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Abstract

We present a hierarchical multi-label classification (HMg3tem for medical image annotation.
HMC is a variant of classification where an instance may klgptormultiple classes at the same
time and these clasgtbels are organized in a hierarchy. Our approach to HMCoitethe an-
notation hierarchy by building a single predictive clustgrtree (PCT) that can simultaneously
predict all annotations of an image. Hence, PCTs are Véigient: a single classifier is valid
for the hierarchical semantics as a whole, as compared & afjproaches that produce many
classifiers, each valid just for one given class. To impraégsmance, we construct ensembles
of PCTs. We evaluate our system on the IRMA database thatstemd X-ray images. We in-
vestigate its performance under a variety of conditionsh&gin with, we consider two ensemble
approches, bagging and random forests. Next, we use setatedof-the-art feature extraction
approaches and combinations thereof. Finally, we employtyyes of feature fusion, i.e., low-
and high-level fusion. The experiments show that our sysiatperforms the best-performing
approach from the literature (a collection of SVMs, eachimténg one label at the lowest level
of the hierarchy), both in terms of error anfieiency. This holds across a range of descriptors
and descriptor combinations, regardless of the type ofifedtision used. To stress the general-
ity of the proposed approach, we have also applied it forraatix annotation of a large number
of consumer photos with multiple annotations organizedeimantic hierarchy. The obtained
results show that this approach is general and easily afian diferent domains, féering
state-of-the-art performance.

Keywords: Automatic Image Annotation, Hierarchical Multi-Label GHification, Predictive
Clustering Trees, Feature Extraction from Images

1. Introduction

Digital imaging in medicine is in constant growth due to thereasing availability of imag-
ing equipment in hospitals. Average-sized radiology dpants now produce several tera-bytes
of data annually. This prompts foffieient systems for image annotation, storage, retrieval and
mining. Typically, medical image databases are accessetkxtual information through the
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standard Picture Archiving and Communication System (PACS[2]. PACS integrates imag-
ing modalities and interfaces with hospital and departaleinformation systems to manage
storage and distribution of images to medical personnskarehers, clinics, and imaging cen-
ters. An important requirement of PACS is the provision oéfiitient search function to access
the required images.

An universal format for PACS image storage and retrievahésDigital Imaging and Com-
munications in Medicine (DICOM) standard [3]. DICOM is a Weahown standard for handling,
storing, printing, and transmitting information in medigmaging. The DICOM header con-
tains tags to decode the body part examined, the patiertigrosind the acquisition modality.
Some of the tags are automatically set by the digital systesording to the imaging protocol
used to capture the pixel data. Other part of the tags are aetialy by the physicians or ra-
diologists during the routine documentation. This procedtannot always be considered very
reliable, since frequently happens that some entries #reranissing, false, or do not describe
the anatomic region precisely [4]. Furthermore, manuabtation of images is an expensive
and time-consuming procedure, especially given the langecanstantly growing databases of
medical images. Thus, completely automated categorizatiterms of DICOM tags is currently
not possible, but is highly desirable.

Automatic image annotation or image classification is anartgmt step in image retrieval.
In the medical domain, using information directly extracfeom images to annotatategorize
them will improve the quality of image annotation in partamiand more generally the quality
of patient care. Properly classified medical image data elm tmedical professionals in fast
and dfective access to data in their teaching, research, traiaimgj diagnostic problems. The
results of the classification step can also be used for nmgjtial image annotation as well as for
DICOM header correction [5].

Automatic image annotation can be used for retrospectimetation (pre DICOM). It can
also be used as help for human annotators (i.e., radiof)gishere the annotations that are
suggested by the system are correstedfiedconfirmed by the human annotator. The limits of
performance of an automated annotation system that leeomsdxample images annotated by
humans, is the raferobability of operator errgagreement of annotators.

Automatic image annotation uses a computer system whigdnatically assigns metadata
in the form of captions or keywords to a digital image. Tyflicamage analysis first extracts
feature vectors. Then, together with the training annoatithey are used by a machine learning
algorithm to learn to automatically assign annotationse pérformance of the computer system
largely depends on the availability of strongly represtveavisual features, able to characterize
different visual properties of the images, and the us&et#ve algorithms for training classifiers
for automatic image annotation.

A single image may contain fierent meanings organized in hierarchical semantics: hence
hierarchical multi-label classification (HMC) is stronggcommended for obtaining multi-label
annotations. The task of multi-label classification is teigis multiple labels to each image. The
assigned labels are a subset of a previously defined setrardtig of labels. HMC is used in
various domains [6], such as text classification, scene atab\classification, medical imaging
and biological applications. One of the main issues inviblvemulti-label classification is the
importance of detecting and incorporating the connectimtseen the labels into the process
of assigning multiple labels. A second and related issueeisatiditional complexity involved in
learning multi-label classifiers, as compared to learningle-label classifiers.

In this paper, we present a HMC system for medical image atioot This system consists
of the two standard parts of image annotation systems precessing (feature extraction) and
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classification of images. The image processing part usés-atdhe-art approaches to convert
an image to a set of numerical features extracted direcity fihe pixel values. The image clas-
sification part, which labels and groups the images, costifie main novelty of our approach:
The labels can be organized in a hierarchy and an image cabéket with more than one label
(an image can belong to more than one group).

First, we generate four filerent types of descriptors suitable for X-Ray medical insage
raw pixel representation (RPR) [7], local binary pattednBF) [8], edge histogram descriptors
(EHD) [9], and scale-invariant feature transform (SIFTQ][1The features are generated using
the medical X-ray images from the ImageCLEF2009 medicabgrannotation task [5]. Next,
we use these features together with the annotations tottraiolassifiers. In particular, we use
ensembles (bags and random forests) of PCTs for HMC and SuiMsrfgle-label classification,
the most widely used classifier in the area of image annaotafibthe end, we assess the predic-
tive performance of the classifiers using the hierarchicareneasure (HEM) from ImageCLEF
[5] and overall recognition rate (RR), commonly used foreasing the predictive performance
over the database we use.

The main question that we address in our research is whethkriting the semantic knowl-
edge about the inter-class relationships among the imaeésléorganized in a hierarchical struc-
ture) can improve the predictive performance of a systeraditosmatic image annotation. To this
end, we compare the predictive performance of the enserble€Ts for HMC (that predict
all labels simultaneously) to that of SVMs (each of them prth a single label). We do this
across all feature extraction techniques, thus evalugtimdiferent feature extraction techniques
and their use in HMC of medical X-ray images. Moreover, weestigate whether (and which
type of) combination of feature extraction techniquesdadbetter predictive performance. We
consider low level (LL) and high level (HL) feature fusjesombination schemes [7].

To emphasize the generality of our approach, we have alsedtéson the database of gen-
eral images from the ImageCLEF@ICPR 2010 photo annotatiski [tL1]. The images in this
database are annotated with 53 visual concepts organizedlassification scheme with hier-
archical structure, which we used to build ensembles of FGTEIMC as classifiers. The 53
concepts include abstract categories (like partylifed,ttme of day (like day or night), persons
(like no person visible, small or big group) and quality éliklurred or underexposed). A com-
plete overview of the task is given by Nowak [11].

The remainder of the paper is organized as follows. In Se@iowe give an overview of
related work. Section 3 introduces predictive clusterimg$ and their use for HMC. Section
4 describes the techniques for feature extraction from @aadn Section 5, we explain the
experimental setup for annotating medical images. Thamddaesults and a discussion thereof
are given in Section 6. Section 7 describes the experimarganotation of general images, as
well as their results. Section 8 concludes the paper andgoirt some directions for further
work.

2. Related work

Regardless of the number of visual concepts that have toaredd and their mutual con-
nections, most of the present systems for annotation ofrgemeages (and medical images in
particular) learn a separate model for each visual condabpel], i.e., they treat the classes as
completely separate and independent (both visually andusgéecally). This means that multi-
label classification problems are transformed into seveirary classification problems. For
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example, the methods with high predictive performanceantchallenggsompetitions in de-
tection and annotation tasks (such as the PASCAL Visual @lgj¢asses challenge [12], the
ImageCLEF medical image annotation task [13], [5] and thadeCLEF visual concept detec-
tion and annotation task [14]) perform multi-label clagsifion by building binary classifiers
for each label. The instances associated with particule lare in one class and the rest are in
another class. For solving the binary classification prmisieés common to use a SVM withy&
kernel [15]. This means that the increase of the number efsalsed for annotation will linearly
increase the complexity of such an approach.

To deal with a large number of categoyasses, many approaches combine binary classi-
fiers using class hierarchies [16], [17]. This results ingakithmic increase of complexity as
the number of labels increases. The class hierarchies caatbmatically constructed through
analysis of visual similarities: this can proceed top-ddwrrecursive partitioning of the set of
classes [18] or bottom-up by agglomerative clustering.[T®le hierarchies could also be found
by exhaustive search or random sampling followed by cradistation [20].

An alternative method for automatic construction of hiehées is to query an external se-
mantic network with class labels [17]. Since semantic net&/anodel concepts and relations
between them, a subgraph in the form of a hierarchy can bl exsiacted. Such an approach
allows to incorporate prior knowledge about object idgnititto the visual recognition system.
Our approach to automatic image annotation is based ondbi i We exploit the semantic
knowledge about the inter-class relationships among tlgétabels organized in a hierarchical
structure. We build one classifier that can simultaneousdgipt all annotations of an image,
instead of building one binary classifier for each node inhieearchy.

Another popular approach to image annotation is TagPrap T2gProp is a discriminatively
trained nearest neighbor model. Tags of test images arécfgddising a weighted nearest-
neighbor model to exploit labeled training images. Neighkeights are based on neighbor rank
or distance. TagProp allows the integration of metric legytoy directly maximizing the log-
likelihood of the tag predictions in the training set. Howe\vn a recent study, Mensink et al.[22]
showed that per-label-trained linear SVM classifiers otitpen TagProp.

3. Ensemblesof PCTsfor HMC

3.1. The task of HMC

Hierarchical multi-label classification is a variant ofgs#fication where (1) a single example
may belong to multiple classes at the same time and (2) thglpeslasses are organized in a
hierarchy. An example that belongs to some ctaggtomatically belongs to all super-classes of
c: This is called the hierarchical constraint. Problems &f kind can be found in many domains
including text classification, functional genomics, andealiscene classification. For a more
detailed overview of the possible application areas we tbfereader to Silla and Freitas[6].

In medical image classification, the application domain driclv we focus, an important
problem is the development of an automatic image annotatystem, which can specify the
image modality, body orientation, body region, or the bgital system examined. In this do-
main, the predefined set of labels might be organized in asgéertaierarchy, such as the one
shown in Fig. 1. Each image is represented with: (1) a set s€ri&ors (in this example, the
descriptors are histograms of five types of edges encouhierhe image) and (2) a set of la-
belgannotations. A single image can be annotated with multgdiels at dierent levels of the
predefined hierarchy.



features/descriptors |
image annotations/labels
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N N anatomy bio-system
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musculoskeletal system
abdomen spine uropoietic -+ musculosceletal
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lumbar spine@ UPLer midldle Iumlbar cer\lnca\ kidne: urleter
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middle upper axis
right quadrant lumbar spine parenchyma  renal

pelvis

Figure 1: An example task of HMC in a medical domain. The tabletiferleft-hand side) contains a set of images with
their visual descriptors and annotations. The annotatompart of the IRMA [23] hierarchical classification schemie (
which a small part is shown on the right hand side).

yes- no

yes no yes no

— ~ T~
lumbar spine 0.84
upper lumbar spine 0.62
ureter 0.51 yes no
cervical spine 0.81 renal pelvis 0.87
musculosceletal 0.75 parenchyma 0.80

middle abdomen 0.72 axis 0.74

Figure 2: An example of a predictive clustering tree consédimsing the descriptors from Fig. 1. The internal nodes
contain tests on the descriptors, while the leafs store rthlegbilities that an image is annotated with a given labehfro
the hierarchy.

For example, the image in the second row of the table in Figasltivo labels, middle ab-
domen and renal pelvis, listed explicitly. Note that thigge is also implicitly labeled with the
labels: anatomy, abdomen, kidney, uropoietic and biocesgstThese labels are all ancestors of
the explicitly listed labels in the given hierarchy.

The data, as presented in the table in the left-hand sidegflFiconstitute a data set for
HMC. This set can be used by a machine learning algorithmaio & classifier for HMC. For
images in the testing set only the descriptors are given arzdamiori annotations.

3.2. Predictive clustering trees

Predictive Clustering Trees (PCTs) [24]generalize decision trees [25] and can be used
for a variety of learning tasks includingftérent types of prediction and clustering. The PCT
framework views a decision tree as a hierarchy of clustérstap-node of a PCT corresponds
to one cluster containing all data, which is recursivelytifaned into smaller clusters while
moving down the tree. The leaves represent the clustere dbwrest level of the hierarchy and
each leaf is labeled with its cluster’s prototype (predic}i Note that the hierarchical structure
of the PCT (Fig. 2) does not necessary reflect the hierarcéiiaecture of the annotations (Fig.
1).

1The PCT framework is implemented in the CLUS system, which isiavi@i athttp: //www.cs.kuleuven.be/
~dtai/clus.
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PCTs are built with a greedy recursive top-down inductioBl{jTalgorithm, similar to that
of C4.5 [26] or CART [25]. The learning algorithm starts byesging a test for the root node.
Based on this test, the training set is partitioned into stgaccording to the test outcome.
This is recursively repeated to construct the subtrees. pHnttioning process stops when a
stopping criterion is satisfied (e.g., the number of recamdbe induced subsets is smaller than
some predefined value; the length of the path from the rodigatirrent subset exceeds some
predefined value etc.). In that case, the prototype is caledland stored in a leaf.

One of the most important steps in the TDI algorithm is theé $etection procedure. For
each node, a test is selected by using a heuristic functiorpated on the training examples.
The goal of the heuristic is to guide the algorithm towardsalrimees with good predictive
performance. The heuristic used in this algorithm for d@lgahe attribute tests in the internal
nodes is the reduction in variance caused by partitioniagrtstances, where the varianéar(S)
is defined by (Equation 1). Maximizing the variance reducticaximizes cluster homogeneity
and improves predictive performance.

The main diference between the algorithm for learning PCTs and an #hgoffior learning
decision trees (such as C4.5 [26] and CART [25]) is that thmé considers the variance func-
tion and the prototype function (that computes a label fahdaaf) as parameters that can be
instantiated for a given learning task. So far, the PCTs haen instantiated for the following
tasks: multiple targets prediction [27], [28], predictioftime-series [29] and hierarchical-multi
label clasdiication [30]. In this article, we focus on the last of thes&sas

3.3. PCTs for hierarchical multi-label classification

To apply PCTs to the task of HMC, the example labels are repted as vectors with
Boolean components. Components in the vector correspoiathéds in the hierarchy traversed
in a depth-first manner. Thieth component of the vector is 1 if the example belongs tosatas
and 0 otherwise. I¥; = 1, thenv; = 1 for all v;’s on the path from the root tq.

The variance of a set of example&®) (s defined as the average squared distance between each
example’s labeV; and the mean labelof the set, i.e.,

¥ d(vi, v)?

var(S) = ——

S| @)

The higher levels of the hierarchy are more important: aorextrthe upper levels costs more
than an error at the lower levels. Considering this, a weig/guclidean distance is used:

d(va. v2) = \/Z W(Ci)(Vei — V2i)? @)

wherevy; is thei’th component of the class vector of an instancex, andw(c;) are the class
weights. The class weights decrease with the depth of tlse irldahe hierarchyy(ci) = wo-w(c;),
wherec; is the parent o€;. Each leaf in the tree stores the meeof the vectors of the examples
that are sorted into that leaf (Fig. 2). Each componentisthe proportion of examples in the
leaf that belong to class. An example arriving in the leaf can be predicted to belongassc;
if v is above some threshold The threshold can be chosen by a domain expert.

The PCTs are also extended for predicting hierarchies @rgdras directed acyclic graphs
(DAGS). In this case, the depth of a class is not unique asetado not have single path from
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the hierarchy’s root. To resolve this issue, Vens et al. RR@]gest four aggregation schemes of
the possible paths from the top-node to a given class: ageragximum, minimum and sum.
After an extensive experimental evaluation, they reconureruse the average as aggregation
function. For a detailed description of PCTs for HMC we refez reader to Vens et al. [30].
Next, we explain how PCTs are used in the context of an ensealddsifier, in order to further
improve the performance of PCTs.

3.4. Ensemble methods

An ensemble classifier is a set of (base) classifiers. A nempbais classified by the en-
semble by combining the predictions of the member classifiEne predictions can be combined
by taking the average (for regression tasks), the majodtg (for classification tasks) [31],[32],
or more complex combinations.

We use PCTs for HMC as base classifiers. Averaging is apmiedmbine the predictions
of the diferent trees: the leaf’s prototype is the proportion of exaspf diterent classes that
belong to it. Just like for the base classifiers, a threshobailsl be specified to make a prediction.

We consider two ensemble learning techniques that haveaptinbbeen used in the context
of decision trees: bagging and random forests. Baggingd8astructs the dlierent classifiers
by making bootstrap replicates of the training set and usaxh of these replicates to construct
one classifier. Each bootstrap sample is obtained by randeemhpling training instances, with
replacement, from the original training set, until a numbkinstances is obtained equal to the
size of the training set. Bagging is applicable to any typkafning algorithm.

A random forest [32] is an ensemble of trees, obtained bothdwstrap sampling, and by
randomly changing the feature set during learning. Moreipedy, at each node in the decision
tree, a random subset of the input attributes is taken, amteist feature is selected from this
subset (instead of the set of all attributes). The numbettbates that are retained is given by a
function f of the total number of input attributeqe.g.,f(x) = X, f(X) = VX, f(xX) = [log, X|+1,
...). By settingf (X) = x, we obtain the bagging procedure.

4. Feature extraction from images

Collections of medical images can contain various imagésioeéd using dferent imaging
techniques. DOferent feature extraction techniques are able to captidfereint aspects of an
image (e.g., texture, shapes, color distribution...)hla $tudy, we focus on X-ray images, hence,
we use texture (LBP and EHD) and local (SIFT) features as prostising for describing X-ray
images [5],[33].

Texture is especially important, because it i§idilt to classify medical images using shape
or gray level information. Hective representation of texture is needed to distinguéttvéen
images with equal modality and layout. Local image chargttes are fundamental for image
interpretation: while global features retain informatiom the whole image, the local features
capture the details. They are thus more discriminative @aricg the problem of inter and intra-
class variability, an open challenge in automatic annotatif medical images [7].

4.1. Raw pixel representation

The most straightforward approach to image classificatidhe direct use of the image pixel
values as features. The images are scaled to a common sizepaadented by a feature vector
that contains image pixel values. It has been shown thatdssification and retrieval of medical
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radiographs, this method serves as a reasonable baselinaN8 used a 32x32 down-sampled
representation of the images as recommended by Tommasi[g§.alThe obtained 1024 pixel
values were then used as input features. Fig. 3 shows how Ntéheuraw pixel representation
for each image.

512x446

100 200 300 400 500 600 700 800 900 1000

Figure 3: Down-sampling for raw pixel representation

4.2. Local binary patterns

Local binary patterns (LBP) are one of the best represemzf texture content in images
[8]. They are invariant to monotonic changes in gray-scalages and fast to compute. Fur-
thermore, they are able to detecffdient micro patterns, such as edges, points and constant
areas.

The basic idea behind the LBP approach is to use the infoomatbout the texture from a
local neighborhood. First, we define the radRisf the local neighborhood under considera-
tion. The LBP operator then builds a binary code that dessrthe local texture pattern in the
neighborhood set o pixels. The binary code is obtained by applying the gray eaitithe
neighborhood center as a threshold. The binary code is theveded to a decimal number
which represents the LBP code. Formally, given a pixel attipos(x., yc) the resulting LBP
code can be expressed as follows:

P-1

LPBpr (%, o) = ), S(in - ic)2" 3)
n=0

wheren ranges over the neighbors of the central pixekd, y.), ic andi, are the gray-level values
of the central pixel and the neighbor pixel, a8¢X) is defined as:

1, ifx>0 (4a)

S() = { 0, otherwise (4b)

The image is traversed with the LBP operator pixel by pixel e outputs are accumulated
into a discrete histogram. However, not all LBP codes arerinétive. Certain LBP codes cap-
ture fundamental properties of the texture and are callddmm patterns because they constitute
the vast majority, sometimes over 90 percent, of all pagteresent in the observed textures [8].
These patterns have one thing in common, namely, a unifacular structure that contains very
few spatial transitions. They function as templates forroyigtructures such as bright spot, flat
area or dark spot.

In our experiments, we used the pattetrBP“&zl, where the superscrip2 reflects the use
of uniform patterns that have @& value of at most 2 on a neighborhood of size 8 and radius
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Figure 4: The image is divided into 4x4 non-overlapping subges from which LBP histograms are extracted and
concatenated into a single, spatially enhanced histogram

1. TheU value is the number of spatial transitions (bitwigé @hanges) in the pattern. The
non-uniform patterns (patterns that havevalue larger than 2) are grouped under one bin in the
resulting histogram. With thtaBPg)Z1 operator, the number of bins in the histogram is reduced
from 256 to 59 (58 bins for uniform patterns and one bin for-naiformynoisy patterns).

To spatially enhance the descriptors and improve the pegoce, it has been suggested to
repeatedly sample predefined sub-regions of an image (,,2x2, 4x4 or 1x3) [35]. The
different resolutions are then aggregated into a spatial pgiretmich allows for region-specific
weighting. Following these approaches, we divide the imag 4x4 non-overlapping sub-
images (blocks) and concatenate the LBP histograms esttémt each sub-image into a single,
spatially enhanced feature histogram. This approach aimistaining a more local description
of the images. Fig. 4 shows how we build the LBP histogram ®## bins in total for each
image (16 blocks with 59 bins each).

4.3. Edge histogram descriptors

Edge detection is a fundamental problem of computer visiohtes been widely investigated
[36]. The goal of edge detection is to mark the points in atdigmage at which the luminous
intensity changes sharply. An edge representation of agérdeastically reduces the amount of
data to be processed, yet it retains important informatimuathe shapes of objects in the scene.
Edges in images constitute important features to repréisemtcontent.

Figure 5: The image is divided into 4x4 non-overlapping sulges. For each sub-image, five types of edge bins are
calculated and concatenated into a single, spatially erdthahistogram

The edge histogram in the image space represents the frggaed the directionality of the
9



brightness changes in the image. To represent it, the MPE@+tlard defines the edge his-
togram descriptor (EHD) [9]. The edge histogram descripsmically represents the distribution
of five types of edges (vertical, horizontal, two types ofgdiaal and non-directional edges; see
Fig. 2). We divide the image space into 4x4 non-overlappiloghs, yielding 16 equal-sized
sub-images and count the edges on each one of them (as shévwn ).

Figure 6: Three dierent spatial pyramids used in our experiments, a) 1x1, b) Bd2cq 1x3. The spatial pyramid
constructs feature vectors for each of the specific parteirttage.

To characterize the sub-images, a histogram of edge distribfor each sub-image is gen-
erated. Edges in the sub-images are categorized into fies:tywertical, horizontal, 45-degree
diagonal, 135-degree diagonal and non-directional edgegresented in Fig. 5. The histogram
for each sub-image represents the relative frequency afroerece of the five types of edges in
the corresponding sub-image and thus contains five bins.

Since there are 16 sub-images in the image and 5 types of ,eadetal of 80 histogram
bins are required. Note that each of the 80-histogram bissittaown semantics in terms of
location and edge type. In our experiments, the edge deteidiperformed using the Canny
edge detection algorithm [37].

4.4. SIFT descriptors

We employ the bag of features approach commonly used in mateya the art approaches
in image classification [38]. The basic idea of this approado sample a set of local image
patches using some method (densely, randomly or using @diey-detector) and calculate a
visual descriptor on each patch (SIFT descriptor, norredlizixel values). The resulting distri-
bution of descriptors is then quantified against a pre-fipelcvisual codebook which converts
it to a histogram. The main issues that need to be considened applying this approach are:
sampling of the patches, selection of the visual patch ge#ecand building the visual codebook.

We use dense sampling of the patches, which samples an imiaigi@ @ uniform fashion
using a fixed pixel interval between patches. We use an iltelistance of 6 pixels and sample
at multiple scales = 1.2 ando = 2.0). Due to the low contrast of the radiographs, it would be
difficult to use any detector for points of interest. Also, it hasrbpointed by Zhang et al. [38],
that a dense sampling is always superior to any strategyllmasdetectors for points of interest.
We calculate a SIFT descriptor [10] for each image patch.

The crucial aspects of a codebook representation are thebooll construction and assign-
ment. An extensive comparison of codebook representatidahles is given by van Gemert et
al. [39]. We employk-means clustering (as implemented in Renvironment) [40] on 400000
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randomly chosen descriptors from the set of images availfdsl training. k-means partitions
the visual feature space by minimizing the variance betveepredefined number &fclusters.
Here, we sek to 500 and thus define a codebook with 500 codewords [7].

Dense sampling gives an equal weight to all key-pointsspreetive of their spatial location
in the image. To overcome this limitation, we follow the sphpyramid approach which we
applied for the LBP descriptor. For this descriptor, we uaespatial pyramid of 1x1, 2x2,
and 1x3 regions. Since every region is an image in itself sthegtial pyramid can easily be
used in combination with dense sampling. The resultingorewith 4000 bins ((1xk+ 2x2 +
1x3)x500) was obtained by concatenation of the eight hisiog. Fig. 6 shows an example of
the histograms extarcted from an image for the spatial pysf 1x1, 2x2 and 1x3.

4.5. Feature fusion schemes

Different visual features bringingfirent information about the visual content of the images
clearly outperform single feature approaches [5], [7].|¢%ing these findings, we combine the
different visual features described above. We investigate iffereint feature fusion schemes:
low level (LL) and high level (HL). These fusion schemes agpidted in Fig. 7.
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Figure 7: Fusion schemes for thefdrent descriptors. a) Low level fusion, b) High level fusion

For the low level feature fusion scheme, the descriptorganeatenated in a single feature
vector and a classifier is trained on the joint feature vedtbe high level fusion scheme averages
the predictions from the individual classifiers trained loa $eparate descriptors.

5. Experimental setup

In this section, we present the experimental setup we usedaloate the proposed system
and compare it to other approaches. First, we present tlebaksts of images that we use.
Next, we describe the evaluation metrics we use to assegsréldkctive performance of the
classifiers. We then state the experimental questions #hatwestigate in this study. We specify
the parameter instantiations for the algorithms and thigydex the experiments.

5.1. The IRMA database

We evaluated our system by applying it to the database fointagge CLEF2009 medical
image annotations task [5]. This database is provided byRMA group from the University
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Hospital of Aachen, Germany [23]. The database containg A 2dlly annotated radiographs,
taken randomly from medical routine, which should be usdthio a classifier. The dataset con-
tains two parts: ImageCLEF2007 (12339 training and 13581gsnages) and ImageCLEF2008
(12667 training and 1733 testing images). These datasesemira diicult classification prob-
lem. First, the classes in the training set are extremelhalarited (e.g. there are classes with
less than 10 images and classes with more than 2000 imagesdn@ the distribution of the
classes in the training set isfidirent from the one on the testing set.

b) IRMA: 1121-127-720-512

I
a) IRMA: 1123-211-520-3a0

Figure 8: IRMA-coded chest and abdomen radiograph. Fornostahe code for the biological axis (512) on the sub-
figure b) is translated as follows: 5 is for uropoietic systé,is for uropoietic system, kidney and 512 is uropoietic
system, kidney, renal pelvis. The renal pelvis is an elemetti@kidney, which in turn is an element of the uropoietic
system

The images are labeled according to the four annotation tae [5]. We used the Image-
CLEF2007 label set with 116 IRMA codes and the ImageCLEF28b8I set with 193 IRMA
codes, both with a hierarchical nature of the coding sche&28g [The goal is to correctly an-
notate 1353 (for 2007) and 1733 (for 2008) images that areiged without labels, using the
different respective annotation label sets in turn.

The IRMA coding scheme consists of four axes with three to fmsitions, each position
taking a value from the set0,..., 9, a,..., Z, where '0’ deadtinspecified’ and determines the end
of a path along an axis. The four axes are: technical axisn@ge modality), directional axis (D,
body orientation), anatomical axis (A, body region exard)rend biological axis (B, biological
system examined). This allows a short and unambiguousiootdRMA: TTTT-DDD-AAA-
BBB), where T, D, A, and B denotes a coding or sub-coding difjithe respective axis. A
small part of the IRMA coding hierarchy is presented in Fig.Flg. 8 gives two examples of
unambiguous image classification using the IRMA code.

The IRMA code is hierarchical in its nature and it allows uset@loit the hierarchy of
the code. This means that we can construct an automatic isr@gatation system based on
predictive clustering trees for HMC.

5.2. Evaluation metrics

In this study, we use two evaluation metrics: the ImageCLEFanchical evaluation measure
[5] and overall recognition rate. The ImageCLEF hierarahigvaluation measure takes into
account the depth and theffitulty of the predictive problem (‘branching factor’) at whian
error has occurred (Equation 5). It can be calculated usiadallowing formula:
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1 if vj #vj3j <i (6C)

wherel is the depth of the hierarchlg is the number of possible labels at the error ("branching
factor’) andi is the depth at which the error occurred. This measure altbe/glassifier not to
predict the complete cogimnotation, that is, the classifier can predict the first 2esoaf the
code (level of the hierarchy) and then say 'don’t know’ (estex by *) for the next nodgtevel.
The ImageCLEF evaluation measure can range from O to the ewailiesting images. If this
measure is closer to 0, then the classifier is more accurate.

The overall recognition rate is a very common and widely wseduation measure. It is the
fraction of the test images whose complete IRMA code wasigiedi correctly.

5.3. Experimental questions
The goal of this study is to answer the following questions:

1. Does the use of the hierarchy (in ensembles of PCTSs) inepthay predictive performance
over flat classification (SVMs)?
2. How is the relative performance of the two techniqu@&scied by the:
(a) Use of PCT ensembles versus single PCTs in the domainagfarannotation?
(b) Different ensemble methods: bagging or random forests?
(c) Different feature extraction techniques for medical X-Ray ies&g
(d) Schemes for fusion of the descriptors from the featuteaetion techniques?
3. Is the proposed system with ensembles of PCTs for HMC Isleadend dicient?

For the first three questions (1, 2a and 2b), we evaluate ttierpence of PCTs for HMC
and ensembles (bagging and random forest) of PCTs. Afteérwleacompare the best method
for HMC with SVMs. It has been shown [30] that exploiting theusture of the hierarchy in tree
classifiers yields better predictive performance in the gionof functional genomics. Here, we
compare the performance of the ensemble classifiers with<Sféhlat classification - the most
widely used classifiers for medical image annotation [7].

To check which feature extraction technique is most sugtdbf medical X-Ray images
(question 2c), we compare the performance of the classiiersach type of visual descrip-
tors. For this purpose, we discuss only the results froméparste runs of the descriptors (first
four rows from Table 1 and Table 2).

The various feature extraction techniques captufieidint aspects of an image. We also
investigate whether the combination of feature extradmmniques can increase the predictive
performance (question 2d). The results from the fusion eelseare presented in the last 10
rows in Table 1 and Table 2.

We compare the execution times of thé&elient classifiers to assess ttigokency and scala-
bility of the system (question 3). We measure the time neéa&ain the classifiers; for SVMs
this includes also the time needed to optimize the parameter
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Figure 9: The adapted hierarchy of the classes in the IRMAecod

5.4. Experimental design

In this section, we describe the experimental setup thatsed.uFirst, we describe an adap-
tation of the hierarchy of the IRMA code and then the paramegtantiations of the learning
algorithms. Note that we stated the parameters for the feaxtraction techniques while ex-
plaining them (see Section 4).

The IRMA coding scheme was proposed by Lehmann et al. in [8pnsists of four axes
which are strictly hierarchical (tree-shaped hierarchiethe literature [5],[23] suggests that
these four axes are independent. We conducted a seriesarfragpts predicting the four axes
simultaneously (combined in a single hierarchy) and seplgra The predictive performance
when using all four axes simultaneously was higher as coaaptar using each axis separately.
This leads us to believe that these axes are not-indepenidesmseparate study, Tommasi et al.
[7] come to a similar conclusion. To address this issue, veptedl the IRMA coding hierarchy
as follows.

We take the code of the first position for the biological axig add it in front of the codes
for the anatomical and directional axes. The inclusion eftitological code in the first level in
the hierarchy helps us to initially filter the images resgtin large visual dierences in the first
level of the hierarchy. In the context of the axis A, the fiestdl of axis B is necessary because
the examined body region infliciently describes the content and structure of the images. F
example, fluoroscopy of the abdominal region may accessdbeular or the gastrointestinal
system depending on the way the contrast agent is admidstehich results in dierent image
textures. For the directional axis, this is even more olwideor instance, an image of a chest
and an image of a hand can have the same directional codaghiisaally very diferent.

The hierarchy of the IRMA code was adapted in order to in@dhse inter-class variabil-
ity and decrease the intra-class variability of the imageig. 9 shows the adapted hierarchy
of classes that we use in the experiments. Note that thiarcigy was only used to train the
classifier. The evaluation was performed by using the caigiRMA hierarchy.

In the following, we state the parameter instantiations tira used to train the classifiers:
PCTs, ensembles and SVMs. The algorithm for learning PCq@imes as input the weight of
the depth in the hierarchy. We seg to 0.75 to force the algorithm to make better predictions on
the upper levels of the hierarchy. Also, we performed Fytesting to prevent over-fitting of the
trees [30].

We trained ensembles of 100 un-pruned trees (PCTs). ForageRCTs, we used the same
weight (0.75) used to train the single PCTs. The size of tldufe subset that is retained at
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each node, when training a random forest, was set to 10% ofiimder of descriptive attributes.
Remember that the output of the classifier is a probabiliy éhgiven example is annotated with
a given label. If the probability is higher than a given thalsl (obtained during the training
of the classifier), then the example is annotated with thergiabel. Since the hierarchical
evaluation measure allows the classifier to predict a poxdiche code, dferent thresholds for
the diferent levels of the hierarchy were selected. If a probghidit a given code was lower
than the threshold, then for this code and its sub-codedaissifier predicts ‘dont know’.

For training the SVMs, we used a custom developed applitatibhis application uses the
LiBSVM library [41]. We apply theDne-against-Al{OvA) approach to solve the partial binary
classification problems. Each of the SVMs was trained wii &ernel. We optimize the cost
parameteC of the SVMs using an automated parameter search procedoreghéparameter
optimization, we separate 20% of the training set and use va#idation set. After finding the
optimalC value, the SVM was finally trained on the whole set of trainimgges.

For the evaluation of the SVMs using the hierarchical erreasure, we applied confidence
based opinion fusion [7]. Let us assume that therd\actasses. Then, using thes®approach,

N SVMs are trained — each separating a single class from akireny ones. The decision is
based on the distances of the test sample tdNthgperplanes. The prediction then corresponds
to the hyperplane for which the distance is largest. The denfie based opinion fusion, how-
ever, takes into account thefiidirence of the predictions with the two largest distancesrteg
from the SVMs classifiers. This flierence is computed only if their distanceffei less than

a threshold value (obtained during training using the \ediah data set). In that case, the final
prediction will contain ‘don’t know’ starting from the pd&n where the two underlying predic-
tions begin to dier. For example, if the two predictions for the anatomicaé axe 411 and 421
then the final prediction will be 4**. This approach improube hierarchical error measure for
the SVMs classifier by 10 to 20 points depending on the usectigéss.

6. Resultsand discussion

Table 1 and Table 2 present the results obtained using theriexgntal setup described in
Section 5 in terms of the hierarchical evaluation measueMHand overall recognition rate
(RR) respectively. In the discussion of the results, we Gishpare the performance of single
PCTs and ensembles of PCTs. We then compare the performbtieelmest ensemble method
(random forests) and SVMs. We focus on the first evaluatioasumes HEM (Table 1), since the
two show similar behavior; the conclusions for HEM are alabd/for RR.

The results clearly show that ensemble methods outperfmglesPCTs on all datasets: ran-
dom forests are significantly better (according to the narametric Wilcoxon test for statistical
significance) than single PCTp & 4-107%) and bagging is better than single PCPps<(4-107°).

A comparison between the two ensemble methods shows trairaforests outperforms bag-
ging and that the dierence is statistically significanp& 1-107%).

While extremely éicient, individual PCTs have the drawback of only using a smahber
of the available features, which results in low predictiegfprmance. The PCTs trade predictive
performance for interpretability. However, in the domaivitere interpretability of the model is
a necessity, PCTs are the models that should be considered.

We next compare the performance of random forests to thenpeahce of SVMs. On all
datasets, random forests perform better than SVMs; tiierdihce on average is17 points for
the ImageCLEF2007 and 20 points for ImageCLEF2008 datasets (note that a poineiitaM
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Table 1: Predictive performance of the models learned frororgers produced by élierent feature extraction algo-
rithms and their combinations. The best results are shownldfdz®. Performance is given in terms of the ImageCLEF
hierarchical evaluation measure HEM, where smaller valuesithetier performance. The low-level fusion results are
in rows that end with ‘LL’ and high-level fusion results arerbws that end with ‘HH’.

Hierarchical Error Measure
ImageCLEF2007 ImageCLEF2008

SVM RF Bag PCTs SVM RF Bag PCTs
SIFT 75.00 | 58.90 | 59.78 | 180.00 | 179.88 | 161.67 | 161.47 | 320.90
LBP 124.44 | 95.71 95.71 | 210.40 | 257.92 | 209.47 | 208.97 | 360.00
EHD 127.41 | 105.12 | 105.12 | 222.39 | 265.95 | 249.44 | 249.74 | 380.12
32x32 202.94 | 195.78 | 200.12 | 310.90 | 376.93 | 361.21 | 361.31 | 530.11
LBP+EHD LL 99.48 85.56 86.80 | 200.12 | 221.96 | 190.12 | 190.22 | 347.89
LBP+SIFT_LL 72.71 52.89 53.22 | 178.29 | 175.65 | 157.38 | 157.48 | 317.12
EHD+SIFT _LL 72.37 56.11 57.11 | 179.12 | 170.97 | 159.30 | 159.33 | 318.87
LBP+EHD+SIFT_LL 70.45 51.90 | 52.33 | 177.23 | 170.87 | 153.21 | 153.41 | 317.00
LBP+EHD+SIFT+32x32_LL 69.46 52.23 53.00 | 178.12 | 169.11 | 154.23 | 154.63 | 318.50
LBP+EHD HL 100.37 | 87.90 89.21 | 201.30 | 223.73 | 195.96 | 196.06 | 347.90
LBP+SIFT HL 73.72 54.21 54.56 | 178.90 | 177.12 | 159.73 | 160.03 | 318.00
EHD+SIFT_HL 72.70 59.12 61.71 | 179.50 | 174.44 | 161.85 | 162.05 | 318.80
LBP+EHD+SIFT_HL 71.58 52.54 | 53.00 | 177.90 | 174.18 | 156.21 | 156.31 | 317.90
LBP+EHD+SIFT+32x32_HL 70.46 53.90 | 54.50 | 178.58 | 173.28 | 156.50 | 156.70 | 318.30

roughly corresponds to one completely misclassified imagédje diference in performance
is statistically significant (wittp < 4 - 107%). This shows that exploiting the structure of the
hierarchy does help in improving the predictive performanc

We then analyze the results for the individual feature exiwa algorithms (top 4 rows from
Table 1 and Table 2). We can note the high predictive perfoomaf the SIFT histogram: it is
most capable of capturing the hierarchical structure obdfray images. The other feature ex-
traction algorithms follow after and are ordered by perfante as follows: LBP, then EHD and
the simplest descriptor RPR, which has the worst performafice diterence of performance to
the LBP operator is very noticeable and larger for SVMs ttmanmdndom forests: on the Image-
CLEF2007 dataset, random forests are bettex I80 points and on ImageCLEF2008 by50
points and on the ImageCLEF2007 dataset, SVMs are betteidyand on ImageCLEF2008 by
~ 80 points. The LBP descriptors capture information thatésareasily utilized by the random
forests than by the SVMs.

The experimental results show that the features that desthie image content in a local
manner (i.e., SIFT descriptors) outperform the ones thatige global descriptions. The local
features capture the details in an image, while the glotzlfes are able to retain information
on the whole image as a source of context. Furthermore, fR€ &scriptor is robust to noise,
illumination, scale, translation and rotation changesnddg it can better resolve the inter and
intra-class variability, thus it canfier better information to the classifier. We can conclude that
the local features are generally more informative than gldeatures for the medical image
annotation task at hand.

We also compare the results of the experiments conductdd difiterent feature fusion
schemes. Inclusion of more than one type of features in @Esification process contributes
to better representation of the hierarchical nature of thages and helps to further improve
the predictive performance. Low level fusion (concatemgtiyields slightly better predictive
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Table 2: Predictive performance of the models learned frororgesrs produced by élierent feature extraction algo-
rithms and their combinations. The best results are shown loifdm®. Performance is given in terms of the overall
recognition rate evaluation measure, where larger values ineter performance. The low-level fusion results are in
rows that end with ‘LL’ and high-level fusion results are ows that end with ‘HH'.

Overall Recognition Rate
ImageCLEF2007 ImageCLEF2008

SVM RF Bag PCTs SVM RF Bag PCTs
SIFT 7731 | 79.37 | 79.08 | 63.04 [ 62.44 | 64.91 [ 64.80 | 52.04
LBP 7036 | 75.24 | 7524 | 56.02 [ 56.26 | 60.99 | 60.70 [ 47.02
EHD 68.37 | 72.28 | 7221 | 55.06 [ 54.53 | 54.99 [ 54.81 | 45.00
32x32 57.35 | 58.01 | 57.64 | 4597 | 4547 | 4552 | 4547 | 36.98
LBP+EHD LL 75.09 | 76.97 | 75.75 | 5898 [ 60.53 | 61.51 | 61.39 [ 48.99
LBP+SIFT LL 77.90 [ 81.00 | 80.93 | 64.52 [ 62.26 | 6549 | 6543 | 53.49
EHD+SIFT _LL 7820 | 79.97 | 79.82 | 64.00 [ 63.19 | 64.97 | 64.80 [ 52.97
LBP+EHD+SIFT LL 7842 | 81.96 | 81.67 | 64.89 [ 63.30 | 65.95 | 65.83 | 53.72
LBP+EHD+SIFT+32x32_LL 78.49 | 81.22 | 81.00 | 6430 [ 63.53 | 65.78 | 65.55 [ 52.97
LBP+EHD_HL 74.87 | 76.01 | 76.64 | 5838 [ 60.13 | 61.45 | 61.39 [ 48.87
LBP+SIFT HL 7746 | 7997 | 79.97 | 6422 | 62.26 | 65.32 | 65.14 | 53.49
EHD+SIFT_HL 77.90 | 79.00 | 78.86 | 63.93 [ 62.44 | 64.80 | 64.62 | 52.79
LBP+EHD+SIFT _HL 78.05 | 81.00 | 80.93 | 64.59 [ 62.78 | 65.78 | 65.72 | 53.66
LBP+EHD+SIFT+32x32_HL 78.42 | 80.70 | 80.56 | 64.37 [ 63.13 | 65.60 | 6549 | 52.97

performance than high level fusion. This is valid for all@lighms used in this study.

The classifiers on the fused feature sets use more informatiout the dterent aspects of
an image that are captured by théelient descriptors. Namely, they can consider combinations
of features from dferent descriptors. This additional information is orthogloand helps the
classifiers to produce better annotations. Moreover, tiserables of trees, such as random
forests, can fectively exploit the information provided by the large nuambf features. Thus,
low-level fusion yields better performance than high-ldusion.

The best results are achieved by using random forests orotimtenated SIFT, LBP and
EHD descriptors (boldface in Table 1 and Table 2). This hfddboth datasets, ImageCLEF2007
and ImageCLEF2008. Moreover, our best results are beterttie best results reported so far
on this database [5]. Our score of 153.2 for ImageCLEF20@8/i$6.3 points better than the
best result, and the score of 51.9 for ImageCLEF2007 is by d@nts better than the best result.

From the results, we can also notice the worse performana# algorithms on the Image-
CLEF2008 dataset, as compared to the ImageCLEF2007 dat&sets mainly due to the larger
hierarchy of the ImageCLEF2008 dataset (195 nodes as cechparl40 nodes for the Image-
CLEF2007 dataset). In addition, thefdrence of the distribution of images in the training and
the testing set is bigger for ImageCLEF2008 than for Imagel2007.

Additionally, we assess thdfiency of the algorithms by measuring the time needed to
learn the classifier and time needed to produce an annofati@m unseen image. The running
times for the algorithms are presented in Table 3. The rarfdossts are the fastest method; they
are~ 10 times faster than bagging ard5.5 times than the SVMs (including the optimization
of the SVM parameters). Recall that the random forests asemhbles of PCTs that predict the
complete hierarchy (a single model), while the SVMs cortdtauclassifier for each node of the
hierarchy separately. Hence, the increase of the hieravdhgignificantly increase the training
time of SVMs (additional classifiers should be trained),lethe training time for random forests
will increase only slightly. Theféiciency of the random forests of PCTs is even more prominent
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Table 3: Running times of the algorithms: time needed to cocisthe classifier and time needed to produce an anno-
tation for an unseen image. Note that this table only listsréselts for the low-level fusion scheme (the results that
end with ‘LL"). The running times for the high-level fusioneathe sum of running times for its constitutive runs. The

experiments were executed on a Linux server with two Inteld0are Processors@2.5GHz and 64GB of RAM.

ImageCLEF 2007 ImageCLEF 2008

SVM RF Bag PCTs SVM RF Bag PCTs

EHD 2820.873 | 92.668 | 566.880 4.667 | 3113.320 | 115.129 | 716.606 5.446
- [LBP 4323.681 | 1909.510 | 21684.124| 127.889 [ 4406.340 | 2631.485 | 28612.105| 158.955
2 [32x32 4745.630 | 1909.427 | 21458.823| 110.436 | 5467.686 | 2614.089 | 28410.495| 151.317
g SIFT 12451.760| 2886.417 | 31611.480| 227.709 | 13219.039 3717.713 | 40567.323 | 248.920
fb LBP+EHD_LL 4824.592 | 2315.010 | 21629.071| 231.516 | 4480.761 | 3012.840 | 28106.304 | 254.442
E LBP+SIFT_LL 14871.131] 5095.170 | 55476.671| 502.794 | 15788.345 [ 6508.022 | 70057.262 | 487.347
‘s |[EHD+SIFT_LL 12656.792| 3299.330 | 36001.937| 337.784 | 13430.779 [ 4165.986 | 45921.571| 393.629
= |LBP+EHD+SIFT_LL 15076.162| 5094.305 | 55724.765| 504.575 | 16006.638 [ 6460.307 | 70462.933 | 500.873
LBP+EHD+SIFT+32x32_LL 17700.564 | 6936.030 | 73786.231| 591.772 | 18800.790 [ 9128.094 | 95792.121| 679.572

. |EHD 0.016 0.002 0.003 0.001 0.019 0.004 0.003 0.001

¥ |LBP 0.172 0.002 0.003 0.001 0.179 0.003 0.003 0.001

E [ 0.189 0.002 0.003 0.001 0.192 0.002 0.002 0.001

i SIFT 0.551 0.002 0.003 0.001 0.591 0.003 0.004 0.001

E §LBP+EHD_LL 0.175 0.003 0.002 0.001 0.176 0.002 0.003 0.001

En LBP+SIFT_LL 0.569 0.002 0.002 0.001 0.565 0.003 0.003 0.001

£ |EHD+SIFT LL 0.552 0.002 0.003 0.001 0.552 0.003 0.003 0.001

é LBP+EHD+SIFT_LL 0.570 0.002 0.002 0.001 0.569 0.002 0.002 0.001

LBP+EHD+SIFT+32x32_LL 0.600 0.002 0.002 0.002 0.590 0.003 0.003 0.002

when producing annotations for unseen images. The randm@stfoin this case are 165 times
faster than the SVMs. In this respect, bagging performs ewaigy to random forests. This
is due to the fact that passing through the tree has logadtbomplexity with respect to the
number of leafs in the tree. Since random forests and baggirduce trees with similar sizes,
these times will be similar. All in all, random forests of PE€3ignificantly outperform SVMs as
compared by their training and testing times.

7. Experimentson photo annotation

To show the generality of the proposed system, we perforneréxgnts on annotation of
general images. In this section, we first present the expatiah setup that we used (the data,
evaluation metrics and the experimental design). We thesemt the results and compare them
to those of state-of-the-art approaches used in image aiiomt

7.1. Experimental setup

This set of experiments was performed using the database tlhe ImageCLEF@ICPR
photo annotation task [42]. The database consists of 5@009, t8B000 validation, and 10000
test images annotated with 53 visual concepts organizediinadl hierarchy with tree structure
(see Fig. 10 for an example). The average number of annogagier image is 8.68 (including
both leaf and internal nodes from the hierarchy). The visoaktepts also contain abstract cate-
gories like FamilyFriends, Partylife, Quality (blurred, underexposed,anyl etc., thus making
the annotatioftlassification task very challenging.

The measures that we used to evaluate the performance dfjrétams on the medical X-
ray images are specific for the problem of annotation of n&dicages using the IRMA coding
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Figure 10: A fragment of the hierarchy for image annotatione &hnotations are part of the hierarchical classification
scheme for the ICPR 2010 photo annotation task (right). Tihie @ontains a set of images with their annotations (left).

schemé. Here, we use the most widely used evaluation measure inré¢faecd ‘general photo
annotatiory'visual concept detection’: mean average precision (MAR2][ For a given target
visual concept, the average precision can be calculateteaarea under the precision-recall
curve for that target. Hence, it combines both precision reall into a single performance
value. The average precision is calculated for each vismwratept separately and the obtained
values are then averaged to obtain the mean average precBarause the true labels of the
testimages from the ImageCLEF@ICPR 2010 database are biitlpavailable, we report the
MAP value obtained on the validation dataset.

For the images from this database, we use SIFT featureshwece the best performing
features in previous experiments (also SIFT features quiealy used in this type of problem
[14]). The SIFT features for this set of experiments werestitted using a visual codebook
with 4000 instead of 500 words (see Section 4.4). This matifio was made because most of
the state-of-the-art approaches for image classificati@eoeral photos use a visual codebook
with 4000 words [14], [12]. In the previous experiments,dam forests were the best perform-
ing method, so again we train random forests with 100 ungutUPCTs for HMC. For the base
PCTs, we used the same weight (0.75) and the size of the éestibiset that is retained at each
node was set to 10% of the number of descriptive attributeaésas in the experiments from the
Section 5).

To train the SVMs, we use thedSVM implementation with probabilistic outputs [43]. To
solve the multiple classification problems, we employ agh@One-against-Alapproach. For
each visual concept, we build a binary classifier where ntsta associated with that visual
concept are in one class (positive) and the rest are in anothes (negative). To handle the
imbalance in the number of positive versus negative trgiexamples, we fix the weights of the

positive and negative class. The weight of the positivesciaset to#p%:‘s"eg and the weight of
the negative class is set 8579, with #posthe number of positive instances in the train set

and #hegthe number of negative instances [15]. As in the previougerEents, we optimize the
value of the cost paramet€rof the SVMs.

2Note that the hierarchical error measure allows the algorith say ‘don’t know’ for some classes, since the max-
imum number of labels per image with the IRMA coding scheme is knolm the case of general images, an image
can be annotated with zero |@] classes. Also, for the Overall recognition rate, for theecalSIRMA coding scheme,
the number of possible combinations of labels is limited, wiilthe case of general images, this numberSs Zhis
makes overall recognition rate not suitable for measuringtbdictive performance of algorithms in annotating general
images.

19



7.2. Results and discussion

The results from the photo annotation experiments are showiable 4. The table also
contains the total training time and testing time per imageobth SVMs and random forests of
PCTs for HMC. From the presented results we can note thaatioom forests of PCTs for HMC
outperform the SVMs both in terms of predictive performanod dficiency. The latter holds
especially for the time needed to produce an annotation fiven test image: our approach is
more than 500 times faster than the SVMs.

Table 4: Results of the photo annotation experiments ewaduasing Mean Average Precision (larger values of MAP
mean better performance).

MAP Train time Test time per image
RF 0.450 9113.516 0.002
SVM 0.428 11821.227 1.078

Following the results from the study performed by Mensinklet[22], this means that our
system also outperforms the TagProp [21] approach for iraagetation. The results show that
our system ffers better predictive performance arficiency than systems that are most widely
used for annotation of images. All in all, the proposed systas high predictive performance
and dficiency, is general and is easily applicable to other domains

8. Conclusions

Hierarchical multi-label classification (HMC) problem&ancountered increasingly oftenin
image annotation. However, flat classification machineniegrapproaches are predominantly
applied in this area. In this paper, we propose to exploitaheotation hierarchy in image
annotation by using ensembles of trees for HMC. Our appraaetMC exploits the annotation
hierarchy by building a single classifier that simultandéppsedicts all labels in the hierarchy.
A substantial performance improvement is achieved by mglénsembles of HMC trees, such
as random forests.

We apply our approach to two benchmark tasks of hierarchivabtation of medical (X-ray)
images and an additional task of photo annotation (i.eualisoncept detection). We compare it
to a collection of SVMs (trained with g2 kernel), each predicting one label at the lowest level
of the hierarchy, the best-performing and most-frequamnlyd approach to (hierarchical) image
annotation. Our approach achieves better results tharothpetition on all of these: For the two
medical image datasets, these are the best results repottezlliterature so far. Our approach
has superior performance, both in terms of accysrcyr and especially in terms offeeiency.

We explore the relative performance of ensembles of traddM¥tC and collections of SVMs
under a variety of conditions. Along one dimension, we adeisthree dierent datasets. Along
another dimension, we consider two ensemble approachggingaand random forests. Fur-
thermore, we consider several state-of-the-art featuta&ton approaches and combinations
thereof. Finally, we consider two types of feature fusios., low- and high-level fusion.

Ensembles of trees for HMC perform consistently better ®6Ms over the whole range of
conditions explored above. The two ensemble approachészripebetter than SVM collections
on all three tasks, with random forests being mdfient than bagging (and the moshieient
overall). The relative performance holds foffdrent image representations (we consider raw
pixel representation, local binary patterns, edge histogdescriptors and SIFT histograms), as
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well as combinations thereof: The SIFT histograms are tist inelividual descriptors. More-
over, combinations of ¢ierent descriptors yield better predictive performanca tha individual
descriptors. The relative performance also holds for batilevel and high-level fusion of the
image descriptors, the former yielding slightly betterfpenance. We can thus conclude that for
the task of hierarchical image annotation, ensembles e§tier HMC are a superior alternative
to using collections of SVMs, which are most-commonly agxqblin this context.

We expect it is possible to further improve the predictivefgrenance of our system. We
could try to adapt our tree-learning approach to tackle tliftis distribution of images between
the training and the testing set. Better performance maylsbtained by including high level
feature extraction algorithms able to give more understhledand compact representation of the
visual content of the images (segmented objects with cglatamong them).

Let us conclude by emphasizing the scalability of our apgmoaDecision trees are one of
the most icient machine learning approaches and can handle largeararabexamples. The
ensemble approach of random forests scales very well fge laumbers of features. Finally,
trees for HMC scale very well as the complexity of the anrniotahierarchy increases, being
able to handle very large hierarchies organized as treesamteld acyclic graphs. Combining
these, our approach is scalable along all three dimensions.
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