Predictive clustering relates gene annotations to
phenotype properties extracted from images
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Introduction Data description

d Grouping genes with similar phenotypes upon siRNA mediated J siRNA screen performed on 269 genes, from which 20 were hypothetical
downregulation 1 Each gene is described by:
1 Phenotypes are described by features extracted from images using some — its annotation with terms from the Gene Ontology
free general-purpose or custom-made software (e.g., CellProfiler) — resulting phenotypes (images from confocal microscopy)
1 siIRNA screen designed to study MHC Class |l antigen presentation d Only the GO terms that are used to annotate at least 1 gene from the ones
— A major regulatory process in the immune system analysed (in total - 334)
— Controls most aspects of the adaptive immune response  CellProfiler for extracting features from the images: in total 700 features, from
— Strongly linked to almost all autoimmune diseases which 13 most relevant to the study are used
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Methodology
. . Genes involved in the defense _ _
Predictive clusterlng trees response (GO0006952) and Genes involved in receptor
| regulation of metabolic processes binding (GO0005102) and
1 Induced by standard TDIDT algorithm (GO0019222) are present in the
g : cytoplasm (GO0005737)
1 Able to make a prediction for given structured output
J Heuristic score: minimization of intra-cluster variance
ey . : : C1 c2 | ca | ca | c5 | ce | c7 | c8
:I Deflnlthn Of 2 dlStanCe and prOtOtype funCtlon fOr 2 glven OUtPUt Mean Cells Intensity StdIintensity GFP -166 | 1.03 | -0.77 |-093|-131|-166| 048 | -1.6
Mean Cells Texture AngularSecondMoment GFP 50 -141 | 148 | 054 | 0.22 | 0.88 | 0.48 | -0.75 | -0.45
] Medoid is taken as a prototype IN each leaf Mean Cytoplasm Intensity IntegratedintensityE GFP 124 | 025 |-023|054| 1 | 02 | 007 | 2.34
:I Cosine Slmllarlty S distance measure Mean Cytoplasm Texture InfoMeas1 GFP 50 1.29 1.86 1.05 | -041| 147 | 166 | 0.46 | 0.44
Mean Means Classll per Cells AreaShape Eccentricity 1.73 024 | -3.26 | 0.22 | -3.04 | 0.25 | 2.07 | 0.76
. . . A-B Mean Means Classll per Cells Texture Entropy GFP 3 -548 | 3.84 | -193|-3.06| 0.85 | -511| -0.89 | -7.8
CosineSim (A,B) =
’ HAHHBH Mean Cells Children EE Count -1.47 | 008 |-1.38| 1.9 | 263 | 7.77 | 1.7 | 347
Mean Means EE per Cells AreaShape Perimeter 226 | 224 | -248 |-1.96|-1.32| 0.28 | 0.17 | -3.37
Ensembles of PCTs and Rule ensembles Mean Nuclei AreaShape Solidity 1.03 | 069 | -1.63 | 1.14 [ 0.21 [ -1.18 | -0.66 | -0.67
Mean Means Golgi per Cells Intensity Integratedintensity RFP -0.5 065 |-169|-093|-155| -1.2 | -042 | -0.34
_ Mean Means Golgi per Cells Intensity IntegratedintensityE RFP -1.02 | 149 | -161| -06 |-143| -0.8 | -048 | 0.79
(Diirl‘ggnm'tfgg) A E et Mean Means Golgi per Cells RadiallntensityDist FracAtD RFP 2 087 | -09 |-2.00|-034|-295]|-382| 083 |-1.26
algorithm /\/\ to rules 5 Mean Means Golgi per Cells RadiallntensityDist FracAtD RFP 4 -098 | 167 |-017 | 049 | 112 | 1.76 | -0.92 | 2.08
*clzsl' Size of Cluster 3 8 3 | 33 ] 5 4 7 | 186
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£ Genes involved in regulation (GO0065007)
[Randomizeey Eonvert (o8 Q and in particular cellular nucleobase,
5 = Zzg'ﬁt'ﬁnmtree to rules O nucleoside, nucleotide and nucleic acid
metabolic processes (GO0006139)

n bootstrap n classifiers

replicates Ensemble

prediction

d Ensembles are able to lift the predictive performance of a single Conclusions

predictive clustering tree
_J Random forests are efficient to learn

0 Ensembles are not interpretable d Application of the predictive clustering paradigm for analysis of
— conversion to fitted rule ensembles phenotype images from siRNA screen for MHC Class |l antigen
presentation
d Each tree from the ensembles is converted to a set of rules 0 The clusters and their descriptions are obtained in a single step
d Using some optimization techniques, select the rule set with best

1 Identified and described groups of genes which yield similar

performance phenotypes upon siRNA mediated downregulation

1 Easy to interpret by domain experts
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