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1. Introduction

Supervised learning is one of the most widely researched and investigated areas of machine
learning. The goal in the supervised learning is from a set of known examples to learn
a function f that outputs a prediction for a previously unseen example. Most widely
used tasks of supervised learning are binary classification, multi-class classification and
regression. If the examples can belong to two classes (e.g., the example has some property
or not) the task is then called binary classification. The task where the examples can belong
to a single class from a given set of m-classes is known as multi-class classification. The
case where the output is a real value, the task is then called regression.

However, many real-world problems have structured output (target or response) vari-
ables and require more complex approaches. Typically, the outputs are tuples of continuous
or discrete variables, classes organized in hierarchies (trees or directed acyclic graphs), se-
quences etc. Here, we consider the first two types of structured outputs.

Real-world problems that have tuples of variables as target concepts include: prediction
of vegetation condition (the condition is presented as an index of 7 continuous variables
(Kocev et al., 2009)), prediction of forest stand height and conopy cover using GIS data
((Stojanova et al., 2010)), prediction of media behaviour (which journals/TV stations a user
would prefer to read/watch or ignore (Skrjanc et al., 2001)) etc. Target concepts organized
in hierarchies are encountered in the following problems (for more details see (Silla and
Freitas, 2010)): assigning functions to a gene (functional genomics), text/web documents
classification and categorization, genre classification, image classification/annotation etc.
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There are two groupes of approaches to solving the problem od predicting structured
outputs (Bakir et al., 2007; Silla and Freitas, 2010): (1) algorithms that predict compo-
nent(s) of the output and then combine the separate models to get the global model and
(2) algorithms that predict the complete structure as a whole (also known as ‘big-bang’
approach). The advantages of the latter approach is that it can expolit and use the depen-
dencies that exist between the components of the structured output in the model learning
phase. Furthermore, they produce models that are typically smaller than the sum of the
sizes of the models for the components.

In this paper, we advocate the ‘big-bang’ approach, in particular we propose to use
the predictive clustering trees (PCT) framework. The PCTs are able to make predictions
for several types of structured outputs: tuples of continuous/discrete variables, hierarchies
of classes (organized into tree or DAG) and time series. More detalis about the PCT
framework can be found in (Blockeel et al., 1998; Struyf and Dzeroski, 2006; Kocev et al.,
2007; Vens et al., 2008; Slavkov et al., 2010). Furthermore, we construct ensembles that use
PCTs as base classifiers. In particular, we employ bagging (Breiman, 1996) and random
forests (Breiman, 2001a) — the two most widely used ensemble learning techniques.

The ensemble methods are able to lift the predictive performance of the base classifier in
the case of single continuous or discrete target variable (Breiman, 1996; Bauer and Kohavi,
1999; Breiman, 2001a). Here, we test whether the ensembles lift the predictive performance
of a classifier when the target is a structure. We also compare the performance of ensembles
that predict the structured output as a whole with the performance of ensembles that predict
components of the structured output. The question we address is whether exploitation of
the structure of the output can lift the predictive performance in the context of ensemble
learning. Moreover, we compare the ensemble learning methods by their efficiency in terms
of running time and size of models.

The remainder of this paper is organized as follows. In Section 2, the considered ma-
chine learning tasks are formally defined. Section 3 presents the related work and Section 4
explains the predictive clustering trees framework and the extensions for predicting mul-
tiple targets and hierarchical multi-label classification. The ensemble methods and their
extension for predicting structured outputs are discussed in Section 5. The design of the
experiments, the descriptions of the datasets, the evaluation measures and the parameter
instantations for the algorithms are given in Section 6. Section 7 presents and discusses the
obtained results. Finally, the conclusions are stated in Section 8.

2. Machine learning tasks

Following the recommendations from Dzeroski (2007), we formally describe the machine
learning tasks that we consider here. In particular, this work is focused on multiple targets
prediction and hierarchical classification.
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2.1 Predicting multiple targets task

We define the task of multiple targets prediction' as follows:
Given:

e A description space X that consists of tuples of primitives (boolean, discrete or con-
tinuous variables), i.e. VX; € X, X; = (wiy, %4y, ..., Tip, ), where D is the size of the
tuple (or number of descriptive variables);

e a target space Y, where each tuple consists of several variables that can be either
continuous or discrete, i.e., VY; € Y,Y; = (Yi,, Yig, -, Yiy ), Where T is the size of the
tuple (or number of target variables),

e aset E, where £ = {(X;,Y:)|X; € X,Y; € Y,1 <i < N} and N is the number of
examples of £ (N = |E|), and

e a quality criterion ¢ (which rewards models with high predictive accuracy and low
complexity).

Find: a function f: X — Y such that f maximizes q. Here, the function f is represented
with decision trees, i.e., predictive clustering trees.

If the tuples from Y (the target space) consist of continuous/numeric variables then
the task at hand is multiple targets regression. Likewise, if the tuples from Y consist of
discrete/nominal variables then the task is called multiple targets classification.

2.2 Hierarchical classification task

Classification is defined as the task of learning a model using a set of classified instances and
applying the obtained model to a set of previously unseen examples. The unseen examples
are classified into a single class from a set of possible classes. Hierarchical classification
differs from the ‘traditional’ classification in the following: the classes are organized in
hierarchy, so, an example that belongs to a given class it automatically belongs to all its
superclasses (this is known as the ‘hierarchy constraint’). Furthermore, if an example can
belong to multiple classes simultaneously, then this task is called hierarchical multi-label
classification (Silla and Freitas, 2010; Vens et al., 2008).
We formally define the task of hierarchical multi-label classification as follows:

Given:

e A description space X that consists of tuples of primitives (boolean, discrete or con-
tinuous variables), i.e. VX; € X, X; = (%, %4, ..., Tip, ), where D is the size of a tuple
(or number of descriptive variables),

e a target space S, defined with a class hierarchy (C,<j), where C is a set of classes
and <j is a partial order (structured as a rooted tree) representing the superclass
relationship (for all ¢1,co € C : ¢1 <, ¢o if and only if ¢; is a superclass of ¢),

1. Multiple targets prediction is previously reffered to as multi-objective prediction in the literature (Struyf
and Dzeroski, 2006; Kocev et al., 2007).
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e aset F, where F = {(X;,S5;)|X; € X,S5, CC,ce S; =V <pc:d €8;,1<i<N}
and N is the number of examples of E (N = |E|), and

e a quality criterion ¢ (which rewards models with high predictive accuracy and low
complexity).

Find: a function f : X — 2¢ (where 2¢ is the power set of C)) such that f maximizes g
and ¢ € f(x) =V <j c: € f(x). The last condition is called the ‘hierarchy constaint’.
Here, the function f is represented with decision trees, i.e., predictive clustering trees.

3. Related work

In this section, we shortly present some approaches that were used in the context of predict-
ing multiple targets and hierarchical multi-label classification. To the best of the knowledge
of the authors, there are no previous attempts of treating these tasks jointly.

3.1 Prediction of multiple targets

The task of predicting multiple targets is connected with the ‘multi-task learning’ (Caru-
ana, 1997) and ‘learning to learn’ (Thrun and Pratt, 1998) paradigms. These paradigms
include the task of predicting a variable (continuous or discrete) using multiple input spaces
(i.e., biological data for a disease obtained using different technologies); predicting multiple
variables from multiple input spaces and predicting multiple variables from single input
space. We are considering here the last task. Also, the approach we are presenting can
handle two types of outputs/targets: discrete targets (classification) and continuous tar-
gets (regression); while most of the approaches from literature can handle only one type of
targets.

There is extensive empirical work showing that there is an increase in the predictive
performance when the multiple tasks are learned simultaneously as compared to learning
each task separately (for example, see (Baxter, 2000; Evgeniou et al., 2005; Caponnetto
et al., 2008; Ben-David and Borbely, 2008) and the references therein).

Key for the success of the multi-task learning is the ‘relatedness’ between the multiple
tasks. The notion of ‘relatedness’ is differently perceived and defined by the research com-
munity. For example, Ando et al. (2005) assume that all related tasks have some common
hidden structure. In (Greene, 2007), the relatedness is modeled under the assumption of
correlation between the noise for different regression estimates. Baxter (2000) views the
similarity through a model selection criterion, i.e., learning multiple tasks simultaneously is
beneficial if the tasks share a common optimal hypothesis space. To this end, a generalized
VC-dimension is used for bounding the average empirical error of set of predictors over a
class of tasks.

We present and categorize the related work along four dimensions: statistics, statistical
learning theory, Bayesian theory and kernel learning. To begin with, in statistics, Brown
and Zidek (1980) extend the standard ridge regression to multivariate ridge regression and
Breiman and Friedman (1997) propose the curds&whey method, where the relations be-
tween the task are modeled in a post-processing phase. In statistical learning theory, for
handling the multiple tasks, an extension of the VC-dimension and the basic generalization
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bounds for single task learning are proposed by Baxter (2000); Ben-David and Borbely
(2008).

Most of the work in multi-task learning is done using Bayesian theory (Thrun and
Pratt, 1998; Bakker and Heskes, 2003; Wilson et al., 2007). In this case, simulatenously
with the parameters of the models for each of the tasks, a probabilistic model that captures
the relations between the various tasks is being calculated. Most of these approaches use
hierarchical Bayesian models.

Finally, there are many approaches for multi-task learning using kernel methods. For
example, Evgeniou et al. (2005) extend the kernel methods to the case of multi-task learning
by using a particular type of kernel (multi-task kernel). The regularized multi-task learning
then becomes equivalent to a single-task learning when such kernel is used. They show
experimentally that the support vector machines with multi-task kernels have significantly
better performance than the ones with single-task kernels. For more details on kernel
methods and SVMs for multi-task learning, we refer the reader to (Caponnetto et al.,
2008; Argyriou et al., 2008; Micchelli and Pontil, 2004; Cai and Cherkassky, 2009) and the

references therein.

3.2 Hierarchical multi—label classification

A number of approaches have been proposed for the task of hierarchical multi-label clas-
sification (Bakir et al., 2007). Silla and Freitas (2010) survey and categorize the HMLC
approaches based on their characteristics and the application domains. The characteristics
of the approaches they consider as most important are: prediction of single or multiple
paths from the hierarchy, the depth of the predicted class, type of the taxonomy that can
be handled and whether the approach is local (model for each part of the taxonomy) or
global (a model for the whole taxonomy). The most prominent application domain for these
approaches are functional genomics (biology), image classification, text categorization and
genre classification.

Here, we present and group some existing approaches based on the learning technique
they use. We group the methods as follows: network based methods, kernel base methods
and decision tree based methods.

The network based approaches predict functions of unannotated genes based on known
functions of genes that are nearby in a functional association network or protein-protein
interaction network (Chen and Xu, 2004). Mostafavi et al. (2008) calculate per gene function
a composite functional association network from multiple networks derived from different
genomic and proteomic data sources. Since the network base approaches are based on label
propagation, a number of approaches were proposed to combine predictions of functional
networks with with those of a predictive model. Tian et al. (2008), for instance, use logistic
regression to combine predictions made by a functional association network with predictions
from a random forest.

Lee et al. (2006) combine Markov random fields and support vector machines which
are generated for each class separately. They compute diffusion kernels and use them in
kernel logistic regression. Obozinski et al. (2008) present a two-step approach in which
SVMs are first learned independently for each class separately (allowing violations of the
hierarchy constraint) and are then reconciliated to enforce the hierarchy constraint. Simi-
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larly, Barutcuoglu et al. (2006) use unthresholded SVMs learned for each class separately
and then the SVMs are combined using a Bayesian network so that the predictions are
consistent with the hierarchical relationships. Guan et al. (2008) extend this method to an
ensemble framework. Valentini and Re (2009) also propose a hierarchical ensemble method
that uses probabilistic SVMs as base learners and combines the predictions by propagating
the weighted true path rule both top-down and bottom-up through the hierarchy, which
ensures consistency with the hierarchy constraint.

Rousu et al. (2006) present a more direct approach that does not require a second step
to make sure that the hierarchy constraint is satisfied. Their approach is based on a large
margin method for structured output prediction which defines a joint feature map over
the input and the output space. Next, it applies a SVM based techniques to learn the
weights of a discriminant function (defined as the dot product of the weights and the joint
feature map). Rousu et al. (2006) propose a suitable joint feature map and an efficient way
for computing the argmax of the discriminant function (which is the prediction for a new
instance).

The disadvantage of subsymbolic learning techniques, such as SVMs, is the lack of
interpretability: it is very hard to find out why a SVM assigns certain classes to an example,
especially if a non-linear kernel is used. In contrast to the output of the previously described
models, decision trees are easily interpreted by a domain expert.

Clare (2003) adapts the well-known decision tree algorithm C4.5 (Quinlan, 1993) to
cope with the issues introduced by the HMC task. Her version of C4.5 (called C4.5H) uses
the sum of entropies of the class variables to select the best split. C4.5H predicts classes on
several levels of the hierarchy, assigning a larger cost to misclassifications higher up in the
hierarchy. The resulting tree is then transformed into a set of rules, and the best rules are
selected, based on a significance test on a validation set.

Geurts et al. (2006) presented a decision tree based approach related to predictive clus-
tering trees. They start from a different definition of variance and then kernelize this
variance function. The result is a decision tree induction system that can be applied to
structured output prediction using a method similar to the large margin methods men-
tioned above. Therefore, this system could also be used for HMC after defining a suitable
kernel. To this end, an approach similar to that of Rousu et al. (2006) could be used.

Blockeel et al. (2002, 2006) proposed the idea of using predictive clustering trees (Block-
eel et al., 1998) for HMC tasks. This work (Blockeel et al., 2006) presents the first thorough
empirical comparison between an HMC and SC decision tree method in the context of
tree shaped class hierarchies. Vens et al. (2008) extend the algorithm towards hierarchies
structured as DAGs and show that learning one decision tree for predicting all classes si-
multaneously, outperforms learning one tree per class (even if those trees are built taking
into account the hierarchy).

4. Predictive clustering trees

The Predictive Clustering Trees (PCTs) framework sees a decision tree as a hierarchy of
clusters: the top-node corresponds to one cluster containing all data, which is recursively
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partitioned into smaller clusters while moving down the tree. The PCT framework is im-
plemented in the CLUS system (Blockeel and Struyf, 2002).!.

PCTs can be induced with a standard “top-down induction of decision trees” (TDIDT)
algorithm (Breiman et al., 1984). The algorithm is presented in Table 1. The algorithm
takes as input a set of examples (F) and outputs a tree. The heuristic (h) that is used for
selecting the tests () is the reduction in variance caused by partitioning (P) the instances
(see line 4 of BestTest procedure in Table 1). Maximizing the variance reduction maximizes
cluster homogeneity and improves predictive performance.

Table 1: The top-down induction algorithm for PCTs.

procedure PCT(FE) returns tree ~ procedure BestTest(E)

1: (t*,h*, P*) = BestTest(E) 1 (t*,h*, P*) = (none, 0,0)

2: if t* # none then 2: for each possible test ¢ do
3 for each E; € P* do 3 P = partition induced by ¢t on E
1 tree, = PCT(E}) £ h="Var(E) = ¥ p,cp T Var(Ey)
5. return node(t*, Uk{treek}) 5: if (h > h*) A Acceptable(t, P) then
6 6
7 7

. else (t*,h*,P*) = (t,h,P)
return leaf(Prototype(FE)) return (t*, h*, P*)

The main difference between the algorithm for learning PCTs and a standard decision
tree learner (for example, see the C4.5 algorithm proposed by Quinlan (1993)) is that the
former considers the variance function and the prototype function, that computes a label
for each leaf, as parameters that can be instantiated for a given learning task. So far,
the PCTs were extended for the following tasks: multiple targets prediction (Struyf and
Dzeroski, 2006; Kocev et al., 2007), hierarchical-multi label classification (Vens et al., 2008)
and prediction of time-series (Slavkov et al., 2010). In this paper, we focus on the first two
tasks.

4.1 PCTs for multiple targets

The PCTs that are able to predict multiple targets simultaneously are called multiple
targets decision trees (MTDTs). The MTDTSs that predict tuple of discrete variables are
called multiple targets classification trees (MTCTs), while the MTDTSs that predict tuple of
continuous variables (regression tasks) are called multiple targets regression trees (MTRTS).
An example of predictive clustering tree for predicting multiple continuous targets is shown
in Figure 1. The internal nodes of the tree contain tests on the descriptive variables (in
this case, some GIS data) and the leafs store the predictions (in this case, the index of the
condition of the vegetation).

The instantiation of the variance and prototype functions for the regression trees is
straightforward. The variance is calculated as the sum of the variances of the target vari-
ables, i.e., Var(E) = ZzT:1 Var(Y;). Note that the variances of the targets are normnalized,
so each target contributs equally to the overall variance. The prototype function (calculated
at each leaf) returns as a prediction a vector of the mean values of the target variables. The
prediction is calculated using the training instances that belong to the given leaf.

1. CLus system is available for download at http://www.cs.kuleuven.be/~dtai/clus
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l NativeTreeProb > 0.31 l

yes no

LandCover in {1,2,6,7,8, Q}‘ LandCover = 2

yes no yes no,

GrassProbl Ha_RegionStdDev > 34386‘ 2.70 5.01 le«””'PRU”H@ > 23.4°C
1.98 4.07
o 7.47 13.93 yes no,

PN 3.00 141 e
1.50 0.22 1.20 4.08 4.27 2.31
110 018 5.37 13.38 406 287
4.02 0.70 2.80 5.54 11.31 12.67
2.15 0.43 4.03 3.92
0.49 0.10 2.38 2.11
2.97 0.61 9.66 7.30
1.58 0.31 4.26 5.10

Figure 1: Example of a predictive clustering tree for multiple continuous targets taken from
(Kocev et al., 2009). Each of the leafs stores the predictions for the indices of the
vegetation quality.

The variance function for classification trees is computed as the sum of the gini indexes
of the target variables, i.e., Var(E) = ZzT:1 Gini(E, Y;). Furthermore, one can use the sum
of the entropies of class variables as variance function, i.e., Var(E) = ZiT:1 Entropy(E, Y;)
(this definition has also been used in the context of multi-label prediction (Clare, 2003)).
The prototype function returns a vector of probabilities that an instance belongs to a given
class value for each target variable. Using this probability, the majority class for each
target attribute can be calculated. In addition to the two aforementioned instantiations of
the variance function for classification problems, the CLUS system also implements other
variance functions, such as reduced error, information gain, gain ratio and m-estimate.

4.2 PCTs for hierarchical classification

Silla and Freitas (2010) describe the algorithms for hierarchical classification as 4-tuple
(A,%,Q,0). In this 4-tuple, A indicates whether the algorithm makes prediction for a
single or multiple paths in the hierarchy, ¥ is the depth of the predicted classes, §2 is the
taxonomy structure of the classes that the algorithm can handle and © is the type of the
algorithm (local or global). Using this categorization, the CLUs-HMC algorithm can be
described as follows:

e A = MPP (multiple path prediction): the algorithm can assign multiple paths or
predicted classes to each instance.

e > = NMLNP (non-mandatory leaf-node prediction): an instance can be labeled with
a label at any level of the taxonomy.

e Q=T OR DAG (Tree or Directed Acyclic Graph): the algorithm can handle both
tree-shaped or DAG hierarchies of classes.

e O = GC (global classifier): the algorithm constructs a single model valid for all
classes.
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Hence, the CLUus-HMC algorithm belongs to the group of approaches known as ‘big-
bang’ or global classifiers (Silla and Freitas, 2010). The global classifier has two main
advantages over the local classifiers (i.e., classifiers per node in the hierarchy, per parent
node or per level): (1) the total size of the global model is considerably smaller than the
total size of all local classifiers and (2) the dependencies between the classes can be taken
into account while learning the classifier and these dependencies can be explicated (Blockeel
et al., 2002; Vens et al., 2008).

In this work, we also consider an approach that constructs a classifier for each edge
in the hierarchy (we refer to it as hierarchical single-label classification — HSLC). Here,
we construct a tree for each class ¢ using the instances that belong to the parent class of
¢ (denoted as par(c)). Construction of this type of tree requires less instances: only the
instances that are labeled with the par(c). Thus, the instances labeled with class ¢ become
the positive instances, while the other instances (ones that are labeled with the sibling
classes of ¢) become negative.

The resulting HSLC tree predicts the conditional probability P(c|par(c)). A new in-
stance is predicted by recursive application of the product rule P(c) = P(c|par(c))-P(par(c))
starting from the tree for a top-level class. Additionally, the probabilities are thresholded
to obtain the set of predicted classes. To satisfy the hierarchy constraint, the threshold 7
should be chosen in the following way (using the annotation from above): 7; < 7j whenever
¢; <p ¢;. For a detailed description of the tasks of HMLC and HSLC see (Vens et al., 2008).

In the remaining of this section, we first describe the instantiation of CLUS-HMC that
can predict tree-shaped hierarchies and afterwards the instantiation for predicting DAG
hierarchies.

4.2.1 TREE-SHAPED HIERARCHIES

In CLus-HMC, a hierarchy is represented as a vector with binary components. If an example
belongs to class ¢; then the 7’th component of the vector is set to 1 and to 0 otherwise (see
Fig. 2(b)). The arithmetic mean of a set of such vectors contains as i’th component the
proportion of examples of the set belonging to class ¢;. The variance of a set of examples
E is defined as the average squared distance between each example’s class vector (Ly) and

the set’s mean class vector (L), i.e.,

Zk d(Lk7 L)2
Var(FE) = =8 ————.
|E|
In the HMLC context, the similarity at higher levels of the hierarchy is more important
than the similarity at lower levels. To that aim, the distance measure used in the above
formula is a weighted Euclidean distance:

d(L1, L2) = \/Z w(es) - (L1 — Lag)?,

where Ly ; is the i'th component of the class vector Lj of an instance Xj, and the class

weights w(c) decrease with the depth of the class in the hierarchy (e.g., w(c) = wgep th(c), 0<

wp < 1). For example, lets consider the toy class hierarchy shown in Fig.2(a,b), and two
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data examples: (X7, 51) and (X2, S2) that belong to the classes S1 = {c1, ¢, c2.2} (boldface
in Fig.2(b)) and S2 = {c2}, respectively. Using a vector representation with consecutive
components representing membership of class ¢y, ¢2, ¢2.1, ¢2.2 and c3, in that order (preorder
traversal of the tree), the distance is calculated as follows:

d(S1,52) = d([1,1,0,1,0],[0,1,0,0,0]) = y/wo + w3.

(a) (b)

-
N /R
A

C1 &) C3 01(1 Ca(2)
C2.1 C2.92 C2.1 (3) C2.2(4)
(1)(2)(3)(4)(5
Ly =[1,1,0,1,

Figure 2: Toy examples of hierarchies structured as tree and DAG.(a) Class label names
contain information about the position in the hierarchy, e.g., co.1 is a subclass
of ca. (b) The set of classes {c1, c2, 2.2}, indicated in bold in the hierarchy, and
represented as a vector. (c¢) A class hierarchy structured as a DAG. The class cg
has two parents: c¢; and c4.

A classification tree stores in a leaf the majority class, which will be the tree’s prediction
for all examples that will arrive in the leaf. In the case of HMLC, an example may have
multiple classes, thus the notion of “majority class” does not apply in a straightforward
manner. Instead, the mean L of the class vectors of the examples in the leaf is stored
as prediction. Note that the value for the i-th component of L can be interpreted as the
probability that an example arriving at the given leaf belongs to class ¢;.

The prediction for an example that arrives in the leaf can be obtained by applying a user
defined threshold 7 on the probability; if --th component of L is above 7 then the examples
belong to the class ¢;. When a PCT is making a prediction it preserves the hierarchy
constraint (the predictions comply to the parent child relationships from the hierarchy) by
choosing the value for the threshold 7 as follows: 7; < 7; whenever ¢; <, ¢j. The threshold
is selected depending on the context. The user may set the threshold such that the resulting
classifier has high precision at the cost of lower recall or vice versa, to maximize F1-score,
to maximize the interpretability or plausibility of the resulting model etc. In this work, we
use a threshold-independent measure (precision-recall curves) to evaluate the performance
of the models.
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4.2.2 DAG HIERARCHIES

In the previous subsection, we assumed that the class hierarchy is structured as a rooted
tree. However, in many real life domains (especially in biology) the hierarchies are structured
as directed acyclic graphs (DAGs). Most famous example of DAG hierarchy is the Gene
Ontology (Ashburner et al., 2000), a biological classification hierarchy for genes. In general,
a DAG hierarchy can have two interpretations: if an example belongs to a given class c,
then it also belongs to all superclasses of ¢, or it belongs to at least one superclass of c.
Here, we focus on the first case: the multiple inheritance interpretation.

The variance function used for tree-shaped hierarchies uses the weighted Euclidean dis-
tance between the class vectors, where the weight of a class depends on its depth in the
hierarchy. When the hierarchy is a DAG, then the depth of a class is not unique: classes do
not have single path from the top-node (for example see class cg in Fig. 2(c)). To resolve
this issue, Vens et al. (2008) suggest four aggregation schemes of the possible paths from
the top-node to a given class: average, maximum, minimum and sum. The aggregation
schemes use the observation that w(c) = wgep () can be rewritten as the recursive rela-
tion w(c) = wp - w(par(c)), with par(c) as the parent class of ¢, and the weights of the
top-level classes equal to wg. After an extensive experimental evaluation, Vens et al. (2008)
recommend to use the average as aggregation function (w(c) = wyp - avg;{w(par;(c))}).

5. Ensemble methods for predicting structured outputs

An ensemble is a set of classifiers (called base classifiers) constructed with a given algorithm.
Prediction for a new example is obtained by combining the predictions of all classifiers from
the ensemble. The predictions from the classifiers can be combined by taking the average
(for regression tasks) and the majority or probability distribution vote (for classification
tasks), as described in (Bauer and Kohavi, 1999; Breiman, 1996), or by taking more complex
aggregation schemes (Kuncheva, 2004).

To obtain a prediction from the ensemble for predicting structured outputs, we accord-
ingly extend the voting schemes. For the datasets with multiple continuous targets, as
prediction of the ensemble, we take average of the predictions of the base classifiers. Also,
for the datasets for hierarchical classification we use the average of the predictions but
additionally, we apply the thresholding described in Section 4.2. We obtain the ensemble
predictions for the datasets with multiple discrete targets using probability disctibution
voting (as suggested by Bauer and Kohavi (1999)). We use predictive clustering trees as
base classifiers for the ensemles for sturctured outputs (see line 4 from the Induce_Forest
procedure in Table 2).

A necessary condition for an ensemble to have better predictive performance than any
of its individual members, is that the classifiers are accurate and diverse (Hansen and
Salamon, 1990). An accurate classifier does better than random guessing on new examples.
Two classifiers are diverse if they make different errors on new examples. There are several
ways to introduce diversity: by manipulating the training set (by changing the weight of the
examples (Breiman, 1996; Freund and Schapire, 1996) or by changing the attribute values
of the examples (Breiman, 2001b) or by manipulating the feature space (Breiman, 2001a;
Ho, 1998)), or by manipulating the learning algorithm itself (Breiman, 2001a; Dietterich,
2000).
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Table 2: Random forest induction algorithm, where E is the set of the training examples,
k is the number of trees in the forest, and f(D) is the size of the feature subset
that is considered at each node during tree construction.

procedure Induce_Forest(E, k, f(D)) returns Forest
1. F =@

2: fori=1to k do

3: E; = sample_with_replacement(FE)

& T, = PCT(E, f(D))

5. F=FUT
6

. return I

In this paper, we consider two ensemble learning techniques that have primarily been
used in the context of decision trees: bagging and random forests.

5.1 Bagging

Bagging (Breiman, 1996) is an ensemble method that constructs the different classifiers by
making bootstrap replicates of the training set and using each of these replicates to construct
a classifier. Each bootstrap sample is obtained by randomly sampling training instances,
with replacement, from the original training set, until an equal number of instances as in
the training set is obtained.

Breiman (1996) has shown that bagging can give substantial gains in predictive perfor-
mance, when applied to an unstable learner (i.e., a learner for which small changes in the
training set result in large changes in the predictions), such as classification and regression
tree learners.

5.2 Random forests

A random forest (Breiman, 2001a) is an ensemble of trees, where diversity among the
predictors is obtained by using bootstrap replicates as in bagging, and additionally by
changing the feature set during learning. More precisely, at each node in the decision trees,
a random subset of the input attributes is taken, and the best feature is selected from this
subset. The number of attributes that are retained is given by a function f of the total
number of input attributes D (e.g., f(D) =1, f(D) = [VD+1], f(D) = |loga(D)+1] ...).
By setting f(D) = D, we obtain the bagging procedure. The algorithm for learning a
random forest using PCTs as base classifiers is presented in Table 2.

6. Experimental design

In this section, we describe the procedure for experimental evaluation of the proposed en-
semble methods for predicting structured outputs. First, we state the questions we consider.
Next, we present the datasets we use to evaluate the algorithms, and then the evaluation
measures we applied. In the last subsection, we give the parameter instantiations for the
algorithms and the statistical tests that we used.

12
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6.1 Experimental questions

Given the methodology from Sections 4 and 5, we construct several types of trees and
ensembles. First, we construct PCTs that predict sub-components of the structured out-
put: a separate tree for each variable from the target tuple (CLUS-ST) and a separate
tree for each hierarchy edge (CLUS-HSLC). Then, we learn PCTs that predict the struc-
tured output simultaneously: a tree for the whole target tuple (CLUs-MT) and a tree for
the whole hierarchy (CLus-HMLC). Similarly, we are constructing the ensemble classifiers
(CLus-Ens-ST, Crus-Ens-HSLC, CLus-ENs-MT, CLus-Ens-HMLC) for both bagging
and random forests.
We consider the following questions:

e Predictive performance: Can exploitation of the structure of the output lift the pre-
dictive performance of an ensemble?

e (Convergence: Does the performance of the ensembles for structured outputs con-
verge/saturate faster than ensembles that predict sub-components of the output?

e Efficiency: How much can the learning process benefit, in terms of time and memory
consumption, from the ensembles for structured outputs as compared to the basic
ensembles?

We compare the algorithms that predict the complete structured output (CrLus-MT,
CrLus-HMLC, Crus-ENs-MT, CLus-Ens-HMLC) to the algorithms that predict the com-
ponents of the structured outputs separately (CLus-ST, Crus-HSLC, CLus-ENs-ST,
Crus-ENns-HSLC). First, we inspect the predictive performance of the algorithms. Then,
we focus only on the ensembles and examine the predictive performance at different ensemble
sizes (i.e., we construct ‘saturation curves’). Our intention is to check if the performance of
the ensembles for structured outputs saturates with smaller number of trees as compared to
the saturation of the ensembles that predict the sub-components of the structured outputs.
At the end, we compare the running times and the sizes of the obtained models.

6.2 Data description

In this subsection, we present the datasets that were used to evaluate the predictive perfor-
mance of the ensembles. The datasets are divided in three groups of datasets based on the
type of their target concepts: multiple continuous targets datasets (regression), multiple
discrete targets datasets (classification) and hierarchical multi-label classification datasets
(HMLC). Statistics of the used datasets are presented in Tables 3, 4 and 5, respectively.
The datasets with multiple continuous targets (14 in total, see Table 3) are mainly from
the domain of ecological modelling. While the datasets with multiple discrete targets (9 in
total, see Table 4) are from various domains: ecological modelling (Sigmea Real and Wa-
ter Quality), biological (Yeast), multimedia (Scene and Emotions), media space (Mediana)
etc. Datasets that have classes organized in a hierarchy come from various domains, such
as: biology (FExpression-GO, SCOP-GO, Yeast-GO and Sequence-FunCat), text classifica-
tion (Enron, Reuters and WIPO) and image annotation/classification (ImageCLEF2007-D,
ImageCLEF2007-A and Diatoms). Hence, we use 10 datasets from 3 domains (see Table 5).
Note that only the first three datasets from the biological domain have a hierarchy organized
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Table 3: Properties of the datasets with multiple continuous targets (regression datasets);
N is number of instances, D/C number of descriptive attributes (dis-
crete/continuous), and 7' number of target attributes.

Name of dataset N DJ/C T
Collembola (Kampichler et al., 2000) 393  8/39 3
EDM - 1 (Karalic, 1995) 154 0/16 2
Forestry-Kras (Stojanova et al., 2010) 60607 0/160 11
Forestry-Slivnica-LandSat (Stojanova, 2009) 6218 0/150 2
Forestry-Slivnica-IRS (Stojanova, 2009) 2731 0/29 2
Forestry-Slivnica-SPOT (Stojanova, 2009) 2731 0/49 2
Sigmea real (Demsar et al., 2005) 817 0/4 2
Soil quality 1 (Demsar et al., 2006) 1944 0/142 3
Solar-flare 1 (Asuncion and Newman, 2007) 323  10/0 3
Solar-flare 2 (Asuncion and Newman, 2007) 1066  10/0 3
Vegetation Clustering (Gjorgjioski et al., 2003) 29679 0/65 11
Vegetation Condition (Kocev et al., 2009) 16967 1/39 7
Water quality (Blockeeel et al., 1999; Dzeroski et al., 2000) 1060 0/16 14

Table 4: Properties of the datasets with multiple discrete targets (classification datasets);
N is number of instances, D/C number of descriptive attributes (dis-
crete/continuous), and 7' number of target attributes.

Name of dataset N D/C T
EDM — 1 (Karalic, 1995) 154 0/16 2
Emotions (Trohidis et al., 2008) 593  0/72 6
Mediana (Skrjanc et al., 2001) 7953 21/58 5
Scene (Boutell et al., 2004) 2407 0/294 6
Sigmea real (Demsar et al., 2005) 817 0/4 2
Solar-flare 1 (Asuncion and Newman, 2007) 323 10/0 3
Thyroid (Asuncion and Newman, 2007) 9172  22/7 T
Water quality (Blockeeel et al., 1999; Dzeroski et al., 2000) 1060 0/16 14
Yeast (Elisseeff and Weston, 2001) 2417 0/103 14

as a DAG (they have GO in the dataset name), and the remaining datasets have tree-shaped
hierarchies. For more details on the datasets, we refer the reader to the referenced literature.

6.3 Evaluation measures

FEmpirical evaluation is the most widely used approach for assessment of the performance of
machine learning algorithms. A performance of a machine learning algorithm is computed
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Table 5: Properties of the datasets with hierarchical targets; Nyqqin is number of instances
in the training dataset, Nies is number of instances in the testing dataset, D/C
is number of descriptive attributes (discrete/continuous), HS is number of classes
in the hierarchy, and L is average number of labels per example.

~i
|

Domain Ny, Nie D/C HS

ImageCLEF2007-D(Dimitrovski et al., 2008) 10000 1006 0/80 XX 1.0 XX
ImageCLEF2007-A (Dimitrovski et al., 2008) 10000 1006 0/80 XX 10 XX

Diatoms (ADIAC, 2008) 2065 1054 0/371 XX 1.0 XX
Enron () 988 660 0/1001 XX YY XX
Reuters () 3000 3000 0/47236 XX YY XX
WIPO () 1352 358 0/74435 XX YY XX
Expression-GO (Clare, 2003) 2485 1288  0/551 XX Yy XX
SCOP-GO (Clare, 2003) 6507 3336  0/2003 XX YY XX
Sequence-FunCat (Clare et al., 2006) 2455 1264 2/4448 XX YY XX
Yeast-GO (Barutcuoglu et al., 2006) 2310 1155 5588/342 XX YY XX

using some evaluation measure. The different machine learning tasks, we previously de-
scribed, use ‘task-specific’ evaluation measures. We first describe the evaluation measures
for multiple continuous targets (regression), then for multiple discrete targets (classification)
and at the end for hierarchical classification.

For assessment of the algortihm’s peformance on the task of predicting multiple contin-
uous targets (regression), we employed three well known measures: corellation coefficient
(CC), root mean squared error (RM SFE) and relative root mean squared error (RRMSE).
For each of this measure we performed statistical analysis and constructed saturation curves.
We present only the results using RRM SFE, but same conclusions hold if the other two mea-
sures are used.

The appropriate usage of evaluation measures in the case of classification algorithms
is not as clear as in the case of regression. Sokolova and Lapalme (2009) performed a
systematic analysis of twenty four performance measures that can be used in a classification
context. They conclude that evaluation measure for classification algorithms should be
chosen based on the application domain.

In our study, we used seven evaluation measures for classification: accuracy, precision,
recall, F-score, Matthews correlation coefficient, balanced accuracy (also known as Area
Under the Curve) and discriminant power. We used two averaging approaches to adapt
these measures for multi-class problems: micro and macro averaging (note that averaging
is not needed for accuracy). More about these measures can be found in Sokolova et al.
(2006). Since the goal of this study is not to assess the evaluation measures themselves, we
present here only micro average F-score (F' = 2- %). However, the conclusions

of the evaluation of the performance of the algorithms using the other measures conccur
with the ones presented here.
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In the case of hierarchical classification, we evaluate the algorithms using the Area Under
the Precision-Recall Curve (AUPRC), and in particular, the Area Under the Average
Precision-Recall Curve (AUPRC) as sugested by Vens et al. (2008). A Precision-Recall
curve plots the precision of a classifier as a function of its recall. The points in the PR
space are obtained by varying the value for the threshold 7 from 0 to 1 with step 0.02. The
precision and recall are micro averaged for all classes from the hierarchy.

In these domains, the positive examples for a given class are only few as compared to
the negative ones. The PR evaluation of these algorithms is most suitable in this context
because typically we are more interested in recognizing the positive examples (i.e., that an
example belongs to a given class), rather than correctly predicting negative instances.

Finally, we compare the algorithms by their efficiency in terms of time consumption and
size of the models. We measured the processor time needed to construct the models: in
the case of predicting the sub-components of the structure, we sum the times needed to
contruct the separate models. In a similar way, we calculated the sizes of the models as
total number of nodes (internal nodes and leafs). The experiments for multiple targets were
performed on a server running Linux, with two Inel Quad-Core Processors@2.5GHz and
64GB of RAM. The experiments for the hierarchical classification were run on a cluster of
AMD Opteron processors (1.8 — 2.4GHz, > 2GB RAM).

6.4 Experimental setup

Here, we first state the parameter instantiation of the algorithms for constructing the single
trees and the ensembles for all types of targets. Then, we describe how we assessed the
statistical significance of the differences in the performances of the algorithms.

The single trees for all types of targets are obtained using ‘F-test pruning’. This pruning
procedure uses exact Fisher’s test to check whether a given test from an internal node in
the tree produces a statistically significant reduction in variance at a given significance
level. If there is no test that can satisfy this, then the node is converted to a leaf. For
this, we selected an optimal significance level using internal 3-fold cross validation, from the
following values: 0.125, 0.1, 0.05, 0.01, 0.005 and 0.001.

The construction of the ensembles requires a size of the ensemble as an input parameter
(i.e., number of base classifiers to be constructed). We constructed ensembles with 10,
25, 50, 75 and 100 base classifiers for both multiple targets and hierarchical classification
datasets. Additionally, for the datasets with multiple continuous targets we constructed
ensembles with 150 and 250 base classifiers, and for the datasets with multiple discrete
targets, ensembles with 250, 500 and 1000 base classifiers.

The random forests algorithm, as input requires the size of the feature subset that
is randomly selected at each node. For the multiple targets datasets, we apply the log-
arithmic function of the descriptive attributes |log, DescriptiveAttributes| + 1, which
is recommended by Breiman (2001a). For the hierarchical classification, we used |0.1 -
Descriptive Attributes| + 1, since the feature space of some of these datasets is big (several
thousands of features) and the logarithmic function is undersampling the feature space.

The predictive performance of the algorithms on the datasets with multiple targets is
estimated by 10-fold cross-validation. The hierarchical datasets were previously divided (by
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the data providers) on a train and a test set. Thus, we estimate the predictive performance
of the algorithms on the test set.

We adopt the reccomendations by Demsar (2006) for the statistical evaluation of the
obtained results. We use Friedman test (Friedman, 1940) for statistical significance with the
correction from Iman and Davenport (1980). Afterwards, to check where the statistically
significant differences appear (between which algorithms), we use Nemenyi post-hoct test
(Nemenyi, 1963). We present the results from the statistical analysis with ‘average ranks
diagrams’ (see Figures 4, 5, 7, 8, 10 and 11).

7. Results and discussion

The results from the experiments we performed can be analyzed along several dimensions.
First, we present the saturation curves of the ensemble methods (for both predicting the
structured output and the sub-components). Then, we compare models that predict the
complete stuctured output vs. models that predict sub-components of the structured out-
put. Next, we can compare the single trees vs. ensembles of trees. At the end, we evalute
the algorithms by their efficiency in terms of running time and model size. We do these
comparisons for each task separately: predicting multiple continuous targets, predicting
multiple discrete targets and hierarchical multi-label classification.

7.1 Multiple continuous targets

The results from the experiments for evaluation of the algorithms for the task of prediction
of multiple continuous targets are presented in Figures 3, 4 and 5. First, we discuss the
results with respect to the saturation curves (Figure 3). Next, we discuss the statistical
evaluation of the performances (Figure 4). At the end, we compare the efficiency of the
algorithms (Figure 5).

In Figure 3, we present the saturation curves for the ensemble methods. Although
these curves are averaged accross all target variables for a given dataset, they still provide
usefull insight on the performance of the algorithms. The random forests perfrom better
than bagging, both when predicting the multiple targets simultaneously or separately, on
the ‘larger’ datasets (the ones with more than 10000 examples), such as Forestry-Kras
from Figure 3(a). On the other hand, the bagging outperfroms the random forests, in
both scenarios, on the ‘medium’ datasets (that contain between 1000 and 10000 examples),
such as Soil quality from Figure 3(b). For the ‘small’ datasets (the ones with less than
1000 examples and less than 10 descriptive attributes), the curves are variable and it is not
conclusive which algotihm should be prefered. Also, there is no clear connection between the
performance of the algorithms and the number of target variables (i.e., the size of the target
tuple). However, on majority of all datasets the ensembles for prediction of multiple targets
simultaneously perform better than the ensembles that predict the targets separately.

The averaged saturation curve for all datasets is shown in Figure 3(c). This curve shows
that the ensembles for predicting multiple targets simultaneously perform better than the
ones predicting the targets separately across all ensemble sizes (except with 100 trees where
random forests for multiple targets is worse than random forests for single target). To test
which differences in performance are statistically significant, we perform Friedman tests.
First, we check at which ensemble size the difference is no longer statistically significant for
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Figure 3: Saturation curves for the prediction of multiple continuous targets. These curves
are obtained by averaging the RRMSFE values for all of the target variables.
Smaller RRM SFE values mean better predictive performance. The algorithms are
abbreviated as follows: random forests for prediction of multiple targets - MT RF,
random forests for prediction of single target — ST RF, bagging for prediction of
multiple targets — MT Bag and bagging for prediction of single target — ST Bag.

each method separately. In this case, for all algorithms, the difference is not statistically
significant after 50 trees are added. Thus, we compare the performance of the algorithms
after 50 trees and after 250 trees (the maximal number of trees).
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Figure 4: Average rank diagrams at significance level of 0.05 for prediction of multiple
continuous targets. The difference in the perfromance of the algotihms connected
with a red line are not statistically significant. The numbers after the name
of the algorithm indicate its average rank. The abbreviations are same as in
Figure 3 with addition of predicting clustering tree for multiple continuous targets
— MTRT and predictive clustering tree for single continuous target — ST RT.

The statistical tests in Figure 4 show that the difference in the performance of the en-
semble methods is not statistically significant at the level of 0.05. However, best performing
method is random forests for predicting multiple targets and worst performing method is
bagging for predicting the mutltiple targets separately. If more trees are added, the ordering
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of the algorithms does not change (only small changes in the average ranks). The difference
in performance of all ensembles and the single trees is statistically significant at 0.05. The
single trees for predicting multiple targets simultaneously are better than single trees for
predicting the multiple targets separately.

Finally, we compare the algorithms by their running time and the size of the models
when the ensembles consist of 50 trees (see Figure 5). The statistical tests show that both
random forests and bagging for predicting multiple targets simultaneously outperform sig-
nificantly, in terms of size of models, the ensembles that predict multiple targets separately.
In terms of time efficiency, random forests for multiple targets outperform significantly both
ensemble methods for predicting the targets separately. Also, bagging for multiple targets
are significantly faster to construct than bagging for separate prediction of the targets.

Let us further examine the speed-up and the size of the models ratios. Random forests
for predicting multiple targets simultaneously are ~3.3 times faster to construct and the
models are ~3.75 times smaller than random forests for predicting single target. In addition,
they are ~3.7 times faster to construct and have ~1.14 times smaller models than bagging
for multiple targets. Furthermore, bagging for predicting multiple targets are ~3 times
faster and ~3.6 times smaller than bagging for predicting single target.
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(a) Time efficiency (b) Size of the models

Figure 5: Efficiency of the ensembles for prediction of multiple continuous targets. The size
of the ensembles is 50 trees.

To summarize, ensembles for predicting multiple continuous targets simultaneously per-
form better than ensembles predicting multiple targets separately. While the difference in
predictive performance is not statistically significant, the differences in efficiency are. Ran-
dom forests have higher predictive performance than bagging on the larger datasets, while
on the medium datasets bagging ensembles are better. In terms of efficiency, the algorithms
that predict the multiple targets simultaneously (especially the random forests) should be
always prefered.

7.2 Multiple discrete targets

The performance of the algorithms for multi-class classification can be assessed using dif-
ferent measures, some of which we listed in Section 6.3. The evaluation measure should be
selected based on the application domain (Sokolova and Lapalme, 2009). In our study, we
used micro weighted averaged F-score (uF — score): reasonable compromise between all
measures, since it combines the precision and the recall values.

The results for algorithms that predict multiple discrete targets are presented in Fig-
ures 6, 7 and 8. In Figure 6, we present the saturation curves. Next, we discuss the
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statistical analysis of the results (Figure 7). At the end, we compare the algorithms by
their efficiency (Figure 8).

In Figure 6, we present three saturation curves for the four ensemble methods. Same as
for predicting multiple continuous targets, these values are averaged from all target variables
for a given dataset (and in Figure 6(c) averaged across all datasets). These saturation curves
offer us several insights to the performance of the ensembles on the task of predicting
multiple discrete targets. The saturation curves for the smaller datasets (ones with less
than 1000 examples) are variable (for instance, see the saturation curve for the Sigmea real
dataset shown in Figure 6(a)). However, we can note that on the smaller ensemble sizes the
ensembles that predict the targets simultaneously outperform the ensembles that predict
the targets separately.

The saturation curves for the larger datasets (with more than 1000 examples) are more
stable and we can observe two types of behaviour: (1) on the datasets with less than 30
descriptive variables, the ensembles for predicting the targets simultaneously outperform
the ensembles that predict the targets separately (for instance, see the saturation curve for
the Water quality dataset shown in Figure 6(b)); (2) on the datasets with more than 30 de-
scriptive variables, the ensembles for predicting the targets simultaneously are better when
the size of the ensemble is small than the ensembles that predict the multiple targets sepa-
rately, while on the ensembles with bigger sizes the situation is reversed. Similar behaviour
can be also noticed on the Ouverall saturation curve (Figure 6(c)). Finally, same as for the
multiple continuous targets, there is no connection between the predictive performance of
the algorithms and the size of the target tuple.
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Figure 6: Saturation curves for the prediction of multiple discrete targets. These curves
are obtained by averaging the uF — score values for all of the target variables.
Bigger uF — score values mean better predictive performance. The algorithms are
abbreviated as follows: random forests for prediction of multiple targets — MT RF,
random forests for prediction of single target — ST RF', bagging for prediction of
multiple targets — MT Bag and bagging for prediction of single target — ST Bag.

The results from the statistical analysis of the predictive performance (uF — score)
are shown in Figure 7. First, for each ensemble method separately, we check at which
ensemble size the predictive performance is no longer statistically significant. The ensembles
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for predicting the multiple targets simultaneously saturate with 50 trees added, while the
ensembles for separate prediction of the targets require more trees: 75 for the random
forests and 250 for bagging. After this, we select ensembles sizes of 50 (Figure 7(a)) and
1000 (maximal number of trees, Figure 7(b)) and compare the algorithms.

The statistical tests reveal that there is no statistically significant difference in the
performance of the ensemble methods and that all ensemble methods perform statistically
significantly better than single tree. When the ensembles have 50 trees, the bagging for
predicting the multiple targets simultaneously is best performing method (average rank
2.59) and the remaining methods have smaller and very close to each other average ranks
(ranging from 3.0 to 3.11) with random forest for separate prediction of the targets having
the smallest average rank. The situation is similar with 1000 trees, with the difference that
now random forests for simultaneous prediction of the targets are worst performing method
(average rank 3.26) and the other three methods have very close average ranks (from 2.71 to
2.75) with random forest for separate prediction being the best perfroming method. This
just confirms the findings with the saturation curves: adding of trees helps more to the
ensembles that predict the targets separately than the ensembles that predict the targets
simultaneously.
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Figure 7: Average ranks diagrams at significance level of 0.05 for prediction of multiple
discrete targets. The difference in the perfromance of the algotihms connected
with a red line are not statistically significant. The numbers after the name of the
algorithm indicate its average rank. The abbreviations are same as in Figure 6
with addition of predicting clustering tree for multiple discrete targets — MTCT
and predictive clustering tree for single discrete target — STCT.

At the end, we compare the ensembles by their efficiency: running times (Figure 8(a))
and size of models (Figure 8(b)). Concerning the running time, we can only state that
the random forests for predicting multiple targets simultaneously significantly outperfrom
the bagging for predicting the multiple targets separately. As for the size of the models,
we can note the following: (1) the bagging for predicting multiple targets simultaneously
significantly outperforms both ensemble methods for separate prediction of the targets and
(2) random forests for predicting multiple targets simultaneously significantly outperform
the random forests for separate prediction of the targets.

We further investigate the running times and size of models ratios. The random forests
for predicting multiple targets simultaneously are ~2.3 times faster to construct and have
~2.1 times smaller models than the random forests for separate prediction of the targets.
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Figure 8: Efficiency of the ensembles for prediction of multiple discrete targets. The size of
the ensembles is 50 trees.

Also, they are ~5.6 times faster and have ~1.14 times bigger models than bagging for
predicting multiple targets simultaneously. Furthermore, bagging for predicting multiple
targets simultaneously is ~2.5 times faster and have ~1.9 times smaller models than bagging
for separate prediction of multiple targets.

In summary, the predictive performances of the ensemble methods for predicting mul-
tiple targets simultaneously and the ones for separate prediction are not statistically sig-
nificantly different. However, the ensemble methods for predicting multiple targets simul-
taneously are better when the number of trees in the ensemble is smaller. Furthermore,
they should be prefered if the efficiency of the classifier is an issue. The ensemble methods
for simultaneous prediction are faster (especially random forests) and smaller (especially
bagging) than the ensemble methods for separate predictions.

7.3 Hierarchical multi—label classification

In this subsection, we present the results for the task of hierarchical classification in a
similar way as for the task of predicting multiple targets. We asses the performance of the
algorithms using the area under the average precision-recall curve (AU PRC) as suggested
by Vens et al. (2008). The results are presented with saturation curves (Figure 9), statistical
tests (Figure 10) and efficiency evaluation (Figure 11).

The saturation curves for the different domains (functional genomics, image annotation
and text classification) show different behaviour, thus we discuss the curves for each domain
separately. On the domain of functional genomics, the ensembles for HMLC outperform the
ensembles for HSLC when the target hierarchy is organized as DAG (for instance, see the
saturation curve for the SCOP-GO dataset in Figure 9(a)). Moreover, the random forests
for HMLC are best performing method. The ensembles for HMLC also outperform the
ensembles for HSLC on the domain of image annotation/classification (for instance, see the
saturation curve for the ImageCLEF2007-D dataset in Figure 9(b)). On these datasets,
the bagging for HMLC is the best performing method. The situation is different on the
text classification domains. Here, the ensembles of HSLC outperform the ensembles of
HMLC. We hypothesize that this is because of the large number of descriptive variables.
The performance of ensembles of HMLC on text classification datasets should be further
investigated.

The overall saturation curve (Figure 9(c)) shows the performance of the algorithms av-
eraged over the datasets from the three domains. Best performing method is random forest
for HMLC and worst performing method is bagging for HSLC. To further investigate the
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Figure 9: Saturation curves for hierarchical multi-label classification. These curves are
obtained by averaging the AUPRC values for all of the target variables. Big-
ger AUPRC values mean better predictive performance. The algorithms are
abbreviated as follows: random forests for hierarchical multi-label classifica-
tion — HMLCRF, random forests for hierarchical single-label classification —
HSLCRF, bagging for hierarchical multi-label classification — HM LC Bag and
bagging for hierarchical single-label classification — HSLC Bag.

differences in the performances, we perform statistical analysis for each method separately
for all ensemble sizes. We do this to check when adding of trees in the ensemble does not
statistically significantly improves the predictive performance. The ensembles for HMLC
and random forests for HSLC saturate after 50 trees are added in the ensemble, while bag-
ging for HSLC saturates after only 25 trees. We further compare the performance of the
ensembles at 50 trees and 100 trees (results presented in Figure 10).

The average ranks diagram for the ensembles with 50 trees (Figure 10(a)) shows that
the performance of the ensembles is not statistically significantly different. Note that the
best performing method is random forests for HSLC (average rank 2.25) and worst per-
forming method is bagging for HSLC (average rank 2.85). Similarly, there is no statistically
significant difference in performance when the ensembles contain 100 trees. Again, bagging
for HSLC (average rank 2.9) is the worst performing method, but bagging for HMLC (av-
erage rank 2.2) is now the best performing method. In both cases, the ensemble methods
significantly outperform a single predictive clustering trees.

Finally, we compare the algorithms by their efficiency when they contain 50 trees (runing
times in Figure 11(a) and size of the models in Figure 11(b)). The random forests for HMLC
are statistically significantly faster than both bagging for HMLC and HSLC, while random
forests for HSLC are significantly faster than bagging for HSLC. The models of bagging of
HMLC are statistically significantly smaller than the models from the ensembles for HSLC.
The models of random forests for HMLC are statistically signigicantly smaller than the
models from the random forests for HSLC.

We further investigate the speed up and size of the models ratios. The random forests
for HMLC are ~6.4 times faster and have ~4.6 times smaller models than the random
forests for HSLC. Similarly, bagging for HMLC is ~6.4 times faster and have ~3.2 times
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Figure 10: Average ranks diagrams at significance level of 0.05 for hierarchical multi-label
classification. The difference in the perfromance of the algotihms connected
with a red line are not statistically significant. The numbers after the name
of the algorithm indicate its average rank. The abbreviations are same as in
Figure 9 with addition of predicting clustering tree for hierarchical multi-label
classification — H M LC' PC'T" and predictive clustering tree forhierarchical single—
label classification — HSLCPC'T.

smaller models than bagging for HSLC. Random forests for HMLC are ~7.8 times faster
and ~1.1 times smaller models than bagging for HMLC. All in all, in terms of efficiency,
random forests for HMLC outperform the rest of the ensemble methods.

Critical Distance = 1.48321 Critical Distance = 1.48321
—_— —_—
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(a) Time efficiency (b) Size of the models

Figure 11: Efficiency of the ensembles for hierarchical multi-label classifications. The size
of the ensembles is 50 trees.

To summarize, the difference in predictive performance between ensembles for HMLC
and ensembles for HSLC is not statistically significant. However, on several datasets, the
ensembles for HMLC outperform the ensembles for HSLC. Moreover, the ensembles for
HMLC are more efficient than the ensembles for HSLC. Finally, the ensembles for HMLC
lift the predictive performance of a single predictive clustering tree.

8. Conclusions

In this article, we present an approach for learning ensembles for predicting structured out-
puts. The proposed approach constructs a single model to make a prediction for the whole
structure simultaneously. It is general with respect to the type of the output: it can handle
multiple target variables and hierarchically structured classes (tree-shaped and DAGs). It
is scalable to wide range of datasets with different number of examples and descriptive vari-
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ables and different sizes of the structured output. We experimentally evaluate the proposed
approach over number of datasets. The conclusions can be summarized as follows.

With the use of ensembles, we lift the predictive performance of a classifier when the
target is a structure (the difference in the perfromance is statistically significant at 0.05).
This was previously shown only on problems where the target was a single continuous or
single discrete variable. Here, we show that it is valid for the three machine learning tasks
at hand: predicting multiple continuous targets, predicting multiple discrete targets and
hierarchical multi-label classification. This finding suggests that the non-trivial relations
that might exist between the sub-components of the structure are included when combining
predictions of several classifiers or when injecting some source of randomness in the learning
algorithm.

Next, we look at the saturation point of the ensembles’ performances with respect to
the number of base classifiers. In majority of the cases, the predictive performance of the
ensembles saturates after the 50th tree is added in the ensemble. Exceptions of this are:
bagging for HSLC that saturates when 25 trees are added and random forests and bagging
for predicting multiple discrete targets separately that saturate after 75 and 250 trees,
respectively. Furthermore, the saturation curves offer some insight about the application of
a given method on a given dataset (summarized by their number of examples and number of
descriptive variables). Also, the curves show that on majority of the datasets the ensembles
for predicting the structured outputs as a whole have better performance than the ensembles
that predict the sub-components. This is the case especially when the ensembles contain
smaller number of trees.

Afterwards, we perform tests for checking the statistical significance of the differences
in the algorithms’ performances. The differences in the performances of ensembles are not
statistically significant at 0.05 in any of the tasks. However, the ensembles for predicting
structured output often had smaller average ranks than the ensembles for predicting the
sub-components of the structure.

At the end, we compare the ensembles by their efficiency: time needed to construct the
ensembles and the size of the models. The random forests for predicting structured outputs
outperform all other methods in terms of time efficiency. Moreover, they statistically sig-
nificantly outperform bagging for predicting the sub-components of a structured output on
all tasks. Regarding the size of the models, on the task of predicting multiple continuous
targets, the random forests for predicting structured outputs are with the smallest models,
while on the other two tasks, bagging for predicting structured outputs are the smallest.
On the three tasks, the ensembles for predicting structured outputs have smaller models
than the ensembles that predict sub-components of a structured output.

To summarize, we present ensemble methods for predicting structured outputs that have
good (and in many cases better) predictive performance and are very efficient as compared
to the ensembles that predict sub-componenets of a structured output. Furthermore, the
ensembles for predicting structured outputs significantly lift the predictive performance of
a single classifier.
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