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Abstract—This paper presents a hierarchical multi-label 

classification system for medical image annotation. The system is 
composed of two parts: feature extraction and classification/ 
annotation. The feature extraction provides global and/or local 
descriptions of the images in the form of numerical vectors. Using 
these numerical descriptions, we train a classifier, a predictive 
clustering tree (PCT), to produce annotations for unseen images. 
PCTs are able to handle target concepts that are organized in a 
hierarchy, i.e., perform hierarchical multi-label classification. To 
improve the classification performance, we construct ensembles 
(bags and random forests) of PCTs. 

We evaluate our system on the IRMA database. The 
experiments show that our system outperforms SVMs. In 
addition, our approach is very general: it can be easily extended 
with new feature extraction methods, and it can thus be easily 
applied to other domains, types of images and other classification 
schemes. Furthermore, it can handle arbitrarily sized hierarchies 
organized as trees or directed acyclic graphs. 

Index Terms— Automatic Image Annotation, Hierarchical 
Multi-Label Classification, Predictive Clustering Trees 

I. INTRODUCTION 
IGITAL imaging in medicine is in constant growth due to 
the increasing availability of imaging equipment in 

hospitals (such as X-ray, computed tomography, magnetic 
resonance imaging, positron emission tomography, ultrasound, 
endoscopy and laparoscopy). Average-sized radiology 
departments now produce several tera-bytes of data annually. 
This prompts for efficient systems for image annotation, 
storage, retrieval and mining.  

A straightforward way of using existing information 
retrieval tools for visual material is to manually annotate 
images by keywords and then apply text-based querying for 
retrieval. These annotations reflect the visual content of the 
images. For medical images, they can specify the image 
modality, body orientation, body region, or the biological 
system examined. However, manual annotation of images is 
an expensive and time-consuming procedure, especially given 
the large and constantly growing databases of medical images. 

To tackle the problem of image retrieval, automatic image 
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annotation is proposed by which a computer system 
automatically assigns metadata in the form of captions or 
keywords to a digital image [1].  Typically, image analysis is 
performed by first extracting feature vectors; together with the 
training annotations, these are then used by a machine learning 
algorithm to learn to automatically assign annotations. The 
performance of the automatic image annotation system largely 
depends on the availability of strongly representative visual 
features, able to characterize different visual properties of the 
images, and the use of effective algorithms for classifier 
training and automatic image annotation. 

A single image may contain different meanings organized 
in hierarchical semantics: hence, hierarchical multi-label 
classification is strongly recommended for obtaining multi-
label annotations. The task of multi-label classification is to 
assign multiple labels to each image. The assigned labels are 
always a subset of a previously defined set or hierarchy of 
labels. Multi-label classification is used in various domains, 
such as text classification [2], scene and video classification 
[3], medical imaging [4], and biological applications such as 
protein function classification and genomics [5]. One of the 
main issue involved in multi-label classification is the 
importance of detecting and incorporating correlations 
between labels into the multi-labeling process. A second and 
related issue is the additional complexity involved in multi-
label learning, as compared to single-label learning. 

Regardless of the number of visual properties that have to 
be learned and their mutual connections, most of the present 
systems for annotation of medical images learn a separate 
model for each visual property [4], [6], [7]. For this purpose, 
they adapt single-label classification algorithms for multi-label 
classification problems. Alternatively, they transform a multi-
label classification problem into several single-label 
classification problems. 

In this paper, we present a hierarchical multi-label 
classification system for medical image annotation. This 
system consists of two parts: processing (feature extraction) 
and classification of images. The image processing part 
converts an image to a set of numerical features extracted 
directly from the pixel values. The image classification part 
labels and groups the images. The labels can be organized in a 
hierarchy and an image can be labeled with more than one 
label (an image can belong to more than one group). 

We investigate which type of feature extraction techniques 
is most suitable for X-Ray medical images. To this end, we 
generate four different types of descriptors for the images in 
the database: raw pixel representation (RPR) [8], local binary 
patterns (LBP) [9], edge histogram descriptors (EHD) [10] and 
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scale-invariant feature transform (SIFT) [11]. We also 
investigate whether combinations of these techniques 
(obtained with simple concatenation of the feature vectors) 
can yield better predictive performance. 

We evaluate the different techniques for feature extraction 
from images and their use in hierarchical multi-label 
classification on the medical X-ray images for the CLEF 2009 
medical image annotations task [4]. The predictive 
performance of the ensembles (bags and random forest) of 
PCTs was compared to that of SVMs, the most widely used 
classifier in the area of image annotation. We use the 
hierarchical error measure from [4], commonly used for 
assessing the predictive performance over the database we use. 

The remainder of the paper is organized as follows. Section 
2 describes the techniques for feature extraction from images. 
Section 3 introduces predictive clustering trees and their use 
for HMLC. In Section 4, we explain the experimental setup. 
The obtained results and a discussion thereof are given in 
Section 5. Section 6 concludes the paper and points some 
directions for further work. 

II. FEATURE EXTRACTION FROM IMAGES 
Collections of medical images can contain various images 

obtained using different imaging techniques. Different feature 
extraction techniques are able to capture different aspects of 
an image (e.g., texture, shapes, color distribution…) [12]. In 
this study, we focus on X-ray images, hence, we use texture 
(LBP and EHD) and local (SIFT) features as most promising 
for describing X-ray images [4], [13]. 

Texture is especially important, because it is difficult to 
classify medical images using shape or gray level information. 
Effective representation of texture is needed to distinguish 
between images with equal modality and layout. Local image 
characteristics are fundamental for image interpretation: while 
global feature retain information on the whole image, the local 
features capture the details. They are thus more discriminative 
concerning the problem of inter and intra-class variability, an 
open challenge in automatic annotation of medical images [8]. 

A. Raw pixel representation 
The most straightforward approach to image classification 

is the direct use of the image pixel values as features. The 
images are scaled to a common size and represented by a 
feature vector that contains image pixel values. It has been 
shown that for classification and retrieval of medical 
radiographs, this method serves as a reasonable baseline [14]. 

 
Fig. 1.  Down-sampling for raw pixel representation. 

We used a 32×32 down-sampled representation of the 
images as recommended in [8]. The obtained 1024 pixel 

values were then used as input features. Fig. 1 shows how we 
built the raw pixel representation for each image. 

B. Local binary patterns 
Local binary patterns (LBP) are one of the best 

representations of texture content in images [9]. They are 
invariant to monotonic changes in gray-scale images and fast 
to compute. Furthermore, they are able to detect different 
micro patterns including edges, points, constant areas etc. LBP 
have already been used in many applications which require 
texture representation [15], [16], [17].  

The basic idea behind the LBP approach is to use the 
information about the texture from a local neighborhood. First, 
we define the radius R of the local neighborhood under 
consideration. The LBP operator then builds a binary code that 
describes the local texture pattern in the neighborhood set of P 
pixels. The binary code is obtained by applying the gray value 
of the neighborhood center as a threshold. The binary code is 
then converted to a decimal number which represents the LBP 
code. Formally, given a pixel at position )y,(x cc the resulting 
LBP code can be expressed as follows: 

∑
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The image is traversed with the LBP operator pixel by pixel 
and the outputs are accumulated into a discrete histogram. The 
derived LBP histogram contains information about the 
distribution of local micro-patterns, such as edges, spots and 
flat areas, over the images. However, not all LBP codes are 
informative. Certain LBP codes capture fundamental 
properties of the texture and are called uniform patterns 
because they constitute the vast majority, sometimes over 90 
percent, of all patterns present in the observed textures [18]. 
These patterns have one thing in common, namely, a uniform 
circular structure that contains very few spatial transitions. 
They function as templates for micro-structures such as bright 
spot, flat area or dark spot. 

In our experiments, we used the patterns u2
8,1LBP , where the 

superscript u2 reflects the use of uniform patterns that have U 
value of at most 2 on a neighborhood of size 8 and radius 1. 
The U value is the number of spatial transitions (bitwise 0/1 
changes) in the pattern. The non-uniform patterns (patterns 
that have U value large than 2) are grouped under one bin in 
the resulting histogram. With the u2

8,1LBP  operator, the number 

of bins in the histogram is reduced from 256 to 59 (58 bins for 
uniform patterns and one bin for non-uniform/noisy patterns). 

To spatially enhance the descriptors and improve the 
performance, it has been suggested [19], [20] to repeatedly 
sample predefined sub-regions of an image (e.g. 1x1, 2x2, 
4x4, 1x3 etc.). The different resolutions are then aggregated 
into a spatial pyramid which allows for region-specific 
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weighting. Following these approaches, we divide the images 
into 4x4 non-overlapping sub-images (blocks) and concatenate 
the LBP histograms extracted for each sub-image into a single, 
spatially enhanced feature histogram. This approach aims at 
obtaining a more local description of the images. Fig. 2 shows 
how we build the LBP histogram with 944 bins in total for 
each image (16 blocks with 59 bins each). 

 
Fig. 2. The image is divided into 4x4 non-overlapping sub-images from which 
LBP histograms are extracted and concatenated into a single, spatially 
enhanced histogram. 

C. Edge Histogram Descriptors 
Edge detection is a fundamental problem of computer 

vision and has been widely investigated [21]. The goal of edge 
detection is to mark the points in a digital image at which the 
luminous intensity changes sharply. An edge representation of 
an image drastically reduces the amount of data to be 
processed, yet it retains important information about the 
shapes of objects in the scene. Edges in images constitute 
important features to represent their content. 

One way of representing important edge features is to use a 
histogram. An edge histogram in the image space represents 
the frequency and the directionality of the brightness changes 
in the image. To represent it, the MPEG-7 standard defines the 
edge histogram descriptor (EHD) [10]. The edge histogram 
descriptor basically represents the distribution of five types of 
edges in each local area/sub-image. The image space is 
divided into 4×4 non-overlapping blocks, yielding 16 equal-
sized sub-images (Fig. 3). 

To characterize the sub-images, a histogram of edge 
distribution for each sub-image is generated. Edges in the sub-
images are categorized into five types: vertical, horizontal, 45-
degree diagonal, 135-degree diagonal and non-directional 
edges, as presented in Fig. 3. The histogram for each sub-
image represents the relative frequency of occurrence of the 
five types of edges in the corresponding sub-image and thus 
contains five bins. 

 
Fig. 3. The image is divided into 4x4 non-overlapping sub-images. For each 
sub-image five types of edge bins are calculated and concatenated into a 
single, spatially enhanced histogram. 

Since there are 16 sub-images in the image and 5 types of 

edges, a total of 80 histogram bins are required. Note that each 
of the 80-histogram bins has its own semantics in terms of 
location and edge type. In our experiments, the edge detection 
is performed using the Canny edge detection algorithm [22]. 

D. SIFT descriptors 
The scale-invariant feature transform (SIFT) is a method of 

extracting and describing key-points which are reasonably 
invariant to changes in illumination, image noise, rotation, 
scaling and small changes in viewpoint [11]. The SIFT 
algorithm has four major stages: 
1) Scale-space extrema detection: searching over scale space 

using a difference of Gaussian functions to identify points 
of potential interest.  

2) Key-point localization: the location and scale of each 
candidate point is determined and key-points are selected 
according to stability measures. 

3) Orientation assignment: one or more orientations are 
assigned to each key-point based on local image gradients. 

4) Key-point descriptor: a descriptor is generated for each 
key-point from local image gradients at the scale found in 
stage 2. 

Regarding stages 1 and 2, in accordance with the 
conclusions from [8], we used random sampling. Due to the 
low contrast of the radiographs it would be difficult to use any 
detector for points of interest. Also, it has been pointed in 
[23], that a dense random sampling is always superior to any 
strategy based on detectors for points of interest. 

Regarding stage 3, the SIFT rotation-invariance is not 
relevant for the X-ray images that we used in our experiments 
because the various structures in the radiographs usually 
appear with the same orientation. Furthermore, the scale is not 
likely to change too much between images of the same class. 
These constrains are also in accordance with the conclusion 
presented in [8]. Therefore, we extracted the points only at the 
first octave and we removed the rotation-invariance. 

To avoid using all visual features in an image we follow the 
well known codebook approach [23]. First, we assign visual 
features to discrete codewords predefined in a codebook. 
Then, we use the frequency distribution of the codewords as a 
compact feature vector. The crucial aspects of a codebook 
representation are the codebook construction and assignment. 
An extensive comparison of codebook representation variables 
is presented in [24]. 

We built the codebook by randomly sampling 50 points 
from each training image and extracting SIFT descriptors in 
each point. The total number of extracted key-points is 
633850. We employ k-means clustering in the R environment 
for statistical computing and graphics [25] on this set of key-
points to create the codewords. K-means partitions the visual 
feature space by minimizing the variance between a 
predefined number of k clusters. In our experiments, we set k 
to 500, so we defined a codebook with 500 codewords. 

The random sampling gives an equal weight to all key-
points, irrespective of their spatial location in the image. To 
overcome this limitation we follow the spatial pyramid 
approach which we applied for the previous descriptors (LBP 
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and EHD). For the SIFT descriptor, we used a spatial pyramid 
of 1x1, 2x2, and 1x3 regions. Since every region is an image 
in itself, the spatial pyramid can be easily used in combination 
with random sampling. 

Finally, the feature vector for an image is defined by 
extracting a random collection of 1500 points from the entire 
image (spatial pyramid of 1x1), in each sub-image using a 
spatial pyramid of 2x2 and spatial pyramid of 1x3. The 
resulting distribution of descriptors in the feature space is then 
quantized in the codewords of the codebook and converted 
into a histogram of votes for each image/sub-image separately. 
The resulting vector with 4000 bins (8x500) was obtained by 
concatenation of these eight histograms. The total number of 
bins in each histogram is 500 because the codebook contains 
500 codewords. Fig. 4 shows an example of the extracted 
histograms for spatial pyramids of 2x2 and 1x3. 

 
Fig. 4. Two different spatial pyramids used in our experiments, a) 2x2, b) 1x3. 
The spatial pyramid constructs feature vectors for each of the specific parts of 
the image. 

III. ENSEMBLES OF PCTS FOR HMLC 

A. PCTs for Hierarchical-Multi Label Classification 
In the PCT framework [26], a tree is viewed as a hierarchy 

of clusters: the top-node corresponds to one cluster containing 
all data, which is recursively partitioned into smaller clusters 
while moving down the tree. PCTs are constructed with a 
standard “top-down induction of decision trees” (TDIDT) 
algorithm. The heuristic for selecting the tests is the reduction 
in variance caused by partitioning the instances. Maximizing 
the variance reduction maximizes cluster homogeneity and 
improves predictive performance. 

A leaf of a PCT is labeled with/predicts the prototype of the 
set of examples belonging to it. With appropriate variance and 
prototype functions, PCTs can handle different types of data, 
e.g., multiple targets [27] or time series [28]. A detailed 
description of the PCT framework can be found in [26]. 

To apply PCTs to the task of HMLC, the example labels are 
represented as vectors with Boolean components. Components 
in the vector correspond to labels in the hierarchy traversed in 
a depth-first manner. The i-th component of the vector is 1 if 
the example belongs to class ci and 0 otherwise (see Fig. 5).  

The variance of a set of examples (S) is defined as the 
average squared distance between each example’s label vi and 
the mean label v  of the set, i.e., 

| |S

)v,d(v

=Var(S) i
i∑ 2

 

 
Fig. 5. Visualization of a part of the IRMA coding scheme. The codes are 
organized as a hierarchy, e.g., ‘Chest’ is a subclass of ‘Respiratory system’. 
The set of labels {x-ray, projection radiography, analog, high energy, 
respiratory system, sagittal, left lateral descubitus, inspiration, chest, lung} is 
indicated with solid round rectangles in the hierarchy and is represented as the 
vector vi. These codes correspond to the image from Fig. 6a. 

The higher levels of the hierarchy are more important: an 
error at the upper levels costs more than an error at the lower 
levels. Considering this, a weighted Euclidean distance is 
used: 

∑ −

i
iii2 )v)(vw(c=)v,d(v 2

2,1,1  

where vk,i is the i’th component of the class vector vk of an 
instance xk, and the class weights w(ci). The class weights 
decrease with the depth of the class in the hierarchy, 
w(ci)=w0·w(cj), where cj is the parent of ci. 

Each leaf in the tree stores the mean v  of the vectors of the 
examples that are sorted in that leaf. Each component of v  is 
the proportion of examples iv  in the leaf that belong to class 
ci. An example arriving in the leaf can be predicted to belong 
to class ci if iv  is above some threshold ti. The threshold can 
be chosen by a domain expert. A detailed description of PCTs 
for HMLC can be found in [29]. 

B. Ensemble Methods 
An ensemble classifier is a set of (base) classifiers. A new 

example is classified by the ensemble by combining the 
predictions of the member classifiers. The predictions can be 
combined by taking the average (for regression tasks), the 
majority vote (for classification tasks) [30], [31], or more 
complex combinations.  

We use PCTs for HMLC as base classifiers. Average is 
applied to combine the predictions of the different trees: the 
leaf’s prototype is the proportion of examples of different 
classes that belong to it. Just like for the base classifiers, a 
threshold should be specified to make a prediction.  

We consider two ensemble learning techniques that have 
primarily been used in the context of decision trees: bagging 
and random forests. 

Bagging [30] constructs the different classifiers by making 
bootstrap replicates of the training set and using each of these 
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replicates to construct one classifier. Each bootstrap sample is 
obtained by randomly sampling training instances, with 
replacement, from the original training set, until a number of 
instances is obtained equal to the size of the training set. 
Bagging is applicable to any type of learning algorithm. 

A random forest [31] is an ensemble of trees, obtained both 
by bootstrap sampling, and by randomly changing the feature 
set during learning. More precisely, at each node in the 
decision tree, a random subset of the input attributes is taken, 
and the best feature is selected from this subset (instead of the 
set of all attributes). The number of attributes that are retained 
is given by a function f of the total number of input attributes x 
(e.g., ⎣ ⎦ 1log1, 2 +x=f(x),x=f(x)=f(x) ,…). By setting x=f(x) , we 
obtain the bagging procedure. 

IV. EXPERIMENTS 

A. The IRMA Database 
We evaluated our system by applying it to the database for 

the CLEF 2009 medical image annotations task [4]. This 
database is provided by the IRMA group from the University 
Hospital of Aachen, Germany [32]. The database contains 
12677 fully annotated radiographs, taken randomly from 
medical routine, which should be used to train a classifier. The 
dataset contains two parts: ImageCLEF2007 (12339 training 
and 1353 testing images) and ImageCLEF2008 (12667 
training and 1733 testing images). 

The images are labeled according to the four annotation 
label sets [4]. We used the ImageCLEF2007 label set with 116 
IRMA codes and the ImageCLEF2008 label set with 193 
IRMA codes because of the hierarchical nature of the coding 
scheme [32]. The goal is to correctly annotate 1353/1733 
images that are provided without labels, using the different 
respective annotation label sets in turn. 

 
Fig. 6. IRMA-coded chest and abdomen radiograph. For instance, the code for 
the biological axis (512) on the sub-figure b) is translated as follows: 5 is for 
uropoietic system, 51 is for uropoietic system, kidney and 512 is uropoietic 
system, kidney, renal pelvis. The renal pelvis is an element of the kidney, 
which in turn is an element of the uropoietic system. 

The IRMA coding scheme consists of four axes with three 
to four positions, each position taking a value from the set 
{0,…, 9, a,…, z}, where “0” denotes “unspecified” and 
determines the end of a path along an axis. The four axes are: 
technical axis (T, image modality), directional axis (D, body 
orientation), anatomical axis (A, body region examined) and 
biological axis (B, biological system examined). This allows a 
short and unambiguous notation (IRMA: TTTT-DDD-AAA-
BBB), where T, D, A, and B denotes a coding or sub-coding 

digit of the respective axis. Fig. 6 gives two examples of 
unambiguous image classification using the IRMA code. 

The IRMA code is hierarchical in its nature and it allows us 
to exploit the hierarchy of the code. This means that we can 
construct an automatic image annotation system based on 
predictive clustering trees for hierarchical multi-label 
classification. 

B. Evaluation Metrics 
In this study, we use two evaluation metrics: precision-

recall (PR) curves and the ImageCLEF hierarchical evaluation 
measure. Precision and recall are defined for binary 
classification problems, where the examples can be positive 
(belong to the class) or negative (do not belong to the class). 
Precision is the proportion of the positive predictions that are 
correct. Recall is the proportion of the positive examples that 
are correctly predicted as positive. 

The PR curves are obtained by drawing the precision vs. the 
recall at different thresholds (note that a threshold is needed in 
order to make a prediction, from Section III.A and III.B). This 
measure offers the user a trade-off between the precision and 
the recall of the classifier. We are using this measure because 
we are more interested to correctly predict the presence of a 
label, rather than the absence of a label.  

As performance measure, we use the area under the average 
PR curve. First, we construct the overall PR curve using 
average values for the precision and the recall over all classes. 
Then, we calculate the area under the average curve ( PRCAU ). 
This measure rewards a predictor that is able to exploit the 
information about the class frequencies of the different 
classes. The value for PRCAU  is in the range (0, 1) and if it is 
closer to 1 it means that the classifier is more accurate. 

The ImageCLEF hierarchical evaluation measure is 
proposed in [4]. This measure takes into account the depth and 
the difficulty of the predictive problem (`branching factor`) at 
which an error has occurred. It can be calculated using the 
following formula: 
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where I is the depth of the hierarchy, bi is the number of 
possible labels at the error ('branching factor') and i is the 
depth at which the error occurred. This measure allows the 
classifier not to predict the complete code/annotation, that is, 
the classifier can predict the first 2 nodes of the code (level of 
the hierarchy) and then to say 'I don't know' for the next 
node/level. The ImageCLEF evaluation measure can range 
from 0 to the number of testing images. If this measure is 
closer to 0, then the classifier is more accurate. 

C. Experimental Hypotheses 
The goal of this study is to test the following hypotheses: 

1. Does using ensembles of PCTs lift the predictive 
performance of a single PCT in the domain of image 
annotation? Which ensemble method performs better: 
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bagging or random forest? How do the ensembles of PCTs 
compare to the performance of SVMs? 

2. Which feature extraction technique is most suitable for 
medical X-Ray images? 

3. Can combinations of feature extraction techniques that 
capture different aspects of an image yield improvement in 
terms of annotation performance? 

For the first hypothesis, we evaluate the performance of 
PCTs for HMLC and ensembles (bagging and random forest) 
of PCTs. We compare the HMLC approaches using PRCAU  
and select the best performing method. After that, we compare 
the best method for HMLC with SVMs, using the ImageCLEF 
hierarchical error measure.  

It has been shown [29] that exploitation of the structure of 
the hierarchy in tree classifiers yields better predictive 
performance in the domain of functional genomics. Here, we 
compare the performance of the ensemble classifiers with 
SVM classifiers – the most widely used classifiers for medical 
image annotation [8]. 

To check which feature extraction technique is most 
suitable for medical X-Ray images (second hypothesis), we 
compare the performance of the classifiers on each type of 
visual descriptors. For this purpose, we discuss only the results 
from the separate runs of the descriptors (first four rows from 
Tables I and II). 

The various feature extraction techniques capture different 
aspects of an image. With the third hypothesis, we want to 
check whether combinations of feature extraction techniques 
can yield increase in the predictive performance. We 
concatenate the descriptors in a single feature vector and train 
a classifier on the joint feature vector. Here, we compare the 
last five rows from Tables I and II (with the first four). 

D. Experimental design 
In this section, we describe the experimental setup that we 

used. First, we describe how we re-engineered the hierarchy 
and then the parameter instantiations of the learning 
algorithms. Note that we stated the parameters for the feature 
extraction techniques while explaining them (see Section II). 

We modify the hierarchy of the IRMA code, in order to 
increase the inter-class variability and decrease the intra-class 
variability. Fig.7 shows the `re-engineered` hierarchy of the 
classes that we use. We take the code of the first position for 
the biological axis and add it in front of the codes for the 
anatomical and directional axes.  

The inclusion of the biological code in the first level in the 
hierarchy helps us to initially filter the images resulting in 
visually more different images in the first level of the 
hierarchy. In the context of the axis A, the axis B is necessary 
because the body region examined insufficiently describes the 
content and structure of images. For example, fluoroscopy of 
the abdominal region may access the vascular or the 
gastrointestinal system depending on the way the contrast 
agent is administered, which results in different image 
textures. For the directional axis, this is even more obvious. 
For instance, an image of a chest and an image of a hand can 
have the same directional code, but are visually very different. 

 
Fig. 7. The 're-engineered' hierarchy of the classes in the IRMA code. 

In the following, we state the parameter instantiations that 
we used to train the classifiers: PCTs, ensembles and SVMs. 
The algorithm for learning PCTs requires as input the weight 
of the depth in the hierarchy. We set w0 to 0.75 to force the 
algorithm to make better predictions on the upper levels of the 
hierarchy. Also, we performed F-test pruning to prevent over-
fitting of the trees [29]. 
 We trained ensembles of 100 un-pruned trees (PCTs). For 
the base PCTs, we used the same weight (0.75) as when 
training the single PCTs. The size of the feature subset that is 
retained at each node, when training a random forest, was set 
to 10% of the number of descriptive attributes. 
 We used a custom developed application for training and 
testing the SVMs. This application uses the SVMTorch library 
[33]. To solve the partial binary classification problems, we 
apply the One-against-All (OvA) approach. Each of the SVMs 
was trained with a Gaussian kernel. We used the default 
values for all parameters of the SVMs, except for the standard 
deviation (σ). This parameter presents a trade-off between 
over-fitting in the dense areas and under-fitting in the sparse 
areas of the dataset.  
 In order to select the best value for the standard deviation, 
we performed greedy search as follows. We separate 20% of 
the training set and use it as validation set. Then, we start 
training a SVM with σ set to 1 and record the performance of 
the SVM on the validation set. Afterwards, we increase the 
value of σ 1.5 times and train a new SVM classifier. We repeat 
this procedure until we reach a local optimum. Next, we add 
and extract some small value from the local optimum to fine 
tune the parameter. At the end, we train an SVM on the whole 
dataset with the selected value for standard deviation. 

V. RESULTS AND DISCUSSION 
In this section, we present the results obtained using the 

experimental setup described in the previous section. First, we 
compare the performance of PCTs and ensembles of PCTs 
(Table I). Then, we compare the performance of ensembles of 
PCTs and SVMs (Table II). 

Table I summarizes the PRCAU  values for PCTs and 
ensembles of PCTs using the different feature extraction 
algorithms over the ImageCLEF 2007 and ImageCLEF 2008 
datasets. In [25], Vens et al. show that PCTs for HMLC 
outperform significantly trees for single label classification, 
hierarchical single-label classification and the hierarchical 
extension of C4.5 [34]. Following their findings, we compare 
here the performance of PCTs for HMLC and ensembles of 
PCTs for HMLC as base classifiers. 
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TABLE I 
PREDICTIVE PERFORMANCE ( PRCAU ) OF THE FEATURE EXTRACTION 
ALGORITHMS AND THEIR COMBINATIONS USING PCTS FOR HMLC, AS WELL 
AS RANDOM FOREST AND BAGGING OF PCTS FOR HMLC. BIGGER VALUE 
MEANS BETTER PERFORMANCE 

PCT RForest Bagging 

Im
ag

eC
LE

F 
20

07
 

SIFT 0.789 0.930 0.927 
LBP 0.823 0.935 0.935 
EHD 0.790 0.901 0.906 
32x32 0.735 0.879 0.876 
LBP+EHD 0.817 0.936 0.935 
LBP+SIFT 0.830 0.943 0.941 
EHD+SIFT 0.793 0.932 0.931 
LBP+EHD+SIFT 0.822 0.945 0.942 
LBP+EHD+SIFT+32x32 0.824 0.94 0.939 

Im
ag

eC
LE

F 
20

08
 

SIFT 0.749 0.888 0.882 
LBP 0.764 0.890 0.888 
EHD 0.746 0.856 0.859 
32x32 0.705 0.829 0.825 
LBP+EHD 0.756 0.891 0.889 
LBP+SIFT 0.755 0.897 0.896 
EHD+SIFT 0.754 0.889 0.887 
LBP+EHD+SIFT 0.757 0.896 0.894 
LBP+EHD+SIFT+32x32 0.751 0.893 0.894 

 
The results clearly show that ensemble methods outperform 

single PCTs on all of the datasets: random forests are 
significantly better (according to the non-parametric Wilcoxon 
test for statistical significance) than single PCTs ( )4102 −⋅<p  
and bagging is better than single PCTs ( )4102 −⋅<p . A 
comparison between the two ensemble methods shows that 
random forest outperforms bagging and that the difference is 
statistically significant ( )2107.2 −⋅<p . Furthermore, the random 
forest method is (~10 times) faster than bagging. 

From the results in Table I, we can also notice the worse 
performance of all algorithms on the ImageCLEF 2008 
dataset, as compared to the ImageCLEF 2007 dataset. This is 
mainly because of the larger hierarchy of the ImageCLEF2008 
dataset. The ImageCLEF 2008 dataset contains 195 nodes in 
the hierarchy, while the ImageCLEF 2007 dataset contains 
140 nodes in the hierarchy. 

The predictive performance of the individual feature 
extraction algorithms is shown in Fig. 8. From the PR curves 
we can note the high predictive performance of the LBP 
operator and the SIFT histogram. The LBP operator and the 
SIFT histogram are most capable of capturing the hierarchical 
structure of the X-ray images. The EHD feature performs 
slightly worse, and the simplest descriptor obtained from the 
raw pixel representation has worst performance. Similar 
conclusions can be made by observing the values of the 

PRCAU  from Table I and the ImageCLEF error in Table II. 
Tables I and II present the results of the experiments 

conducted with different combinations of features. Inclusion 
of more than one type of features in the classification process 
contributes to the better representation of the hierarchical 
nature of the images and helps to further improve the 
predictive performance. For the ImageCLEF 2007 dataset, the 
best results were obtained using LBP, EHD and SIFT in 
combination, and for the ImageCLEF 2008 dataset by using 

LBP and SIFT. This confirms our conclusion that LBP and 
SIFT are most capable of capturing the hierarchical nature of 
the image content. 

 
Fig.8. Precision-Recall curves for the ImageCLEF 2007 and ImageCLEF2008 
dataset, respectively, for the four different feature extraction algorithms. The 
curves were obtained using random forests of PCTs for HMLC. 

TABLE II 
PREDICTIVE PERFORMANCE (IMAGECLEF ERROR MEASURE) OF THE FEATURE 
EXTRACTION ALGORITHMS AND THEIR COMBINATIONS USING SVMS AND 
RANDOM FORESTS OF PCTS FOR HMLC. SMALLER VALUES MEAN BETTER 
PERFORMANCE. 

SVM HMLC-RF 
Im

ag
eC

LE
F 

20
07

 
SIFT 88.75 81.9 
LBP 125.19 72.71 
EHD 128.16 105.12 
32x32 203.69 190.78 
LBP+EHD 101.12 70.56 
LBP+SIFT 88.47 65.89 
EHD+SIFT 80.33 79.11 
LBP+EHD+SIFT 80.21 67.23 
LBP+EHD+SIFT+32x32 80.45 69.45 

Im
ag

eC
EL

F 
20

08
 

SIFT 196.13 182.67 
LBP 259.17 179.47 
EHD 267.2 249.44 
32x32 378.18 321.21 
LBP+EHD 224.98 180.12 
LBP+SIFT 203.37 168.38 
EHD+SIFT 190.69 180.3 
LBP+EHD+SIFT 192.43 165.23 
LBP+EHD+SIFT+32x32 194.53 169.01 

 
We have also compared our approach with the flat 

classification approach using SVMs (see Table II) by the 
ImageCLEF error measure. From the presented experimental 
results, we can see that the random forests of PCTs are 
superior to the SVM approach for all feature extraction 
algorithms and their combinations (the difference in 
performance is significant at 4102 −⋅<p ). This shows that 
exploiting the structure of the hierarchy does help in 
improving the predictive performance. The error score of 
165.23 for the ImageCLEF2008 dataset is better than the best 
error score reported at the ImageCLEF 2009 competition [4]. 
The error score of 65.89 is only by 1.59 points worse than the 
best error score reported for the ImageCLEF 2007 dataset also 
at the ImageCLEF 2009 competition [4]. 

VI. CONCLUSION 
This paper presents a hierarchical multi-label classification 

approach to medical image annotation. For efficient image 
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representation, we used several feature extraction algorithms: 
raw pixel representation, local binary patterns, edge histogram 
descriptors and SIFT histograms. The predictive modeling 
problem that we consider is to hierarchically annotate medical 
X-ray images using the IRMA coding system.  

The presented experimental results show that the LBP 
operator and the SIFT histogram most successfully describe 
and capture the hierarchical structure of the X-ray images. 
Moreover, the most favorable combination of representation 
and learning approaches, in terms of predictive performance 
and time efficiency, is when a LBP operator is used jointly 
with random forests of PCTs for HMLC. 

The PCTs for HMLC make use of the information 
contained in the hierarchy to improve the classification 
performance (see the results from Table II). Furthermore, the 
PCTs approach (when a single tree is learned) has the 
additional advantage of identifying features that are relevant 
for all code labels in the hierarchy together (instead of 
separate features for each code label). The extensive 
experiments conducted on the benchmark database show that 
ensembles of PCTs outperform the best of the existing 
methods for medical image annotation. 

There are several ways to further improve the predictive 
performance of the proposed approach. First, one could try to 
tackle the shift in distribution of images between the training 
and the testing set. A possible solution to this problem is to 
develop extensions of the PCT approach that can handle such 
differences. Second, better performance may be obtained by 
including high level feature extraction algorithms able to give 
more understandable and compact representation of the visual 
content of the images (segmented objects with relations 
among them). 

In summary, we presented a general approach to 
hierarchical image annotation. The approach can be easily 
extended with new feature extraction methods, and can thus be 
applied to other domains. It can be also easily applied to 
arbitrary domains, because it can handle hierarchies with 
arbitrary sizes and shapes, including very large hierarchies and 
hierarchies that are organized as trees or directed acyclic 
graphs. 
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