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Abstract: We present a hierarchical multi-label classification (HMC) system for medical image 
annotation. HMC is a variant of classification where an instance may belong to multiple classes at the 
same time and these classes/labels are organized in a hierarchy. Our approach to HMC exploits the 
annotation hierarchy by building a single predictive clustering tree (PCT) that can simultaneously 
predict all annotations of an image. Hence, PCTs are very efficient: a single classifier is valid for the 
hierarchical semantics as a whole, as compared to other approaches that produce many classifiers, 
each valid just for one given class. To improve performance, we construct ensembles of PCTs. We 
evaluate our system on the IRMA database that consists of X-ray images. We investigate its 
performance under a variety of conditions. To begin with, we consider two ensemble approches, 
bagging and random forests. Next, we use several state-of-the-art feature extraction approaches and 
combinations thereof. Finally, we employ two types of feature fusion, i.e., low- and high-level fusion. 
The experiments show that our system outperforms the best-performing approach from the literature 
(a collection of SVMs, each predicting one label at the lowest level of the hierarchy), both in terms of 
error and efficiency. This holds across a range of descriptors and descriptor combinations, regardless 
of the type of feature fusion used. To stress the generality of the proposed approach, we have also 
applied it for automatic annotation of a large number of consumer photos with multiple annotations 
organized in semantic hierarchy. The obtained results show that this approach is general and easily 
applicable in different domains, offering state-of-the-art performance. 
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Dear Editor, 

  

Enclosed please find our updated manuscript entitled “Hierarchical Annotation of Medical 

Images”. Following the comments and the suggestions from the reviewers, we have made 

extensive correction and added some new material. The update can be summarized in three 

major points: additional experiments on a general database of images (including a comparison 

with state of the art approaches as suggested by the reviewers), running time results and 

additional descriptions (as requested). 

To show the generality of our approach, we performed experiments on a recent public 

database with general photos that was used in the ImageCLEF@ICPR2010 competition. We 

compare random forests of PCTs for HMC with the performance of SVMs with χ
2
 kernel (which 

is one of the most widely used approach for image annotation in the literature and the 

competitions for image annotation). We show that our approach outperforms the SVMs both in 

terms of predictive power and efficiency. Also, Mensink et al. (LEAR and XRCE's Participation 

to Visual Concept Detection Task - ImageCLEF 2010) showed that per-label-trained linear SVM 

classifiers outperform the TagProp system (an approach suggested as a baseline by the 

reviewers). Thus, we conclude that our approach outperforms also TagProp. 

Second, we added a table with running times. The table includes both the time needed for 

learning/constructing the classifiers and time needed to produce an annotation for an unseen 

image. Random forests of PCTs are approximately 5.5 times faster to construct than SVMs. 

Furthermore, producing an annotation for an unseen image is approximately 165 times faster 

than SVMs. With this, we clearly show that our approach is more efficient than the SVMs. 

Third, we have included additional text in the manuscript to conform to the changes we 

mentioned above and to the reviewers comments. To begin with, we have added a section that 

presents related work and state-of-the-art approaches for image annotation. Next, we have added 

a sub-section that further describes the PCTs framework and its application for hierarchical 

classification. We have also added several paragraphs of text in the introduction that describe the 

wider context of the problem we are solving and the possible use of such a system. Finally, we 

have further discussed and commented on the results. 

To summarize, the updated version of the manuscript includes all comments and suggestions 

from the reviewers. Our approach outperforms state-of-the-art approaches (SVMs) for image 

annotation on both medical images and general photos. Moreover, our approach is much more 

computationally efficient than the SVMs: it is 5.5 times faster to train and 165 times faster to 

produce an annotation for an unseen image. All in all, we propose a system that offers several 

advantages over the current state-of-the-art approaches in image annotation. 

  

Hoping that you will find the revisions that we have made adequate, we look forward to hearing 

from the reviewers and yourself,  

Ivica Dimitrovski and co-authors 

Cover Letter
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Dear reviewers, 

Thank you kindly for your extensive comments on our manuscript. We value your input highly 

and have done our best to revise our manuscript in light of your comments. In the following, we 

address your comments in the order in which they were given in the letter from the editor to the 

authors.  

 

Reviewer #3:  

The work described in this manuscript is an evaluation / application-type report. The authors 

apply a general multi-label classification method (PCT) they published elsewhere (Vens et al, 

Machine Learning 2008, earlier incarnations since late 1990s) to the problem of medical image 

classification (X-ray images in particular). The authors evaluate the utility of PCT across four 

different feature types, two ensemble methods, two different fusion architectures, and contrast it 

to SVM classification that does not utilize the multi-label structure of annotations. In the end, 

they conclude that a certain subset of features coupled with one ensemble approach and one 

level of fusion with PCT outperforms unstructured SVMs on two competition datasets. 

=>>>> 

  

The major concern of Reviewer #3 is that the conclusions we make are overly general. In 

essence, we would not be justified in stating that ensembles of PCTs perform better than SVMs 

if we only show their superior performance under a very specific set of conditions. To paraphrase 

the comment by the reviewer, we should not conclude that PCTs outperform unstructured SVMs 

in general, if we only show that for a certain subset of features coupled with one ensemble 

approach, one type of fusion and two competition datasets of the same type, namely X-Ray 

images. 

To address the last of these issues, i.e., the comparison on only one type of dataset, we 

include in the revised version of the paper a comparison on a new dataset consisting of general 

images. The conclusions drawn from experiments on this dataset are exactly the same as those 

for the X-Ray image datasets, thus adding evidence of the generality of our approach and the 

conclusions we make from the experimental evidence. The other concerns, namely on the subset 

of features, the type of ensemble approach and type of fusion, were already addressed in the 

original submission. We explore two ensemble approaches, namely bagging of PCTs and random 

forests of PCTs. Both are shown to have superior performance than the SVM based approach. 

Concerning the different sets of features, the conclusion on the superiority of PCTs over SVMs 

holds across all of the different types of features and their combinations and not only on a 

specific subset of features. The conclusions also hold regardless of the type of fusion used: that is 

both for low-level and high-level fusion, the relative performance of the PCTs and SVMs 

remains the same, with low-level fusion giving better performance overall.  

We have now reformulated our statements in the conclusion section to make this clear. 

  

The work presented is certainly interesting in that it demonstrates a possible utility of structured 

*Response to Reviewers
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approaches over a somewhat comprehensive set of features. Yet, there are several major issues 

that concern me here: 

1) To me, the paper demonstrates the utility of ensemble methods rather than structured 

approaches.  Every single row (feature/fusion combination) in Tables 1 & 2 shows that PCT 

alone underperforms (significantly) compared to the unstructured SVM. Only with the addition 

of ensemble methods does the structured approach gain ground. Unfortunately, the authors do 

not pursue the next obvious step: contrast ensembles of PCTs to ensembles of SVMs.  Only this 

setting would more definitely demonstrate the utility of structured approached. Of course, one 

could have also considered structured SVMs here, which one should comment on. 

=>>>> 

  

When we designed the experimental setup, our goal was to compare the performance of 

ensembles of PCTs with the approach that is most widely used by the image annotation 

community: SVMs (Mensink et al. 2010). It is true that the SVMs outperform single PCTs. 

However, we offer four explanations as to why we compare ensembles of PCTs and SVMs.  

First, we would like to note that the SVMs (trained in a one-vs-all strategy) are already an 

ensemble that consists of |C| classifiers, where |C| is the sum of nodes in the annotation 

hierarchy. The SVMs in this setting can be viewed as an ensemble that consists of |C| classifiers. 

Second, Vens et al. (2008) show that training PCTs per class is inferior to a PCT for the 

whole hierarchy. Thus, we use PCTs for the whole hierarchy as a base classifier. 

Third, the ensembles are able to lift the predictive performance of a single classifier in the 

case of classification and regression.  While it is well known that ensembles lift the predictive 

performance of a single classifier in the case of classification and regression trees, it is not 

obvious that the lift carries over to PCTs for predicting structured outputs (HMC in our case). In 

the case when the base classifiers are decision trees, Bauer and Kohavi (1999) conclude that the 

increase in performance is related to the trees being unpruned, i.e., overfitting. On the other 

hand, Blockeel et al. (2006) state that PCTs for HMC overfit less than the single classification 

approach. Having in mind these two conflicting influences, it is not obvious whether an 

ensemble of PCTs will significantly increase the predictive performance of a single PCT. 

Moreover, the use of PCTs for HMC (and ensembles thereof) has not been investigated in the 

context of image annotation. 

Fourth, the machine learning community hasn't reached a consensus whether and how 

ensembles of SVMs should be constructed. To begin with, the literature suggests that bagging 

gives best predictive performance when unstable learners are used as base classifiers (such as 

decision trees and neural networks). An unstable classifier is the one that will change greatly, 

when a small change in the learning set occurs (Breiman, 1996). Next, a theoretical and 

empirical evaluation of ensembles from SVMs is performed in (Evgeniou 2000; Evgeniou et al., 

2000). There they consider two types of ensembles: bagging of SVMs (each SVM is constructed 

on bootstrap replicate) and voting SVMs (each SVM is constructed using different kernel and on 

different feature sub-space). The findings of this study, in this context were: ―... with appropriate 
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tuning of the parameters of the machines, combining SVMs does not lead to performance 

improvement compared to a single SVM.‖ and that ―With accurate parameter tuning (model 

selection) single SVMs and ensembles of SVMs perform similarly.‖ On the other hand, there 

exists some approaches that justify the usage of SVMs in the context of an ensemble (Hyun-Chul 

et al., 2003; Valentini and Dietterich, 2002; Wang et al., 2007). Valentini and Dietterich (2002) 

consider bagging of low-bias-SVMs and heterogeneous ensembles and combination of SVMs 

with different kernel parameters (in their case RBF kernel with different σ). Hyun-Chul et al. 

(2003) consider bagging and boosting of SVMs.  Wang et al. (2007) first perform clustering of 

the instances. Then small quantities of representative instances from the clusters are chosen as 

training subsets to construct the SVMs. However, these works are done typically in the context 

of binary or multi-class classification and mainly on a small number of domains (typically three 

per study) UCI domains. Moreover, there are also practical implications in terms of efficiency of 

such an ensemble, especially when a prediction for unseen example needs to be generated.  Since 

in our work we do perform parameter tuning for the SVMs, we believe that making an ensemble 

of SVMs will not bring further (significant) improvements of the predictive performance.  To the 

best of our knowledge, these (and similar to them) approaches are not used by the image 

annotation community. 

 There exist few implementations of structured SVMs. However, the most well-known, 

such as SVM-struct (Joachims 2010; Tsochantaridis et al., 2004), do not offer facilities for HMC. 

Those that do, are very recent (Gärtner and Vembu , 2009), have high computational complexity 

and are not used by the image annotation community. We compare our performance to image 

annotation approaches that are currently state-of-the-art in this area (Guillaumin et al., 2009; 

Makadia et al., 2008; Mensink et al., 2010). We show that our approach exhibits superior 

performance over these approaches (see also response to Reviewer #2). 

  

 E. Bauer, and R. Kohavi (1999). An empirical comparison of voting classication 

algorithms: Bagging, boosting, and variants. Machine Learning, 36(1), 105-139. 

 H. Blockeel, L. Schietgat, J. Struyf, S. Dzeroski, and A. Clare (2006). Decision trees for 

hierarchical multilabel classification: A case study in functional genomics, Knowledge 

Discovery in Databases: PKDD 2006, LNCS vol. 4213, pp. 18-29. 

 L. Breiman (1996). Bagging Predictors, Machine Learning 24(2), p. 123–140  

 T. Evgeniou (2000). Learning with kernel machine architectures, PhD thesis, 

Massachusetts Institute of Technology - MIT, 2000 

 T. Evgeniou, L. Perez-Breva, M. Pontil, and T. Poggio (2000). Bounds on the 

generalization performance of kernel machines ensembles, In Proceedings of 17th International 

Conference on Machine Learning, Stanford, California 

 T.Gärtner, and S.Vembu (2009). On structured output training: hard cases and an 

efficient alternative. Machine Learning 76(2-3), p. 227-242 

 M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid (2009). Tagprop: Discriminative 

metric learning in nearest neighbor models for image auto-annotation, International Conference 

on Computer Vision, 309–316, 2009 

 K. Hyun-Chul, P. Shaoning, J. Hong-Mo, K. Daijin, and B. Sung Yang (2003). 

Constructing support vector machine ensemble, Pattern Recognition 36(12), p. 2757-2767 
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 T. Joachims (2010). SVMstruct - Support Vector Machine for Complex Outputs, web 

page: http://www.cs.cornell.edu/People/tj/svm_light/svm_struct.html, accessed on 17.11.2010 

 A. Makadia, V. Pavlovic, and S. Kumar (2008). A New Baseline for Image Annotation. 

Computer Vision – ECCV 2008, LNCS vol. 5304, pp. 316-329 

 T. Mensink, G. Csurka, F. Perronnin, J. Sanchez, and J. Verbeek (2010). LEAR and 

XRCE's Participation to Visual Concept Detection Task - ImageCLEF 2010, CLEF (Notebook 

Papers/LABs/Workshops), 2010 

 I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun (2004). Support Vector 

Learning for Interdependent and Structured Output Spaces, Proceedings of 21st International 

Conference on Machine Learning, ICML 

 G. Valentini, and T. G. Dietterich (2002). Bias—Variance Analysis and Ensembles of 

SVM, LNCS vol. 2364, 2002, pp. 27-38 

 C. Vens, J. Struyf, L. Schietgat, S. Džeroski, and H. Blockeel (2008). Decision trees for 

hierarchical multi-label classification, Machine Learning 73(2), p. 185–214 

 C. Wang, H. Yuan, J. Liu, T. Zhou, and H. Lu (2007). A Novel Support Vector Machine 

Ensemble Based on Subtractive Clustering Analysis,LNCS vol.4426, pp.849-856 

  

2) What is the overall *general* message of this work?  One may conclude (putting aside my 

comments above) that on Xray images PCT with ensembles has a certain benefit over SVMs. But 

what are the drawbacks of PCT, in the context of images? Would this setting with equal 

conclusions generalize to other image classification problems?  Why does this particular feature 

combination outperform others?  (A consequence of the spatial pyramid choices, number of 

words in the SIFT formulation,...) Why the low level fusion? Basically, the discussion section 

restates results from the two tables but offers no other insightful discussions to the reader that 

would shed light on the inner working of the approach nor help  him/her generalize conclusions 

to other contexts.  This seriously undermines the value of this manuscript. 

=>>>> 

  

We consider the question on what is the overall general message of this work to be the 

crucial question by Reviewer #3. To address this question, we have reformulated the conclusions 

section to give a direct answer and we have expanded the results and discussion section. In short, 

the overall general message of our work is that ensembles of PCTs for HMC are a superior 

alternative, both in terms of performance and in terms of efficiency, to the most commonly used 

approach in image annotation, that is collections of SVMs. 

Our conclusions are general since we explore the two approaches under a wide range of 

conditions. To begin with, we consider three different datasets: two medical X-ray images and 

one general photos. Next, we consider several state-of-the-art feature extraction approaches and 

combinations thereof. Furthermore, we consider two types of feature fusion, i.e., low- and high-

level fusion. All in all, our approach shows better performance under all of the mentioned 

conditions, both in terms of predictive performance (Tables 1, 2 and 4) and efficiency (Table 3). 

The discussion section primarily focuses on answering the questions stated in the 

―Experimental questions‖ section (Section 5.3 from the manuscript). We have expanded the 

discussion section to include explanations and clarifications on the issued raised by the reviewer, 
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such as drawbacks of PCTs, why low-level fusion, computational complexity. The discussion 

section now provides further comments on the sources of difference in the performance. 

Moreover, to show the generality of our approach, we have performed experiments on a database 

with general photos. The conclusions are the same as for the medical images. 

  

3) I find the manuscript somewhat sloppily put together.   

a) Most of the text is the discussion of features and the experimental evaluation (again, setting 

aside my comments in 2 above.)  PCT is described in one paragraph that tells one nothing about 

how PCT is actually constructed, neither for training nor (especially) in query evaluation. The 

authors refer to their work in ML journal.  Even their preceding conference work (SIKDD'08) 

had more details about the PCT framework.  For completeness I certainly would like to see a 

more comprehensive description of the PCT algorithm in this manuscript. 

=>>>> 

 Done. We have added a new section ―Predictive clustering trees‖ where we explain in more 

details the Predictive clustering trees framework. 

 b) There are a number of places where the notation is not clear, terms are not defined, or 

essential information is missing. For instance: 

-  All references are missing titles 

=>>>> 

 Done. Corrected, the problem was the wrong class in the tex file. 

 -  Is spatial pyramid used for EHD? This is not stated in the EHD section but later on (p. 15) the 

authors claim that spatial pyramid is used for EHD features. 

=>>>>  

Done. We have corrected this, for the EHD descriptor we didn’t use spatial pyramid. 

 -  p. 22: "highest probabilities reported from the SVM classifier" - where do prediction 

probabilities of SVM come from? Platt-type normalization? 

=>>>> 

 For the general photo annotation we used Platt’s probabilities, while for defining the threshold 

in the medical image annotation experiments we are using the distances of the test sample to the 

hyperplanes. 

  -  What is the asterisk notation in 6b? "don't care"? 

=>>>> 

 Done. We modified this. 

 -  Please restate what _LL and _HL means in table captions. 

=>>>> 
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Done.  

  

4) The authors state that one benefit of PCT vs SVM is scalability (at training time).  There is 

very little empirical evidence presented, eg. running times. 

Also, it is the ensemble of PCTs that outperforms the SVM and, at evaluation time, the ensemble 

has  additional overhead over the single SVM evaluation. It would be worth commenting more 

explicitly on this. 

=>>>> 

  

We have included a new Table (namely Table 3 from the manuscript) with total training time and 

test time per image for all descriptors and their combinations for all of the considered learning 

methods. These results now clearly show that random forests of PCTs are much more efficient 

than SVMs both in terms of training time and testing time. 
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Reviewer #2:  

This paper presents a multi-label classification system for medical image annotation. The 

proposed system is mainly based on the ensemble of the predictive clustering trees and four 

different visual feature extraction methods are also applied to the system. The experiments are 

conducted on IRMA database for performance evaluation and the experimental results show that 

the system outperforms the ordinary SVM based approach. The topic of medical image 

annotation is very interesting and the paper has indeed conducted some interesting experiments, 

for instance, fusion different visual features for multi- label classification, however, the novelty 

of the paper seems insufficient for publication in the journal.  The technical contribution of the 

paper is modest: the presented ensemble method seems simple; the method of predictive 

clustering tree had been published in previous literature; and the four visual feature extraction 

methods are also well known for the community. 

=>>>>  

This paper presents contributions to the fields of ensemble learning, predicting structured 

outputs and image annotation. First, the performance lift from a single PCT to an ensemble of 

PCTs does not follow automatically, as explained bellow. In this work, we show that ensembles 

can lift the performance of their base classifiers even in the case when the output is a structure. 

Next, we show that the methods that exploit the structure of the output can perform better than 

the methods that perform flat classification. Here, we emphasize the last contribution: image 

annotation. We focus on the selection of the appropriate feature extraction technique for medical 

images and their combinations. We present novel results that show that some other classifiers 

(than the typically used SVMs) can perform better, not only in terms of efficiency but also in 

terms of predictive power. The results from the experiments offer new insights in the area of 

medical image annotation. Furthermore, we demonstrate the generality of the proposed method 

by comparing its performance with state-of-the art approaches on a recent database with general 

photos. 

While it is well known that ensembles lift the predictive performance of a single classifier in 

the case of classification and regression trees, it is not obvious that the lift carries over to PCTs 

for predicting structured outputs (HMC in our case). In the case when the base classifiers are 

decision trees, Bauer and Kohavi (1999) conclude that the increase in performance is related to 

the trees being unpruned, i.e., overfitting. On the other hand, Blockeel et al. (2006) state that 

PCTs for HMC overfit less than the single classification approach. Having in mind these two 

conflicting influences, it is not obvious whether an ensemble of PCTs will significantly increase 

the predictive performance of a single PCT. Moreover, the use of PCTs for HMC (and ensembles 

thereof) has not been investigated in the context of image annotation.  

  E. Bauer, and R. Kohavi (1999). An empirical comparison of voting classication 

algorithms: Bagging, boosting, and variants. Machine Learning, 36(1), 105-139. 

 H. Blockeel, L. Schietgat, J. Struyf, S. Dzeroski, and A. Clare (2006). Decision trees for 

hierarchical multilabel classification: A case study in functional genomics, Knowledge 
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Discovery in Databases: PKDD 2006, LNCS vol. 4213, pp. 18-29. 

 

Automatic image annotation is an important topic and has been studied for nearly decade.  So, 

there is a great deal of literature on the topic and some of the state-of-the-art approaches are on 

multi-label classification for image annotation. Although, this paper deals with the problem on 

medical image annotation, it is still strongly related with the general problem. But, there is the 

lack of sufficient related literature reviews in the paper. For the performance evaluation, the 

proposed system is not compared with the state-of-the-art image annotation approaches, such as  

"A.Makadia et al. A New Baseline for Image Annotation", "M. Guillaumin et al. Tagprop. " and 

other multi-label classification based approaches. 

=>>>> 

 To address this valid comment, we have added a new section ―Related work‖ and 

performed additional evaluation on a database with general photos. In this section we give a 

short overview of the current state-of-the-art work in the field of image annotation. Considering 

the mentioned papers, we would like to point out a recent study performed by Mensink et al. 

(2010) which showed that per-label-trained-linear SVM classifiers outperform TagProp 

(Guillaumin et al. 2009). Moreover, Guillamin et al. (2009) show that TagProp outperforms the 

system presented in Makadia et al. (2008). Furthermore, the best results on the current 

challenges/competitions detection and annotation tasks, such as the PASCAL Visual Object 

Classes challenge, the ImageCLEF medical image annotation task and the ImageCLEF visual 

concept detection and annotation tasks are obtained using binary classifiers for each visual 

concept. As binary classifier, they usually use SVM with χ
2
 kernel, which is the baseline in our 

case. 

We also performed additional experiments on the ImageCLEF@ICPR2010 database and 

compare our results with the results obtained using SVMs with χ
2
 kernel. On this database, 

random forests of PCTs outperform SVMs both in terms of predictive power and efficiency. 

Since, SMVs with χ
2
 kernel outperform TagProp (Mensink et al., 2010), we can conclude that 

our method also outperforms both TagProp (Guillaumin et al, 2009) and the baseline from 

Makadia et al. (2008).  

 T. Mensink, G. Csurka, F. Perronnin, J. Sanchez, and J. Verbeek (2010). LEAR and 

XRCE's Participation to Visual Concept Detection Task - ImageCLEF 2010, CLEF, 2010 

 M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid (2009). Tagprop: Discriminative 

metric learning in nearest neighbor models for image auto-annotation, International Conference 

on Computer Vision, 309–316, 2009 

 A. Makadia, V. Pavlovic, and S. Kumar (2008). A New Baseline for Image Annotation. 

Computer Vision – ECCV 2008, LNCS vol. 5304, pp. 316-329 

 

The writing of the paper is generally understandable, but the style of the reference is uncommon, 

all the titles of the reference papers are missing.  

 =>>>>  

mailto:ImageCLEF@ICPR2010
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Done. The problem was in the wrong class in the tex file, this problem is corrected. 

Reviewer #1:  

This is a well written paper with good experimental design and reporting.  My only issue with the 

paper is the significance of the problem being addressed. All medical imaging modalities 

following DICOM standards allow the entering the information recovered from the PR system, 

and is is a mandatory component of all clinical protocols that I am aware of. More evidence on 

the need for automating this type of annotation would seem to needed. What is the probability of 

operator error relative to the method presented in the paper? Would this be used for 

retrospective annotation (pre DICOM) or for verification purposes? More context on the 

problem and how the proposed solution fits into the clinical workflow would improve the paper. 

=>>>> 

 

We have added text in the introduction that clarifies and explains the issues raised by this 

reviewer. The text is along the following lines: 

―Automatic image annotation or image classification is an important step in image retrieval. 

In the medical domain, using information directly extracted from images to annotate/categorize 

them will improve the quality of image annotation in particular, and more generally the quality 

of patient care. Properly classified medical image data can help medical professionals in fast and 

effective access to data in their teaching, research, training, and diagnostic problems. The results 

of the classification step can also be used for multilingual image annotation as well as for 

DICOM header correction. 

Automatic image annotation can be used for retrospective annotation (pre DICOM). It can 

also be used as help for human annotators (i.e., radiologists), where the annotations that are 

suggested by the system are corrected/verified/confirmed by the human annotator. The limits of 

performance of an automated annotation system that learns from example images annotated by 

humans, is the rate /probability of operator error/agreement of annotators. 

Automatic image annotation uses a computer system which automatically assigns metadata 

in the form of captions or keywords to a digital image. Typically, image analysis first extracts 

feature vectors. Together with the training annotations, they are then used by a machine learning 

algorithm to learn to automatically assign annotations. The performance of the computer system 

largely depends on the availability of strongly representative visual features, able to characterize 

different visual properties of the images, and the use of effective algorithms for training 

classifiers for automatic image annotation.‖ 
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Abstract

We present a hierarchical multi-label classification (HMC)system for medical image annotation.
HMC is a variant of classification where an instance may belong to multiple classes at the same
time and these classes/labels are organized in a hierarchy. Our approach to HMC exploits the an-
notation hierarchy by building a single predictive clustering tree (PCT) that can simultaneously
predict all annotations of an image. Hence, PCTs are very efficient: a single classifier is valid
for the hierarchical semantics as a whole, as compared to other approaches that produce many
classifiers, each valid just for one given class. To improve performance, we construct ensembles
of PCTs. We evaluate our system on the IRMA database that consists of X-ray images. We in-
vestigate its performance under a variety of conditions. Tobegin with, we consider two ensemble
approches, bagging and random forests. Next, we use severalstate-of-the-art feature extraction
approaches and combinations thereof. Finally, we employ two types of feature fusion, i.e., low-
and high-level fusion. The experiments show that our systemoutperforms the best-performing
approach from the literature (a collection of SVMs, each predicting one label at the lowest level
of the hierarchy), both in terms of error and efficiency. This holds across a range of descriptors
and descriptor combinations, regardless of the type of feature fusion used. To stress the general-
ity of the proposed approach, we have also applied it for automatic annotation of a large number
of consumer photos with multiple annotations organized in semantic hierarchy. The obtained
results show that this approach is general and easily applicable in different domains, offering
state-of-the-art performance.

Keywords: Automatic Image Annotation, Hierarchical Multi-Label Classification, Predictive
Clustering Trees, Feature Extraction from Images

1. Introduction

Digital imaging in medicine is in constant growth due to the increasing availability of imag-
ing equipment in hospitals. Average-sized radiology departments now produce several tera-bytes
of data annually. This prompts for efficient systems for image annotation, storage, retrieval and
mining. Typically, medical image databases are accessed via textual information through the
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standard Picture Archiving and Communication System (PACS) [1], [2]. PACS integrates imag-
ing modalities and interfaces with hospital and departmental information systems to manage
storage and distribution of images to medical personnel, researchers, clinics, and imaging cen-
ters. An important requirement of PACS is the provision of anefficient search function to access
the required images.

An universal format for PACS image storage and retrieval is the Digital Imaging and Com-
munications in Medicine (DICOM) standard [3]. DICOM is a well known standard for handling,
storing, printing, and transmitting information in medical imaging. The DICOM header con-
tains tags to decode the body part examined, the patient position and the acquisition modality.
Some of the tags are automatically set by the digital system according to the imaging protocol
used to capture the pixel data. Other part of the tags are set manually by the physicians or ra-
diologists during the routine documentation. This procedure cannot always be considered very
reliable, since frequently happens that some entries are either missing, false, or do not describe
the anatomic region precisely [4]. Furthermore, manual annotation of images is an expensive
and time-consuming procedure, especially given the large and constantly growing databases of
medical images. Thus, completely automated categorization in terms of DICOM tags is currently
not possible, but is highly desirable.

Automatic image annotation or image classification is an important step in image retrieval.
In the medical domain, using information directly extracted from images to annotate/categorize
them will improve the quality of image annotation in particular, and more generally the quality
of patient care. Properly classified medical image data can help medical professionals in fast
and effective access to data in their teaching, research, training, and diagnostic problems. The
results of the classification step can also be used for multilingual image annotation as well as for
DICOM header correction [5].

Automatic image annotation can be used for retrospective annotation (pre DICOM). It can
also be used as help for human annotators (i.e., radiologists), where the annotations that are
suggested by the system are corrected/verified/confirmed by the human annotator. The limits of
performance of an automated annotation system that learns from example images annotated by
humans, is the rate/probability of operator error/agreement of annotators.

Automatic image annotation uses a computer system which automatically assigns metadata
in the form of captions or keywords to a digital image. Typically, image analysis first extracts
feature vectors. Then, together with the training annotations, they are used by a machine learning
algorithm to learn to automatically assign annotations. The performance of the computer system
largely depends on the availability of strongly representative visual features, able to characterize
different visual properties of the images, and the use of effective algorithms for training classifiers
for automatic image annotation.

A single image may contain different meanings organized in hierarchical semantics: hence,
hierarchical multi-label classification (HMC) is stronglyrecommended for obtaining multi-label
annotations. The task of multi-label classification is to assign multiple labels to each image. The
assigned labels are a subset of a previously defined set or hierarchy of labels. HMC is used in
various domains [6], such as text classification, scene and video classification, medical imaging
and biological applications. One of the main issues involved in multi-label classification is the
importance of detecting and incorporating the connectionsbetween the labels into the process
of assigning multiple labels. A second and related issue is the additional complexity involved in
learning multi-label classifiers, as compared to learning single-label classifiers.

In this paper, we present a HMC system for medical image annotation. This system consists
of the two standard parts of image annotation systems, i.e.,processing (feature extraction) and
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classification of images. The image processing part uses state-of-the-art approaches to convert
an image to a set of numerical features extracted directly from the pixel values. The image clas-
sification part, which labels and groups the images, contains the main novelty of our approach:
The labels can be organized in a hierarchy and an image can be labeled with more than one label
(an image can belong to more than one group).

First, we generate four different types of descriptors suitable for X-Ray medical images:
raw pixel representation (RPR) [7], local binary patterns (LBP) [8], edge histogram descriptors
(EHD) [9], and scale-invariant feature transform (SIFT) [10]. The features are generated using
the medical X-ray images from the ImageCLEF2009 medical image annotation task [5]. Next,
we use these features together with the annotations to trainthe classifiers. In particular, we use
ensembles (bags and random forests) of PCTs for HMC and SVMs for single-label classification,
the most widely used classifier in the area of image annotation. At the end, we assess the predic-
tive performance of the classifiers using the hierarchical error measure (HEM) from ImageCLEF
[5] and overall recognition rate (RR), commonly used for assessing the predictive performance
over the database we use.

The main question that we address in our research is whether exploiting the semantic knowl-
edge about the inter-class relationships among the image labels (organized in a hierarchical struc-
ture) can improve the predictive performance of a system forautomatic image annotation. To this
end, we compare the predictive performance of the ensemblesof PCTs for HMC (that predict
all labels simultaneously) to that of SVMs (each of them predicting a single label). We do this
across all feature extraction techniques, thus evaluatingthe different feature extraction techniques
and their use in HMC of medical X-ray images. Moreover, we investigate whether (and which
type of) combination of feature extraction techniques yields better predictive performance. We
consider low level (LL) and high level (HL) feature fusion/combination schemes [7].

To emphasize the generality of our approach, we have also tested it on the database of gen-
eral images from the ImageCLEF@ICPR 2010 photo annotation task [11]. The images in this
database are annotated with 53 visual concepts organized ina classification scheme with hier-
archical structure, which we used to build ensembles of PCTsfor HMC as classifiers. The 53
concepts include abstract categories (like partylife), the time of day (like day or night), persons
(like no person visible, small or big group) and quality (like blurred or underexposed). A com-
plete overview of the task is given by Nowak [11].

The remainder of the paper is organized as follows. In Section 2, we give an overview of
related work. Section 3 introduces predictive clustering trees and their use for HMC. Section
4 describes the techniques for feature extraction from images. In Section 5, we explain the
experimental setup for annotating medical images. The obtained results and a discussion thereof
are given in Section 6. Section 7 describes the experiments in annotation of general images, as
well as their results. Section 8 concludes the paper and points out some directions for further
work.

2. Related work

Regardless of the number of visual concepts that have to be learned and their mutual con-
nections, most of the present systems for annotation of general images (and medical images in
particular) learn a separate model for each visual concept (label), i.e., they treat the classes as
completely separate and independent (both visually and semantically). This means that multi-
label classification problems are transformed into severalbinary classification problems. For
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example, the methods with high predictive performance at recent challenges/competitions in de-
tection and annotation tasks (such as the PASCAL Visual Object Classes challenge [12], the
ImageCLEF medical image annotation task [13], [5] and the ImageCLEF visual concept detec-
tion and annotation task [14]) perform multi-label classification by building binary classifiers
for each label. The instances associated with particular label are in one class and the rest are in
another class. For solving the binary classification problems, is common to use a SVM with aχ2

kernel [15]. This means that the increase of the number of labels used for annotation will linearly
increase the complexity of such an approach.

To deal with a large number of categories/classes, many approaches combine binary classi-
fiers using class hierarchies [16], [17]. This results in a logarithmic increase of complexity as
the number of labels increases. The class hierarchies can beautomatically constructed through
analysis of visual similarities: this can proceed top-downby recursive partitioning of the set of
classes [18] or bottom-up by agglomerative clustering [19]. The hierarchies could also be found
by exhaustive search or random sampling followed by cross-validation [20].

An alternative method for automatic construction of hierarchies is to query an external se-
mantic network with class labels [17]. Since semantic networks model concepts and relations
between them, a subgraph in the form of a hierarchy can be easily extracted. Such an approach
allows to incorporate prior knowledge about object identity into the visual recognition system.
Our approach to automatic image annotation is based on this idea. We exploit the semantic
knowledge about the inter-class relationships among the image labels organized in a hierarchical
structure. We build one classifier that can simultaneously predict all annotations of an image,
instead of building one binary classifier for each node in thehierarchy.

Another popular approach to image annotation is TagProp [21]. TagProp is a discriminatively
trained nearest neighbor model. Tags of test images are predicted using a weighted nearest-
neighbor model to exploit labeled training images. Neighbor weights are based on neighbor rank
or distance. TagProp allows the integration of metric learning by directly maximizing the log-
likelihood of the tag predictions in the training set. However, in a recent study, Mensink et al.[22]
showed that per-label-trained linear SVM classifiers outperform TagProp.

3. Ensembles of PCTs for HMC

3.1. The task of HMC

Hierarchical multi-label classification is a variant of classification where (1) a single example
may belong to multiple classes at the same time and (2) the possible classes are organized in a
hierarchy. An example that belongs to some classc automatically belongs to all super-classes of
c: This is called the hierarchical constraint. Problems of this kind can be found in many domains
including text classification, functional genomics, and object/scene classification. For a more
detailed overview of the possible application areas we refer the reader to Silla and Freitas[6].

In medical image classification, the application domain on which we focus, an important
problem is the development of an automatic image annotationsystem, which can specify the
image modality, body orientation, body region, or the biological system examined. In this do-
main, the predefined set of labels might be organized in a semantic hierarchy, such as the one
shown in Fig. 1. Each image is represented with: (1) a set of descriptors (in this example, the
descriptors are histograms of five types of edges encountered in the image) and (2) a set of la-
bels/annotations. A single image can be annotated with multiple labels at different levels of the
predefined hierarchy.
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Figure 1: An example task of HMC in a medical domain. The table(on the left-hand side) contains a set of images with
their visual descriptors and annotations. The annotationsare part of the IRMA [23] hierarchical classification scheme(of
which a small part is shown on the right hand side).

| > 51

yes no

/ > 21

yes no

> 29

yes no

...
| > 21

yes no

...
lumbar spine 0.84
upper lumbar spine 0.62
ureter 0.51
...

cervical spine 0.81
musculosceletal 0.75
middle abdomen 0.72
...

renal pelvis 0.87
parenchyma 0.80
axis 0.74
...

Figure 2: An example of a predictive clustering tree constructed using the descriptors from Fig. 1. The internal nodes
contain tests on the descriptors, while the leafs store the probabilities that an image is annotated with a given label from
the hierarchy.

For example, the image in the second row of the table in Fig. 1 has two labels, middle ab-
domen and renal pelvis, listed explicitly. Note that this image is also implicitly labeled with the
labels: anatomy, abdomen, kidney, uropoietic and bio-system. These labels are all ancestors of
the explicitly listed labels in the given hierarchy.

The data, as presented in the table in the left-hand side of Fig. 1, constitute a data set for
HMC. This set can be used by a machine learning algorithm to train a classifier for HMC. For
images in the testing set only the descriptors are given and no a priori annotations.

3.2. Predictive clustering trees

Predictive Clustering Trees (PCTs) [24]1 generalize decision trees [25] and can be used
for a variety of learning tasks including different types of prediction and clustering. The PCT
framework views a decision tree as a hierarchy of clusters: the top-node of a PCT corresponds
to one cluster containing all data, which is recursively partitioned into smaller clusters while
moving down the tree. The leaves represent the clusters at the lowest level of the hierarchy and
each leaf is labeled with its cluster’s prototype (prediction). Note that the hierarchical structure
of the PCT (Fig. 2) does not necessary reflect the hierarchical structure of the annotations (Fig.
1).

1The PCT framework is implemented in the CLUS system, which isavailable athttp://www.cs.kuleuven.be/
~dtai/clus.
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PCTs are built with a greedy recursive top-down induction (TDI) algorithm, similar to that
of C4.5 [26] or CART [25]. The learning algorithm starts by selecting a test for the root node.
Based on this test, the training set is partitioned into subsets according to the test outcome.
This is recursively repeated to construct the subtrees. Thepartitioning process stops when a
stopping criterion is satisfied (e.g., the number of recordsin the induced subsets is smaller than
some predefined value; the length of the path from the root to the current subset exceeds some
predefined value etc.). In that case, the prototype is calculated and stored in a leaf.

One of the most important steps in the TDI algorithm is the test selection procedure. For
each node, a test is selected by using a heuristic function computed on the training examples.
The goal of the heuristic is to guide the algorithm towards small trees with good predictive
performance. The heuristic used in this algorithm for selecting the attribute tests in the internal
nodes is the reduction in variance caused by partitioning the instances, where the varianceVar(S)
is defined by (Equation 1). Maximizing the variance reduction maximizes cluster homogeneity
and improves predictive performance.

The main difference between the algorithm for learning PCTs and an algorithm for learning
decision trees (such as C4.5 [26] and CART [25]) is that the former considers the variance func-
tion and the prototype function (that computes a label for each leaf) as parameters that can be
instantiated for a given learning task. So far, the PCTs havebeen instantiated for the following
tasks: multiple targets prediction [27], [28], predictionof time-series [29] and hierarchical-multi
label classiffication [30]. In this article, we focus on the last of these tasks.

3.3. PCTs for hierarchical multi-label classification

To apply PCTs to the task of HMC, the example labels are represented as vectors with
Boolean components. Components in the vector correspond tolabels in the hierarchy traversed
in a depth-first manner. Thei-th component of the vector is 1 if the example belongs to class ci

and 0 otherwise. Ifvi = 1, thenv j = 1 for all v j ’s on the path from the root tovi .
The variance of a set of examples (S) is defined as the average squared distance between each

example’s labelvi and the mean label ¯v of the set, i.e.,

Var(S) =

∑

i
d(vi , v̄)2

|S|
(1)

The higher levels of the hierarchy are more important: an error at the upper levels costs more
than an error at the lower levels. Considering this, a weighted Euclidean distance is used:

d(v1, v2) =

√

∑

i

w(ci)(v1,i − v2,i)2 (2)

wherevk,i is the i’th component of the class vectorvk of an instancexk, andw(ci) are the class
weights. The class weights decrease with the depth of the class in the hierarchy,w(ci) = w0·w(c j),
wherec j is the parent ofci . Each leaf in the tree stores the mean ¯v of the vectors of the examples
that are sorted into that leaf (Fig. 2). Each component of ¯v is the proportion of examples ¯vi in the
leaf that belong to classci . An example arriving in the leaf can be predicted to belong toclassci

if v̄i is above some thresholdti . The threshold can be chosen by a domain expert.
The PCTs are also extended for predicting hierarchies organized as directed acyclic graphs

(DAGs). In this case, the depth of a class is not unique as classes do not have single path from
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the hierarchy’s root. To resolve this issue, Vens et al. [30]suggest four aggregation schemes of
the possible paths from the top-node to a given class: average, maximum, minimum and sum.
After an extensive experimental evaluation, they recommend to use the average as aggregation
function. For a detailed description of PCTs for HMC we referthe reader to Vens et al. [30].
Next, we explain how PCTs are used in the context of an ensemble classifier, in order to further
improve the performance of PCTs.

3.4. Ensemble methods

An ensemble classifier is a set of (base) classifiers. A new example is classified by the en-
semble by combining the predictions of the member classifiers. The predictions can be combined
by taking the average (for regression tasks), the majority vote (for classification tasks) [31],[32],
or more complex combinations.

We use PCTs for HMC as base classifiers. Averaging is applied to combine the predictions
of the different trees: the leaf’s prototype is the proportion of examples of different classes that
belong to it. Just like for the base classifiers, a threshold should be specified to make a prediction.

We consider two ensemble learning techniques that have primarily been used in the context
of decision trees: bagging and random forests. Bagging [31]constructs the different classifiers
by making bootstrap replicates of the training set and usingeach of these replicates to construct
one classifier. Each bootstrap sample is obtained by randomly sampling training instances, with
replacement, from the original training set, until a numberof instances is obtained equal to the
size of the training set. Bagging is applicable to any type oflearning algorithm.

A random forest [32] is an ensemble of trees, obtained both bybootstrap sampling, and by
randomly changing the feature set during learning. More precisely, at each node in the decision
tree, a random subset of the input attributes is taken, and the best feature is selected from this
subset (instead of the set of all attributes). The number of attributes that are retained is given by a
function f of the total number of input attributesx (e.g., f (x) = x, f (x) =

√
x, f (x) =

⌊

log2 x
⌋

+1,
...). By settingf (x) = x, we obtain the bagging procedure.

4. Feature extraction from images

Collections of medical images can contain various images obtained using different imaging
techniques. Different feature extraction techniques are able to capture different aspects of an
image (e.g., texture, shapes, color distribution...). In this study, we focus on X-ray images, hence,
we use texture (LBP and EHD) and local (SIFT) features as mostpromising for describing X-ray
images [5],[33].

Texture is especially important, because it is difficult to classify medical images using shape
or gray level information. Effective representation of texture is needed to distinguish between
images with equal modality and layout. Local image characteristics are fundamental for image
interpretation: while global features retain informationon the whole image, the local features
capture the details. They are thus more discriminative concerning the problem of inter and intra-
class variability, an open challenge in automatic annotation of medical images [7].

4.1. Raw pixel representation

The most straightforward approach to image classification is the direct use of the image pixel
values as features. The images are scaled to a common size andrepresented by a feature vector
that contains image pixel values. It has been shown that for classification and retrieval of medical
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radiographs, this method serves as a reasonable baseline [34]. We used a 32x32 down-sampled
representation of the images as recommended by Tommasi et al. [7]. The obtained 1024 pixel
values were then used as input features. Fig. 3 shows how we built the raw pixel representation
for each image.

Figure 3: Down-sampling for raw pixel representation

4.2. Local binary patterns

Local binary patterns (LBP) are one of the best representations of texture content in images
[8]. They are invariant to monotonic changes in gray-scale images and fast to compute. Fur-
thermore, they are able to detect different micro patterns, such as edges, points and constant
areas.

The basic idea behind the LBP approach is to use the information about the texture from a
local neighborhood. First, we define the radiusR of the local neighborhood under considera-
tion. The LBP operator then builds a binary code that describes the local texture pattern in the
neighborhood set ofP pixels. The binary code is obtained by applying the gray value of the
neighborhood center as a threshold. The binary code is then converted to a decimal number
which represents the LBP code. Formally, given a pixel at position (xc, yc) the resulting LBP
code can be expressed as follows:

LPB(P,R)(xc, yc) =
P−1
∑

n=0

S(in − ic)2n (3)

wheren ranges over theP neighbors of the central pixel (xc, yc), ic andin are the gray-level values
of the central pixel and the neighbor pixel, andS(x) is defined as:

S(x) =

{

1, if x ≥ 0 (4a)

0, otherwise (4b)

The image is traversed with the LBP operator pixel by pixel and the outputs are accumulated
into a discrete histogram. However, not all LBP codes are informative. Certain LBP codes cap-
ture fundamental properties of the texture and are called uniform patterns because they constitute
the vast majority, sometimes over 90 percent, of all patterns present in the observed textures [8].
These patterns have one thing in common, namely, a uniform circular structure that contains very
few spatial transitions. They function as templates for micro-structures such as bright spot, flat
area or dark spot.

In our experiments, we used the patternsLBPu2
8,1, where the superscriptu2 reflects the use

of uniform patterns that have aU value of at most 2 on a neighborhood of size 8 and radius
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Figure 4: The image is divided into 4x4 non-overlapping sub-images from which LBP histograms are extracted and
concatenated into a single, spatially enhanced histogram

1. TheU value is the number of spatial transitions (bitwise 0/1 changes) in the pattern. The
non-uniform patterns (patterns that haveU value larger than 2) are grouped under one bin in the
resulting histogram. With theLBPu2

8,1 operator, the number of bins in the histogram is reduced
from 256 to 59 (58 bins for uniform patterns and one bin for non-uniform/noisy patterns).

To spatially enhance the descriptors and improve the performance, it has been suggested to
repeatedly sample predefined sub-regions of an image (e.g.,1x1, 2x2, 4x4 or 1x3) [35]. The
different resolutions are then aggregated into a spatial pyramid which allows for region-specific
weighting. Following these approaches, we divide the images into 4x4 non-overlapping sub-
images (blocks) and concatenate the LBP histograms extracted for each sub-image into a single,
spatially enhanced feature histogram. This approach aims at obtaining a more local description
of the images. Fig. 4 shows how we build the LBP histogram with944 bins in total for each
image (16 blocks with 59 bins each).

4.3. Edge histogram descriptors

Edge detection is a fundamental problem of computer vision and has been widely investigated
[36]. The goal of edge detection is to mark the points in a digital image at which the luminous
intensity changes sharply. An edge representation of an image drastically reduces the amount of
data to be processed, yet it retains important information about the shapes of objects in the scene.
Edges in images constitute important features to representtheir content.

Figure 5: The image is divided into 4x4 non-overlapping sub-images. For each sub-image, five types of edge bins are
calculated and concatenated into a single, spatially enhanced histogram

The edge histogram in the image space represents the frequency and the directionality of the
9



brightness changes in the image. To represent it, the MPEG-7standard defines the edge his-
togram descriptor (EHD) [9]. The edge histogram descriptorbasically represents the distribution
of five types of edges (vertical, horizontal, two types of diagonal and non-directional edges; see
Fig. 2). We divide the image space into 4x4 non-overlapping blocks, yielding 16 equal-sized
sub-images and count the edges on each one of them (as shown inFig. 5).

Figure 6: Three different spatial pyramids used in our experiments, a) 1x1, b) 2x2 and c) 1x3. The spatial pyramid
constructs feature vectors for each of the specific part of the image.

To characterize the sub-images, a histogram of edge distribution for each sub-image is gen-
erated. Edges in the sub-images are categorized into five types: vertical, horizontal, 45-degree
diagonal, 135-degree diagonal and non-directional edges,as presented in Fig. 5. The histogram
for each sub-image represents the relative frequency of occurrence of the five types of edges in
the corresponding sub-image and thus contains five bins.

Since there are 16 sub-images in the image and 5 types of edges, a total of 80 histogram
bins are required. Note that each of the 80-histogram bins has its own semantics in terms of
location and edge type. In our experiments, the edge detection is performed using the Canny
edge detection algorithm [37].

4.4. SIFT descriptors

We employ the bag of features approach commonly used in many state of the art approaches
in image classification [38]. The basic idea of this approachis to sample a set of local image
patches using some method (densely, randomly or using a key-point detector) and calculate a
visual descriptor on each patch (SIFT descriptor, normalized pixel values). The resulting distri-
bution of descriptors is then quantified against a pre-specified visual codebook which converts
it to a histogram. The main issues that need to be considered when applying this approach are:
sampling of the patches, selection of the visual patch descriptor and building the visual codebook.

We use dense sampling of the patches, which samples an image grid in a uniform fashion
using a fixed pixel interval between patches. We use an interval distance of 6 pixels and sample
at multiple scales (σ = 1.2 andσ = 2.0). Due to the low contrast of the radiographs, it would be
difficult to use any detector for points of interest. Also, it has been pointed by Zhang et al. [38],
that a dense sampling is always superior to any strategy based on detectors for points of interest.
We calculate a SIFT descriptor [10] for each image patch.

The crucial aspects of a codebook representation are the codebook construction and assign-
ment. An extensive comparison of codebook representation variables is given by van Gemert et
al. [39]. We employk-means clustering (as implemented in theR environment) [40] on 400000
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randomly chosen descriptors from the set of images available for training. k-means partitions
the visual feature space by minimizing the variance betweena predefined number ofk clusters.
Here, we setk to 500 and thus define a codebook with 500 codewords [7].

Dense sampling gives an equal weight to all key-points, irrespective of their spatial location
in the image. To overcome this limitation, we follow the spatial pyramid approach which we
applied for the LBP descriptor. For this descriptor, we useda spatial pyramid of 1x1, 2x2,
and 1x3 regions. Since every region is an image in itself, thespatial pyramid can easily be
used in combination with dense sampling. The resulting vector with 4000 bins ((1x1+ 2x2 +
1x3)x500) was obtained by concatenation of the eight histograms. Fig. 6 shows an example of
the histograms extarcted from an image for the spatial pyramids of 1x1, 2x2 and 1x3.

4.5. Feature fusion schemes

Different visual features bringing different information about the visual content of the images
clearly outperform single feature approaches [5], [7]. Following these findings, we combine the
different visual features described above. We investigate two different feature fusion schemes:
low level (LL) and high level (HL). These fusion schemes are depicted in Fig. 7.

Figure 7: Fusion schemes for the different descriptors. a) Low level fusion, b) High level fusion.

For the low level feature fusion scheme, the descriptors areconcatenated in a single feature
vector and a classifier is trained on the joint feature vector. The high level fusion scheme averages
the predictions from the individual classifiers trained on the separate descriptors.

5. Experimental setup

In this section, we present the experimental setup we used toevaluate the proposed system
and compare it to other approaches. First, we present the databases of images that we use.
Next, we describe the evaluation metrics we use to assess thepredictive performance of the
classifiers. We then state the experimental questions that we investigate in this study. We specify
the parameter instantiations for the algorithms and the design of the experiments.

5.1. The IRMA database

We evaluated our system by applying it to the database for theImageCLEF2009 medical
image annotations task [5]. This database is provided by theIRMA group from the University
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Hospital of Aachen, Germany [23]. The database contains 12677 fully annotated radiographs,
taken randomly from medical routine, which should be used totrain a classifier. The dataset con-
tains two parts: ImageCLEF2007 (12339 training and 1353 testing images) and ImageCLEF2008
(12667 training and 1733 testing images). These datasets present a difficult classification prob-
lem. First, the classes in the training set are extremely imbalanced (e.g. there are classes with
less than 10 images and classes with more than 2000 images). Second, the distribution of the
classes in the training set is different from the one on the testing set.

Figure 8: IRMA-coded chest and abdomen radiograph. For instance, the code for the biological axis (512) on the sub-
figure b) is translated as follows: 5 is for uropoietic system, 51 is for uropoietic system, kidney and 512 is uropoietic
system, kidney, renal pelvis. The renal pelvis is an elementof the kidney, which in turn is an element of the uropoietic
system

The images are labeled according to the four annotation label sets [5]. We used the Image-
CLEF2007 label set with 116 IRMA codes and the ImageCLEF2008label set with 193 IRMA
codes, both with a hierarchical nature of the coding scheme [23]. The goal is to correctly an-
notate 1353 (for 2007) and 1733 (for 2008) images that are provided without labels, using the
different respective annotation label sets in turn.

The IRMA coding scheme consists of four axes with three to four positions, each position
taking a value from the set 0,..., 9, a,..., z, where ’0’ denotes ’unspecified’ and determines the end
of a path along an axis. The four axes are: technical axis (T, image modality), directional axis (D,
body orientation), anatomical axis (A, body region examined) and biological axis (B, biological
system examined). This allows a short and unambiguous notation (IRMA: TTTT-DDD-AAA-
BBB), where T, D, A, and B denotes a coding or sub-coding digitof the respective axis. A
small part of the IRMA coding hierarchy is presented in Fig. 1. Fig. 8 gives two examples of
unambiguous image classification using the IRMA code.

The IRMA code is hierarchical in its nature and it allows us toexploit the hierarchy of
the code. This means that we can construct an automatic imageannotation system based on
predictive clustering trees for HMC.

5.2. Evaluation metrics

In this study, we use two evaluation metrics: the ImageCLEF hierarchical evaluation measure
[5] and overall recognition rate. The ImageCLEF hierarchical evaluation measure takes into
account the depth and the difficulty of the predictive problem (’branching factor’) at which an
error has occurred (Equation 5). It can be calculated using the following formula:
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0, if v j = v̄ j∀ j ≤ i (6a)

0.5, if v j = ∗∃ j ≤ i (6b)

1, if v j , v̄ j∃ j ≤ i (6c)

whereI is the depth of the hierarchy,bi is the number of possible labels at the error (’branching
factor’) andi is the depth at which the error occurred. This measure allowsthe classifier not to
predict the complete code/annotation, that is, the classifier can predict the first 2 nodes of the
code (level of the hierarchy) and then say ’don’t know’ (encoded by *) for the next node/level.
The ImageCLEF evaluation measure can range from 0 to the number of testing images. If this
measure is closer to 0, then the classifier is more accurate.

The overall recognition rate is a very common and widely usedevaluation measure. It is the
fraction of the test images whose complete IRMA code was predicted correctly.

5.3. Experimental questions

The goal of this study is to answer the following questions:

1. Does the use of the hierarchy (in ensembles of PCTs) improve the predictive performance
over flat classification (SVMs)?

2. How is the relative performance of the two techniques affected by the:
(a) Use of PCT ensembles versus single PCTs in the domain of image annotation?
(b) Different ensemble methods: bagging or random forests?
(c) Different feature extraction techniques for medical X-Ray images?
(d) Schemes for fusion of the descriptors from the feature extraction techniques?

3. Is the proposed system with ensembles of PCTs for HMC scalable and efficient?

For the first three questions ( 1, 2a and 2b), we evaluate the performance of PCTs for HMC
and ensembles (bagging and random forest) of PCTs. After that, we compare the best method
for HMC with SVMs. It has been shown [30] that exploiting the structure of the hierarchy in tree
classifiers yields better predictive performance in the domain of functional genomics. Here, we
compare the performance of the ensemble classifiers with SVMs for flat classification - the most
widely used classifiers for medical image annotation [7].

To check which feature extraction technique is most suitable for medical X-Ray images
(question 2c), we compare the performance of the classifierson each type of visual descrip-
tors. For this purpose, we discuss only the results from the separate runs of the descriptors (first
four rows from Table 1 and Table 2).

The various feature extraction techniques capture different aspects of an image. We also
investigate whether the combination of feature extractiontechniques can increase the predictive
performance (question 2d). The results from the fusion schemes are presented in the last 10
rows in Table 1 and Table 2.

We compare the execution times of the different classifiers to assess the efficiency and scala-
bility of the system (question 3). We measure the time neededto train the classifiers; for SVMs
this includes also the time needed to optimize the parameters.
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Figure 9: The adapted hierarchy of the classes in the IRMA code

5.4. Experimental design

In this section, we describe the experimental setup that we used. First, we describe an adap-
tation of the hierarchy of the IRMA code and then the parameter instantiations of the learning
algorithms. Note that we stated the parameters for the feature extraction techniques while ex-
plaining them (see Section 4).

The IRMA coding scheme was proposed by Lehmann et al. in [23]:It consists of four axes
which are strictly hierarchical (tree-shaped hierarchies). The literature [5],[23] suggests that
these four axes are independent. We conducted a series of experiments predicting the four axes
simultaneously (combined in a single hierarchy) and separately. The predictive performance
when using all four axes simultaneously was higher as compared to using each axis separately.
This leads us to believe that these axes are not-independent. In a separate study, Tommasi et al.
[7] come to a similar conclusion. To address this issue, we adapted the IRMA coding hierarchy
as follows.

We take the code of the first position for the biological axis and add it in front of the codes
for the anatomical and directional axes. The inclusion of the biological code in the first level in
the hierarchy helps us to initially filter the images resulting in large visual differences in the first
level of the hierarchy. In the context of the axis A, the first level of axis B is necessary because
the examined body region insufficiently describes the content and structure of the images. For
example, fluoroscopy of the abdominal region may access the vascular or the gastrointestinal
system depending on the way the contrast agent is administered, which results in different image
textures. For the directional axis, this is even more obvious. For instance, an image of a chest
and an image of a hand can have the same directional code, but are visually very different.

The hierarchy of the IRMA code was adapted in order to increase the inter-class variabil-
ity and decrease the intra-class variability of the images.Fig. 9 shows the adapted hierarchy
of classes that we use in the experiments. Note that this hierarchy was only used to train the
classifier. The evaluation was performed by using the original IRMA hierarchy.

In the following, we state the parameter instantiations that we used to train the classifiers:
PCTs, ensembles and SVMs. The algorithm for learning PCTs requires as input the weight of
the depth in the hierarchy. We setw0 to 0.75 to force the algorithm to make better predictions on
the upper levels of the hierarchy. Also, we performed F-testpruning to prevent over-fitting of the
trees [30].

We trained ensembles of 100 un-pruned trees (PCTs). For the base PCTs, we used the same
weight (0.75) used to train the single PCTs. The size of the feature subset that is retained at

14



each node, when training a random forest, was set to 10% of thenumber of descriptive attributes.
Remember that the output of the classifier is a probability that a given example is annotated with
a given label. If the probability is higher than a given threshold (obtained during the training
of the classifier), then the example is annotated with the given label. Since the hierarchical
evaluation measure allows the classifier to predict a portion of the code, different thresholds for
the different levels of the hierarchy were selected. If a probability for a given code was lower
than the threshold, then for this code and its sub-codes the classifier predicts ‘dont know’.

For training the SVMs, we used a custom developed application . This application uses the
LibSVM library [41]. We apply theOne-against-All(OvA) approach to solve the partial binary
classification problems. Each of the SVMs was trained with aχ2 kernel. We optimize the cost
parameterC of the SVMs using an automated parameter search procedure. For the parameter
optimization, we separate 20% of the training set and use it as validation set. After finding the
optimalC value, the SVM was finally trained on the whole set of trainingimages.

For the evaluation of the SVMs using the hierarchical error measure, we applied confidence
based opinion fusion [7]. Let us assume that there areN classes. Then, using the OvA approach,
N SVMs are trained – each separating a single class from all remaining ones. The decision is
based on the distances of the test sample to theN hyperplanes. The prediction then corresponds
to the hyperplane for which the distance is largest. The confidence based opinion fusion, how-
ever, takes into account the difference of the predictions with the two largest distances reported
from the SVMs classifiers. This difference is computed only if their distances differ less than
a threshold value (obtained during training using the validation data set). In that case, the final
prediction will contain ‘don’t know’ starting from the position where the two underlying predic-
tions begin to differ. For example, if the two predictions for the anatomical axis are 411 and 421
then the final prediction will be 4**. This approach improvesthe hierarchical error measure for
the SVMs classifier by 10 to 20 points depending on the used descriptors.

6. Results and discussion

Table 1 and Table 2 present the results obtained using the experimental setup described in
Section 5 in terms of the hierarchical evaluation measure (HEM) and overall recognition rate
(RR) respectively. In the discussion of the results, we firstcompare the performance of single
PCTs and ensembles of PCTs. We then compare the performance of the best ensemble method
(random forests) and SVMs. We focus on the first evaluation measure HEM (Table 1), since the
two show similar behavior; the conclusions for HEM are also valid for RR.

The results clearly show that ensemble methods outperform single PCTs on all datasets: ran-
dom forests are significantly better (according to the non-parametric Wilcoxon test for statistical
significance) than single PCTs (p < 4·10−6) and bagging is better than single PCTs (p < 4·10−6).
A comparison between the two ensemble methods shows that random forests outperforms bag-
ging and that the difference is statistically significant (p < 1 · 10−4).

While extremely efficient, individual PCTs have the drawback of only using a small number
of the available features, which results in low predictive performance. The PCTs trade predictive
performance for interpretability. However, in the domainswhere interpretability of the model is
a necessity, PCTs are the models that should be considered.

We next compare the performance of random forests to the performance of SVMs. On all
datasets, random forests perform better than SVMs; the difference on average is∼ 17 points for
the ImageCLEF2007 and∼ 20 points for ImageCLEF2008 datasets (note that a point in the HEM
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Table 1: Predictive performance of the models learned from descriptors produced by different feature extraction algo-
rithms and their combinations. The best results are shown inboldface. Performance is given in terms of the ImageCLEF
hierarchical evaluation measure HEM, where smaller valuesmean better performance. The low-level fusion results are
in rows that end with ‘LL’ and high-level fusion results are in rows that end with ‘HH’.SVM RF Bag PCTs SVM RF Bag PCTsSIFT 75.00 58.90 59.78 180.00 179.88 161.67 161.47 320.90LBP 124.44 95.71 95.71 210.40 257.92 209.47 208.97 360.00Hierarchical Error MeasureImageCLEF2007 ImageCLEF2008LBP 124.44 95.71 95.71 210.40 257.92 209.47 208.97 360.00EHD 127.41 105.12 105.12 222.39 265.95 249.44 249.74 380.1232x32 202.94 195.78 200.12 310.90 376.93 361.21 361.31 530.11LBP+EHD_LL 99.48 85.56 86.80 200.12 221.96 190.12 190.22 347.89LBP+SIFT_LL 72.71 52.89 53.22 178.29 175.65 157.38 157.48 317.12EHD+SIFT LL 72 37 56 11 57 11 179 12 170 97 159 30 159 33 318 87EHD+SIFT_LL 72.37 56.11 57.11 179.12 170.97 159.30 159.33 318.87LBP+EHD+SIFT_LL 70.45 51.90 52.33 177.23 170.87 153.21 153.41 317.00LBP+EHD+SIFT+32x32_LL 69.46 52.23 53.00 178.12 169.11 154.23 154.63 318.50LBP+EHD_HL 100.37 87.90 89.21 201.30 223.73 195.96 196.06 347.90LBP+SIFT_HL 73.72 54.21 54.56 178.90 177.12 159.73 160.03 318.00EHD+SIFT_HL 72.70 59.12 61.71 179.50 174.44 161.85 162.05 318.80LBP+EHD+SIFT_HL 71.58 52.54 53.00 177.90 174.18 156.21 156.31 317.90LBP+EHD+SIFT+32x32_HL 70.46 53.90 54.50 178.58 173.28 156.50 156.70 318.30
roughly corresponds to one completely misclassified image). The difference in performance
is statistically significant (withp < 4 · 10−6). This shows that exploiting the structure of the
hierarchy does help in improving the predictive performance.

We then analyze the results for the individual feature extraction algorithms (top 4 rows from
Table 1 and Table 2). We can note the high predictive performance of the SIFT histogram: it is
most capable of capturing the hierarchical structure of theX-ray images. The other feature ex-
traction algorithms follow after and are ordered by performance as follows: LBP, then EHD and
the simplest descriptor RPR, which has the worst performance. The difference of performance to
the LBP operator is very noticeable and larger for SVMs than for random forests: on the Image-
CLEF2007 dataset, random forests are better by∼ 30 points and on ImageCLEF2008 by∼ 50
points and on the ImageCLEF2007 dataset, SVMs are better by∼ 50 and on ImageCLEF2008 by
∼ 80 points. The LBP descriptors capture information that is more easily utilized by the random
forests than by the SVMs.

The experimental results show that the features that describe the image content in a local
manner (i.e., SIFT descriptors) outperform the ones that provide global descriptions. The local
features capture the details in an image, while the global features are able to retain information
on the whole image as a source of context. Furthermore, the SIFT descriptor is robust to noise,
illumination, scale, translation and rotation changes. Hence, it can better resolve the inter and
intra-class variability, thus it can offer better information to the classifier. We can conclude that
the local features are generally more informative than global features for the medical image
annotation task at hand.

We also compare the results of the experiments conducted with different feature fusion
schemes. Inclusion of more than one type of features in the classification process contributes
to better representation of the hierarchical nature of the images and helps to further improve
the predictive performance. Low level fusion (concatenation) yields slightly better predictive
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Table 2: Predictive performance of the models learned from descriptors produced by different feature extraction algo-
rithms and their combinations. The best results are shown inboldface. Performance is given in terms of the overall
recognition rate evaluation measure, where larger values mean better performance. The low-level fusion results are in
rows that end with ‘LL’ and high-level fusion results are in rows that end with ‘HH’.SVM RF Bag PCTs SVM RF Bag PCTsSIFT 77.31 79.37 79.08 63.04 62.44 64.91 64.80 52.04LBP 70.36 75.24 75.24 56.02 56.26 60.99 60.70 47.02OverallRecognit ionRateImageCLEF2007 ImageCLEF2008LBP 70.36 75.24 75.24 56.02 56.26 60.99 60.70 47.02EHD 68.37 72.28 72.21 55.06 54.53 54.99 54.81 45.0032x32 57.35 58.01 57.64 45.97 45.47 45.52 45.47 36.98LBP+EHD_LL 75.09 76.97 75.75 58.98 60.53 61.51 61.39 48.99LBP+SIFT_LL 77.90 81.00 80.93 64.52 62.26 65.49 65.43 53.49EHD+SIFT LL 78 20 79 97 79 82 64 00 63 19 64 97 64 80 52 97EHD+SIFT_LL 78.20 79.97 79.82 64.00 63.19 64.97 64.80 52.97LBP+EHD+SIFT_LL 78.42 81.96 81.67 64.89 63.30 65.95 65.83 53.72LBP+EHD+SIFT+32x32_LL 78.49 81.22 81.00 64.30 63.53 65.78 65.55 52.97LBP+EHD_HL 74.87 76.01 76.64 58.38 60.13 61.45 61.39 48.87LBP+SIFT_HL 77.46 79.97 79.97 64.22 62.26 65.32 65.14 53.49EHD+SIFT_HL 77.90 79.00 78.86 63.93 62.44 64.80 64.62 52.79LBP+EHD+SIFT_HL 78.05 81.00 80.93 64.59 62.78 65.78 65.72 53.66LBP+EHD+SIFT+32x32_HL 78.42 80.70 80.56 64.37 63.13 65.60 65.49 52.97
performance than high level fusion. This is valid for all algorithms used in this study.

The classifiers on the fused feature sets use more information about the different aspects of
an image that are captured by the different descriptors. Namely, they can consider combinations
of features from different descriptors. This additional information is orthogonal and helps the
classifiers to produce better annotations. Moreover, the ensembles of trees, such as random
forests, can effectively exploit the information provided by the large number of features. Thus,
low-level fusion yields better performance than high-level fusion.

The best results are achieved by using random forests on the concatenated SIFT, LBP and
EHD descriptors (boldface in Table 1 and Table 2). This holdsfor both datasets, ImageCLEF2007
and ImageCLEF2008. Moreover, our best results are better than the best results reported so far
on this database [5]. Our score of 153.2 for ImageCLEF2008 isby 16.3 points better than the
best result, and the score of 51.9 for ImageCLEF2007 is by 12.4 points better than the best result.

From the results, we can also notice the worse performance ofall algorithms on the Image-
CLEF2008 dataset, as compared to the ImageCLEF2007 dataset. This is mainly due to the larger
hierarchy of the ImageCLEF2008 dataset (195 nodes as compared to 140 nodes for the Image-
CLEF2007 dataset). In addition, the difference of the distribution of images in the training and
the testing set is bigger for ImageCLEF2008 than for ImageCLEF2007.

Additionally, we assess the efficiency of the algorithms by measuring the time needed to
learn the classifier and time needed to produce an annotationfor an unseen image. The running
times for the algorithms are presented in Table 3. The randomforests are the fastest method; they
are∼ 10 times faster than bagging and∼ 5.5 times than the SVMs (including the optimization
of the SVM parameters). Recall that the random forests are ensembles of PCTs that predict the
complete hierarchy (a single model), while the SVMs construct a classifier for each node of the
hierarchy separately. Hence, the increase of the hierarchywill significantly increase the training
time of SVMs (additional classifiers should be trained), while the training time for random forests
will increase only slightly. The efficiency of the random forests of PCTs is even more prominent
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Table 3: Running times of the algorithms: time needed to construct the classifier and time needed to produce an anno-
tation for an unseen image. Note that this table only lists the results for the low-level fusion scheme (the results that
end with ‘LL’). The running times for the high-level fusion are the sum of running times for its constitutive runs. The
experiments were executed on a Linux server with two Intel Quad-Core Processors@2.5GHz and 64GB of RAM.SVM RF Bag PCTs SVM RF Bag PCTsEHD 2820.873 92.668 566.880 4.667 3113.320 115.129 716.606 5.446LBP 4323.681 1909.510 21684.124 127.889 4406.340 2631.485 28612.105 158.95532x32 4745.630 1909.427 21458.823 110.436 5467.686 2614.089 28410.495 151.317SIFT 12451.760 2886.417 31611.480 227.709 13219.039 3717.713 40567.323 248.920LBP+EHD_LL 4824.592 2315.010 21629.071 231.516 4480.761 3012.840 28106.304 254.442LBP+SIFT_LL 14871.131 5095.170 55476.671 502.794 15788.345 6508.022 70057.262 487.347EHD+SIFT_LL 12656.792 3299.330 36001.937 337.784 13430.779 4165.986 45921.571 393.629LBP+EHD+SIFT_LL 15076.162 5094.305 55724.765 504.575 16006.638 6460.307 70462.933 500.873LBP+EHD+SIFT+32x32_LL 17700.564 6936.030 73786.231 591.772 18800.790 9128.094 95792.121 679.572EHD 0.016 0.002 0.003 0.001 0.019 0.004 0.003 0.001LBP 0.172 0.002 0.003 0.001 0.179 0.003 0.003 0.00132x32 0.189 0.002 0.003 0.001 0.192 0.002 0.002 0.001SIFT 0.551 0.002 0.003 0.001 0.591 0.003 0.004 0.001LBP+EHD_LL 0.175 0.003 0.002 0.001 0.176 0.002 0.003 0.001LBP+SIFT_LL 0.569 0.002 0.002 0.001 0.565 0.003 0.003 0.001EHD+SIFT_LL 0.552 0.002 0.003 0.001 0.552 0.003 0.003 0.001LBP+EHD+SIFT_LL 0.570 0.002 0.002 0.001 0.569 0.002 0.002 0.001LBP+EHD+SIFT+32x32_LL 0.600 0.002 0.002 0.002 0.590 0.003 0.003 0.002

ImageCLEF 2007 ImageCLEF 2008
T rai ni ngti me[ sec]

T esti ngti meperi ma
ge [ sec]

when producing annotations for unseen images. The random forests in this case are∼ 165 times
faster than the SVMs. In this respect, bagging performs comparably to random forests. This
is due to the fact that passing through the tree has logarithmic complexity with respect to the
number of leafs in the tree. Since random forests and baggingproduce trees with similar sizes,
these times will be similar. All in all, random forests of PCTs significantly outperform SVMs as
compared by their training and testing times.

7. Experiments on photo annotation

To show the generality of the proposed system, we perform experiments on annotation of
general images. In this section, we first present the experimental setup that we used (the data,
evaluation metrics and the experimental design). We then present the results and compare them
to those of state-of-the-art approaches used in image annotation.

7.1. Experimental setup

This set of experiments was performed using the database from the ImageCLEF@ICPR
photo annotation task [42]. The database consists of 5000 train, 3000 validation, and 10000
test images annotated with 53 visual concepts organized in asmall hierarchy with tree structure
(see Fig. 10 for an example). The average number of annotations per image is 8.68 (including
both leaf and internal nodes from the hierarchy). The visualconcepts also contain abstract cate-
gories like Family/Friends, Partylife, Quality (blurred, underexposed, ...)and etc., thus making
the annotation/classification task very challenging.

The measures that we used to evaluate the performance of the algorithms on the medical X-
ray images are specific for the problem of annotation of medical images using the IRMA coding
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Figure 10: A fragment of the hierarchy for image annotation.The annotations are part of the hierarchical classification
scheme for the ICPR 2010 photo annotation task (right). The table contains a set of images with their annotations (left).

scheme2. Here, we use the most widely used evaluation measure in the area of ‘general photo
annotation’/‘visual concept detection’: mean average precision (MAP) [12]. For a given target
visual concept, the average precision can be calculated as the area under the precision-recall
curve for that target. Hence, it combines both precision andrecall into a single performance
value. The average precision is calculated for each visual concept separately and the obtained
values are then averaged to obtain the mean average precision. Because the true labels of the
test images from the ImageCLEF@ICPR 2010 database are not publicly available, we report the
MAP value obtained on the validation dataset.

For the images from this database, we use SIFT features, which were the best performing
features in previous experiments (also SIFT features are typically used in this type of problem
[14]). The SIFT features for this set of experiments were constructed using a visual codebook
with 4000 instead of 500 words (see Section 4.4). This modification was made because most of
the state-of-the-art approaches for image classification of general photos use a visual codebook
with 4000 words [14], [12]. In the previous experiments, random forests were the best perform-
ing method, so again we train random forests with 100 un-pruned PCTs for HMC. For the base
PCTs, we used the same weight (0.75) and the size of the feature subset that is retained at each
node was set to 10% of the number of descriptive attributes (same as in the experiments from the
Section 5).

To train the SVMs, we use the LibSVM implementation with probabilistic outputs [43]. To
solve the multiple classification problems, we employ againtheOne-against-Allapproach. For
each visual concept, we build a binary classifier where instances associated with that visual
concept are in one class (positive) and the rest are in another class (negative). To handle the
imbalance in the number of positive versus negative training examples, we fix the weights of the
positive and negative class. The weight of the positive class is set to#pos+#neg

#pos and the weight of

the negative class is set to#pos+#neg
#neg , with #posthe number of positive instances in the train set

and #negthe number of negative instances [15]. As in the previous experiments, we optimize the
value of the cost parameterC of the SVMs.

2Note that the hierarchical error measure allows the algorithm to say ‘don’t know’ for some classes, since the max-
imum number of labels per image with the IRMA coding scheme isknown. In the case of general images, an image
can be annotated with zero or|C| classes. Also, for the Overall recognition rate, for the case of IRMA coding scheme,
the number of possible combinations of labels is limited, while in the case of general images, this number is 2|C|. This
makes overall recognition rate not suitable for measuring the predictive performance of algorithms in annotating general
images.
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7.2. Results and discussion

The results from the photo annotation experiments are shownin Table 4. The table also
contains the total training time and testing time per image for both SVMs and random forests of
PCTs for HMC. From the presented results we can note that the random forests of PCTs for HMC
outperform the SVMs both in terms of predictive performanceand efficiency. The latter holds
especially for the time needed to produce an annotation for agiven test image: our approach is
more than 500 times faster than the SVMs.

Table 4: Results of the photo annotation experiments evaluated using Mean Average Precision (larger values of MAP
mean better performance). MAP Train time Test time per imageRF 0.450 9113 .516 0.002SVM 0.428 11821.227 1.078

Following the results from the study performed by Mensink etal. [22], this means that our
system also outperforms the TagProp [21] approach for imageannotation. The results show that
our system offers better predictive performance and efficiency than systems that are most widely
used for annotation of images. All in all, the proposed system has high predictive performance
and efficiency, is general and is easily applicable to other domains.

8. Conclusions

Hierarchical multi-label classification (HMC) problems are encountered increasingly often in
image annotation. However, flat classification machine learning approaches are predominantly
applied in this area. In this paper, we propose to exploit theannotation hierarchy in image
annotation by using ensembles of trees for HMC. Our approachto HMC exploits the annotation
hierarchy by building a single classifier that simultaneously predicts all labels in the hierarchy.
A substantial performance improvement is achieved by building ensembles of HMC trees, such
as random forests.

We apply our approach to two benchmark tasks of hierarchicalannotation of medical (X-ray)
images and an additional task of photo annotation (i.e., visual concept detection). We compare it
to a collection of SVMs (trained with aχ2 kernel), each predicting one label at the lowest level
of the hierarchy, the best-performing and most-frequentlyused approach to (hierarchical) image
annotation. Our approach achieves better results than the competition on all of these: For the two
medical image datasets, these are the best results reportedin the literature so far. Our approach
has superior performance, both in terms of accuracy/error and especially in terms of efficiency.

We explore the relative performance of ensembles of trees for HMC and collections of SVMs
under a variety of conditions. Along one dimension, we consider three different datasets. Along
another dimension, we consider two ensemble approaches, bagging and random forests. Fur-
thermore, we consider several state-of-the-art feature extraction approaches and combinations
thereof. Finally, we consider two types of feature fusion, i.e., low- and high-level fusion.

Ensembles of trees for HMC perform consistently better thanSVMs over the whole range of
conditions explored above. The two ensemble approaches perform better than SVM collections
on all three tasks, with random forests being more efficient than bagging (and the most efficient
overall). The relative performance holds for different image representations (we consider raw
pixel representation, local binary patterns, edge histogram descriptors and SIFT histograms), as
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well as combinations thereof: The SIFT histograms are the best individual descriptors. More-
over, combinations of different descriptors yield better predictive performance than the individual
descriptors. The relative performance also holds for both low-level and high-level fusion of the
image descriptors, the former yielding slightly better performance. We can thus conclude that for
the task of hierarchical image annotation, ensembles of trees for HMC are a superior alternative
to using collections of SVMs, which are most-commonly applied in this context.

We expect it is possible to further improve the predictive performance of our system. We
could try to adapt our tree-learning approach to tackle the shift in distribution of images between
the training and the testing set. Better performance may also be obtained by including high level
feature extraction algorithms able to give more understandable and compact representation of the
visual content of the images (segmented objects with relations among them).

Let us conclude by emphasizing the scalability of our approach. Decision trees are one of
the most efficient machine learning approaches and can handle large numbers of examples. The
ensemble approach of random forests scales very well for large numbers of features. Finally,
trees for HMC scale very well as the complexity of the annotation hierarchy increases, being
able to handle very large hierarchies organized as trees or directed acyclic graphs. Combining
these, our approach is scalable along all three dimensions.
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