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Bagging and random forests for PCTs
Beam-search induction of trees
Applications

Summary



Motivation

Increasing amounts of structured data
= Vectors
* Hierarchies —trees, DAGs,...
= Sequences — time series

Success of the ensemble methods in simple
classification and regression



Structured outputs

Target in supervised learning
= Single discrete or continuous variable
Target in structured prediction
= Vector of discrete or continuous variables
" Hierarchy — tree or DAG
"= Sequences — time series
Solutions
" De-composition to simpler problems
" Exploitation of the structure



Predictive Clustering Trees

Standard Top-Down Induction of DTs

Hierarchy of clusters

Distance measure: minimization of intra-cluster variance
Instantiation of the variance for different tasks



PCTs — Multiple targets

Multiple target regression
Euclidean distance

Var(E)=) Var(Ey,)

Multiple target classification

Var(E)=) Gini(Ey,)

Var(E)=)  Entropy(E,y,)



PCTs - HMLC
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Hierarchical Multi-Label Classification




Ensemble Methods

Set of predictive models

" Voting schemes to combine the
predictions into a single prediction

Unstable base classifiers
Ensemble learning

* Modification of the data

* Modification of the algorithm

Bagging
Random forests



Ensembles for structured outputs

PCTs as base classifiers

Voting schemes for the structured targets

= MT Classification: majority and probability distribution vote

= MT Regression and HMLC: average

= For an arbitrary structure: prototype calculation function
Predictive performance

= (Classification: accuracy

= Regression: correlation coefficient, RMSE, RRMSE

= HMLC: Precision-Recall curve (PRC), Area under PRCs



Experimental design

Datasets
Datasets  Examples Descriptive attributes Targets
MT Regression 14 154..60607 4..160 2..14
MT Classification 11 154..10368 4..294 2..14

F-test pruning for the single trees
" Internal 3-fold cross validation
Number of bags
= 10, 25, 50, 75, 100
Random Forest
= Feature subset size: logarithmic wrt attributes
10-fold cross validation



Experimental hypotheses

Saturation curves for bagging and random forests
" Number of bags

Comparison of the ensembles from PCTs to
= PCTs for each component separately
" ensembles for each component separately

Friedman and Nemenyi tests for statistical
significance



Results - Regression

Relative RMSE
MT Bagging vs. ST Bagging
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Results - Regression

Relative RMSE
MT Bagging vs. ST Bagging
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Results - Regression
Relative RMSE @ 75 bags

6 5 4 3 2 1
| I I | | |
!
MTRF75
STRT STRE75
MTRT MTBag75
STBag75




Results - Classification

Probability distribution voting

MT Bagging vs. ST Bagging
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Results - Classification

Probability distribution voting
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Results - Classification

Probability distribution voting @ 50 bags
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Results - Summary

Ensembles for multiple targets:
Converge faster
Perform significantly better than single PCT

Perform better than ensembles for single target
Smaller and faster to learn

" Size and time ratio ~ 2.5-3.0
" More emphasized in bigger datasets



Ensembles for HML.C

Datasets
= 3 from image classification
= 3 from text classification
= 3 from functional genomics

Preliminary results show that ensembles
for HMLC are:
= Better than single PCT for HMLC

" Better than learning an ensemble for each label
separately

= Significant speed up (~4.5-5.0) wrt learning
ensemble for each label separately



Feature Ranking for structured outputs

Estimating variable importance using random
forest

Uses out-of-bag error estimate and random
permutations of the features

The rationale is: if a feature is important for the
target concept(s) then the error rate should
increase when its values are randomly
permuted
Obtain feature ranking for
= Multiple targets: avoid aggregation of ranks
= Hierarchies (both trees and DAGs)
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Beam-search induction of trees



Beam Search Algorithm

Output: kK models

Tree induction perspective

* Take the tree with best score and the rest as good
alternatives (domain knowledge)

* Addressed the myopia of the standard TDIDT

Ensemble learning perspective
* Combine the trees in ensemble and let them vote
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Beam-search algorithm
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Stopping criteria: beam no longer changes
Or user constraints



Beam-Search Heuristic score
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Beam-Search Heuristic score

Ie-m .
h(T,1)= ( Z ‘ II“f Var([leaf)) + v - size(T)

leat €T /

Performance Soft size constraint



Beam-Search Algorithm Summary

Easy to push user constraints
= Hard size constraint

Competitive results as compared to TDIDT
" Beam-width is setto 10

Problem: the trees in the beam are quite
similar to each other

Solution: similarity constraints



Similarity constraints: take one

Enforce diversity in the beam
First experiments:
= (Change the heuristic score



Similarity constraints: take one

Enforce diversity in the beam
First experiments:
= (Change the heuristic score
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Similarity constraints: take one

Enforce diversity in the beam
First experiments:
= (Change the heuristic score
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Similarity constraints: take one

The trees in the beam are more different to
each other

Better results for regression tasks

*  Problem with the classification tasks
IS the hit/miss distance that we used



Similarity constraints: take two

Include the similarity in the test selection procedure

For classification use distance over the probability
distributions



Similarity constraints: take two

Include the similarity in the test selection procedure

For classification use distance over the probability
distributions

. k
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Performance g ilarity to the other trees



Similarity constraints: take two

Include the similarity in the test selection procedure

For classification use distance over the probability
distributions

k
Heuristic(T, beam,I') = > : > : 42 (4, g1 e > > ) > " d” (g 1))

leafeT (z,4)=1; leafeTl (z.yiel 1=1

Performance g ilarity to the other trees



Beam Search Algorithm - Summary

Tree induction point of view

= More than one tree as an answer

= Competitive with TDIDT

Ensembles point of view

* Direct control of the ensemble diversity
" “Interpretable” ensembles
Experiments yet to be performed
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Applications



Case Studies

Indigenous Vegetation
Functional Genomics

Image Classification



Indigenous Vegetation

16967 sites in Victoria State, Australia
Each sample is described with:
= 40 variables: GIS and remote-sensed data

= Habitat Hectares Score: Large Trees, Tree Canopy Cover,
Understorey, Lack of Weeds, Recruitment, Logs, and Organic Litter




Functional Genomics

Predicting gene functions of S. cerevisiae, A.
thaliana and M. Musculus

Two annotation schemes: FunCat and Gene
Ontology

Ensembles for HMLC are competitive with other
algorithms
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Image Classification

Precision

Image CLEF 2008 data
IRMA coding system with four axes
= Anatomical, Biological, Directional
and Technical
12000 annotated X-Ray images
1000 not-annotated X-Ray images
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Summary

Ensemble methods for predicting structured outputs
= Exploitation of the structure of the output
" Bagging and random forest
" Produce ranking for structured outputs
Beam-search induction of trees
" Qutput multiple possible answers
= Easy to push user constraints
Beam-search induction of ensembles
= Control the diversity in the ensemble
" “Interpretable” ensembles
Methods scalable to other types of structured outputs
Applications in different domains
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Questions?
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