.098 0.016 0.070 DNF DNF 0.048 0.072

Table B.14: The performance of the multi-label learning approaches in terms of the macro F| measure. DNF (Did Not Finish) stands for the
algorithms that did not construct a predictive model within one week under the available resources).
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emotions 0.440 0.420 0.443 0.458 0.570 0.630 0.568 0.385 0.488 0.500 0.620 0.650

scene 0.765 0.762 0.762 0.759 0.768 0.596 0.593 0.692 0.777 0.770 0.514 0.658
yeast 0.392 0.390 0.392 0.394 0.447 0.370 0.293 0.336 0.359 0.350 0.283 0.322
medical 0.361 0.371 0.281 0.286 0.282 0.250 0.020 0.192 0.210 0.203 0.058 0.207
enron 0.143 0.153 0.149 0.143 0.167 0.115 0.026 0.087 0.115 0.140 0.102 0.122
corel5k 0.021 0.021 0.042 0.042 0.036 0.008 0.000 0.010 0.000 0.001 0.001 0.004

tmc2007 0.942 0.947 0.938 0.938 0.924 0.124 0.263 0.493 0.826 0.834 0.371 0.857
mediamill 0.056 0.052 0.037 0.037 0.073 0.003 0.031 0.113 0.019 0.022 0.088 0.112
bibtex 0.307 0.316 0.291 0.292 0.266 0.045 0.006 0.065 DNF 0.052 0.016 0.055
delicious 0.096 0.100 DNF DNF 0.103 0.000 0.000 0.051 DNF DNF 0.142 0.083
bookmarks DNF DNF DNF DNF DNF 0.119 0.017 0.096 DNF DNF 0.065 0.101
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Table B.15: The p-values of the assessment of performance of the multi-label learning approaches by the Friedman test using the label-based
evaluation measures. Subset shows the calculated p-values for the datasets on which all algorithms finished. All shows the calculated p-values for
all datasets including those which did not finished.

All Subset
Macro precision 35107 48107
Macro recall 2.8:10* 1.1.10™
Macro F; 3.1.10 9.8-10°
Micro precision 3.7.10° 3.4.10°®
Micro recall 3.6:10* 7.3.10°

Micro F 0.011 0.0022
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Figure B.9: The critical diagrams for the label-based evaluation measures: The results from the Nemenyi post-hoc test at 0.05 significance level on
all the datasets.
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Appendix B.3. Results on the ranking-based evaluation measures

30

Table B.16: The performance of the multi-label learning approaches in terms of the ranking loss measure. DNF (Did Not Finish) stands for the
algorithms that did not construct a predictive model within one week under the available resources).
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emotions 0.246 0.245 0.264 0.331 0.297 0.210 0.270 0.283 0.281 0.310 0.153 0.151
scene 0.060 0.064 0.065 0.103 0.119 0.169 0.174 0.093 0.104 0.103 0.079 0.072
yeast 0.164 0.170 0.163 0.296 0.205 0.225 0.199 0.172 0.259 0.224 0.173 0.167
medical 0.021 0.019 0.028 0.027 0.090 0.048 0.104 0.045 0.159 0.152 0.028 0.024
enron 0.084 0.083 0.078 0.177 0.183 0.120 0.114 0.093 0.283 0.238 0.083 0.079
corel5k 0.117 0.118 0.100 0.245 0.352 0.479 0.140 0.130 0.673 0.749 0.122 0.117
tmc2007 0.003 0.003 0.005 0.039 0.028 0.043 0.100 0.031 0.031 0.032 0.007 0.006
mediamill 0.061 0.062 0.092 0.101 0.177 0.073 0.063 0.055 0.236 0.258 0.047 0.047
bibtex 0.068 0.067 0.065 0.207 0.255 0.260 0.255 0.217 DNF 0.394 0.126 0.093
delicious 0.114 0.117 DNF DNF 0.379 0.174 0.172 0.129 DNF DNF 0.140 0.106
bookmarks DNF DNF DNF DNF DNF 0.194 0.258 0.181 DNF DNF 0.129 0.104

Table B.17: The performance of the multi-label learning approaches in terms of the one-error measure. DNF (Did Not Finish) stands for the
algorithms that did not construct a predictive model within one week under the available resources).
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emotions 0.386 0.376 0.391 0.391 0.411 0.347 0.386 0.406 0.396 0.426 0.277 0.262
scene 0.180 0.204 0.190 0.193 0.216 0.394 0.389 0.242 0.197 0.213 0.232 0.210
yeast 0.236 0.268 0.229 0.233 0.248 0.312 0.264 0.234 0.254 0.249 0.250 0.248
medical 0.135 0.123 0.168 0.165 0.216 0.198 0.612 0.279 0.312 0.315 0.243 0.174
enron 0.237 0.238 0.231 0.269 0.314 0.309 0.392 0.280 0.290 0.247 0.219 0.221
corelbk 0.660 0.674 0.588 0.592 0.652 0.762 0.776 0.706 0.758 0.992 0.644 0.608
tmc2007 0.029 0.026 0.033 0.033 0.050 0.145 0.306 0.190 0.047 0.052 0.071 0.006
mediamill 0.188 0.193 0.586 0.560 0.219 0.194 0.220 0.182 0.234 0.242 0.171 0.159
bibtex 0.346 0.342 0.388 0.380 0.466 0.529 0.783 0.576 DNF 0.666 0.544 0.433
delicious 0.354 0.367 DNF DNF 0.509 0.411 0.592 0.416 DNF DNF 0.368 0.332
bookmarks DNF DNF DNF DNF DNF 0.643 0.817 0.639 DNF DNF 0.607 0.541
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Table B.18: The performance of the multi-label learning approaches in terms of the coverage measure. DNF (Did Not Finish) stands for the
algorithms that did not construct a predictive model within one week under the available resources).
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emotions 2.307 2317 2.386 2.807 2.634 2.069 2.356 2.490 2.465 2.619 1.801 1.827
scene 0.399 0.417 0.423 0.631 0.739 0.945 0.964 0.569 0.635 0.625 0.495 0.461
yeast 6.330 6.439 6.286 8.659 7.285 7.105 6.705 6.414 7.983 7.153 6.276 6.179
medical 1.610 1471 2.036 1.832 5.324  3.033 5.813 2.844 8.520 7.994 1.889 1.619
enron 12530 12.437 11.763 22.746 24.190 17.010 14.920 13.181 30.509 27.760 12.485 12.074
corel5k 104.800 105.428 91.506 206.880 250.800 279.900 115.676 113.046 340.398 348.160 110.356 107.412
tmc2007 1.311 1.302 1.363 2.796 2.369 2.671 4572 2.155 2.498 2.494 1.416 1.219
mediamill 20.481 20.333 24.247 28.982 47.046 22.096 20.456 18.719 56.617 58.865 16.868 16.926
bibtex 20.926 21.078 18.540 57.343 65.626 58.016 58.599 56.266 DNF 87.841 32580 25.854

delicious 530.126 537.388  DNF DNF 933.956 620.155 691.622 589.898 DNF DNF 624.572 504.999
bookmarks DNF DNF  DNF DNF DNF 58.353 73.780 54.528 DNF DNF 40.903  34.185

Table B.19: The performance of the multi-label learning approaches in terms of the average precision measure. DNF (Did Not Finish) stands for
the algorithms that did not construct a predictive model within one week under the available resources).
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emotions 0.721 0.724 0.718 0.679 0.698 0.759 0.713 0.694 0.713 0.687 0.812 0.812

scene 0.893 0.881 0.886 0.864 0.848 0.751 0.745 0.851 0.862 0.856 0.862 0.874
yeast 0.768 0.755 0.768 0.698 0.740 0.706 0.724 0.758 0.715 0.734 0.749 0.757
medical 0.896 0.901 0.864 0.862 0.786 0.823 0.522 0.784 0.676 0.684 0.817 0.868
enron 0.693 0.695 0.699 0.604 0.604 0.629 0.546 0.635 0.522 0.576 0.680 0.698
corel5k 0.303 0.293 0.352 0.311 0.222 0.196 0.208 0.266 0.088 0.014 0.314 0.334
tmc2007 0.978 0.981 0.972 0.938 0.945 0.842 0.700 0.844 0.939 0.935 0.945 0.996
mediamill 0.686 0.672 0.450 0.492 0.583 0.669 0.654 0.703 0.492 0.453 0.728 0.737
bibtex 0.597 0.599 0.579 0.498 0.407 0.392 0.212 0.349 DNF 0.228 0.418 0.525
delicious 0.351 0.343 DNF DNF 0.231 0.321 0.206 0.326 DNF DNF 0.359 0.395

bookmarks DNF DNF DNF DNF DNF 0.378 0.213 0.381 DNF DNF 0.423 0.480

Table B.20: The p-values of the assessment of performance of the multi-label learning approaches by the Friedman test using the ranking-based
evaluation measures. Subset shows the calculated p-values for the datasets on which all algorithms finished. A/l shows the calculated p-values for
all datasets including those which did not finished.

All Subset
One error 2.2.107 5.310°
Coverage 1.1078 2.3107°
Ranking Loss 1.1078 1.2.10

Average precision 6.510™ 2.10™
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Critical Distance = 5.02426 Critical Distance = 5.02426

12 11 10 9 8 7 6 5 4 3 2 1 12 11 10 9 8 7 6 5 4 3 2 1

L L L L " L L L L L L ] L L L L L L L L L L L ]
ECC RF-PCT PCT RF-PCT
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Figure B.10: The critical diagrams for the ranking-based evaluation measures: The results from the Nemenyi post-hoc test at 0.05 significance level
on all the datasets.
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Appendix B.4. Results on the efficiency of the methods

33

Table B.21: The performance of the multi-label learning approaches in terms of the training time measures in seconds. DNF (Did Not Finish)

stands for the algorithms that did not construct a predictive model within one week under the available resources).

L
0 z 3
: L 3 : g > 5
« o 3 £ 3 2 5 2 % 3 £ I
o O Q o I = a = 04 o o 74
emotions 4.0 6.0 10.0 10.0 4.0 03 01 0.4 5.0 4.9 12 29
scene 71.0 99.0 195.0 195.0 68.0 80 20 14.0 79.0 319.0 10.0 23.0
yeast 145.0 206.0 672.0 6720 101.0 140 15 8.2 157.0 497.0 19.0 25.0
medical 18.0 28.0 40.0 40.0 16.0 30 06 1.0 82.0 103.0 7.0 27.0
enron 318.0 440.0 971.0 971.0 1580 150 11 6.0 4930  1467.0 25.0 47.0
corel5k 926.0 12250 2388.0 23880 7710 369.0 30.0 389.0 3380.0 20073.0 3850 902.0
tmc2007 42645.0 46704.0 52427.0 52427.0 31300.0 469.0 115 737.0 102394.0 92169.0 460.0 557.0
mediamill 85468.0 100435.0 260156.0 260156.0 78195.0 2030.0 440.0 1094.0 33554.0 188957.0 4056.0 8360.0
bibtex 11013.0 124340 13424.0 13424.0 2896.0 566.0 164 124.0 DNF 29578.0 645.0 1550.0
delicious 57053.0 84903.0 DNF DNF 21218.0 2738.0 70.0 236.0 DNF DNF 21776.0 5376.0
bookmarks DNF DNF DNF DNF  DNF 4039.0 965.0 15990.0 DNF DNF  5602.0 28900.0

Table B.22: The performance of the multi-label learning approaches in terms of the festing time measures in seconds. DNF (Did Not Finish) stands
for the algorithms that did not construct a predictive model within one week under the available resources).
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emotions 1.0 1.0 3.0 2.0 1.0 0.0 0.0 0.4 2.0 6.6 0.1 0.3
scene 25.0 25.0 87.0 40.0 210 1.0 0.0 14.0 72.0 168.0 2.0 1.0
yeast 23.0 25.0 153.0 64.0 17.0 0.1 0.0 5.0 70.0 158.0 0.5 0.2
medical 4.0 6.0 90.0 25.0 15 0.1 0.0 0.2 24.0 46.0 0.5 0.5
enron 50.0 53.0 634.0 1740 220 0.2 0.0 3.0 153.0 696.0 1.0 1.0
corel5k 250 31.0 2161.0 119.0 14.0 1.0 1.0 45,0 3613.0 2077.0 1.8 2.5
tmc2007 927.0 891.0 3282.0 1543.0 730.0 1.7 0.0 230.0 10985.0 10865.0 3.4 2.8
mediamill 6152.0 6125.0 76385.0 20317.0 6079.0 1.0 1.0 477.0 39001.0 50183.0 8.0 4.0
bibtex 654.0 661.0 16733.0 4710.0 155.0 6.5 0.0 64.0 DNF 10756.0 12.0 18.0
delicious 2045.0 1872.0 DNF DNF 816.0 19.0 10.0 55.0 DNF DNF 32.0 48.0
bookmarks DNF DNF DNF DNF DNF 21.0 15.0 4084.0 DNF DNF 28.0 58.0

Table B.23: The p-values of the assessment of performance of the multi-label learning approaches by the Friedman test using the efficiency
measures. Subset shows the calculated p-values for the datasets on which all algorithms finished. All shows the calculated p-values for all datasets
including those which did not finished.

All Subset
Training time 11078 11078
Testing time 1.1078 110"
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Figure B.11: The critical diagrams for the efficiency measures: The results from the Nemenyi post-hoc test at 0.05 significance level on all the
datasets.



