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Abstract: We present a hierarchical multi-label classification (HMC) system for medical image
annotation. HMC is a variant of classification where an instance may belong to multiple classes at the
same time and these classes/labels are organized in a hierarchy. Our approach to HMC exploits the
annotation hierarchy by building a single predictive clustering tree (PCT) that can simultaneously
predict all annotations of an image. Hence, PCTs are very efficient: a single classifier is valid for the
hierarchical semantics as a whole, as compared to other approaches that produce many classifiers,
each valid just for one given class. To improve performance, we construct ensembles of PCTs. We
evaluate our system on the IRMA database that consists of X-ray images. We investigate its
performance under a variety of conditions. To begin with, we consider two ensemble approches,
bagging and random forests. Next, we use several state-of-the-art feature extraction approaches and
combinations thereof. Finally, we employ two types of feature fusion, i.e., low- and high-level fusion.
The experiments show that our system outperforms the best-performing approach from the literature
(a collection of SVMs, each predicting one label at the lowest level of the hierarchy), both in terms of
error and efficiency. This holds across a range of descriptors and descriptor combinations, regardless
of the type of feature fusion used. To stress the generality of the proposed approach, we have also
applied it for automatic annotation of a large number of consumer photos with multiple annotations
organized in semantic hierarchy. The obtained results show that this approach is general and easily
applicable in different domains, offering state-of-the-art performance.



Cover Letter

Dear Editor,

Enclosed please find our updated manuscript entitled “Hierarchical Annotation of Medical
Images”. Following the comments and the suggestions from the reviewers, we have made
extensive correction and added some new material. The update can be summarized in three
major points: additional experiments on a general database of images (including a comparison
with state of the art approaches as suggested by the reviewers), running time results and
additional descriptions (as requested).

To show the generality of our approach, we performed experiments on a recent public
database with general photos that was used in the ImageCLEF@ICPR2010 competition. We
compare random forests of PCTs for HMC with the performance of SVMs with 3> kernel (which
is one of the most widely used approach for image annotation in the literature and the
competitions for image annotation). We show that our approach outperforms the SVMs both in
terms of predictive power and efficiency. Also, Mensink et al. (LEAR and XRCE's Participation
to Visual Concept Detection Task - ImageCLEF 2010) showed that per-label-trained linear SVM
classifiers outperform the TagProp system (an approach suggested as a baseline by the
reviewers). Thus, we conclude that our approach outperforms also TagProp.

Second, we added a table with running times. The table includes both the time needed for
learning/constructing the classifiers and time needed to produce an annotation for an unseen
image. Random forests of PCTs are approximately 5.5 times faster to construct than SVMs.
Furthermore, producing an annotation for an unseen image is approximately 165 times faster
than SVMs. With this, we clearly show that our approach is more efficient than the SVMs.

Third, we have included additional text in the manuscript to conform to the changes we
mentioned above and to the reviewers comments. To begin with, we have added a section that
presents related work and state-of-the-art approaches for image annotation. Next, we have added
a sub-section that further describes the PCTs framework and its application for hierarchical
classification. We have also added several paragraphs of text in the introduction that describe the
wider context of the problem we are solving and the possible use of such a system. Finally, we
have further discussed and commented on the results.

To summarize, the updated version of the manuscript includes all comments and suggestions
from the reviewers. Our approach outperforms state-of-the-art approaches (SVMs) for image
annotation on both medical images and general photos. Moreover, our approach is much more
computationally efficient than the SVMs: it is 5.5 times faster to train and 165 times faster to
produce an annotation for an unseen image. All in all, we propose a system that offers several
advantages over the current state-of-the-art approaches in image annotation.

Hoping that you will find the revisions that we have made adequate, we look forward to hearing
from the reviewers and yourself,
Ivica Dimitrovski and co-authors
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*Response to Reviewers

Dear reviewers,

Thank you kindly for your extensive comments on our manuscript. We value your input highly
and have done our best to revise our manuscript in light of your comments. In the following, we
address your comments in the order in which they were given in the letter from the editor to the
authors.

Reviewer #3:

The work described in this manuscript is an evaluation / application-type report. The authors
apply a general multi-label classification method (PCT) they published elsewhere (Vens et al,
Machine Learning 2008, earlier incarnations since late 1990s) to the problem of medical image
classification (X-ray images in particular). The authors evaluate the utility of PCT across four
different feature types, two ensemble methods, two different fusion architectures, and contrast it
to SVM classification that does not utilize the multi-label structure of annotations. In the end,
they conclude that a certain subset of features coupled with one ensemble approach and one
level of fusion with PCT outperforms unstructured SVMs on two competition datasets.

=>>>>

The major concern of Reviewer #3 is that the conclusions we make are overly general. In
essence, we would not be justified in stating that ensembles of PCTs perform better than SVMs
if we only show their superior performance under a very specific set of conditions. To paraphrase
the comment by the reviewer, we should not conclude that PCTs outperform unstructured SVMs
in general, if we only show that for a certain subset of features coupled with one ensemble
approach, one type of fusion and two competition datasets of the same type, namely X-Ray
images.

To address the last of these issues, i.e., the comparison on only one type of dataset, we
include in the revised version of the paper a comparison on a new dataset consisting of general
images. The conclusions drawn from experiments on this dataset are exactly the same as those
for the X-Ray image datasets, thus adding evidence of the generality of our approach and the
conclusions we make from the experimental evidence. The other concerns, namely on the subset
of features, the type of ensemble approach and type of fusion, were already addressed in the
original submission. We explore two ensemble approaches, namely bagging of PCTs and random
forests of PCTs. Both are shown to have superior performance than the SVM based approach.
Concerning the different sets of features, the conclusion on the superiority of PCTs over SVMs
holds across all of the different types of features and their combinations and not only on a
specific subset of features. The conclusions also hold regardless of the type of fusion used: that is
both for low-level and high-level fusion, the relative performance of the PCTs and SVMs
remains the same, with low-level fusion giving better performance overall.

We have now reformulated our statements in the conclusion section to make this clear.

The work presented is certainly interesting in that it demonstrates a possible utility of structured
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approaches over a somewhat comprehensive set of features. Yet, there are several major issues
that concern me here:

1) To me, the paper demonstrates the utility of ensemble methods rather than structured
approaches. Every single row (feature/fusion combination) in Tables 1 & 2 shows that PCT
alone underperforms (significantly) compared to the unstructured SVM. Only with the addition
of ensemble methods does the structured approach gain ground. Unfortunately, the authors do
not pursue the next obvious step: contrast ensembles of PCTs to ensembles of SVMs. Only this
setting would more definitely demonstrate the utility of structured approached. Of course, one
could have also considered structured SVMs here, which one should comment on.

=>>>>

When we designed the experimental setup, our goal was to compare the performance of
ensembles of PCTs with the approach that is most widely used by the image annotation
community: SVMs (Mensink et al. 2010). It is true that the SVMs outperform single PCTs.
However, we offer four explanations as to why we compare ensembles of PCTs and SVMs.

First, we would like to note that the SVMs (trained in a one-vs-all strategy) are already an
ensemble that consists of |C| classifiers, where |C| is the sum of nodes in the annotation
hierarchy. The SVMs in this setting can be viewed as an ensemble that consists of |C| classifiers.

Second, Vens et al. (2008) show that training PCTs per class is inferior to a PCT for the
whole hierarchy. Thus, we use PCTs for the whole hierarchy as a base classifier.

Third, the ensembles are able to lift the predictive performance of a single classifier in the
case of classification and regression. While it is well known that ensembles lift the predictive
performance of a single classifier in the case of classification and regression trees, it is not
obvious that the lift carries over to PCTs for predicting structured outputs (HMC in our case). In
the case when the base classifiers are decision trees, Bauer and Kohavi (1999) conclude that the
increase in performance is related to the trees being unpruned, i.e., overfitting. On the other
hand, Blockeel et al. (2006) state that PCTs for HMC overfit less than the single classification
approach. Having in mind these two conflicting influences, it is not obvious whether an
ensemble of PCTs will significantly increase the predictive performance of a single PCT.
Moreover, the use of PCTs for HMC (and ensembles thereof) has not been investigated in the
context of image annotation.

Fourth, the machine learning community hasn't reached a consensus whether and how
ensembles of SVMs should be constructed. To begin with, the literature suggests that bagging
gives best predictive performance when unstable learners are used as base classifiers (such as
decision trees and neural networks). An unstable classifier is the one that will change greatly,
when a small change in the learning set occurs (Breiman, 1996). Next, a theoretical and
empirical evaluation of ensembles from SVMs is performed in (Evgeniou 2000; Evgeniou et al.,
2000). There they consider two types of ensembles: bagging of SVMs (each SVM is constructed
on bootstrap replicate) and voting SVMs (each SVM is constructed using different kernel and on
different feature sub-space). The findings of this study, in this context were: ... with appropriate
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tuning of the parameters of the machines, combining SVMs does not lead to performance
improvement compared to a single SVM.” and that “With accurate parameter tuning (model
selection) single SVMs and ensembles of SVMs perform similarly.” On the other hand, there
exists some approaches that justify the usage of SVMs in the context of an ensemble (Hyun-Chul
et al., 2003; Valentini and Dietterich, 2002; Wang et al., 2007). Valentini and Dietterich (2002)
consider bagging of low-bias-SVMs and heterogeneous ensembles and combination of SVMs
with different kernel parameters (in their case RBF kernel with different o). Hyun-Chul et al.
(2003) consider bagging and boosting of SVMs. Wang et al. (2007) first perform clustering of
the instances. Then small quantities of representative instances from the clusters are chosen as
training subsets to construct the SVMs. However, these works are done typically in the context
of binary or multi-class classification and mainly on a small number of domains (typically three
per study) UCI domains. Moreover, there are also practical implications in terms of efficiency of
such an ensemble, especially when a prediction for unseen example needs to be generated. Since
in our work we do perform parameter tuning for the SVMs, we believe that making an ensemble
of SVMs will not bring further (significant) improvements of the predictive performance. To the
best of our knowledge, these (and similar to them) approaches are not used by the image
annotation community.

There exist few implementations of structured SVMs. However, the most well-known,
such as SVM-struct (Joachims 2010; Tsochantaridis et al., 2004), do not offer facilities for HMC.
Those that do, are very recent (Gartner and Vembu , 2009), have high computational complexity
and are not used by the image annotation community. We compare our performance to image
annotation approaches that are currently state-of-the-art in this area (Guillaumin et al., 2009;
Makadia et al., 2008; Mensink et al., 2010). We show that our approach exhibits superior
performance over these approaches (see also response to Reviewer #2).

E. Bauer, and R. Kohavi (1999). An empirical comparison of voting classication
algorithms: Bagging, boosting, and variants. Machine Learning, 36(1), 105-139.

H. Blockeel, L. Schietgat, J. Struyf, S. Dzeroski, and A. Clare (2006). Decision trees for
hierarchical multilabel classification: A case study in functional genomics, Knowledge
Discovery in Databases: PKDD 2006, LNCS vol. 4213, pp. 18-29.

L. Breiman (1996). Bagging Predictors, Machine Learning 24(2), p. 123-140

T. Evgeniou (2000). Learning with kernel machine architectures, PhD thesis,
Massachusetts Institute of Technology - MIT, 2000

T. Evgeniou, L. Perez-Breva, M. Pontil, and T. Poggio (2000). Bounds on the
generalization performance of kernel machines ensembles, In Proceedings of 17th International
Conference on Machine Learning, Stanford, California

T.Gartner, and S.Vembu (2009). On structured output training: hard cases and an
efficient alternative. Machine Learning 76(2-3), p. 227-242

M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid (2009). Tagprop: Discriminative
metric learning in nearest neighbor models for image auto-annotation, International Conference
on Computer Vision, 309-316, 2009

K. Hyun-Chul, P. Shaoning, J. Hong-Mo, K. Daijin, and B. Sung Yang (2003).
Constructing support vector machine ensemble, Pattern Recognition 36(12), p. 2757-2767
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T. Joachims (2010). SVMstruct - Support Vector Machine for Complex Outputs, web
page: http://www.cs.cornell.edu/People/tj/svm_light/svm_struct.html, accessed on 17.11.2010

A. Makadia, V. Pavlovic, and S. Kumar (2008). A New Baseline for Image Annotation.
Computer Vision — ECCV 2008, LNCS vol. 5304, pp. 316-329

T. Mensink, G. Csurka, F. Perronnin, J. Sanchez, and J. Verbeek (2010). LEAR and
XRCE's Participation to Visual Concept Detection Task - ImageCLEF 2010, CLEF (Notebook
Papers/LABs/Workshops), 2010

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun (2004). Support Vector
Learning for Interdependent and Structured Output Spaces, Proceedings of 21st International
Conference on Machine Learning, ICML

G. Valentini, and T. G. Dietterich (2002). Bias—Variance Analysis and Ensembles of
SVM, LNCS vol. 2364, 2002, pp. 27-38

C. Vens, J. Struyf, L. Schietgat, S. Dzeroski, and H. Blockeel (2008). Decision trees for
hierarchical multi-label classification, Machine Learning 73(2), p. 185-214

C. Wang, H. Yuan, J. Liu, T. Zhou, and H. Lu (2007). A Novel Support Vector Machine
Ensemble Based on Subtractive Clustering Analysis,LNCS vol.4426, pp.849-856

2) What is the overall *general* message of this work? One may conclude (putting aside my
comments above) that on Xray images PCT with ensembles has a certain benefit over SVMs. But
what are the drawbacks of PCT, in the context of images? Would this setting with equal
conclusions generalize to other image classification problems? Why does this particular feature
combination outperform others? (A consequence of the spatial pyramid choices, number of
words in the SIFT formulation,...) Why the low level fusion? Basically, the discussion section
restates results from the two tables but offers no other insightful discussions to the reader that
would shed light on the inner working of the approach nor help him/her generalize conclusions
to other contexts. This seriously undermines the value of this manuscript.

=>>>>

We consider the question on what is the overall general message of this work to be the
crucial question by Reviewer #3. To address this question, we have reformulated the conclusions
section to give a direct answer and we have expanded the results and discussion section. In short,
the overall general message of our work is that ensembles of PCTs for HMC are a superior
alternative, both in terms of performance and in terms of efficiency, to the most commonly used
approach in image annotation, that is collections of SVMs.

Our conclusions are general since we explore the two approaches under a wide range of
conditions. To begin with, we consider three different datasets: two medical X-ray images and
one general photos. Next, we consider several state-of-the-art feature extraction approaches and
combinations thereof. Furthermore, we consider two types of feature fusion, i.e., low- and high-
level fusion. All in all, our approach shows better performance under all of the mentioned
conditions, both in terms of predictive performance (Tables 1, 2 and 4) and efficiency (Table 3).

The discussion section primarily focuses on answering the questions stated in the
“Experimental questions” section (Section 5.3 from the manuscript). We have expanded the
discussion section to include explanations and clarifications on the issued raised by the reviewer,
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such as drawbacks of PCTs, why low-level fusion, computational complexity. The discussion
section now provides further comments on the sources of difference in the performance.
Moreover, to show the generality of our approach, we have performed experiments on a database
with general photos. The conclusions are the same as for the medical images.

3) | find the manuscript somewhat sloppily put together.

a) Most of the text is the discussion of features and the experimental evaluation (again, setting
aside my comments in 2 above.) PCT is described in one paragraph that tells one nothing about
how PCT is actually constructed, neither for training nor (especially) in query evaluation. The
authors refer to their work in ML journal. Even their preceding conference work (SIKDD'08)
had more details about the PCT framework. For completeness | certainly would like to see a
more comprehensive description of the PCT algorithm in this manuscript.

=>>>>

Done. We have added a new section “Predictive clustering trees” where we explain in more
details the Predictive clustering trees framework.

b) There are a number of places where the notation is not clear, terms are not defined, or
essential information is missing. For instance:

- All references are missing titles
=>>>>

Done. Corrected, the problem was the wrong class in the tex file.

- Is spatial pyramid used for EHD? This is not stated in the EHD section but later on (p. 15) the

authors claim that spatial pyramid is used for EHD features.
=>>>>

Done. We have corrected this, for the EHD descriptor we didn’t use spatial pyramid.

- p. 22: "highest probabilities reported from the SVM classifier" - where do prediction
probabilities of SVM come from? Platt-type normalization?
=>>>>

For the general photo annotation we used Platt’s probabilities, while for defining the threshold
in the medical image annotation experiments we are using the distances of the test sample to the
hyperplanes.

- What is the asterisk notation in 6b? "don't care"?

=>>>>
Done. We modified this.

- Please restate what _LL and _HL means in table captions.
=>>>>
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Done.

4) The authors state that one benefit of PCT vs SVM is scalability (at training time). There is
very little empirical evidence presented, eg. running times.

Also, it is the ensemble of PCTs that outperforms the SVM and, at evaluation time, the ensemble
has additional overhead over the single SVM evaluation. It would be worth commenting more
explicitly on this.

=>>>>

We have included a new Table (namely Table 3 from the manuscript) with total training time and
test time per image for all descriptors and their combinations for all of the considered learning
methods. These results now clearly show that random forests of PCTs are much more efficient
than SVMs both in terms of training time and testing time.
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Reviewer #2:

This paper presents a multi-label classification system for medical image annotation. The
proposed system is mainly based on the ensemble of the predictive clustering trees and four
different visual feature extraction methods are also applied to the system. The experiments are
conducted on IRMA database for performance evaluation and the experimental results show that
the system outperforms the ordinary SVM based approach. The topic of medical image
annotation is very interesting and the paper has indeed conducted some interesting experiments,
for instance, fusion different visual features for multi- label classification, however, the novelty
of the paper seems insufficient for publication in the journal. The technical contribution of the
paper is modest: the presented ensemble method seems simple; the method of predictive
clustering tree had been published in previous literature; and the four visual feature extraction
methods are also well known for the community.

=>>>>

This paper presents contributions to the fields of ensemble learning, predicting structured
outputs and image annotation. First, the performance lift from a single PCT to an ensemble of
PCTs does not follow automatically, as explained bellow. In this work, we show that ensembles
can lift the performance of their base classifiers even in the case when the output is a structure.
Next, we show that the methods that exploit the structure of the output can perform better than
the methods that perform flat classification. Here, we emphasize the last contribution: image
annotation. We focus on the selection of the appropriate feature extraction technique for medical
images and their combinations. We present novel results that show that some other classifiers
(than the typically used SVMs) can perform better, not only in terms of efficiency but also in
terms of predictive power. The results from the experiments offer new insights in the area of
medical image annotation. Furthermore, we demonstrate the generality of the proposed method
by comparing its performance with state-of-the art approaches on a recent database with general
photos.

While it is well known that ensembles lift the predictive performance of a single classifier in
the case of classification and regression trees, it is not obvious that the lift carries over to PCTs
for predicting structured outputs (HMC in our case). In the case when the base classifiers are
decision trees, Bauer and Kohavi (1999) conclude that the increase in performance is related to
the trees being unpruned, i.e., overfitting. On the other hand, Blockeel et al. (2006) state that
PCTs for HMC overfit less than the single classification approach. Having in mind these two
conflicting influences, it is not obvious whether an ensemble of PCTs will significantly increase
the predictive performance of a single PCT. Moreover, the use of PCTs for HMC (and ensembles
thereof) has not been investigated in the context of image annotation.

E. Bauer, and R. Kohavi (1999). An empirical comparison of voting classication
algorithms: Bagging, boosting, and variants. Machine Learning, 36(1), 105-139.

H. Blockeel, L. Schietgat, J. Struyf, S. Dzeroski, and A. Clare (2006). Decision trees for
hierarchical multilabel classification: A case study in functional genomics, Knowledge

Dimitrovski et al. “Hierarchical Annotation of Medical Images” - Response to reviewers



Discovery in Databases: PKDD 2006, LNCS vol. 4213, pp. 18-29.

Automatic image annotation is an important topic and has been studied for nearly decade. So,
there is a great deal of literature on the topic and some of the state-of-the-art approaches are on
multi-label classification for image annotation. Although, this paper deals with the problem on
medical image annotation, it is still strongly related with the general problem. But, there is the
lack of sufficient related literature reviews in the paper. For the performance evaluation, the
proposed system is not compared with the state-of-the-art image annotation approaches, such as
"A.Makadia et al. A New Baseline for Image Annotation”, "M. Guillaumin et al. Tagprop. " and
other multi-label classification based approaches.

=>>>>

To address this valid comment, we have added a new section “Related work” and
performed additional evaluation on a database with general photos. In this section we give a
short overview of the current state-of-the-art work in the field of image annotation. Considering
the mentioned papers, we would like to point out a recent study performed by Mensink et al.
(2010) which showed that per-label-trained-linear SVM classifiers outperform TagProp
(Guillaumin et al. 2009). Moreover, Guillamin et al. (2009) show that TagProp outperforms the
system presented in Makadia et al. (2008). Furthermore, the best results on the current
challenges/competitions detection and annotation tasks, such as the PASCAL Visual Object
Classes challenge, the ImageCLEF medical image annotation task and the ImageCLEF visual
concept detection and annotation tasks are obtained using binary classifiers for each visual
concept. As binary classifier, they usually use SVM with ¥ kernel, which is the baseline in our
case.

We also performed additional experiments on the ImageCLEF@ICPR2010 database and
compare our results with the results obtained using SVMs with x* kernel. On this database,
random forests of PCTs outperform SVMs both in terms of predictive power and efficiency.
Since, SMVs with y* kernel outperform TagProp (Mensink et al., 2010), we can conclude that
our method also outperforms both TagProp (Guillaumin et al, 2009) and the baseline from
Makadia et al. (2008).

T. Mensink, G. Csurka, F. Perronnin, J. Sanchez, and J. Verbeek (2010). LEAR and
XRCE's Participation to Visual Concept Detection Task - ImageCLEF 2010, CLEF, 2010

M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid (2009). Tagprop: Discriminative
metric learning in nearest neighbor models for image auto-annotation, International Conference
on Computer Vision, 309-316, 2009

A. Makadia, V. Pavlovic, and S. Kumar (2008). A New Baseline for Image Annotation.
Computer Vision — ECCV 2008, LNCS vol. 5304, pp. 316-329

The writing of the paper is generally understandable, but the style of the reference is uncommon,
all the titles of the reference papers are missing.

=>>>>
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Done. The problem was in the wrong class in the tex file, this problem is corrected.

Reviewer #1:

This is a well written paper with good experimental design and reporting. My only issue with the
paper is the significance of the problem being addressed. All medical imaging modalities
following DICOM standards allow the entering the information recovered from the PR system,
and is is a mandatory component of all clinical protocols that | am aware of. More evidence on
the need for automating this type of annotation would seem to needed. What is the probability of
operator error relative to the method presented in the paper? Would this be used for
retrospective annotation (pre DICOM) or for verification purposes? More context on the
problem and how the proposed solution fits into the clinical workflow would improve the paper.
=>>>>

We have added text in the introduction that clarifies and explains the issues raised by this
reviewer. The text is along the following lines:

“Automatic image annotation or image classification is an important step in image retrieval.
In the medical domain, using information directly extracted from images to annotate/categorize
them will improve the quality of image annotation in particular, and more generally the quality
of patient care. Properly classified medical image data can help medical professionals in fast and
effective access to data in their teaching, research, training, and diagnostic problems. The results
of the classification step can also be used for multilingual image annotation as well as for
DICOM header correction.

Automatic image annotation can be used for retrospective annotation (pre DICOM). It can
also be used as help for human annotators (i.e., radiologists), where the annotations that are
suggested by the system are corrected/verified/confirmed by the human annotator. The limits of
performance of an automated annotation system that learns from example images annotated by
humans, is the rate /probability of operator error/agreement of annotators.

Automatic image annotation uses a computer system which automatically assigns metadata
in the form of captions or keywords to a digital image. Typically, image analysis first extracts
feature vectors. Together with the training annotations, they are then used by a machine learning
algorithm to learn to automatically assign annotations. The performance of the computer system
largely depends on the availability of strongly representative visual features, able to characterize
different visual properties of the images, and the use of effective algorithms for training
classifiers for automatic image annotation.”
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Hierarchical Annotation of Medical Images
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Abstract

We present a hierarchical multi-label classification (HMg3tem for medical image annotation.
HMC is a variant of classification where an instance may lgetormultiple classes at the same
time and these clasgtbels are organized in a hierarchy. Our approach to HMCoétgthe an-
notation hierarchy by building a single predictive clustgrtree (PCT) that can simultaneously
predict all annotations of an image. Hence, PCTs are v#igient: a single classifier is valid
for the hierarchical semantics as a whole, as compared & appjproaches that produce many
classifiers, each valid just for one given class. To impramfgymance, we construct ensembles
of PCTs. We evaluate our system on the IRMA database thatstemg X-ray images. We in-
vestigate its performance under a variety of conditionshdgin with, we consider two ensemble
approches, bagging and random forests. Next, we use setatedof-the-art feature extraction
approaches and combinations thereof. Finally, we employtywes of feature fusion, i.e., low-
and high-level fusion. The experiments show that our sysiatperforms the best-performing
approach from the literature (a collection of SVMs, eachdfmting one label at the lowest level
of the hierarchy), both in terms of error anffieiency. This holds across a range of descriptors
and descriptor combinations, regardless of the type ofifedtision used. To stress the general-
ity of the proposed approach, we have also applied it forraatiz annotation of a large number
of consumer photos with multiple annotations organizedemantic hierarchy. The obtained
results show that this approach is general and easily aghian diferent domains, féering
state-of-the-art performance.

Keywords: Automatic Image Annotation, Hierarchical Multi-Label Gification, Predictive
Clustering Trees, Feature Extraction from Images

1. Introduction

Digital imaging in medicine is in constant growth due to thereasing availability of imag-
ing equipment in hospitals. Average-sized radiology depants now produce several tera-bytes
of data annually. This prompts foffient systems for image annotation, storage, retrieval and
mining. Typically, medical image databases are accessetkxtual information through the
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standard Picture Archiving and Communication System (PACI5[2]. PACS integrates imag-
ing modalities and interfaces with hospital and departedenformation systems to manage
storage and distribution of images to medical personnsgaechers, clinics, and imaging cen-
ters. An important requirement of PACS is the provision oéfiitient search function to access
the required images.

An universal format for PACS image storage and retrievahésDigital Imaging and Com-
munications in Medicine (DICOM) standard [3]. DICOM is a Wehown standard for handling,
storing, printing, and transmitting information in mediagaaging. The DICOM header con-
tains tags to decode the body part examined, the patiertiggoaind the acquisition modality.
Some of the tags are automatically set by the digital systerording to the imaging protocol
used to capture the pixel data. Other part of the tags are @etally by the physicians or ra-
diologists during the routine documentation. This procediannot always be considered very
reliable, since frequently happens that some entries #reranissing, false, or do not describe
the anatomic region precisely [4]. Furthermore, manuabéation of images is an expensive
and time-consuming procedure, especially given the langecanstantly growing databases of
medical images. Thus, completely automated categorizatierms of DICOM tags is currently
not possible, but is highly desirable.

Automatic image annotation or image classification is anartgmt step in image retrieval.
In the medical domain, using information directly extracteom images to annotatmategorize
them will improve the quality of image annotation in partanyand more generally the quality
of patient care. Properly classified medical image data efm imedical professionals in fast
and dfective access to data in their teaching, research, traiaimg) diagnostic problems. The
results of the classification step can also be used for imgjtibl image annotation as well as for
DICOM header correction [5].

Automatic image annotation can be used for retrospectivetation (pre DICOM). It can
also be used as help for human annotators (i.e., radio®)gishere the annotations that are
suggested by the system are correttedfied'confirmed by the human annotator. The limits of
performance of an automated annotation system that leeonmsdxample images annotated by
humans, is the ratprobability of operator errgagreement of annotators.

Automatic image annotation uses a computer system whignatically assigns metadata
in the form of captions or keywords to a digital image. Tyflicamage analysis first extracts
feature vectors. Then, together with the training annotetithey are used by a machine learning
algorithm to learn to automatically assign annotationse pérformance of the computer system
largely depends on the availability of strongly represtveavisual features, able to characterize
different visual properties of the images, and the us&eftive algorithms for training classifiers
for automatic image annotation.

A single image may contain fierent meanings organized in hierarchical semantics: hence
hierarchical multi-label classification (HMC) is strongBcommended for obtaining multi-label
annotations. The task of multi-label classification is teigis multiple labels to each image. The
assigned labels are a subset of a previously defined setrardtig of labels. HMC is used in
various domains [6], such as text classification, scene atab\classification, medical imaging
and biological applications. One of the main issues inwivemulti-label classification is the
importance of detecting and incorporating the connectimis/een the labels into the process
of assigning multiple labels. A second and related issuedstiditional complexity involved in
learning multi-label classifiers, as compared to learningle-label classifiers.

In this paper, we present a HMC system for medical image atioot This system consists
of the two standard parts of image annotation systems piecessing (feature extraction) and
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classification of images. The image processing part uses-atahe-art approaches to convert
an image to a set of numerical features extracted direaiy the pixel values. The image clas-
sification part, which labels and groups the images, costdie main novelty of our approach:
The labels can be organized in a hierarchy and an image catbket with more than one label
(an image can belong to more than one group).

First, we generate four flerent types of descriptors suitable for X-Ray medical insage
raw pixel representation (RPR) [7], local binary patternnBR) [8], edge histogram descriptors
(EHD) [9], and scale-invariant feature transform (SIFTQ][1The features are generated using
the medical X-ray images from the ImageCLEF2009 medicab@annotation task [5]. Next,
we use these features together with the annotations tottraiolassifiers. In particular, we use
ensembles (bags and random forests) of PCTs for HMC and SuMirfgle-label classification,
the most widely used classifier in the area of image annotafibthe end, we assess the predic-
tive performance of the classifiers using the hierarchicareneasure (HEM) from ImageCLEF
[5] and overall recognition rate (RR), commonly used foreasing the predictive performance
over the database we use.

The main question that we address in our research is whethkriting the semantic knowl-
edge about the inter-class relationships among the imagésléorganized in a hierarchical struc-
ture) can improve the predictive performance of a systeraditsmatic image annotation. To this
end, we compare the predictive performance of the ensermble€Ts for HMC (that predict
all labels simultaneously) to that of SVMs (each of them oty a single label). We do this
across all feature extraction techniques, thus evalu#timditerent feature extraction techniques
and their use in HMC of medical X-ray images. Moreover, weestigate whether (and which
type of) combination of feature extraction techniquesdadbetter predictive performance. We
consider low level (LL) and high level (HL) feature fusjgpmbination schemes [7].

To emphasize the generality of our approach, we have altsdtéson the database of gen-
eral images from the ImageCLEF@ICPR 2010 photo annotadisk [tL1]. The images in this
database are annotated with 53 visual concepts organizedlassification scheme with hier-
archical structure, which we used to build ensembles of FGTBIMC as classifiers. The 53
concepts include abstract categories (like partylife,tittme of day (like day or night), persons
(like no person visible, small or big group) and quality éliklurred or underexposed). A com-
plete overview of the task is given by Nowak [11].

The remainder of the paper is organized as follows. In Se@iowe give an overview of
related work. Section 3 introduces predictive clusteriegs$ and their use for HMC. Section
4 describes the techniques for feature extraction from @madn Section 5, we explain the
experimental setup for annotating medical images. Thamddaesults and a discussion thereof
are given in Section 6. Section 7 describes the experimerasnotation of general images, as
well as their results. Section 8 concludes the paper andgoirt some directions for further
work.

2. Related work

Regardless of the number of visual concepts that have toavedd and their mutual con-
nections, most of the present systems for annotation ofrgeimeages (and medical images in
particular) learn a separate model for each visual condapel], i.e., they treat the classes as
completely separate and independent (both visually anésgecally). This means that multi-
label classification problems are transformed into sevarary classification problems. For
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example, the methods with high predictive performanceagmechallenggsompetitions in de-
tection and annotation tasks (such as the PASCAL Visual @lgj¢asses challenge [12], the
ImageCLEF medical image annotation task [13], [5] and thadeCLEF visual concept detec-
tion and annotation task [14]) perform multi-label clagsifion by building binary classifiers
for each label. The instances associated with particulssi lare in one class and the rest are in
another class. For solving the binary classification proisidgs common to use a SVM withy&
kernel [15]. This means that the increase of the number ef$alsed for annotation will linearly
increase the complexity of such an approach.

To deal with a large number of categoyelasses, many approaches combine binary classi-
fiers using class hierarchies [16], [17]. This results in galithmic increase of complexity as
the number of labels increases. The class hierarchies cantbmatically constructed through
analysis of visual similarities: this can proceed top-ddayrrecursive partitioning of the set of
classes [18] or bottom-up by agglomerative clustering.[T®e hierarchies could also be found
by exhaustive search or random sampling followed by cradistation [20].

An alternative method for automatic construction of hiehégs is to query an external se-
mantic network with class labels [17]. Since semantic neétwonodel concepts and relations
between them, a subgraph in the form of a hierarchy can bly exsiacted. Such an approach
allows to incorporate prior knowledge about object ideritito the visual recognition system.
Our approach to automatic image annotation is based ondb& i We exploit the semantic
knowledge about the inter-class relationships among tiagétabels organized in a hierarchical
structure. We build one classifier that can simultaneousdyglipt all annotations of an image,
instead of building one binary classifier for each node inhieearchy.

Another popular approach to image annotation is TagPrdp T2GProp is a discriminatively
trained nearest neighbor model. Tags of test images arécfgddising a weighted nearest-
neighbor model to exploit labeled training images. Neighbeights are based on neighbor rank
or distance. TagProp allows the integration of metric leayy directly maximizing the log-
likelihood of the tag predictions in the training set. Howg\n a recent study, Mensink et al.[22]
showed that per-label-trained linear SVM classifiers odigyen TagProp.

3. Ensembles of PCTsfor HMC

3.1. The task of HMC

Hierarchical multi-label classification is a variant ofsd#fication where (1) a single example
may belong to multiple classes at the same time and (2) thalje<lasses are organized in a
hierarchy. An example that belongs to some ctagatomatically belongs to all super-classes of
c: This is called the hierarchical constraint. Problems &f kind can be found in many domains
including text classification, functional genomics, andealiscene classification. For a more
detailed overview of the possible application areas wer tbfereader to Silla and Freitas[6].

In medical image classification, the application domain driciv we focus, an important
problem is the development of an automatic image annotatystem, which can specify the
image modality, body orientation, body region, or the biidal system examined. In this do-
main, the predefined set of labels might be organized in a sgerizgierarchy, such as the one
shown in Fig. 1. Each image is represented with: (1) a set sérifgors (in this example, the
descriptors are histograms of five types of edges encouhiethe image) and (2) a set of la-
belgannotations. A single image can be annotated with multgddels at dierent levels of the
predefined hierarchy.



features/descriptors |
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48| 24 | 59 | 66 | 37 | ... | corvical spine@
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Figure 1: An example task of HMC in a medical domain. The tgbfethe left-hand side) contains a set of images with
their visual descriptors and annotations. The annotatioapart of the IRMA [23] hierarchical classification schefoie
which a small part is shown on the right hand side).

yes- no

yes no yes no

lumbar spine 0.84
upper lumbar spine 0.62
ureter 0.51 yes no
cervical spine 0.81 renal pelvis 0.87
musculosceletal 0.75 parenchyma 0.80

middle abdomen 0.72 axis 0.74

Figure 2: An example of a predictive clustering tree corgérd using the descriptors from Fig. 1. The internal nodes
contain tests on the descriptors, while the leafs store rthlegbilities that an image is annotated with a given lalmhfr
the hierarchy.

For example, the image in the second row of the table in Ficasltivo labels, middle ab-
domen and renal pelvis, listed explicitly. Note that thigige is also implicitly labeled with the
labels: anatomy, abdomen, kidney, uropoietic and bioesystThese labels are all ancestors of
the explicitly listed labels in the given hierarchy.

The data, as presented in the table in the left-hand sidegofiFiconstitute a data set for
HMC. This set can be used by a machine learning algorithmaia & classifier for HMC. For
images in the testing set only the descriptors are given ardpmiori annotations.

3.2. Predictive clustering trees

Predictive Clustering Trees (PCTs) [24]generalize decision trees [25] and can be used
for a variety of learning tasks includingftérent types of prediction and clustering. The PCT
framework views a decision tree as a hierarchy of clustérs:itap-node of a PCT corresponds
to one cluster containing all data, which is recursivelytiianed into smaller clusters while
moving down the tree. The leaves represent the clustere dbwrest level of the hierarchy and
each leaf is labeled with its cluster’s prototype (predia}i Note that the hierarchical structure
of the PCT (Fig. 2) does not necessary reflect the hierarcéticecture of the annotations (Fig.
1).

1The PCT framework is implemented in the CLUS system, whichvizilable ahttp: //www.cs.kuleuven.be/
~dtai/clus.
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PCTs are built with a greedy recursive top-down inductioDIjTalgorithm, similar to that
of C4.5 [26] or CART [25]. The learning algorithm starts byesging a test for the root node.
Based on this test, the training set is partitioned into stgbaccording to the test outcome.
This is recursively repeated to construct the subtrees. pHntitioning process stops when a
stopping criterion is satisfied (e.g., the number of recardhe induced subsets is smaller than
some predefined value; the length of the path from the rodiéactirrent subset exceeds some
predefined value etc.). In that case, the prototype is catledland stored in a leaf.

One of the most important steps in the TDI algorithm is thé¢ $e¢ection procedure. For
each node, a test is selected by using a heuristic functiorpated on the training examples.
The goal of the heuristic is to guide the algorithm towardsléirees with good predictive
performance. The heuristic used in this algorithm for d@tgahe attribute tests in the internal
nodes is the reduction in variance caused by partitioniagtstances, where the variantar(S)
is defined by (Equation 1). Maximizing the variance reduttivaximizes cluster homogeneity
and improves predictive performance.

The main diference between the algorithm for learning PCTs and an éigoifor learning
decision trees (such as C4.5 [26] and CART [25]) is that then&y considers the variance func-
tion and the prototype function (that computes a label fahdaaf) as parameters that can be
instantiated for a given learning task. So far, the PCTs haen instantiated for the following
tasks: multiple targets prediction [27], [28], predictioitime-series [29] and hierarchical-multi
label clasdiication [30]. In this article, we focus on the last of thes&sas

3.3. PCTs for hierarchical multi-label classification

To apply PCTs to the task of HMC, the example labels are repted as vectors with
Boolean components. Components in the vector correspoliathéds in the hierarchy traversed
in a depth-first manner. Thieth component of the vector is 1 if the example belongs tosatas
and 0 otherwise. I¥; = 1, thenv; = 1 for all vj’s on the path from the root tq.

The variance of a set of example&) s defined as the average squared distance between each
example’s label; and the mean labelof the set, i.e.,

¥ d(vi, v)?

var(S) = ——

S| 1)

The higher levels of the hierarchy are more important: aorextrthe upper levels costs more
than an error at the lower levels. Considering this, a weigiguclidean distance is used:

i v) = \/Z W)~ Vol @

wherevy; is thei’th component of the class vectay of an instance, andw(c;) are the class
weights. The class weights decrease with the depth of tiss irfahe hierarchyy(c;) = wo-w(c;),
wherec; is the parent o€;. Each leaf in the tree stores the meeof the vectors of the examples
that are sorted into that leaf (Fig. 2). Each componentisthe proportion of examplegin the
leaf that belong to class. An example arriving in the leaf can be predicted to belongassc;
if v, is above some threshold The threshold can be chosen by a domain expert.

The PCTs are also extended for predicting hierarchies @gdrms directed acyclic graphs
(DAGS). In this case, the depth of a class is not unique asetado not have single path from
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the hierarchy’s root. To resolve this issue, Vens et al. RR@jgest four aggregation schemes of
the possible paths from the top-node to a given class: aggragximum, minimum and sum.
After an extensive experimental evaluation, they recondrteruse the average as aggregation
function. For a detailed description of PCTs for HMC we rdfex reader to Vens et al. [30].
Next, we explain how PCTs are used in the context of an enseatdsifier, in order to further
improve the performance of PCTs.

3.4. Ensemble methods

An ensemble classifier is a set of (base) classifiers. A nempbais classified by the en-
semble by combining the predictions of the member classifigne predictions can be combined
by taking the average (for regression tasks), the majoatg {for classification tasks) [31],[32],
or more complex combinations.

We use PCTs for HMC as base classifiers. Averaging is apgliedibine the predictions
of the diterent trees: the leaf’s prototype is the proportion of extaspf diferent classes that
belong to it. Just like for the base classifiers, a threshuddil be specified to make a prediction.

We consider two ensemble learning techniques that haveapitinbeen used in the context
of decision trees: bagging and random forests. Baggingd8astructs the dlierent classifiers
by making bootstrap replicates of the training set and usaxh of these replicates to construct
one classifier. Each bootstrap sample is obtained by rarydsanhpling training instances, with
replacement, from the original training set, until a numbiinstances is obtained equal to the
size of the training set. Bagging is applicable to any typkeafning algorithm.

A random forest [32] is an ensemble of trees, obtained bothdwistrap sampling, and by
randomly changing the feature set during learning. Moreipedy, at each node in the decision
tree, a random subset of the input attributes is taken, amtelst feature is selected from this
subset (instead of the set of all attributes). The numbettdlbates that are retained is given by a
function f of the total number of input attributeq(e.g.,f(x) = X, f(X) = VX, f(xX) = [log, X|+1,
...). By settingf (x) = x, we obtain the bagging procedure.

4. Featureextraction from images

Collections of medical images can contain various imagésioéd using dferent imaging
techniques. DOferent feature extraction techniques are able to captdfereint aspects of an
image (e.g., texture, shapes, color distribution...)hls $tudy, we focus on X-ray images, hence,
we use texture (LBP and EHD) and local (SIFT) features as prashising for describing X-ray
images [5],[33].

Texture is especially important, because it ifidult to classify medical images using shape
or gray level information. Eective representation of texture is needed to distinguétivéen
images with equal modality and layout. Local image charésttes are fundamental for image
interpretation: while global features retain informatimm the whole image, the local features
capture the details. They are thus more discriminative eoniag the problem of inter and intra-
class variability, an open challenge in automatic annaadf medical images [7].

4.1. Raw pixel representation

The most straightforward approach to image classificaidhe direct use of the image pixel
values as features. The images are scaled to a common sizepadented by a feature vector
that contains image pixel values. It has been shown thatdssification and retrieval of medical
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radiographs, this method serves as a reasonable baseljnéN8 used a 32x32 down-sampled
representation of the images as recommended by Tommasi [g.allhe obtained 1024 pixel
values were then used as input features. Fig. 3 shows how WNté¢hauraw pixel representation
for each image.

512x446

100 200 300 400 500 600 700 800 900 1000

Figure 3: Down-sampling for raw pixel representation

4.2. Local binary patterns

Local binary patterns (LBP) are one of the best represemsitf texture content in images
[8]. They are invariant to monotonic changes in gray-scalages and fast to compute. Fur-
thermore, they are able to detecffdient micro patterns, such as edges, points and constant
areas.

The basic idea behind the LBP approach is to use the infoomatbout the texture from a
local neighborhood. First, we define the radRisf the local neighborhood under considera-
tion. The LBP operator then builds a binary code that dessrthe local texture pattern in the
neighborhood set oP pixels. The binary code is obtained by applying the gray ealtithe
neighborhood center as a threshold. The binary code is tbeveced to a decimal number
which represents the LBP code. Formally, given a pixel attipos(x., y.) the resulting LBP
code can be expressed as follows:

P-1
LPBpR(X:,¥o) = ), S(in - ic)2" 3)
n=0

wheren ranges over the neighbors of the central pixek{, yc), ic andi, are the gray-level values
of the central pixel and the neighbor pixel, 88(K) is defined as:

1, ifx>0 (4a)

S() = { 0, otherwise (4b)

The image is traversed with the LBP operator pixel by pixel #re outputs are accumulated
into a discrete histogram. However, not all LBP codes ar@rm#ftive. Certain LBP codes cap-
ture fundamental properties of the texture and are callé@dmum patterns because they constitute
the vast majority, sometimes over 90 percent, of all pasteresent in the observed textures [8].
These patterns have one thing in common, namely, a unifacular structure that contains very
few spatial transitions. They function as templates forrmistructures such as bright spot, flat
area or dark spot.

In our experiments, we used the pattetlispg?l, where the superscrip reflects the use
of uniform patterns that have @ value of at most 2 on a neighborhood of size 8 and radius
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Figure 4: The image is divided into 4x4 non-overlapping subges from which LBP histograms are extracted and
concatenated into a single, spatially enhanced histogram

1. TheU value is the number of spatial transitions (bitwigé @hanges) in the pattern. The
non-uniform patterns (patterns that havevalue larger than 2) are grouped under one bin in the
resulting histogram. With thEBPg?l operator, the number of bins in the histogram is reduced
from 256 to 59 (58 bins for uniform patterns and one bin for-uoifornynoisy patterns).

To spatially enhance the descriptors and improve the pedoce, it has been suggested to
repeatedly sample predefined sub-regions of an image (&b,,2x2, 4x4 or 1x3) [35]. The
different resolutions are then aggregated into a spatial pgramich allows for region-specific
weighting. Following these approaches, we divide the irmdgto 4x4 non-overlapping sub-
images (blocks) and concatenate the LBP histograms esttéat each sub-image into a single,
spatially enhanced feature histogram. This approach atimitaining a more local description
of the images. Fig. 4 shows how we build the LBP histogram ®## bins in total for each
image (16 blocks with 59 bins each).

4.3. Edge histogram descriptors

Edge detection is a fundamental problem of computer visimhtes been widely investigated
[36]. The goal of edge detection is to mark the points in atdigmage at which the luminous
intensity changes sharply. An edge representation of agerdeastically reduces the amount of
data to be processed, yet it retains important informatimuathe shapes of objects in the scene.
Edges in images constitute important features to repréiseintcontent.

2N

Figure 5: The image is divided into 4x4 non-overlapping subges. For each sub-image, five types of edge bins are
calculated and concatenated into a single, spatially ergthhistogram

The edge histogram in the image space represents the fregaed the directionality of the
9



brightness changes in the image. To represent it, the MPEGstlard defines the edge his-
togram descriptor (EHD) [9]. The edge histogram descriptmically represents the distribution
of five types of edges (vertical, horizontal, two types ofgdiaal and non-directional edges; see
Fig. 2). We divide the image space into 4x4 non-overlappioghs, yielding 16 equal-sized
sub-images and count the edges on each one of them (as shbwn &).

Figure 6: Three dferent spatial pyramids used in our experiments, a) 1x1, B)ahd c) 1x3. The spatial pyramid
constructs feature vectors for each of the specific partefittage.

To characterize the sub-images, a histogram of edge dititribfor each sub-image is gen-
erated. Edges in the sub-images are categorized into fiestygrtical, horizontal, 45-degree
diagonal, 135-degree diagonal and non-directional edgegresented in Fig. 5. The histogram
for each sub-image represents the relative frequency afraeace of the five types of edges in
the corresponding sub-image and thus contains five bins.

Since there are 16 sub-images in the image and 5 types of ,ealdetal of 80 histogram
bins are required. Note that each of the 80-histogram bissteaown semantics in terms of
location and edge type. In our experiments, the edge deteitiperformed using the Canny
edge detection algorithm [37].

4.4. SIFT descriptors

We employ the bag of features approach commonly used in nateyaf the art approaches
in image classification [38]. The basic idea of this approadio sample a set of local image
patches using some method (densely, randomly or using gdiey-detector) and calculate a
visual descriptor on each patch (SIFT descriptor, norraedligixel values). The resulting distri-
bution of descriptors is then quantified against a pre-$igelcvisual codebook which converts
it to a histogram. The main issues that need to be considemned applying this approach are:
sampling of the patches, selection of the visual patch ge#ecand building the visual codebook.

We use dense sampling of the patches, which samples an imiagi@ @ uniform fashion
using a fixed pixel interval between patches. We use an ialteistance of 6 pixels and sample
at multiple scalesf = 1.2 ando = 2.0). Due to the low contrast of the radiographs, it would be
difficult to use any detector for points of interest. Also, it hasrbpointed by Zhang et al. [38],
that a dense sampling is always superior to any strategyllmasdetectors for points of interest.
We calculate a SIFT descriptor [10] for each image patch.

The crucial aspects of a codebook representation are theboo# construction and assign-
ment. An extensive comparison of codebook representatidahles is given by van Gemert et
al. [39]. We employk-means clustering (as implemented in Renvironment) [40] on 400000
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randomly chosen descriptors from the set of images availfltraining. k-means partitions
the visual feature space by minimizing the variance betveepredefined number &fclusters.
Here, we sek to 500 and thus define a codebook with 500 codewords [7].

Dense sampling gives an equal weight to all key-pointsspeetive of their spatial location
in the image. To overcome this limitation, we follow the spbpyramid approach which we
applied for the LBP descriptor. For this descriptor, we uaespatial pyramid of 1x1, 2x2,
and 1x3 regions. Since every region is an image in itself,sfhegtial pyramid can easily be
used in combination with dense sampling. The resultingoresith 4000 bins ((1x& 2x2 +
1x3)x500) was obtained by concatenation of the eight hisimg. Fig. 6 shows an example of
the histograms extarcted from an image for the spatial pigsuf 1x1, 2x2 and 1x3.

4.5. Feature fusion schemes

Different visual features bringingftérent information about the visual content of the images
clearly outperform single feature approaches [5], [7].|¢%wing these findings, we combine the
different visual features described above. We investigate itferent feature fusion schemes:
low level (LL) and high level (HL). These fusion schemes agpidted in Fig. 7.
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Figure 7: Fusion schemes for thefdrent descriptors. a) Low level fusion, b) High level fusion

For the low level feature fusion scheme, the descriptorganeatenated in a single feature
vector and a classifier is trained on the joint feature vedtbe high level fusion scheme averages
the predictions from the individual classifiers trained loe $eparate descriptors.

5. Experimental setup

In this section, we present the experimental setup we usedaioate the proposed system
and compare it to other approaches. First, we present ttabaksgts of images that we use.
Next, we describe the evaluation metrics we use to assegsréféctive performance of the
classifiers. We then state the experimental questions thatwestigate in this study. We specify
the parameter instantiations for the algorithms and theydexf the experiments.

5.1. The IRMA database

We evaluated our system by applying it to the database fointagye CLEF2009 medical
image annotations task [5]. This database is provided byRMA group from the University
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Hospital of Aachen, Germany [23]. The database containg 1 2ally annotated radiographs,
taken randomly from medical routine, which should be usdthio a classifier. The dataset con-
tains two parts: ImageCLEF2007 (12339 training and 13381gsnages) and ImageCLEF2008
(12667 training and 1733 testing images). These datasesemira diicult classification prob-
lem. First, the classes in the training set are extremehalanired (e.g. there are classes with
less than 10 images and classes with more than 2000 images)n@ the distribution of the
classes in the training set isfi#irent from the one on the testing set.

b) IRMA: 1121-127-720-512

I
a) IRMA: 1123-211-520-3a0

Figure 8: IRMA-coded chest and abdomen radiograph. Foamest, the code for the biological axis (512) on the sub-
figure b) is translated as follows: 5 is for uropoietic systér is for uropoietic system, kidney and 512 is uropoietic
system, kidney, renal pelvis. The renal pelvis is an elerétiie kidney, which in turn is an element of the uropoietic
system

The images are labeled according to the four annotation e [5]. We used the Image-
CLEF2007 label set with 116 IRMA codes and the ImageCLEF2ab8I set with 193 IRMA
codes, both with a hierarchical nature of the coding sche2g [The goal is to correctly an-
notate 1353 (for 2007) and 1733 (for 2008) images that areiged without labels, using the
different respective annotation label sets in turn.

The IRMA coding scheme consists of four axes with three ta fmsitions, each position
taking a value from the set0,..., 9, a,..., z, where '0’ desainspecified’ and determines the end
of a path along an axis. The four axes are: technical axisn@ge modality), directional axis (D,
body orientation), anatomical axis (A, body region exard)rend biological axis (B, biological
system examined). This allows a short and unambiguousiontdRMA: TTTT-DDD-AAA-
BBB), where T, D, A, and B denotes a coding or sub-coding difjithe respective axis. A
small part of the IRMA coding hierarchy is presented in Fig.Flg. 8 gives two examples of
unambiguous image classification using the IRMA code.

The IRMA code is hierarchical in its nature and it allows uset@loit the hierarchy of
the code. This means that we can construct an automatic israg@ation system based on
predictive clustering trees for HMC.

5.2. Evaluation metrics

In this study, we use two evaluation metrics: the ImageCLieFanchical evaluation measure
[5] and overall recognition rate. The ImageCLEF hierarahivaluation measure takes into
account the depth and theflitulty of the predictive problem ('branching factor’) at whian
error has occurred (Equation 5). It can be calculated usiaddllowing formula:
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wherel is the depth of the hierarchly, is the number of possible labels at the error ("branching
factor’) andi is the depth at which the error occurred. This measure altbeglassifier not to
predict the complete cofEnnotation, that is, the classifier can predict the first 2esoaf the
code (level of the hierarchy) and then say 'don’t know’ (eshed by *) for the next nodeevel.
The ImageCLEF evaluation measure can range from 0 to the @uafliesting images. If this
measure is closer to 0, then the classifier is more accurate.

The overall recognition rate is a very common and widely wseduation measure. Itis the
fraction of the test images whose complete IRMA code wasiptedi correctly.

5.3. Experimental questions
The goal of this study is to answer the following questions:

1. Does the use of the hierarchy (in ensembles of PCTSs) inegtteypredictive performance
over flat classification (SVMs)?
2. How is the relative performance of the two techniquéscied by the:
(a) Use of PCT ensembles versus single PCTs in the domainegférannotation?
(b) Different ensemble methods: bagging or random forests?
(c) Different feature extraction techniques for medical X-Ray ies&g
(d) Schemes for fusion of the descriptors from the featuteaetion techniques?
3. Is the proposed system with ensembles of PCTs for HMC lsieadand éicient?

For the first three questions (1, 2a and 2b), we evaluate tfierpeance of PCTs for HMC
and ensembles (bagging and random forest) of PCTs. Aftérwleacompare the best method
for HMC with SVMs. It has been shown [30] that exploiting threusture of the hierarchy in tree
classifiers yields better predictive performance in the a@ionof functional genomics. Here, we
compare the performance of the ensemble classifiers with<$Sfékflat classification - the most
widely used classifiers for medical image annotation [7].

To check which feature extraction technique is most sustdbi medical X-Ray images
(question 2c), we compare the performance of the classiiersach type of visual descrip-
tors. For this purpose, we discuss only the results froméparsmte runs of the descriptors (first
four rows from Table 1 and Table 2).

The various feature extraction techniques captufieint aspects of an image. We also
investigate whether the combination of feature extradgmhniques can increase the predictive
performance (question 2d). The results from the fusion melseare presented in the last 10
rows in Table 1 and Table 2.

We compare the execution times of théelient classifiers to assess thigogency and scala-
bility of the system (question 3). We measure the time neéalédin the classifiers; for SVMs
this includes also the time needed to optimize the paraseter
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Figure 9: The adapted hierarchy of the classes in the IRMA cod

5.4. Experimental design

In this section, we describe the experimental setup thatsed.uFirst, we describe an adap-
tation of the hierarchy of the IRMA code and then the paramettantiations of the learning
algorithms. Note that we stated the parameters for the featxtraction techniques while ex-
plaining them (see Section 4).

The IRMA coding scheme was proposed by Lehmann et al. in [28pnsists of four axes
which are strictly hierarchical (tree-shaped hierarchieEhe literature [5],[23] suggests that
these four axes are independent. We conducted a serieserirents predicting the four axes
simultaneously (combined in a single hierarchy) and seelgraThe predictive performance
when using all four axes simultaneously was higher as coeaptar using each axis separately.
This leads us to believe that these axes are not-indeperndemtseparate study, Tommasi et al.
[7] come to a similar conclusion. To address this issue, veptadl the IRMA coding hierarchy
as follows.

We take the code of the first position for the biological axisl add it in front of the codes
for the anatomical and directional axes. The inclusion eftitological code in the first level in
the hierarchy helps us to initially filter the images resgtin large visual dferences in the first
level of the hierarchy. In the context of the axis A, the fiestdl of axis B is necessary because
the examined body region infliciently describes the content and structure of the images. F
example, fluoroscopy of the abdominal region may accessdbewar or the gastrointestinal
system depending on the way the contrast agent is admigdstehich results in dierentimage
textures. For the directional axis, this is even more olwidtor instance, an image of a chest
and an image of a hand can have the same directional codeghiisaally very diferent.

The hierarchy of the IRMA code was adapted in order to inerehe inter-class variabil-
ity and decrease the intra-class variability of the imageig. 9 shows the adapted hierarchy
of classes that we use in the experiments. Note that thiardciey was only used to train the
classifier. The evaluation was performed by using the caigiRMA hierarchy.

In the following, we state the parameter instantiation$ ¥ used to train the classifiers:
PCTs, ensembles and SVMs. The algorithm for learning PCgsimes as input the weight of
the depth in the hierarchy. We s&g to 0.75 to force the algorithm to make better predictions on
the upper levels of the hierarchy. Also, we performed Fyeshing to prevent over-fitting of the
trees [30].

We trained ensembles of 100 un-pruned trees (PCTs). ForseBCTs, we used the same
weight (0.75) used to train the single PCTs. The size of tlh¢ufe subset that is retained at
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each node, when training a random forest, was set to 10% oiimder of descriptive attributes.
Remember that the output of the classifier is a probabiliy shgiven example is annotated with
a given label. If the probability is higher than a given thnasl (obtained during the training
of the classifier), then the example is annotated with thergiabel. Since the hierarchical
evaluation measure allows the classifier to predict a poaidhe code, dferent thresholds for
the different levels of the hierarchy were selected. If a probgiitit a given code was lower
than the threshold, then for this code and its sub-codedaisifier predicts ‘dont know’.

For training the SVMs, we used a custom developed applicatithis application uses the
LiBSVM library [41]. We apply theDne-against-Al(OvA) approach to solve the partial binary
classification problems. Each of the SVMs was trained wiif &ernel. We optimize the cost
parameteC of the SVMs using an automated parameter search procedarghé parameter
optimization, we separate 20% of the training set and use ¥aéidation set. After finding the
optimalC value, the SVM was finally trained on the whole set of trainimgges.

For the evaluation of the SVMs using the hierarchical erreasure, we applied confidence
based opinion fusion [7]. Let us assume that therd\actasses. Then, using the®approach,

N SVMs are trained — each separating a single class from atiréng ones. The decision is
based on the distances of the test sample tdN\thgperplanes. The prediction then corresponds
to the hyperplane for which the distance is largest. The denfie based opinion fusion, how-
ever, takes into account thefiirence of the predictions with the two largest distancesrted
from the SVMs classifiers. This fllerence is computed only if their distanceff@i less than

a threshold value (obtained during training using the \adiah data set). In that case, the final
prediction will contain ‘don’t know’ starting from the pd&n where the two underlying predic-
tions begin to dier. For example, if the two predictions for the anatomicad axe 411 and 421
then the final prediction will be 4**. This approach improués hierarchical error measure for
the SVMs classifier by 10 to 20 points depending on the usectigésrs.

6. Resultsand discussion

Table 1 and Table 2 present the results obtained using theriengntal setup described in
Section 5 in terms of the hierarchical evaluation measueMMHand overall recognition rate
(RR) respectively. In the discussion of the results, we &ishpare the performance of single
PCTs and ensembles of PCTs. We then compare the performbtineelest ensemble method
(random forests) and SVMs. We focus on the first evaluatioasues HEM (Table 1), since the
two show similar behavior; the conclusions for HEM are alatid/for RR.

The results clearly show that ensemble methods outperfioiglesPCTs on all datasets: ran-
dom forests are significantly better (according to the narametric Wilcoxon test for statistical
significance) than single PCTp & 4-107%) and bagging is better than single PCPsq{ 4-107°).

A comparison between the two ensemble methods shows thdamaforests outperforms bag-
ging and that the dlierence is statistically significanp& 1-1074).

While extremely éicient, individual PCTs have the drawback of only using a smahber
of the available features, which results in low predictieefprmance. The PCTs trade predictive
performance for interpretability. However, in the domaii®ere interpretability of the model is
a necessity, PCTs are the models that should be considered.

We next compare the performance of random forests to themmeaihce of SVMs. On all
datasets, random forests perform better than SVMs; fiierdihce on average is 17 points for
the ImageCLEF2007 and 20 points for ImnageCLEF2008 datasets (hote that a poin&ihitaM
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Table 1: Predictive performance of the models learned frestdptors produced by fiierent feature extraction algo-
rithms and their combinations. The best results are shownldiface. Performance is given in terms of the ImageCLEF
hierarchical evaluation measure HEM, where smaller vamean better performance. The low-level fusion results are
in rows that end with ‘LL’ and high-level fusion results arerbws that end with ‘HH'.

Hierarchical Error Measure
ImageCLEF2007 ImageCLEF2008

SVM RF Bag PCTs SVM RF Bag PCTs
SIFT 75.00 | 58.90 59.78 | 180.00 | 179.88 | 161.67 | 161.47 | 320.90
LBP 124.44 | 95.71 95.71 | 210.40 | 257.92 | 209.47 | 208.97 | 360.00
EHD 127.41 | 105.12 | 105.12 | 222.39 | 265.95 | 249.44 | 249.74 | 380.12
32x32 202.94 | 195.78 | 200.12 | 310.90 [ 376.93 | 361.21 | 361.31 | 530.11
LBP+EHD LL 99.48 85.56 86.80 | 200.12 | 221.96 | 190.12 | 190.22 | 347.89
LBP+SIFT LL 72.71 52.89 53.22 | 178.29 | 175.65 | 157.38 | 157.48 | 317.12
EHD+SIFT LL 72.37 | 56.11 57.11 | 179.12 | 170.97 | 159.30 | 159.33 | 318.87
LBP+EHD+SIFT_LL 70.45 51.90 52.33 | 177.23 | 170.87 | 153.21 | 153.41 | 317.00
LBP+EHD+SIFT+32x32 LL 69.46 | 52.23 53.00 | 178.12 | 169.11 | 154.23 | 154.63 | 318.50
LBP+EHD HL 100.37 | 87.90 89.21 | 201.30 | 223.73 | 195.96 | 196.06 | 347.90
LBP+SIFT HL 73.72 54.21 54.56 | 178.90 | 177.12 | 159.73 | 160.03 | 318.00
EHD+SIFT HL 72,70 | 59.12 61.71 179.50 | 174.44 | 161.85 | 162.05 | 318.80
LBP+EHD+SIFT_HL 71.58 52.54 53.00 | 177.90 | 174.18 | 156.21 | 156.31 | 317.90
LBP+EHD+SIFT+32x32 HL 70.46 | 53.90 54.50 | 178.58 | 173.28 | 156.50 | 156.70 | 318.30

roughly corresponds to one completely misclassified imagd)e diference in performance
is statistically significant (witfp < 4 - 107%). This shows that exploiting the structure of the
hierarchy does help in improving the predictive performeanc

We then analyze the results for the individual feature exima algorithms (top 4 rows from
Table 1 and Table 2). We can note the high predictive perfoomaf the SIFT histogram: it is
most capable of capturing the hierarchical structure oidiray images. The other feature ex-
traction algorithms follow after and are ordered by perfante as follows: LBP, then EHD and
the simplest descriptor RPR, which has the worst performarice diterence of performance to
the LBP operator is very noticeable and larger for SVMs ttrandndom forests: on the Image-
CLEF2007 dataset, random forests are better [80 points and on ImageCLEF2008 ky50
points and on the ImageCLEF2007 dataset, SVMs are betteidyand on ImageCLEF2008 by
~ 80 points. The LBP descriptors capture information thataseareasily utilized by the random
forests than by the SVMs.

The experimental results show that the features that desthie image content in a local
manner (i.e., SIFT descriptors) outperform the ones thatige global descriptions. The local
features capture the details in an image, while the glotzlfes are able to retain information
on the whole image as a source of context. Furthermore, A€ @& scriptor is robust to noise,
illumination, scale, translation and rotation changesndde it can better resolve the inter and
intra-class variability, thus it canfier better information to the classifier. We can conclude that
the local features are generally more informative than gldeatures for the medical image
annotation task at hand.

We also compare the results of the experiments conductdd diffierent feature fusion
schemes. Inclusion of more than one type of features in thesification process contributes
to better representation of the hierarchical nature of thages and helps to further improve
the predictive performance. Low level fusion (concatemgtiyields slightly better predictive

16



Table 2: Predictive performance of the models learned frestdptors produced by fiierent feature extraction algo-
rithms and their combinations. The best results are showldface. Performance is given in terms of the overall
recognition rate evaluation measure, where larger valussnrbetter performance. The low-level fusion results are in
rows that end with ‘LL" and high-level fusion results are ows that end with ‘HH'.

Overall Recognition Rate
ImageCLEF2007 ImageCLEF2008

SVM RF Bag PCTs SVM RF Bag PCTs
SIFT 77.31 | 79.37 | 79.08 | 63.04 [ 6244 | 64.91 [ 64.80 | 52.04
LBP 70.36 | 75.24 | 75.24 | 56.02 [ 56.26 | 60.99 | 60.70 [ 47.02
EHD 68.37 | 7228 | 72.21 | 55.06 | 54.53 | 54.99 | 54.81 [ 45.00
32x32 57.35 | 58.01 | 57.64 | 4597 | 4547 | 45.52 | 45.47 | 36.98
LBP+EHD _LL 75.09 | 76.97 | 75.75 | 5898 [ 60.53 | 61.51 | 61.39 [ 48.99
LBP+SIFT _LL 77.90 | 81.00 | 80.93 | 64.52 [ 62.26 | 6549 | 65.43 [ 53.49
EHD+SIFT _LL 78.20 | 79.97 | 79.82 | 64.00 [ 63.19 | 64.97 | 64.80 [ 52.97
LBP+EHD+SIFT_LL 78.42 | 81.96 | 81.67 | 64.89 [ 63.30 | 65.95 | 65.83 [ 53.72
LBP+EHD+SIFT+32x32_LL 78.49 | 81.22 | 81.00 | 64.30 [ 63.53 | 65.78 | 65.55 [ 52.97
LBP+EHD HL 74.87 | 76.01 | 76.64 | 5838 [ 60.13 | 61.45 | 61.39 [ 48.87
LBP+SIFT _HL 77.46 | 79.97 | 79.97 | 64.22 | 62.26 | 65.32 | 65.14 [ 53.49
EHD+SIFT_HL 77.90 | 79.00 | 78.86 | 63.93 [ 62.44 | 64.80 | 64.62 [ 52.79
LBP+EHD+SIFT_HL 78.05 | 81.00 | 80.93 | 64.59 [ 62.78 | 65.78 | 65.72 [ 53.66
LBP+EHD+SIFT+32x32_HL 78.42 | 80.70 | 80.56 | 64.37 | 63.13 | 65.60 | 65.49 [ 52.97

performance than high level fusion. This is valid for all@lighms used in this study.

The classifiers on the fused feature sets use more informakiout the dferent aspects of
an image that are captured by th&eiient descriptors. Namely, they can consider combinations
of features from dferent descriptors. This additional information is orthogloand helps the
classifiers to produce better annotations. Moreover, tisermables of trees, such as random
forests, can fectively exploit the information provided by the large nuenbf features. Thus,
low-level fusion yields better performance than high-ldusion.

The best results are achieved by using random forests orotieatenated SIFT, LBP and
EHD descriptors (boldface in Table 1 and Table 2). This hfddboth datasets, ImageCLEF2007
and ImageCLEF2008. Moreover, our best results are beterttie best results reported so far
on this database [5]. Our score of 153.2 for ImageCLEF20@8 i$6.3 points better than the
best result, and the score of 51.9 for ImageCLEF2007 is by/d@nts better than the best result.

From the results, we can also notice the worse performanak algorithms on the Image-
CLEF2008 dataset, as compared to the ImageCLEF2007 dat&sets mainly due to the larger
hierarchy of the ImageCLEF2008 dataset (195 nodes as cenhparl40 nodes for the Image-
CLEF2007 dataset). In addition, theffédrence of the distribution of images in the training and
the testing set is bigger for ImageCLEF2008 than for Imadge2007.

Additionally, we assess thdfeiency of the algorithms by measuring the time needed to
learn the classifier and time needed to produce an annofatiam unseen image. The running
times for the algorithms are presented in Table 3. The rarfdossts are the fastest method; they
are~ 10 times faster than bagging ards.5 times than the SVMs (including the optimization
of the SVM parameters). Recall that the random forests asemshles of PCTs that predict the
complete hierarchy (a single model), while the SVMs cortdtauclassifier for each node of the
hierarchy separately. Hence, the increase of the hieravdhsignificantly increase the training
time of SVMs (additional classifiers should be trained),lesttie training time for random forests
will increase only slightly. Theféiciency of the random forests of PCTs is even more prominent
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Table 3: Running times of the algorithms: time needed to froosthe classifier and time needed to produce an anno-
tation for an unseen image. Note that this table only listsrésults for the low-level fusion scheme (the results that
end with ‘LL"). The running times for the high-level fusiomeathe sum of running times for its constitutive runs. The
experiments were executed on a Linux server with two Intedd3Qore Processors@2.5GHz and 64GB of RAM.

ImageCLEF 2007 ImageCLEF 2008

SVM RF Bag PCTs SVM RF Bag PCTs

EHD 2820.873 | 92.668 | 566.880 4.667 | 3113.320 | 115.129 | 716.606 5.446
- |LBP 4323.681 | 1909.510 | 21684.124| 127.889 | 4406.340 [ 2631.485 | 28612.105 | 158.955
2 [32x32 4745.630 | 1909.427 | 21458.823| 110.436 | 5467.686 [ 2614.089 | 28410.495| 151.317
g [SIFT 12451.760 | 2886.417 |31611.480| 227.709 [13219.039| 3717.713 | 40567.323 | 248.920
:a LBP+EHD_LL 4824.592 | 2315.010 | 21629.071| 231.516 | 4480.761 [ 3012.840 | 28106.304 | 254.442
E LBP+SIFT_LL 14871.131] 5095.170 | 55476.671| 502.794 | 15788.345 [ 6508.022 | 70057.262 | 487.347
‘s |EHD+SIFT_LL 12656.792 | 3299.330 |36001.937| 337.784 [13430.779| 4165.986 | 45921.571| 393.629
= |LBP+EHD+SIFT_LL 15076.162 | 5094.305 | 55724.765| 504.575 ]16006.638 [ 6460.307 | 70462.933 | 500.873
LBP+EHD+SIFT+32x32 LL 17700.564 | 6936.030 | 73786.231| 591.772 | 18800.790 [ 9128.094 | 95792.121| 679.572

» |EHD 0.016 0.002 0.003 0.001 0.019 0.004 0.003 0.001

& |LBP 0.172 0.002 0.003 0.001 0.179 0.003 0.003 0.001

E 32x32 0.189 0.002 0.003 0.001 0.192 0.002 0.002 0.001

g _|[SIFT 0.551 0.002 0.003 0.001 0.591 0.003 0.004 0.001

E § LBP+EHD_LL 0.175 0.003 0.002 0.001 0.176 0.002 0.003 0.001

'fn LBP+SIFT_LL 0.569 0.002 0.002 0.001 0.565 0.003 0.003 0.001

.5 |EHD+SIFT LL 0.552 0.002 0.003 0.001 0.552 0.003 0.003 0.001

E LBP+EHD+SIFT_LL 0.570 0.002 0.002 0.001 0.569 0.002 0.002 0.001

LBP+EHD+SIFT+32x32_LL 0.600 0.002 0.002 0.002 0.590 0.003 0.003 0.002

when producing annotations for unseen images. The randastfoin this case are 165 times
faster than the SVMs. In this respect, bagging performs @waigy to random forests. This
is due to the fact that passing through the tree has logaidtbamplexity with respect to the
number of leafs in the tree. Since random forests and baggiduce trees with similar sizes,
these times will be similar. All in all, random forests of PE3Jignificantly outperform SVMs as
compared by their training and testing times.

7. Experimentson photo annotation

To show the generality of the proposed system, we perforneraxgnts on annotation of
general images. In this section, we first present the exgeriah setup that we used (the data,
evaluation metrics and the experimental design). We thesant the results and compare them
to those of state-of-the-art approaches used in image aiorot

7.1. Experimental setup

This set of experiments was performed using the database thhe ImageCLEF@ICPR
photo annotation task [42]. The database consists of 5@, t8000 validation, and 10000
test images annotated with 53 visual concepts organizedinadl hierarchy with tree structure
(see Fig. 10 for an example). The average number of annogatier image is 8.68 (including
both leaf and internal nodes from the hierarchy). The visoakepts also contain abstract cate-
gories like FamilyFriends, Partylife, Quality (blurred, underexposed,any etc., thus making
the annotatioftlassification task very challenging.

The measures that we used to evaluate the performance dftirétams on the medical X-
ray images are specific for the problem of annotation of nadlicages using the IRMA coding
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Figure 10: A fragment of the hierarchy for image annotatibhe annotations are part of the hierarchical classification
scheme for the ICPR 2010 photo annotation task (right). @hketcontains a set of images with their annotations (left).

schemé. Here, we use the most widely used evaluation measure irnréfaecd ‘general photo
annotatiory‘visual concept detection’: mean average precision (MAR)][ For a given target
visual concept, the average precision can be calculatebeaarea under the precision-recall
curve for that target. Hence, it combines both precision r@edll into a single performance
value. The average precision is calculated for each vismatept separately and the obtained
values are then averaged to obtain the mean average precBézause the true labels of the
test images from the ImageCLEF@ICPR 2010 database are blitipavailable, we report the
MAP value obtained on the validation dataset.

For the images from this database, we use SIFT featureshwiéce the best performing
features in previous experiments (also SIFT features guiedity used in this type of problem
[14]). The SIFT features for this set of experiments werestatted using a visual codebook
with 4000 instead of 500 words (see Section 4.4). This mattifio was made because most of
the state-of-the-art approaches for image classificati@eneral photos use a visual codebook
with 4000 words [14], [12]. In the previous experiments,dam forests were the best perform-
ing method, so again we train random forests with 100 unguadCTs for HMC. For the base
PCTs, we used the same weight (0.75) and the size of the éesityset that is retained at each
node was set to 10% of the number of descriptive attributeaésas in the experiments from the
Section 5).

To train the SVMs, we use thedlSVM implementation with probabilistic outputs [43]. To
solve the multiple classification problems, we employ agla@One-against-Alapproach. For
each visual concept, we build a binary classifier where nt&ta associated with that visual
concept are in one class (positive) and the rest are in anolhgs (negative). To handle the
imbalance in the number of positive versus negative trgiekamples, we fix the weights of the

positive and negative class. The weight of the positivesdgset to™3272% and the weight of

the negative class is set ii*:;‘eg, with #posthe number of positive instances in the train set
and #hegthe number of negative instances [15]. As in the previougsrpents, we optimize the

value of the cost paramet€rof the SVMs.

Note that the hierarchical error measure allows the algwrito say ‘don’t know’ for some classes, since the max-
imum number of labels per image with the IRMA coding schemkniswn. In the case of general images, an image
can be annotated with zero @] classes. Also, for the Overall recognition rate, for theecasIRMA coding scheme,
the number of possible combinations of labels is limitedjlevim the case of general images, this number$& ZThis
makes overall recognition rate not suitable for measutiegpredictive performance of algorithms in annotating gane
images.
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7.2. Results and discussion

The results from the photo annotation experiments are showiable 4. The table also
contains the total training time and testing time per imagébth SVMs and random forests of
PCTs for HMC. From the presented results we can note thaatidom forests of PCTs for HMC
outperform the SVMs both in terms of predictive performaand dficiency. The latter holds
especially for the time needed to produce an annotation fiven test image: our approach is
more than 500 times faster than the SVMs.

Table 4: Results of the photo annotation experiments etedluasing Mean Average Precision (larger values of MAP
mean better performance).

MAP Train time Test time per image
RF 0.450 9113.516 0.002
SVM 0.428 11821.227 1.078

Following the results from the study performed by Mensinklet[22], this means that our
system also outperforms the TagProp [21] approach for inaagetation. The results show that
our system ffers better predictive performance afficéency than systems that are most widely
used for annotation of images. All in all, the proposed systes high predictive performance
and dficiency, is general and is easily applicable to other domains

8. Conclusions

Hierarchical multi-label classification (HMC) problemga&ncountered increasingly oftenin
image annotation. However, flat classification machineniegrapproaches are predominantly
applied in this area. In this paper, we propose to exploitaheotation hierarchy in image
annotation by using ensembles of trees for HMC. Our appraaetMC exploits the annotation
hierarchy by building a single classifier that simultandppsedicts all labels in the hierarchy.
A substantial performance improvement is achieved by mglénsembles of HMC trees, such
as random forests.

We apply our approach to two benchmark tasks of hierarchimabtation of medical (X-ray)
images and an additional task of photo annotation (i.euatisoncept detection). We compare it
to a collection of SVMs (trained with g2 kernel), each predicting one label at the lowest level
of the hierarchy, the best-performing and most-frequarhd approach to (hierarchical) image
annotation. Our approach achieves better results tharothpetition on all of these: For the two
medical image datasets, these are the best results rejpottegliterature so far. Our approach
has superior performance, both in terms of accyexegr and especially in terms ofteiency.

We explore the relative performance of ensembles of traddMC and collections of SVMs
under a variety of conditions. Along one dimension, we cdasthree dierent datasets. Along
another dimension, we consider two ensemble approachgginggand random forests. Fur-
thermore, we consider several state-of-the-art featumaetion approaches and combinations
thereof. Finally, we consider two types of feature fusios.,, low- and high-level fusion.

Ensembles of trees for HMC perform consistently better ®¥Ms over the whole range of
conditions explored above. The two ensemble approaché&spebetter than SVM collections
on all three tasks, with random forests being mdfeient than bagging (and the mostieient
overall). The relative performance holds foffdrent image representations (we consider raw
pixel representation, local binary patterns, edge histagdescriptors and SIFT histograms), as
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well as combinations thereof: The SIFT histograms are tis¢ inelividual descriptors. More-
over, combinations of élierent descriptors yield better predictive performance tha individual
descriptors. The relative performance also holds for bathlevel and high-level fusion of the
image descriptors, the former yielding slightly betterfpenance. We can thus conclude that for
the task of hierarchical image annotation, ensembles e$tier HMC are a superior alternative
to using collections of SVMs, which are most-commonly aggbiin this context.

We expect it is possible to further improve the predictivef@enance of our system. We
could try to adapt our tree-learning approach to tackle tiif¢is distribution of images between
the training and the testing set. Better performance maylmobtained by including high level
feature extraction algorithms able to give more understhtecand compact representation of the
visual content of the images (segmented objects with celathmong them).

Let us conclude by emphasizing the scalability of our apginodecision trees are one of
the most ficient machine learning approaches and can handle largearsrabexamples. The
ensemble approach of random forests scales very well fge laumbers of features. Finally,
trees for HMC scale very well as the complexity of the annotahierarchy increases, being
able to handle very large hierarchies organized as treegemteld acyclic graphs. Combining
these, our approach is scalable along all three dimensions.
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