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Abstract. In this paper, we describe an approach to the automatic medical 
image annotation task of the 2009 CLEF cross-language image retrieval 
campaign (ImageCLEF). This work focuses on the process of feature extraction 
from radiological images and their hierarchical multi-label classification. To 
extract features from the images we use two different techniques: edge 
histogram descriptor (EHD) and Scale Invariant Feature Transform (SIFT) 
histogram. To annotate the images, we use predictive clustering trees (PCTs) 
which are able to handle target concepts that are organized in a hierarchy, i.e., 
perform hierarchical multi-label classification. Furthermore, we construct 
ensembles (Bagging and Random Forests) that use PCTs as base classifiers: this 
improves the predictive/classification performance.  
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1   Introduction 

The amount of medical images produced is constantly growing. Manual description 
and annotation of each image is time consuming, expensive and impractical. This 
calls for development of image annotation algorithms that can perform the task 
reliably. Automatic annotation classifies an image into one of a set of classes. If the 
classes are organized in a hierarchy and several of them can be assigned to an image, 
we are talking about hierarchical multi-label classification (HMLC). 

This paper describes our approach to the medical image annotation task of 
ImageCLEF 2009 (for details see [1]). The objective of this task is to provide the 
IRMA (Image Retrieval in Medical Applications) code [2] for each image of a given 
set of previously unseen medical (radiological) images. The IRMA coding system 
consists of four axes: technical axis (T, image modality), directional axis (D, body 
orientation), anatomical axis (A, body region examined) and biological axis (B, 
biological system examined). The database of medical images contains 12677 fully 
annotated radiographs (training dataset for the classifier) and 1733 testing images 
without labels. The annotation should be performed by using the four different 
annotation label sets (the competitions from 2005-2008) in turn. 



The code is strictly hierarchical because each sub-code element is connected to 
only one code element. This characteristic of the IRMA code allow us to exploit the 
code hierarchy and construct an automatic annotation system based on predictive 
clustering trees for hierarchical multi-label classification [3]. This approach is directly 
applicable for the datasets of ImageCLEF2007 and ImageCLEF2008 where the 
images were labeled according to the IRMA code scheme. To apply the same 
algorithm for the ImageCLEF2005 and ImageCLEF2006 datasets, we mapped the 
class numbers with the corresponding IRMA codes. Some images from the 
ImageCLEF2005 dataset can belong to more than one IRMA code. In the 
classification process, we use the most general IRMA code (that contains 0) to 
describe these images. 

Automatic image classification/annotation relies on numerical features that are 
computed from the image pixel values. In our approach, we use an edge histogram 
descriptor (to extract the global features of the images) and SIFT histogram (to extract 
the local features from the images). We combine the feature vectors (histograms) with 
simple concatenation in a single vector with 2080 features.  

The purpose of the concatenation of the global and the local features is to tackle 
the problem of intra-class variability vs. inter-class similarity and the different 
distribution of images between the training and the testing dataset (the testing dataset 
contains many images of some classes that are under-represented in the training set).  
Tomassi et al. [4] show that high and mid level combination of the different feature 
extraction techniques yield better results when SVMs are used as classifiers. In our 
work, we use ensembles of predictive clustering trees [3,5]. The ensembles of trees, 
such as random forests, can effectively exploit the information provided by the large 
number of features. Thus, we expect that concatenation of the feature extraction 
techniques yields better performance than the other combination methods. 

The remainder of the paper is organized as follows: Section 2 describes the 
techniques for feature extraction from images. Section 3 introduces predictive 
clustering trees and their use for HMLC. In Section 4, we explain the experimental 
setup. Section 5 reports the obtained results. Conclusions and a summary are given in 
Section 6, where we also discuss some directions for further work. 

2   Feature Extraction from Images 

This section describes the techniques for feature extraction from images that we use to 
describe the X-ray images from ImageCLEF 2009. We shortly describe the edge 
histogram descriptor and the scale invariant feature transform. To learn a classifier 
and to annotate the images from the testing set, we use the feature vector obtained 
with simple concatenation of the features obtained from these two techniques. 
 
Edge Histogram Descriptor: Edge detection is a fundamental problem of computer 
vision and has been widely investigated [6]. The goal of edge detection is to mark the 
points in a digital image at which the luminous intensity changes sharply. An edge 
representation of an image drastically reduces the amount of data to be processed, yet 
it retains important information about the shapes of objects in the scene. Edges in 
images constitute important features to represent their content.  



One way of representing important edge features is to use a histogram. An edge 
histogram in the image space represents the frequency and the directionality of the 
brightness changes in the image. To represent it, MPEG-7 contains edge histogram 
descriptors (EHD). These basically represent the distribution of five types of edges in 
each local area called a sub-image. The sub-images are defined by dividing the image 
space into 4×4 non-overlapping blocks. Thus, the image partition always yields 16 
equal-sized sub-images, regardless of the size of the original image. 

To characterize the sub-images, we then generate a histogram of edge distribution 
for each sub-image. Edges in the sub-images are categorized into five types: vertical, 
horizontal, 45-degree diagonal, 135-degree diagonal and non-directional edges. Thus, 
the histogram for each sub-image represents the relative frequency of occurrence of 
the five types of edges in the corresponding sub-image. 

As a result, each local histogram contains five bins. Each bin corresponds to one of 
the five edge types. Since there are 16 sub-images in the image, a total of 5×16=80 
histogram bins are required. Note that each of the 80-histogram bins has its own 
semantics in terms of location and edge type. Edge detection is performed using the 
Canny edge detection algorithm [7]. 
 
SIFT histogram: Many different techniques for detecting and describing local image 
regions have been developed [8]. The Scale Invariant Feature Transform (SIFT) was 
proposed as a method of extracting and describing key-points which are reasonably 
invariant to changes in illumination, image noise, rotation, scaling, and small changes 
in viewpoint [8].  

For content based image retrieval, good response times are required and this is hard 
to achieve when using the huge amount of data contained in descriptors by local 
features. The descriptors using local features can be extremely big because an image 
may contain many key-points, each described by a 128 dimensional vector. To reduce 
the descriptor size, we use histograms of local features [9]. With this approach, the 
amount of data is reduced by estimating the distribution of local feature values for 
every image.  

The creation of these histograms is a three step procedure. First, the key-points are 
extracted from all database images, where a key-point is described with a 128 
dimensional vector of numerical values. For the key-point extraction and descriptor 
calculation, we use the default parameters proposed by Lowe [8]. The key-points are 
clustered in 2000 clusters using k-means. Afterwards, for each key-point we discard 
all information except the identifier of the most similar cluster center. A histogram of 
the occurring patch-cluster identifiers is created for each image. To be independent of 
the total number of key-points in an image, the histogram bins are normalized to sum 
to 1. This results in a 2000 dimensional histogram. 

3   Ensembles of PCTs 

In this section, we discuss the approach we use to classify the data at hand. We 
shortly describe the predictive clustering trees (PCT) framework, its use for HMLC 
and the learning of ensembles. 
 



PCTs for Hierarchical-Multi Label Classification: In the PCT framework [5], a 
tree is viewed as a hierarchy of clusters: the top-node corresponds to one cluster 
containing all data, which is recursively partitioned into smaller clusters while 
moving down the tree. PCTs can be constructed with a standard “top-down induction 
of decision trees” (TDIDT) algorithm. The heuristic for selecting the tests is the 
reduction in variance caused by partitioning the instances. Maximizing the variance 
reduction maximizes cluster homogeneity and improves predictive performance.  

A leaf of a PCT is labeled with/predicts the prototype of the set of examples 
belonging to it. With instantiation of the variance and prototype functions, the PCTs 
can handle different types of data, e.g., multiple targets [10] or time series [11]. A 
detailed description of the PCT framework can be found in [5]. 

To apply PCTs to the task of HMLC the example labels are represented as vectors 
with Boolean components. The i-th component of the vector is 1 if the example 
belongs to class ci and 0 otherwise (See Figure 1). The variance of a set of examples 
(S) is defined as the average squared distance between each example’s label vi and the 
mean label v  of the set, i.e., 
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The higher levels of the hierarchy are more important: an error in the upper levels 
costs more than an error on the lower levels. Considering that, a weighted Euclidean 
distance is used as a distance measure. 
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where vk,i is the i’th component of the class vector vk of an instance xk, and the class 
weights w(c) decrease with the depth of the class in the hierarchy. In the case of 
HMLC, the notion of majority class does not apply in a straightforward manner. Each 
leaf in the tree stores the mean v  of the vectors of the examples that are sorted in that 
leaf. Each component of v  is the proportion of examples iv  in the leaf that belong to 
class ci. An example arriving in the leaf can be predicted to belong to class ci if iv  is 
above some threshold ti. The threshold can be chosen by a domain expert. A detailed 
description of PCTs for HMLC can be found in [3]. 
 

 
Fig. 1. A toy hierarchy. Class label names reflect the position in the hierarchy, e.g., ‘2/1’ is a 
subclass of ‘2’. The set of classes {1, 2, 2/2} is indicated in bold in the hierarchy and is 
represented as a vector. 
 



Ensemble Methods: An ensemble classifier is a set of classifiers. Each new example 
is classified by combining the predictions of every classifier from the ensemble. 
These predictions can be combined by taking the average (for regression tasks) or the 
majority vote (for classification tasks) [12,13], or by taking more complex 
combinations. We have adopted the PCTs for HMLC as base classifiers. Average is 
applied to combine the predictions of the different trees because the leaf’s prototype is 
the proportion of examples of different classes that belong to it. Just like for the base 
classifiers a threshold should be specified to make a prediction. We consider two 
ensemble learning techniques that have primarily been used in the context of decision 
trees: bagging and random forests. 

Bagging [12] constructs the different classifiers by making bootstrap replicates of 
the training set and using each of these replicates to construct one classifier. Each 
bootstrap sample is obtained by randomly sampling training instances, with 
replacement, from the original training set, until a number of instances is obtained 
equal to the size of the training set. Bagging is applicable to any type of learning 
algorithm.  

A random forest [13] is an ensemble of trees, where diversity among the predictors 
is obtained both by bootstrap sampling, and by changing the feature set during 
learning. More precisely, at each node in the decision tree, a random subset of the 
input attributes is taken, and the best feature is selected from this subset (instead of 
the set of all attributes). The number of attributes that are retained is given by a 
function f of the total number of input attributes x (e.g., 

⎣ ⎦ 1log1, 2 +x=f(x),x=f(x)=f(x) ,…). By setting x=f(x) , we obtain the bagging 
procedure. PCTs for HMLC are used as base classifiers.  

4   Experimental Design 

We decided to split the training images into training and development images. To 
tune the system for different distribution of images across classes in the training set 
and the test set, we generated several splits where the distributions of the images 
differed (in varying ways) between the training and development data. 

We constructed a classifier for each axis from the IRMA code separately (see 
Section 1). From each of the datasets, we learn a PCT for HMLC and Ensembles of 
PCTs (Bagging and Random Forests). The ensembles consisted of 100 un-pruned 
trees. The feature subset size for Random Forests was set to 11 (using the 
formula ⎣ ⎦)(=)f( 2080log2080 2 ). 

To compare the performance of a single tree and an ensemble we use Precision-
Recall (PR) curves. These curves are obtained with varying the value for the 
classification threshold: a given threshold corresponds to a single point from the PR-
curve. For more information, see [3]. 

According to these experiments and previous research the ensembles of PCTs have 
higher performance as compared to a single PCT when used for hierarchical 
annotation of medical images [14]. Furthermore, the Bagging and Random Forest 
methods give similar results. Because the Random Forest method is much faster than 
the Bagging method, we submitted only the results for the Random Forest method. 



 

 
Fig. 2. Example images with same value for axis D, but different values for the axis 

combining D with the first code from A. 
 

To select an optimal value of the threshold (t), we performed validation on the 
different development sets. The threshold values that give the best results were used 
for the prediction of the unlabelled radiographs according to the four different 
classification schemes (see Section 1). 

To reduce the intra-class variability for axis D and improve the prediction 
performance, we decided to modify the hierarchy for this axis and include the first 
code of axis A from the corresponding IRMA code. Figure 2 presents example images 
that have the same code for axis D, but are visually very different. After inclusion of 
the first code from the axis A, these images belong to different classes. 

5   Results 

For the ImageCLEF 2009 medical annotation task, we submitted one run. In this task, 
our result was third among the participating groups, with a total error score of 
1352.56. The results for the particular datasets are presented in Table 1. From the 
results, we can note the high error for the annotations from ImageCLEF2005 and 
ImageCLEF2006. Recall that we pre-processed the images and the classes from 2005 
and 2006 were mapped to an IRMA code. One class from the annotation from 
ImageCLEF2005 corresponds to multiple labels from the hierarchical annotation of 
the IRMA code and we used the most general class. This restricted the classifier to 
make more specific predictions. The performance for the ImageCLEF2008 is worse 
than the performance for ImageCLEF2007 because ImageCLEF2008 has a bigger 
hierarchy and more test images. 

Similar conclusions can be made by analyzing the PR curves shown in Figure 3. 
For each of the axes (T, D, A and B) we present three PR curves that correspond to 
the different annotation schemes. The PR curves for 2006 and 2007 coding schemes 
are equal because we simply mapped the class numbers to the corresponding IRMA 
codes. From the presented values for the PRCAU  (Area Under the Average Precision-
Recall Curve) it can be seen that we obtain best results for the ImageCLEF2007 



dataset. The PRCAU  values for the ImageCLEF2005 dataset are very low considering 
the total number of classes, but this is mainly because we didn’t apply a one-to-one 
mapping as for the ImageCLEF2006 dataset.  

Table 1.  Error score for the medical image annotation task and PRCAU  per axis,  
using random forests of PCTs for HMLC. 

Annotation 
label sets 

Error 
score 

Number  
of wildcards (*) 

PRCAU / RF 
Axis T Axis D Axis A Axis B 

2005 549 0 0.9990 0.7712 0.7059 0.9843 
2006 433 0 0.9998 0.8177 0.7419 0.9948 
2007 128.1 2550 0.9998 0.8177 0.7419 0.9948 
2008 242.26 2613 0.9995 0.7488 0.6621 0.9760 

 
 
The excellent performance for the prediction task for axes T and B is due to the 

simplicity of the problem, the hierarchies along these axes contain only a few nodes 
(8 and 19 nodes for ImageCLEF2008, respectively). This means that in each node in 
the hierarchy there is a large portion of the examples, thus learning a good classifier is 
not a difficult task. The classifiers for the other two axes have satisfactory predictive 
performance, but here the predictive task is somewhat more difficult (especially for 
axis A). The size of the hierarchy along the A and D axis, for ImageCLEF2008 are 
202 and 88 nodes, respectively. 

 
Fig. 3. Precision-Recall curves for the random forest predictions of the codes for T, D, A and B 
axis, respectively, for the four different competition tasks. The PR curves for the axes T and B 
are close to each other for each year. For the axes D and A, the upper PR curves are for the 
years 2006/07, the lower ones are for 2008 and the PR curves in the middle are for 2005. 

6   Conclusions 

This paper presents a hierarchical multi-label classification approach to medical 
image annotation. For efficient image representation, we use edge histogram 
descriptor and SIFT histograms. The predictive modeling problem that we consider is 
to learn PCTs and ensembles of PCTs that predict a hierarchical annotation of an X-
ray image. Using these approaches, we obtained good predictive performance and 
ranked third on the ImageCLEF 2009 competition.  

There are several ways to further improve the predictive performance of the 
proposed approach. First, one could try to tackle the shift in distribution of images 



between the training and the testing set. One solution is to develop extensions of the 
PCT approach that can handle such differences. Another approach is to generate 
virtual samples of the images that are underrepresented in the training set by rotation, 
translation and manipulation of contrast and brightness. Second, better performance 
may be obtained by post-processing the output from the ensembles and by reducing 
the dependence from the thresholding: instead of the hard threshold, use the raw 
probabilities. Third, we could use additional feature extraction techniques and 
combine them using different combination schemes (other than concatenation). 

In summary, we presented a general approach to hierarchical image annotation. 
The approach can be easily extended with new feature extraction methods, and can 
thus be applied to other domains. It can be also easily applied to arbitrary domains, 
because it can handle hierarchies with arbitrary sizes (bigger hierarchies, hierarchies 
that are organized as trees or directed acyclic graphs). 
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