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Abstract—This paper presents a hierarchical multi-label
classification system for medical image annotation. The system is
composed of two parts: feature extraction and classification/
annotation. The feature extraction provides global and/or local
descriptions of the images in the form of numerical vectors. Using
these numerical descriptions, we train a classifier, a predictive
clustering tree (PCT), to produce annotations for unseen images.
PCTs are able to handle target concepts that are organized in a
hierarchy, i.e., perform hierarchical multi-label classification. To
improve the classification performance, we construct ensembles
(bags and random forests) of PCTs.

We evaluate our system on the IRMA database. The
experiments show that our system outperforms SVMs. In
addition, our approach is very general: it can be easily extended
with new feature extraction methods, and it can thus be easily
applied to other domains, types of images and other classification
schemes. Furthermore, it can handle arbitrarily sized hierarchies
organized as trees or directed acyclic graphs.

Index Terms— Automatic Image Annotation, Hierarchical
Multi-Label Classification, Predictive Clustering Trees

1. INTRODUCTION

DIGITAL imaging in medicine is in constant growth due to
the increasing availability of imaging equipment in
hospitals (such as X-ray, computed tomography, magnetic
resonance imaging, positron emission tomography, ultrasound,
endoscopy and laparoscopy). Average-sized radiology
departments now produce several tera-bytes of data annually.
This prompts for efficient systems for image annotation,
storage, retrieval and mining.

A straightforward way of using existing information
retrieval tools for visual material is to manually annotate
images by keywords and then apply text-based querying for
retrieval. These annotations reflect the visual content of the
images. For medical images, they can specify the image
modality, body orientation, body region, or the biological
system examined. However, manual annotation of images is
an expensive and time-consuming procedure, especially given
the large and constantly growing databases of medical images.

To tackle the problem of image retrieval, automatic image
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annotation is proposed by which a computer system
automatically assigns metadata in the form of captions or
keywords to a digital image [1]. Typically, image analysis is
performed by first extracting feature vectors; together with the
training annotations, these are then used by a machine learning
algorithm to learn to automatically assign annotations. The
performance of the automatic image annotation system largely
depends on the availability of strongly representative visual
features, able to characterize different visual properties of the
images, and the use of effective algorithms for classifier
training and automatic image annotation.

A single image may contain different meanings organized
in hierarchical semantics: hence, hierarchical multi-label
classification is strongly recommended for obtaining multi-
label annotations. The task of multi-label classification is to
assign multiple labels to each image. The assigned labels are
always a subset of a previously defined set or hierarchy of
labels. Multi-label classification is used in various domains,
such as text classification [2], scene and video classification
[3], medical imaging [4], and biological applications such as
protein function classification and genomics [5]. One of the
main issue involved in multi-label classification is the
importance of detecting and incorporating correlations
between labels into the multi-labeling process. A second and
related issue is the additional complexity involved in multi-
label learning, as compared to single-label learning.

Regardless of the number of visual properties that have to
be learned and their mutual connections, most of the present
systems for annotation of medical images learn a separate
model for each visual property [4], [6], [7]. For this purpose,
they adapt single-label classification algorithms for multi-label
classification problems. Alternatively, they transform a multi-
label classification problem into several single-label
classification problems.

In this paper, we present a hierarchical multi-label
classification system for medical image annotation. This
system consists of two parts: processing (feature extraction)
and classification of images. The image processing part
converts an image to a set of numerical features extracted
directly from the pixel values. The image classification part
labels and groups the images. The labels can be organized in a
hierarchy and an image can be labeled with more than one
label (an image can belong to more than one group).

We investigate which type of feature extraction techniques
is most suitable for X-Ray medical images. To this end, we
generate four different types of descriptors for the images in
the database: raw pixel representation (RPR) [8], local binary
patterns (LBP) [9], edge histogram descriptors (EHD) [10] and
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scale-invariant feature transform (SIFT) [11]. We also
investigate whether combinations of these techniques
(obtained with simple concatenation of the feature vectors)
can yield better predictive performance.

We evaluate the different techniques for feature extraction
from images and their use in hierarchical multi-label
classification on the medical X-ray images for the CLEF 2009
medical image annotations task [4]. The predictive
performance of the ensembles (bags and random forest) of
PCTs was compared to that of SVMs, the most widely used
classifier in the area of image annotation. We use the
hierarchical error measure from [4], commonly used for
assessing the predictive performance over the database we use.

The remainder of the paper is organized as follows. Section
2 describes the techniques for feature extraction from images.
Section 3 introduces predictive clustering trees and their use
for HMLC. In Section 4, we explain the experimental setup.
The obtained results and a discussion thereof are given in
Section 5. Section 6 concludes the paper and points some
directions for further work.

II. FEATURE EXTRACTION FROM IMAGES

Collections of medical images can contain various images
obtained using different imaging techniques. Different feature
extraction techniques are able to capture different aspects of
an image (e.g., texture, shapes, color distribution...) [12]. In
this study, we focus on X-ray images, hence, we use texture
(LBP and EHD) and local (SIFT) features as most promising
for describing X-ray images [4], [13].

Texture is especially important, because it is difficult to
classify medical images using shape or gray level information.
Effective representation of texture is needed to distinguish
between images with equal modality and layout. Local image
characteristics are fundamental for image interpretation: while
global feature retain information on the whole image, the local
features capture the details. They are thus more discriminative
concerning the problem of inter and intra-class variability, an
open challenge in automatic annotation of medical images [8].

A. Raw pixel representation

The most straightforward approach to image classification
is the direct use of the image pixel values as features. The
images are scaled to a common size and represented by a
feature vector that contains image pixel values. It has been
shown that for classification and retrieval of medical
radiographs, this method serves as a reasonable baseline [14].
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Fig. 1. Down-sampling for raw pixel representation.

We used a 32x32 down-sampled representation of the
images as recommended in [8]. The obtained 1024 pixel

values were then used as input features. Fig. 1 shows how we
built the raw pixel representation for each image.

B. Local binary patterns

Local binary patterns (LBP) are one of the best
representations of texture content in images [9]. They are
invariant to monotonic changes in gray-scale images and fast
to compute. Furthermore, they are able to detect different
micro patterns including edges, points, constant areas etc. LBP
have already been used in many applications which require
texture representation [15], [16], [17].

The basic idea behind the LBP approach is to use the
information about the texture from a local neighborhood. First,
we define the radius R of the local neighborhood under
consideration. The LBP operator then builds a binary code that
describes the local texture pattern in the neighborhood set of P
pixels. The binary code is obtained by applying the gray value
of the neighborhood center as a threshold. The binary code is
then converted to a decimal number which represents the LBP
code. Formally, given a pixel at position (x,y.)the resulting

LBP code can be expressed as follows:

P
LBPpR(tc.¥e )= D Slin ~ic 2"
n=0
where n ranges over the P neighbors of the central pixel
(xc.¥c)» ic and i, are the gray-level values of the central pixel

and the neighbor pixel, and S(X) is defined as:

1, if x>0
S(x)= )
0, otherwise

The image is traversed with the LBP operator pixel by pixel
and the outputs are accumulated into a discrete histogram. The
derived LBP histogram contains information about the
distribution of local micro-patterns, such as edges, spots and
flat areas, over the images. However, not all LBP codes are
informative. Certain LBP codes capture fundamental
properties of the texture and are called uniform patterns
because they constitute the vast majority, sometimes over 90
percent, of all patterns present in the observed textures [18].
These patterns have one thing in common, namely, a uniform
circular structure that contains very few spatial transitions.
They function as templates for micro-structures such as bright
spot, flat area or dark spot.

In our experiments, we used the patterns LBPY2 , where the

81>
superscript U2 reflects the use of uniform patterns that have U
value of at most 2 on a neighborhood of size 8 and radius 1.
The U value is the number of spatial transitions (bitwise 0/1
changes) in the pattern. The non-uniform patterns (patterns
that have U value large than 2) are grouped under one bin in

the resulting histogram. With the LBPE;J% operator, the number

of bins in the histogram is reduced from 256 to 59 (58 bins for
uniform patterns and one bin for non-uniform/noisy patterns).
To spatially enhance the descriptors and improve the
performance, it has been suggested [19], [20] to repeatedly
sample predefined sub-regions of an image (e.g. 1xI1, 2x2,
4x4, 1x3 etc.). The different resolutions are then aggregated
into a spatial pyramid which allows for region-specific
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weighting. Following these approaches, we divide the images
into 4x4 non-overlapping sub-images (blocks) and concatenate
the LBP histograms extracted for each sub-image into a single,
spatially enhanced feature histogram. This approach aims at
obtaining a more local description of the images. Fig. 2 shows
how we build the LBP histogram with 944 bins in total for
each image (16 blocks with 59 bins each).

10000

177 23 295 35 413 472 531 590 649 708 767 626 95|9A4

T
0 |4 s

Fig. 2. The image is divided into 4x4 non-overlapping sub-images from which
LBP histograms are extracted and concatenated into a single, spatially
enhanced histogram.

C. Edge Histogram Descriptors

Edge detection is a fundamental problem of computer
vision and has been widely investigated [21]. The goal of edge
detection is to mark the points in a digital image at which the
luminous intensity changes sharply. An edge representation of
an image drastically reduces the amount of data to be
processed, yet it retains important information about the
shapes of objects in the scene. Edges in images constitute
important features to represent their content.

One way of representing important edge features is to use a
histogram. An edge histogram in the image space represents
the frequency and the directionality of the brightness changes
in the image. To represent it, the MPEG-7 standard defines the
edge histogram descriptor (EHD) [10]. The edge histogram
descriptor basically represents the distribution of five types of
edges in each local area/sub-image. The image space is
divided into 4x4 non-overlapping blocks, yielding 16 equal-
sized sub-images (Fig. 3).

To characterize the sub-images, a histogram of edge
distribution for each sub-image is generated. Edges in the sub-
images are categorized into five types: vertical, horizontal, 45-
degree diagonal, 135-degree diagonal and non-directional
edges, as presented in Fig. 3. The histogram for each sub-
image represents the relative frequency of occurrence of the
five types of edges in the corresponding sub-image and thus
contains five bins.

N
Fig. 3. The image is divided into 4x4 non-overlapping sub-images. For each

sub-image five types of edge bins are calculated and concatenated into a
single, spatially enhanced histogram.

Since there are 16 sub-images in the image and 5 types of

edges, a total of 80 histogram bins are required. Note that each
of the 80-histogram bins has its own semantics in terms of
location and edge type. In our experiments, the edge detection
is performed using the Canny edge detection algorithm [22].

D. SIFT descriptors

The scale-invariant feature transform (SIFT) is a method of
extracting and describing key-points which are reasonably
invariant to changes in illumination, image noise, rotation,
scaling and small changes in viewpoint [11]. The SIFT
algorithm has four major stages:

1) Scale-space extrema detection: searching over scale space
using a difference of Gaussian functions to identify points
of potential interest.

2) Key-point localization: the location and scale of each
candidate point is determined and key-points are selected
according to stability measures.

3) Orientation assignment: one or more orientations are
assigned to each key-point based on local image gradients.

4) Key-point descriptor: a descriptor is generated for each
key-point from local image gradients at the scale found in
stage 2.

Regarding stages 1 and 2, in accordance with the
conclusions from [8], we used random sampling. Due to the
low contrast of the radiographs it would be difficult to use any
detector for points of interest. Also, it has been pointed in
[23], that a dense random sampling is always superior to any
strategy based on detectors for points of interest.

Regarding stage 3, the SIFT rotation-invariance is not
relevant for the X-ray images that we used in our experiments
because the various structures in the radiographs usually
appear with the same orientation. Furthermore, the scale is not
likely to change too much between images of the same class.
These constrains are also in accordance with the conclusion
presented in [8]. Therefore, we extracted the points only at the
first octave and we removed the rotation-invariance.

To avoid using all visual features in an image we follow the
well known codebook approach [23]. First, we assign visual
features to discrete codewords predefined in a codebook.
Then, we use the frequency distribution of the codewords as a
compact feature vector. The crucial aspects of a codebook
representation are the codebook construction and assignment.
An extensive comparison of codebook representation variables
is presented in [24].

We built the codebook by randomly sampling 50 points
from each training image and extracting SIFT descriptors in
each point. The total number of extracted key-points is
633850. We employ k-means clustering in the R environment
for statistical computing and graphics [25] on this set of key-
points to create the codewords. K-means partitions the visual
feature space by minimizing the variance between a
predefined number of K clusters. In our experiments, we set K
to 500, so we defined a codebook with 500 codewords.

The random sampling gives an equal weight to all key-
points, irrespective of their spatial location in the image. To
overcome this limitation we follow the spatial pyramid
approach which we applied for the previous descriptors (LBP
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and EHD). For the SIFT descriptor, we used a spatial pyramid
of 1x1, 2x2, and 1x3 regions. Since every region is an image
in itself, the spatial pyramid can be easily used in combination
with random sampling.

Finally, the feature vector for an image is defined by
extracting a random collection of 1500 points from the entire
image (spatial pyramid of 1x1), in each sub-image using a
spatial pyramid of 2x2 and spatial pyramid of 1x3. The
resulting distribution of descriptors in the feature space is then
quantized in the codewords of the codebook and converted
into a histogram of votes for each image/sub-image separately.
The resulting vector with 4000 bins (8x500) was obtained by
concatenation of these eight histograms. The total number of
bins in each histogram is 500 because the codebook contains
500 codewords. Fig. 4 shows an example of the extracted
histograms for spatial pyramids of 2x2 and 1x3.
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Fig. 4. Two different spatial pyramids used in our experiments, a) 2x2, b) 1x3.
The spatial pyramid constructs feature vectors for each of the specific parts of
the image.

III. ENSEMBLES OF PCTs FOR HMLC

A. PCTs for Hierarchical-Multi Label Classification

In the PCT framework [26], a tree is viewed as a hierarchy
of clusters: the top-node corresponds to one cluster containing
all data, which is recursively partitioned into smaller clusters
while moving down the tree. PCTs are constructed with a
standard “top-down induction of decision trees” (TDIDT)
algorithm. The heuristic for selecting the tests is the reduction
in variance caused by partitioning the instances. Maximizing
the variance reduction maximizes cluster homogeneity and
improves predictive performance.

A leaf of a PCT is labeled with/predicts the prototype of the
set of examples belonging to it. With appropriate variance and
prototype functions, PCTs can handle different types of data,
e.g., multiple targets [27] or time series [28]. A detailed
description of the PCT framework can be found in [26].

To apply PCTs to the task of HMLC, the example labels are
represented as vectors with Boolean components. Components
in the vector correspond to labels in the hierarchy traversed in
a depth-first manner. The i-th component of the vector is 1 if
the example belongs to class ¢; and 0 otherwise (see Fig. 5).

The variance of a set of examples (S) is defined as the
average squared distance between each example’s label v; and

the mean label v of the set, i.c.,
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Fig. 5. Visualization of a part of the IRMA coding scheme. The codes are
organized as a hierarchy, e.g., ‘Chest’ is a subclass of ‘Respiratory system’.
The set of labels {x-ray, projection radiography, analog, high energy,
respiratory system, sagittal, left lateral descubitus, inspiration, chest, lung} is
indicated with solid round rectangles in the hierarchy and is represented as the
vector V;. These codes correspond to the image from Fig. 6a.

The higher levels of the hierarchy are more important: an
error at the upper levels costs more than an error at the lower
levels. Considering this, a weighted Euclidean distance is

used:
o v2)= \/Z Wi Y 2, )’
i

where Vy; is the i’th component of the class vector Vi of an
instance Xy, and the class weights w(c;). The class weights
decrease with the depth of the class in the hierarchy,

w(ci)=wo w(C;), where ¢; is the parent of c;.

Each leaf in the tree stores the mean v of the vectors of the
examples that are sorted in that leaf. Each component of v is
the proportion of examples vi in the leaf that belong to class
Ci- An example arriving in the leaf can be predicted to belong
to class ¢; if vi is above some threshold t;.. The threshold can

be chosen by a domain expert. A detailed description of PCTs
for HMLC can be found in [29].

B. Ensemble Methods

An ensemble classifier is a set of (base) classifiers. A new
example is classified by the ensemble by combining the
predictions of the member classifiers. The predictions can be
combined by taking the average (for regression tasks), the
majority vote (for classification tasks) [30], [31], or more
complex combinations.

We use PCTs for HMLC as base classifiers. Average is
applied to combine the predictions of the different trees: the
leaf’s prototype is the proportion of examples of different
classes that belong to it. Just like for the base classifiers, a
threshold should be specified to make a prediction.

We consider two ensemble learning techniques that have
primarily been used in the context of decision trees: bagging
and random forests.

Bagging [30] constructs the different classifiers by making
bootstrap replicates of the training set and using each of these
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replicates to construct one classifier. Each bootstrap sample is
obtained by randomly sampling training instances, with
replacement, from the original training set, until a number of
instances is obtained equal to the size of the training set.
Bagging is applicable to any type of learning algorithm.

A random forest [31] is an ensemble of trees, obtained both
by bootstrap sampling, and by randomly changing the feature
set during learning. More precisely, at each node in the
decision tree, a random subset of the input attributes is taken,
and the best feature is selected from this subset (instead of the
set of all attributes). The number of attributes that are retained
is given by a function f of the total number of input attributes X

(e.g., T=1, {x)=+vx, f(x)=|log,x|+1,...). By setting f(x)=x, we
obtain the bagging procedure.

IV. EXPERIMENTS

A. The IRMA Database

We evaluated our system by applying it to the database for
the CLEF 2009 medical image annotations task [4]. This
database is provided by the IRMA group from the University
Hospital of Aachen, Germany [32]. The database contains
12677 fully annotated radiographs, taken randomly from
medical routine, which should be used to train a classifier. The
dataset contains two parts: ImageCLEF2007 (12339 training
and 1353 testing images) and ImageCLEF2008 (12667
training and 1733 testing images).

The images are labeled according to the four annotation
label sets [4]. We used the ImageCLEF2007 label set with 116
IRMA codes and the ImageCLEF2008 label set with 193
IRMA codes because of the hierarchical nature of the coding
scheme [32]. The goal is to correctly annotate 1353/1733
images that are provided without labels, using the different
respective annotation label sets in turn.

b) IRMA: 1121-127-720-512

a) IRMA: 1123-211-520-3a0

Fig. 6. IRMA-coded chest and abdomen radiograph. For instance, the code for
the biological axis (512) on the sub-figure b) is translated as follows: 5 is for
uropoietic system, 51 is for uropoietic system, kidney and 512 is uropoietic
system, kidney, renal pelvis. The renal pelvis is an element of the kidney,
which in turn is an element of the uropoietic system.

The IRMA coding scheme consists of four axes with three
to four positions, each position taking a value from the set
{0,..., 9, a,..., z}, where “0” denotes “unspecified” and
determines the end of a path along an axis. The four axes are:
technical axis (T, image modality), directional axis (D, body
orientation), anatomical axis (A, body region examined) and
biological axis (B, biological system examined). This allows a
short and unambiguous notation (IRMA: TTTT-DDD-AAA-
BBB), where T, D, A, and B denotes a coding or sub-coding

digit of the respective axis. Fig. 6 gives two examples of
unambiguous image classification using the IRMA code.

The IRMA code is hierarchical in its nature and it allows us
to exploit the hierarchy of the code. This means that we can
construct an automatic image annotation system based on
predictive clustering trees for hierarchical multi-label
classification.

B. Evaluation Metrics

In this study, we use two evaluation metrics: precision-
recall (PR) curves and the ImageCLEF hierarchical evaluation
measure. Precision and recall are defined for binary
classification problems, where the examples can be positive
(belong to the class) or negative (do not belong to the class).
Precision is the proportion of the positive predictions that are
correct. Recall is the proportion of the positive examples that
are correctly predicted as positive.

The PR curves are obtained by drawing the precision vs. the
recall at different thresholds (note that a threshold is needed in
order to make a prediction, from Section III.A and III.B). This
measure offers the user a trade-off between the precision and
the recall of the classifier. We are using this measure because
we are more interested to correctly predict the presence of a
label, rather than the absence of a label.

As performance measure, we use the area under the average
PR curve. First, we construct the overall PR curve using
average values for the precision and the recall over all classes.
Then, we calculate the area under the average curve ( AUPRC ).
This measure rewards a predictor that is able to exploit the
information about the class frequencies of the different
classes. The value for AUPRC is in the range (0, 1) and if it is
closer to 1 it means that the classifier is more accurate.

The ImageCLEF hierarchical evaluation measure is
proposed in [4]. This measure takes into account the depth and
the difficulty of the predictive problem (‘branching factor") at
which an error has occurred. It can be calculated using the
following formula:

| 0 if Vj:\?j Vj <i

Zbila(vi,\ii) ;S ={05 if vj=* Fj<i
l

= Lt vj#vj 3j<i

where | is the depth of the hierarchy, b is the number of
possible labels at the error (‘branching factor') and i is the
depth at which the error occurred. This measure allows the
classifier not to predict the complete code/annotation, that is,
the classifier can predict the first 2 nodes of the code (level of
the hierarchy) and then to say 'l don't know' for the next
node/level. The ImageCLEF evaluation measure can range
from O to the number of testing images. If this measure is
closer to 0, then the classifier is more accurate.

C. Experimental Hypotheses

The goal of this study is to test the following hypotheses:

1. Does using ensembles of PCTs lift the predictive
performance of a single PCT in the domain of image
annotation? Which ensemble method performs better:
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bagging or random forest? How do the ensembles of PCTs
compare to the performance of SVMs?

2. Which feature extraction technique is most suitable for
medical X-Ray images?

3. Can combinations of feature extraction techniques that
capture different aspects of an image yield improvement in
terms of annotation performance?

For the first hypothesis, we evaluate the performance of
PCTs for HMLC and ensembles (bagging and random forest)
of PCTs. We compare the HMLC approaches using AUPRC
and select the best performing method. After that, we compare
the best method for HMLC with SVMs, using the ImageCLEF
hierarchical error measure.

It has been shown [29] that exploitation of the structure of
the hierarchy in tree classifiers yields better predictive
performance in the domain of functional genomics. Here, we
compare the performance of the ensemble classifiers with
SVM classifiers — the most widely used classifiers for medical
image annotation [8].

To check which feature extraction technique is most
suitable for medical X-Ray images (second hypothesis), we
compare the performance of the classifiers on each type of
visual descriptors. For this purpose, we discuss only the results
from the separate runs of the descriptors (first four rows from
Tables I and II).

The various feature extraction techniques capture different
aspects of an image. With the third hypothesis, we want to
check whether combinations of feature extraction techniques
can yield increase in the predictive performance. We
concatenate the descriptors in a single feature vector and train
a classifier on the joint feature vector. Here, we compare the
last five rows from Tables I and II (with the first four).

D. Experimental design

In this section, we describe the experimental setup that we
used. First, we describe how we re-engineered the hierarchy
and then the parameter instantiations of the learning
algorithms. Note that we stated the parameters for the feature
extraction techniques while explaining them (see Section II).

We modify the hierarchy of the IRMA code, in order to
increase the inter-class variability and decrease the intra-class
variability. Fig.7 shows the ‘re-engineered’ hierarchy of the
classes that we use. We take the code of the first position for
the biological axis and add it in front of the codes for the
anatomical and directional axes.

The inclusion of the biological code in the first level in the
hierarchy helps us to initially filter the images resulting in
visually more different images in the first level of the
hierarchy. In the context of the axis A, the axis B is necessary
because the body region examined insufficiently describes the
content and structure of images. For example, fluoroscopy of
the abdominal region may access the vascular or the
gastrointestinal system depending on the way the contrast
agent is administered, which results in different image
textures. For the directional axis, this is even more obvious.
For instance, an image of a chest and an image of a hand can
have the same directional code, but are visually very different.

Fig. 7. The 're-engineered' hierarchy of the classes in the IRMA code.

In the following, we state the parameter instantiations that
we used to train the classifiers: PCTs, ensembles and SVMs.
The algorithm for learning PCTs requires as input the weight
of the depth in the hierarchy. We set Wy to 0.75 to force the
algorithm to make better predictions on the upper levels of the
hierarchy. Also, we performed F-test pruning to prevent over-
fitting of the trees [29].

We trained ensembles of 100 un-pruned trees (PCTs). For
the base PCTs, we used the same weight (0.75) as when
training the single PCTs. The size of the feature subset that is
retained at each node, when training a random forest, was set
to 10% of the number of descriptive attributes.

We used a custom developed application for training and
testing the SVMs. This application uses the SVMTorch library
[33]. To solve the partial binary classification problems, we
apply the One-against-All (OvA) approach. Each of the SVMs
was trained with a Gaussian kernel. We used the default
values for all parameters of the SVMs, except for the standard
deviation (o). This parameter presents a trade-off between
over-fitting in the dense areas and under-fitting in the sparse
areas of the dataset.

In order to select the best value for the standard deviation,
we performed greedy search as follows. We separate 20% of
the training set and use it as validation set. Then, we start
training a SVM with o set to 1 and record the performance of
the SVM on the validation set. Afterwards, we increase the
value of 6 1.5 times and train a new SVM classifier. We repeat
this procedure until we reach a local optimum. Next, we add
and extract some small value from the local optimum to fine
tune the parameter. At the end, we train an SVM on the whole
dataset with the selected value for standard deviation.

V. RESULTS AND DISCUSSION

In this section, we present the results obtained using the
experimental setup described in the previous section. First, we
compare the performance of PCTs and ensembles of PCTs
(Table I). Then, we compare the performance of ensembles of
PCTs and SVMs (Table II).

Table 1 summarizes the AUPRC values for PCTs and
ensembles of PCTs using the different feature extraction
algorithms over the ImageCLEF 2007 and ImageCLEF 2008
datasets. In [25], Vens et al. show that PCTs for HMLC
outperform significantly trees for single label classification,
hierarchical single-label classification and the hierarchical
extension of C4.5 [34]. Following their findings, we compare
here the performance of PCTs for HMLC and ensembles of
PCTs for HMLC as base classifiers.
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TABLEI

PREDICTIVE PERFORMANCE ( AUPRC) OF THE FEATURE EXTRACTION
ALGORITHMS AND THEIR COMBINATIONS USING PCTS FOR HMLC, AS WELL
AS RANDOM FOREST AND BAGGING OF PCTS FOR HMLC. BIGGER VALUE
MEANS BETTER PERFORMANCE

PCT RForest Bagging
SIFT 0.789 0.930 0.927
~ | LBP 0.823 0.935 0.935
g [[EHD 0.790 0.901 0.906
o | 32x32 0.735 0.879 0.876
5 [ LBP+EHD 0.817 0.936 0.935
%, [ LBP+SIFT 0.830 0.943 0.941
= | EHD+SIFT 0.793 0.932 0.931
= [ LBP+EHD+SIFT 0.822 0.945 0.942
LBP+EHD+SIFT+32x32 0.824 0.94 0.939
SIFT 0.749 0.888 0.882
LBP 0.764 0.890 0.888
g | EHD 0.746 0.856 0.859
S [ 32x32 0.705 0.829 0.825
g LBP+EHD 0.756 0.891 0.889
% | LBP+SIFT 0.755 0.897 0.896
£ | EHD+SIFT 0.754 0.889 0.887
LBP-+EHD+SIFT 0.757 0.896 0.894
LBP+EHD+SIFT+32x32 0.751 0.893 0.894

The results clearly show that ensemble methods outperform
single PCTs on all of the datasets: random forests are
significantly better (according to the non-parametric Wilcoxon

test for statistical significance) than single PCTs (p<2-10‘4)

and bagging is better than single PCTs (p<2~10’4). A
comparison between the two ensemble methods shows that
random forest outperforms bagging and that the difference is
statistically significant (p<2.7-10‘2). Furthermore, the random
forest method is (~10 times) faster than bagging.

From the results in Table I, we can also notice the worse
performance of all algorithms on the ImageCLEF 2008
dataset, as compared to the ImageCLEF 2007 dataset. This is
mainly because of the larger hierarchy of the ImageCLEF2008
dataset. The ImageCLEF 2008 dataset contains 195 nodes in
the hierarchy, while the ImageCLEF 2007 dataset contains
140 nodes in the hierarchy.

The predictive performance of the individual feature
extraction algorithms is shown in Fig. 8. From the PR curves
we can note the high predictive performance of the LBP
operator and the SIFT histogram. The LBP operator and the
SIFT histogram are most capable of capturing the hierarchical
structure of the X-ray images. The EHD feature performs
slightly worse, and the simplest descriptor obtained from the
raw pixel representation has worst performance. Similar
conclusions can be made by observing the values of the
AUPRC from Table I and the ImageCLEF error in Table II.

Tables I and II present the results of the experiments
conducted with different combinations of features. Inclusion
of more than one type of features in the classification process
contributes to the better representation of the hierarchical
nature of the images and helps to further improve the
predictive performance. For the ImageCLEF 2007 dataset, the
best results were obtained using LBP, EHD and SIFT in
combination, and for the ImageCLEF 2008 dataset by using

LBP and SIFT. This confirms our conclusion that LBP and
SIFT are most capable of capturing the hierarchical nature of
the image content.
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1.000

g
0.900 [

0.800 [
0.700 |
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Fig.8. Precision-Recall curves for the ImageCLEF 2007 and ImageCLEF2008
dataset, respectively, for the four different feature extraction algorithms. The
curves were obtained using random forests of PCTs for HMLC.

TABLE II
PREDICTIVE PERFORMANCE (IMAGECLEF ERROR MEASURE) OF THE FEATURE
EXTRACTION ALGORITHMS AND THEIR COMBINATIONS USING SVMS AND
RANDOM FORESTS OF PCTs FOR HMLC. SMALLER VALUES MEAN BETTER
PERFORMANCE.

SVM HMLC-RF
SIFT 88.75 81.9
~ | LBP 125.19 72.71
§ EHD 128.16 105.12
o [ 32x32 203.69 190.78
3 [ LBP+EHD 101.12 70.56
‘gﬁo LBP+SIFT 38.47 65.89
S | EHD+SIFT 30.33 79.11
= [ LBP+EHD+SIFT 80.21 67.23
LBP+EHD+SIFT+32x32 30.45 69.45
SIFT 196.13 182.67
LBP 259.17 179.47
€ | EHD 267.2 249 44
o 32x32 378.18 321.21
E}) LBP+EHD 22498 180.12
2 | LBP+SIFT 203.37 168.38
;é EHD+SIFT 190.69 180.3
LBP+EHD+SIFT 192.43 165.23
LBP+EHD+SIFT+32x32 194.53 169.01

We have also compared our approach with the flat
classification approach using SVMs (see Table II) by the
ImageCLEF error measure. From the presented experimental
results, we can see that the random forests of PCTs are
superior to the SVM approach for all feature extraction
algorithms and their combinations (the difference in
performance is significant atp<2.10™). This shows that
exploiting the structure of the hierarchy does help in
improving the predictive performance. The error score of
165.23 for the ImageCLEF2008 dataset is better than the best
error score reported at the ImageCLEF 2009 competition [4].
The error score of 65.89 is only by 1.59 points worse than the
best error score reported for the ImageCLEF 2007 dataset also
at the ImageCLEF 2009 competition [4].

VI. CONCLUSION

This paper presents a hierarchical multi-label classification
approach to medical image annotation. For efficient image
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representation, we used several feature extraction algorithms:
raw pixel representation, local binary patterns, edge histogram
descriptors and SIFT histograms. The predictive modeling
problem that we consider is to hierarchically annotate medical
X-ray images using the IRMA coding system.

The presented experimental results show that the LBP
operator and the SIFT histogram most successfully describe
and capture the hierarchical structure of the X-ray images.
Moreover, the most favorable combination of representation
and learning approaches, in terms of predictive performance
and time efficiency, is when a LBP operator is used jointly
with random forests of PCTs for HMLC.

The PCTs for HMLC make use of the information
contained in the hierarchy to improve the classification
performance (see the results from Table II). Furthermore, the
PCTs approach (when a single tree is learned) has the
additional advantage of identifying features that are relevant
for all code labels in the hierarchy together (instead of
separate features for each code label). The extensive
experiments conducted on the benchmark database show that
ensembles of PCTs outperform the best of the existing
methods for medical image annotation.

There are several ways to further improve the predictive
performance of the proposed approach. First, one could try to
tackle the shift in distribution of images between the training
and the testing set. A possible solution to this problem is to
develop extensions of the PCT approach that can handle such
differences. Second, better performance may be obtained by
including high level feature extraction algorithms able to give
more understandable and compact representation of the visual
content of the images (segmented objects with relations
among them).

In summary, we presented a general approach to
hierarchical image annotation. The approach can be easily
extended with new feature extraction methods, and can thus be
applied to other domains. It can be also easily applied to
arbitrary domains, because it can handle hierarchies with
arbitrary sizes and shapes, including very large hierarchies and
hierarchies that are organized as trees or directed acyclic
graphs.
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