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1 Introduction

In this chapter, we present an overview of the thesis and motivate it within its research
area. We start by outlying the context of the work performed in this thesis. Next, we
state the motivation and the original contributions of the thesis. Finally, we sketch a road
map for the rest of the thesis.

1.1 General perspective

The work presented in this thesis falls within the area of artificial intelligence (McCarthy
et all, |1955), more specifically in the area of machine learning. Machine learning studies
the computer programs that have ability to learn, i.e., the computer programs that improve
with experience (Mitchell,[1997)). A very significant part of the research in machine learning
is concerned with extracting new knowledge out of available data, i.e., the experience is
given in the form of learning examples (instances). This type of machine learning is called
inductive learning (Bratko, 2000)).

In the classical inductive learning setting, the available learning examples are given in
a form of a table. Each row of the table is an example and each column is a property
of the example (called attribute). If the goal is to predict the value of one property of
the examples (called target attribute) using the values of the remaining properties (called
descriptive attributes), then the task is called predictive modelling (or supervised learning).
On the other hand, if such target property does not exist and the goal is to provide general
descriptions of the examples, then the task is called descriptive modelling (or unsupervised
learning) (Langley, 1996]). Examples of machine learning methods for predictive modelling
include decision trees, decision rules, Bayesian networks and support vector machines and
examples of machine learning methods for descriptive modelling include clustering, associ-
ation rules modelling and principal-component analysis (Bishop, [2007)).

Predictive and descriptive modelling are considered as different machine learning tasks.
The goal of predictive modelling is to identify clusters that are compact in the target
space (i.e., instances with similar value of the target variable). The goal of the descriptive
modelling, on the other hand, is to identify clusters compact in the descriptive space (i.e.,
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instances with similar values of the descriptive variables). Blockeel (1998]) presented a
machine learning task, called predictive clustering, that combines the advantages of both
predictive and descriptive modelling. The predictive clustering identifies clusters that are
compact both in the target and the descriptive space. The methods presented in this
thesis are based on the predictive clustering framework (Blockeel, [1998]).

The predictive and descriptive modelling are connected by the machine learning meth-
ods that partition the instances, such as decision trees and decision rules. These two meth-
ods are already available in the predictive clustering framework: Blockeel et al| (1998));
Struyf and DZeroski| (2006)) developed the decision trees for predictive clustering, called
predictive clustering trees (PCTs), and [Zenko| (2007)) developed the decision rules for pre-
dictive clustering, called predictive clustering rules (PCRs). These methods, in addition
to providing clusters of the instances, provide symbolic descriptions of the clusters. The
clusters from the decision trees are described by the conjunction of the conditions from
the nodes that are on the path from the root node to the given cluster (node of the tree,
typically a leaf). The clusters from the decision rules are described by the rule’s conditions.

Typical machine learning methods for predictive modelling are able to make a prediction
for a single target attribute of an example. The target attribute can be either a discrete
variable (classification) or a continuous variable (regression). However, there are many real
life domains, such as image annotation, text categorization, gene networks, etc., where
the input and/or the output can be structured. In this thesis, we are concerned with the
latter: tasks with structured outputs.

There are two groups of methods for solving the task of predicting structured outputs
(Bakir et all [2007; Silla and Freitas, [2010): (1) methods that predict component(s) of
the output and then combine the separate models to get the overall prediction (called local
methods) and (2) methods that predict the complete structure as a whole (called global
methods). The latter group of methods has several advantages over the former. They
can exploit and use the dependencies that exist between the components of the structured
output in the model learning phase and as a result have better predictive performance.
Next, they are more efficient: it can easily happen the number of components in the
output to be very large (e.g., hierarchies in functional genomics) in which case executing a
basic method for each component is not feasible. Furthermore, they produce models that
are typically smaller than the sum of the sizes of the models for the components. The
predictive clustering framework belongs to the group of global approaches.

The predictive clustering framework was extended so far in the context of prediction
of multiple discrete variables (Blockeel et al| 1998 Zenko|, 2007)), predicting multiple
continuous variables (Blockeel et al) [1998; Struyf and DZeroski, 2006} [Zenko, 2007),
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hierarchical multi—label classification (Vens et al|, |2008) (the output is a set of classes
that are organized in a hierarchy) and prediction of short time series (Slavkov et al|
2010b)). This was done by adjusting the variance and prototype functions (needed for the
induction of the trees and the rules) specifically for each task. Each of the tasks was
evaluated empirically and confirmed the advantages of the global methods stated above.

To further increase the predictive performance of the predictive clustering trees, in
this thesis, we extend the predictive clustering framework in the context of ensemble
methods. Ensemble methods construct a set of classifiers (an ensemble) and combine
their outputs to obtain a single prediction (Dietterich, 2000a)). There are many practical
studies that show that ensembles achieve high predictive performance and that they lift
the predictive performance of a single classifier (Banfield et all 2007; Bauer and Kohavi,
1999; Breiman, |1996a; Freund and Schapire|, [1996; Opitz and Maclin|,[1999). Furthermore,
several theoretical explanations were offered that justify and explain the high predictive
performance of the ensembles (Allwein et al., |2000; |Breiman, [1996b; |Domingos, 2000;
Geman et all 1992; |Kong and Dietterich, 1995 [Mason et al| 2000; |Schapire et al.,
1997).

The different ensemble methods can differ in how they construct the set of constituent
(or base) classifiers and in how they combine their predictions. Having in mind that
combining identical or very similar classifiers will not produce an increase of predictive
performance, it only makes sense to construct ensembles of classifiers that are diverse.
The diversity in the ensemble is obtained by learning heterogeneous classifiers, by modifying
the training set or by changing the learning algorithm. To obtain the prediction of the
ensemble, classifier fusion or classifier selection can be used (DZeroski et al., |2009). The
former selects the best classifier and uses its predictions as predictions of the ensemble.
The latter combines the predictions of all base classifiers by means of a voting scheme
and gives the combined predictions as predictions of the ensemble. There is a plethora of
ensemble learning methods and voting schemes that have been proposed in the literature
(for an overview, see (Kuncheval 2004} Seni and Elder] 2010)).

In this thesis, we focus on two widely used ensemble methods that use decision trees as
base classifiers: bagging (Breiman, 1996a)) and random forests (Breiman, 2001al). As base
classifiers, we use predictive clustering trees. We also provide adequate voting schemes for
combining the predictions (for the structured outputs) obtained from the base classifiers.
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1.2 Motivation

In many real life problems the output (i.e., the target property) is structured, meaning
that there are either dependencies between classes (e.g., classes are organized into a tree-
shaped hierarchy or directed acyclic graph) or there are some internal relations between
the classes (e.g., sequences). These types of problems occur in domains such as: life
sciences (predicting the functions of a gene, selecting the most important genes for a
given disease, detecting toxic molecules, etc), ecology (analysis of remote sensed data,
habitat modelling), multimedia (annotation and retrieval of images and videos), semantic
web (categorization and analysis of text and web) etc. Having in mind the needs of the
application domains and the increasing generation of structured data, Yang and Wu|(2006))
listed the machine learning methods for “mining complex knowledge from complex data”
as one of the ten challenging problems in machine learning.

There are variety of methods that have been proposed (Bakir et al, 2007) that are
specialized for predicting a given type of a structured output (e.g., hierarchy of classes
(Silla and Freitas, [2010))). However, many of these are computationally demanding and not
suited for dealing with large datasets (especially large outputs). The predictive clustering
framework offers an unifying approach for the different types of structured outputs and the
algorithms developed in this framework construct the classifiers very efficiently. Moreover,
the PCTs and PCRs can be easily interpreted by a domain expert thus support the process
of knowledge extraction.

To further increase the predictive performance of a single classifier, one can construct
an ensemble of classifiers. In the simple classification and regression tasks, it is widely
accepted that an ensemble of classifiers lifts the predictive performance of its base clas-
sifiers (Dietterich|, [2000a; |DZeroski et al, 2009; |Kuncheva, 2004; Seni and Elder, 2010)).
However, in the task of predicting structured outputs using the predictive clustering frame-
work (and the other global classifiers), this is not that obvious. In the case when the base
classifiers are decision trees, Bauer and Kohavi (1999) conclude that the increase in perfor-
mance is related to the trees being unpruned, i.e., overfitting. On the other hand, |Blockeel
et al| (2006 state that predictive clustering trees overfit less than the single classification
approach. Having in mind these two conflicting influences, it is not obvious whether an
ensemble of predictive clustering trees will significantly increase the predictive performance
of a single predictive clustering tree.

The global classifiers exploit the dependencies between the components of the struc-
tured outputs and, as a result, have better predictive performance than the local classifiers.
However, in the ensemble learning setting, it is not clear if the predictive performance of
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an ensemble of global classifiers will be better or worse than the predictive performance of
ensembles of local classifiers (i.e., an ensemble per component of the structured output).
It is not also clear which of these two methods will be more efficient, in terms of running
time and size of the classifiers.

Another open issue in ensemble learning is how many classifiers are enough for getting
the optimal performance. Bauer and Kohavi ((1999); Opitz and Maclin| (1999) observe
ensembles of up to 30 classifiers and show that the biggest improvement in terms of
predictive performance is achieved after adding the first 10-15 classifiers. After that,
the error rate gradually reaches a plateau. They suggest 25 classifiers as a reasonable
compromise between the predictive performance and the efficiency of an ensemble. On
the other hand, Banfield et al| (2007)) investigate ensembles of 1000 classifiers and propose
an algorithm that chooses when the ensemble learning should stop. The algorithm uses
stabilization of the error rates as a stopping criterion for the ensemble learning. This means
that the number of classifiers in the ensemble is going to be different for each dataset.
Moreover, this approach further adds to the computational complexity of the ensemble
learning. Since the issue of the ‘ensemble size’ is not completely resolved for the simple
classification and regression tasks, it is even less known how many global classifiers are
enough for optimal performance of an ensemble of global classifiers.

1.3 Contributions

In this thesis, we propose to use ensembles of PCTs for predicting structured outputs to
address the issues raised in the previous section. We summarize the main contributions of
the work presented in this thesis as follows:

e We develop ensemble learning methods for predicting structured outputs that are
based on PCTs. To the best of our knowledge, this is the first work done on
ensembles of global classifierd]] Moreover, the proposed methods are general in terms
of the type of the structured output. Currently, they are suitable for three types of
structured outputs: multiple continuous targets, multiple discrete targets and classes
organized into a hierarchy (tree-shaped or directed acyclic graph), however, they can

There is a distinction between ensemble and architecture of classifiers. An ensemble of classifiers
combines the outputs of each base classifier to obtain the overall prediction. An architecture of classifiers is
a set of classifiers whose outputs are not just directly combined to obtain the overall prediction but rather the
output of one classifier can be used in the training of some of the next classifiers (lanakiev and Govindarajul,
2000). An example of architecture of classifiers are the ‘classifier chains' (Read et al, |2009)).
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be easily adapted for other types of structured outputs. With this we extend the
predictive clustering framework in the context of ensemble learning.

We perform extensive empirical evaluation of the proposed methods over a variety
of domains. The experimental results show that ensembles of global classifiers lift
the predictive performance of a single global classifier. We also construct ensembles
of up to 1000 classifiers and select ensembles of 50 global classifiers as optimal in
terms of predictive performance and efficiency. Next, although the difference in the
predictive performance of the ensembles of global classifiers and the ensembles of
local classifiers is not statistically significant, the ensembles of global classifiers often
have better predictive performance than the ensembles of local classifiers. Moreover,
the ensembles of global classifiers are more efficient in terms of training time and
size of the trees in the ensembles.

We propose a method, based on random forest, that performs feature ranking for
structured outputs. Traditionally, in the tasks with structured outputs, the feature
ranking is obtained by constructing several feature rankings for the components of
the outputs and then aggregating them to obtain a single overall feature ranking.
The method we propose produces single feature ranking and takes into account the
dependencies and the relations that exist between the components of the structured
output. Moreover, the ranking produced this way is more computationally efficient
than building feature rankings for the components separately. On a case study for
biomarker discovery, we show that feature ranking for multiple targets offers some
advantages over the ranking for a single target.

We suggest a novel ensemble learning method that is based on the beam search
technique and uses decision trees as base classifiers. This method offers direct
control over the diversity in the ensemble and allow to further investigate the trade-
off between the ensemble’s diversity and ensemble’s predictive performance. In turn,
the optimal trade-off will lead towards creating an ensemble with the best predictive
performance. Furthermore, by selecting the top-ranked tree from the ensemble (since
the beam keeps the trees sorted by a heuristic score) as representative for the whole
ensemble, we get an ‘interpretable’ ensemble.

We apply the ensembles for predicting structured outputs in three domains: modelling
the vegetation condition, image annotation and prediction of gene functions. Each
application gives a contribution to the respective domain.

— We extract knowledge about the resilience of some indigenous vegetation types
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and the relative importance of biophysical and landscape attributes that influ-
ence their condition. Next, we use the ensembles of PCTs to generate maps of
the condition of the indigenous vegetation across the Victoria State, Australia.
We construct the ensembles using easily obtained and remotely acquired data
in conjunction with adequate field data. The generated maps can be further
used in support of biodiversity planning, management and investment decisions.

— We apply the ensembles of PCTs for HMC to two benchmark tasks for hierar-
chical annotation of medical (X-ray) images and an additional task for photo
annotation. The ensembles of PCTs for HMC achieve better results than a
collection of SVMs (trained with a x?2 kernel), the best-performing and most-
frequently used approach to (hierarchical) image annotation, on all three tasks.
Moreover, for the two medical image datasets, they produce the best results
reported in the literature so far. Furthermore, the ensembles of PCTs for HMC
are more efficient (smaller training and testing times) than the collection of
SVMs.

— We present the use of PCTs for HMC and ensembles of PCTs for HMC in
functional genomics, i.e., to predict gene functions (using FunCat and the
Gene Ontology as function clsasification schemes), for each of the following
three model organisms: Saccharomyces cerevisiae (yeast), Arabidopsis thaliana
(cress) and Mus musculus (mouse). The ensembles of PCTs for HMC outper-
form a statistical learner based on SVMs for Saccharomyces cerevisiae, both in
predictive performance and in efficiency. Also, they are competitive to statistical
and network based methods for Mus musculus data. Overall, the ensembles of
PCTs for HMC yield state-of-the-art quality (predictive performance) for gene
function prediction.

1.4 Organization






2 Background

The work we present in this thesis concerns learning ensembles for predicting structured
outputs. Before describing the algorithms, we first define the machine learning tasks
that we consider: the tasks of predicting multiple target{] and hierarchical multi—label
classification. After that, we overview the three paradigms that are basis for the algorithms
presented in this thesis: ensemble learning, predictive clustering and predicting structured
outputs.

2.1 Machine learning tasks

Following the suggestions from DZeroski| (2007)), we formally describe the machine learning
tasks that we consider here. In the following, we describe the tasks of predicting multiple
targets and hierarchical multi—label classification.

2.1.1 The task of predicting multiple targets

We define the task of predicting multiple targets as follows:
Given:

e A description space X that consists of tuples of primitive (boolean, discrete or con-
tinuous) variables, i.e. VX; € X, X; = (X, X;, ..., Xip ), where D is the size of the
tuple (or number of descriptive variables);

e atarget space Y that consists of tuples, where each tuple consists of several variables
that can be either continuous or discrete, i.e., VY € Y,Y; = (Vi Yip, -2 Vir ), Where
T is the size of the tuple (i.e., number of target variables),

e aset £, where E = {(X,,Y)|X; € X,Y; € Y,1 < i < N} and N is the number of
examples of E (N = |E]), and

IMultiple targets prediction is previously referred to as multi-objective prediction in the literature (Demsar
et al.,2006] |[Kocev et al.| |2007b; Struyf and DZeroski, 2006)). However, the notion ‘multi-objective’ is already
an established term in the optimization sciences and can lead to confusion when used in this context.
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e a quality criterion g (which rewards models with high predictive accuracy and low
complexity).

Find: a function f : X — Y such that f maximizes q. Here, the function f is represented
with decision trees, i.e., predictive clustering trees.

If the tuples from Y (the target space) consist of continuous/numeric variables then
the task at hand is multiple targets regression. Likewise, if the tuples from Y consist of
discrete/nominal variables then the task is called multiple targets classification.

2.1.2 The task of hierarchical multi—label classification

Classification is defined as the task of learning a model using a set of classified instances
and applying the obtained model to a set of previously unseen examples (Breiman et al|
1984; |Langley, 1996]). The unseen examples are classified into a single class from a set of
possible classes.

Hierarchical classification differs from the ‘traditional’ classification in the following: the
classes are organized in hierarchy, so, an example that belongs to a given class automatically
belongs to all its super-classes (this is known as the ‘hierarchy constraint’). Furthermore,
an example can belong simultaneously to multiple classes that can follow multiple paths
from the root class. This task is then called hierarchical multi-label classification (HMC)
(Silla and Freitas, |2010; Vens et al., [2008)).

We formally define the task of hierarchical multi—label classification as follows:

Given:

e A description space X that consists of tuples of primitive (boolean, discrete or con-
tinuous) variables, i.e. VX; € X, X; = (X, Xj,, ..., Xip ), where D is the size of a tuple
(or number of descriptive variables),

e a target space S, defined with a class hierarchy (C, <;), where C is a set of classes
and <, is a partial order (structured as a rooted tree) representing the superclass
relationship (for all ¢, ¢, € C: ¢ <p ¢, if and only if ¢y is a superclass of ¢,),

e aset £, where £ = {(X;,S$)|X; € X,5,CC,ce§ =V <,c:c€5,,1<i<
N} and N is the number of examples of E (N = |E|), and

e a quality criterion g (which rewards models with high predictive accuracy and low
complexity).

Find: a function f : X — 2¢ (where 2¢ is the power set of C) such that f maximizes g and
c € f(x)=Vc <, c:c € f(x). The last condition is called the ‘hierarchy constraint’.
Here, the function f is represented with decision trees, i.e., predictive clustering trees.
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2.2 Related work

This thesis presents work that builds on ideas and concepts from three machine learn-
ing paradigms: ensemble methods, predictive clustering and predicting structured outputs.
First, we discuss why and how ensembles can be constructed. Then, we present the predic-
tive clustering framework and its advantages. At the end, we present related approaches
that can be used for predicting structured outputs.

2.2.1 Ensemble learning

Ensemble methods are machine learning techniques that generate a set of classifiers and
combine their predictions into a single prediction (Dietterich, 2000a; |[DZeroski et al., 2009}
Kuncheva, 2004; Valentini, 2003). Each of the constituent classifiers is called a base
classifier and the set of classifiers is called an ensemble.

There are many practical studies that show that ensembles achieve high predictive per-
formance and that they lift the predictive performance of a single classifier (Banfield et al.,
2007; Bauer and Kohavi, 1999; Breiman| [1996a; [Freund and Schapire, 1996; Opitz and
Maclin|, [1999). Furthermore, several theoretical explanations were offered that justify and
explain the high predictive performance of the ensembles (Allwein et al| 2000f |Breiman|,
1996b; IDomingos, 2000 |Geman et al|, (1992} Kong and Dietterich, |1995; [Mason et al.,
2000; |Schapire et al, |1997)).

Ensemble learning is now an established research filed in the area of machine learning
because of the great effort of the researchers, which is reflected with the amount of
the produced literature (Dietterich, 2000aib; [DZeroski et al., 2009} Kittler et al., 1998
Kuncheva|, 2004} Seni and Elder, 2010} Valentini, [2003). In the remainder of this section,
we explain how ensembles are constructed, how the base classifiers are combined to obtain
a single prediction and why the ensembles have good predictive performance.

Ensemble creation techniques

An ensemble is a set of classifiers. We present the three most widely used techniques
for ensemble learning (i.e., constructing the different base classifiers): (1) use of hetero-
geneous classifiers; (2) manipulating the training set (manipulating the training instances
or manipulating the feature space or both) and (3) manipulating the learning algorithm.
Table [2.2.7] summarizes the most often used ensemble learning methods that utilize these
techniques. In the following, we shortly describe these techniques and some representative
methods.
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Table 2.1:

Summarized ensemble creation techniques.

Use of hete- Manipulate Manipulate

Method rogeneous
classifiers

the data

instances

the data
features

Manipulate
the learning
algorithm

Stacking
(Wolpert|, 11992))
Bagging
(Breiman, |1996a))
Random forest
(Breiman, [2001a))
Bootstrap ensemble with noise
(Raviv and Intrator, |1996))
Boosting

(Freund and Schapire| |1996))
Random subspaces

(Hol 11998)

Bagging of subspaces

(Panov and DZeroski, 2007)
Neural networks ensemble
(Hansen and Salamon|, 1990))
Randomized FOIL

(Ali and Pazzani, 1996))
Randomized C4.5

(Dietterich, [2000b))

Extra-Trees ensemble

(Geurts et all, 2006a))

Vv

U U

< <O <

Using the first technique, the ensemble is constructed by learning heterogeneous classi-

fiers (such as, decision trees, neural networks, naive Bayes, nearest neighbours, etc). One

can use a voting scheme (Kuncheva, [2004) to combine the predictions of the different

classifiers into a single prediction. However, the most prominent ensemble learning method

that employs this technique uses stacking (DZeroski and Zenko|, 2004, Wolpert|, 1992)).

Stacking combines the classifiers not by a voting scheme, but it learns an additional meta

classifier using the predictions of the base classifiers. The performance of stacking highly

depends on the attributes that are used in the dataset for constructing the meta classifier

and the selection of the learning algorithm for the meta classifier.
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In the second approach, the base classifiers are constructed by manipulating the training
set. This approach is typically used in combination with a weak classifier. A weak classifier
is the one that suffers great changes in its structures with small changes in the training set.
Most typical example of weak classifier is the decision tree classifier (Breiman| [1996a)).

The manipulation of the training set is performed by manipulating the instances or
manipulating the feature spaces or both. The manipulation of the instances is done using
different techniques, such as bootstrapping or boosting. Bootstrapping creates several
bootstrap replicates of the training dataset by random selection with replacement (Berthold
and Hand, 2003)). A classifier is then learned using each of the bootstrap replicates. Most
prominent ensemble learning method that uses bootstraping is Bagging (Breiman), |[1996a)).
Bagging can use any type of classifier as base classifier. However, most often it uses
decision trees.

Raviv and Intrator| (1996)) constructed ensemble of neural networks using bootstrap
replicates of the training set. Additionaly, noise was added to the instances of the bootstrap
replicates. The noised replicates were then used to train the neural networks.

Boosting (Freund and Schapire, 1996) is a cascade procedure. It re-weights the in-
stances of the training set based on the predictions from the previously trained classifier,
thus cerating a chain of classifiers. If an instance was correctly classified, then its weight
is decreased when it is used to train the next classifiefl] The training set with the re-
weighted instances is used to train the next classifier. This provides that the classifiers
are focused on different areas of the instance space when training each classifier. The
procedure iterates until the predictive performance or number of trained classifiers reaches
some user defined threshold.

The manipulation of the feature space is done by random selection of feature sub-
spaces from the original feature space. Each of the base classifiers is then learned using a
different feature sub-space. Most widely used ensemble learning method that manipulates
the feature space is the Random Subspaces Method (Hol 1998). This approach is expected
to perform well when the data have higher dimensionality (i.e., large feature space) and
small number of instances. Also, some redundancy in the feature space can positively
influence the performance of this method.

There are several ensemble learning methods that change both the instance and the
feature space to build an ensemble; here we mention two of them: Bagging of subspaces
(Panov and Dzeroski, 2007)) and Random forests (Breiman, 2001a)). Bagging of subspaces
constructs the base classifiers using both bootstrap replicates of the training set and feature

1The reverse logic when re-weighting the classifiers can be also used: If an instance was miss-classified,
then its weight is increased when it is used to train the next classifier.
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sub-spaces. This method can use any type of classifier as base classifier.

Random forest is the most famous ensemble learning technique and only uses decision
trees as base classifiers. It combines bootstrapping with feature sub-space selection as
follows. It constructs each tree using a bootstrap replica of the training set and at each
node of the tree it considers different (randomly selected) subset of the features. This
method is more ‘time efficient’ (especially when the feature space is big) than the rest of
the ensemble methods. Random forest can also be considered also as a ensemble learning
method that manuipulates the learning algorithm itself.

The manipulation of the learning algorithm is the last ensemble construction approach
that we present here. It constructs the base classifiers by changing the learning algorithm
(e.g., some of its parameters) for each base classifier. There are several ensemble learning
methods that use this approach. One of the earliest ensembles of this type is the one
constructed by |[Hansen and Salamon| (1990) where each base classifier is a neural network
obtained with different initial parameters. Another group of ensemble methods that use
trees and rules as base classifiers perform random selection of a split from the set of
possible splits.

Ali and Pazzani| (1996)) randomized the FOIL rule learning algorithm as follows. First,
all candidate solutions with score at least 80% of the top-ranked candidate are calculated.
Then, the selection of a condition is done using weighted random choice algorithm. |Diet-
terich| (2000b)) has done similar but with C4.5 decision trees as base classifiers. At each
node of a decision tree, the top 20 best ranked tests are calculated. One test is selected
from these ‘test candidates’ randomly (with equal probability) and it used as test at the
given node. |Geurts et al|(2006a)) have proposed the Extra-Tree Ensemble algorithm. For
choosing a test in each internal node, first K attributes are randomly selected and for each
attribute a random split is picked. From the set of tests then the best performing test is
selected and placed at the given node.

Ensemble combination schemes

One of the most important issues of the ensemble learning is the proper combination of the
predictions of the base classifiers into a single prediction (Kittler et al., 1998; Kuncheva,
2004). There are generally two approaches for obtaining a single prediction from an
ensemble: classifier selection and classifier fusion/combination (DZeroski et al., 2009)).
The classifier selection approach first evaluates the performance of each base classifier.
The prediction of the ensemble in that case is the prediction of the best performing
classifier. This approach however can't be regarded as an ensemble method: it uses
one classifier to make a prediction and its performance is limited by the performance of
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the best classifier. The advantages of this approach are that the final classifier is simpler,
understandable and can be executed fast.

The classifier fusion/combination approach combines the predictions of all base clas-
sifiers into an overall prediction of the ensemble. Stacking can be viewed as a classifier
fusion approach: it uses the predictions of the base classifiers to train a meta classifier
which in turn produces the prediction from the ensemble. However, by far most common
method for classifier fusion is by using a voting scheme. There are many different voting
schemes that can be selected based on the task (classification or regression) or based on
the problem at hand. Here, we describe the ones that are most often used in real-world
domains.

Most widely used voting schemes for classification tasks are the majority and probability
distribution vote. The majority voting counts how many of the classifiers predicted a given
class. Each base classifier has a single ‘vote’,i.e. it predicts a single class. The final
prediction of the ensemble is the class with the most ‘votes’, i.e., the class that was most
often predicted by the base classifiers. Additionally, weighted sum of the votes can be
used. This means that the vote from each classifier is weighted by the classifiers overall
performance (such as accuracy, area under the ROC curve, F-measure etc...) or some
more complex weightd!] (Kuncheva,, [2004)). The overall prediction of the ensemble is then
the class with the highest sum.

The probability distribution voting scheme allows the base classifiers to vote with a
probability that an example belongs to a given class. Thus, each base classifier gives its
vote (i.e., probability estimate) for each class separately. At the end, the predicted class is
the one that has highest sum of probabilities from all base classifiers. Again, in a similar way
as for the majority voting scheme, one can weight the votes of the base classifiers by their
overall performance. There are more complex voting schemes but they are seldomly used
by the community. These voting schemes include naive Bayes combination (Domingos
and Pazzani, (1997)), multinomial methods to estimate the posterior probabilities for each
class (e.g., Behavior knowledge space method (Huang and Suen, 1995) and Wernecke's
method (Wernecke, |1992)), probabilistic approximations (Kuncheva, [2004) and singular
value decomposition (i.e. correspondence analysis) (Merz, 1999)).

For the regression tasks, the most widely used scheme for combinining the predictions
of the base classifiers is averaging. This voting scheme is simple: It takes the predictions of
all classifiers and calculates their mean value. This mean value is then used as a prediction
from the ensemble. One can use weights for the predictions of the base classifiers. The
weights, similarly as for classification, can be the performance of the classifires (e.g., corre-

1The weights are in the interval [0, 1].
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lation coefficient, relative root mean squared error, etc...) or some more complex weights
(Kuncheva, 2004]). Other voting schemes for regression (Kittler et al) [1998; Kuncheva,
2004)) include (weighted) median, (weighted) geometric mean, generalized mean, fuzzy
integral, decision templates etc.

Why ensembles are good classifiers?

A necessary condition for an ensemble to perform better than any of its base classifiers is
that the base classifiers are accurate and diverse (Hansen and Salamon, 1990; Hastie and
Tibshirani, |1990). An accurate classifier makes smaller error on unseen instances than
random guessing. Diverse classifiers make different errors on unseen instances (i.e., the
errors of the classifiers are independent). These conditions were regarded as a sufficient
requirement for effective ensemble. However, Kuncheva and Whitaker (2003) have shown
that this is not always the case: not always the classifiers producing independent errors
outperform the ones that produce dependent errors. Actually, there exists a trade-off
between the accuracy and the independence of the base classifiers. Dietterich (2000a));
DZeroski et al|(2009)); Valentini (2003) offer several fundamental reasons and analysis as
to why the ensembles are good classifiers.

First, the learning algorithms are searching for the best classifier in the given space of
classifiers. However, in the real world problems there are only limited quantities of data
available. In this way, the learning algorithm can find several classifiers that are equally
good for the data at hand. By combining them into an ensemble, the algorithm reduces
the risk of choosing the wrong classifier.

Second reason for the success of the ensembles comes from the fact that the learning
algorithms perform some kind of local search and can easily get stuck in a local optima.
So, if an ensemble is constructed with multiple restarts of the search, then the ensemble
can provide better approximation to the real true classifier function.

Sometimes, the true function of the problem under consideration is not available in the
space of possible classifier functions. Thus, combining the multiple different classifiers,
the space of possible classifier functions is expanded and this extended space of classifier
functions can include also the true function.

There are two main theories that explain why the ensembles are successful classifiers.
The first theory considers the ensembles from the view point of large margin classifiers
(Allwein et all 2000, Mason et al., [2000; |Schapire et al., 1997)). According to this theory,
the ensembles enlarge the margins, thus enhancing their generalization capability. The
second theory uses bias-variance decomposition of the error (Breiman, [1996b; |Geman
et al,, |1992; Kong and Dietterich, |1995) to show that the ensemble can reduce the
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variance and the bias. However, | Domingos| (2000) has proved that the margin-based and
bias-variance-based explanations are equivalent.

2.2.2 Predictive clustering

The notion of predictive clustering was first introduced by Blockeel (1998). The predictive
clustering framework unifies two (usually viewed as different) machine learning techniques:
predictive modelling and clustering. The connection point between these techniques are
the machine learning methods that partition the instances into subsets, such as decision
trees and decision rules. These methods can be considered both as predictive and clustering
methods (Langley, 1996)). In particular, the predictive clustering framework regards the
decision tree as a hierarchy of clusters: each node corresponds to a cluster and the top
node contains all instances. Similarly, a decision rule represents a cluster that contains the
instances which it covers.

The benefit of using predictive clustering methods is that, besides the clusters them-
selves, they also provide symbolic descriptions of the constructed clusters. Each node from
the tree (i.e., cluster) can be described with a conjunction of the conditions on the path
from the root node to the given node. The clusters represented by a rule are described
by the rule’s conditions. The difference between the ‘tree’ and ‘rule’ clusters is that the
‘tree’ clusters are ordered in a hierarchy and do not overlap.

Predictive clustering combines predictive modelling and clustering techniques (Blockeel,
1998; Blockeel et al., [1998; |Zenko| 2007)). The task of predictive clustering is to identify
clusters of instances that are close to each other both in target and in the descriptive
space. Figure [2.1] illustrates the tasks of predictive modelling (Figure 2.1fa)), clustering
(Figure [2.1(b)) and predictive clustering (Figure 2.Ij(c)). Note that, Figure presents
the target and the descriptive space as one-dimensional axes for easier interpretation, but
they can be of higher dimensionality.

The clusters that were obtained using the target space only (Figure[2.1f(a)) are homo-
geneous in the target space (the target variables of the instances belonging to the same
cluster have similar values). On the other hand, the clusters obtained using the descriptive
space only (Figure 2.1[(b)) are homogeneous in the descriptive space (the descriptive vari-
ables of the instances belonging to the same cluster have similar values). The predictive
clustering combines these two and produces clusters that are homogeneous both in the
target and in the descriptive space (Figure [2.1}(c)).

Each cluster that is identified by the predictive clustering is associated with a predictive
model. The predictive model makes a prediction for the target space using the descriptive
space for all the instances belonging to that cluster. Typically, the prediction of the model
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Figure 2.1: lllustration of predictive clustering. (a) clustering in the target space, (b)

clustering in the descriptive space and (c) clustering in both target and descriptive space.

Figure taken from Blockeel| (1998); Zenko| (2007).

is the projection of the prototype of the cluster on the target space.

The predictive clustering framework is implemented using decision trees (called pre-
dictive clustering trees) (Blockeel et all [1998; |Struyf and Dzeroski, 2006)) and decision
rules (called predictive clustering rules) (Zenko|, 2007) as predictive models. These two
machine learning methods use some heuristic function to split the instances into clusters.
The heuristic function, in the predictive clustering framework, is based on minimization
of the intra-cluster variance (i.e., maximization of the inter-cluster variance). This means
that the variance and prototype function for performing the clustering of the instances
need to be instantiated depending on the prediction task at hand. So far, the predictive
clustering framework is extended for prediction of multiple continuous variables, prediction
of multiple discrete variables, hierarchical multi-label classification (HMC) and prediction of
time series. The predictive clustering framework is implemented in the Clus systenﬂ (Bloc-
keel and Struyf, 2002 |Kocev et all [2007b; Slavkov et all [2010bj; |Struyf and DZzeroski,
2006; Vens et al., 2008; |Zenko) [2007).

The instantiation of the variance function is done as follows. For predicting multiple
discrete variables, the variance is calculated as average value of the Gini index for each
variable. Also, the variance can be calculated using information gain or entropy (Blockeel
et al., 11998} [Zenko, 2007)). The variance when predicting multiple continuous variables is
calculated using Euclidean distance for each variable. The contribution of each variable
Is normalized, thus, each target variable contributes equally to the overall variance value
(Struyf and DZeroski, [2006; |Zenko, 2007). Moreover, the contribution of each target
variable, both when predicting continuous or discerete variables, to the overall variance

'The Clus system is available for download at http://www.cs.kuleuven.be/~dtai/clus.
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can be weighted thus making the model more fitted for a subset of the target variables.
In the task of HMC, the variance is calculated using weighted Euclidean distance (Vens
et al, [2008). Some other distance measures, such as weighted Jaccard distance, seman-
tic similarity measure etc, can be also used (Aleksovski et all 2009). The variance for
prediction of time series (Slavkov et al., [2010b) is calculated using dynamic time warping
distance (Sakoe and Chiba, |1978) or qualitative distance measure ((Todorovski et al., 2002))
or correlation for time series. The predictive clustering framework can be easily extended
with new variance functions, thus extending it for other prediction tasks.

The prototype function is also appropriately instantiated for each prediction task. The
prototype when predicting multiple continuous variables is the vector of the mean values
of each variable Blockeel et al| (1998)); |Struyf and DzZeroski (2006). Also, median can
be used as a prototype. Moreover, some complex prototype function that weights the
instances can be used to calculate the prototype. In the task for prediction of multiple
discrete variables, the prototype is calculated as the probabilities of the classes for each
target separately. Afterwards, the majority classes per target is easily retrieved (Blockeel
et al, 1998). The prototype in the case of HMCis calculated using average value per
class and then applying some user defined threshold (see Chapter ?? for details). When
predicting time series the prototype is calculated using mean and/or median value. The
both prototypes are reported when all time series have equal length, while only median is
reported when the time series have different lenghts.

The predictive clustering framework offers unifying view over several machine learning
tasks. Proper instantiation of the variance and prototype function enables the framework
to handle a given prediction task. So far, the predictive clustering framework uses only de-
cision trees and decision rules as predictive models. In this thesis, we extend the predictive
clustering framework towards ensemble learning. In particular, we investigate whether an
ensemble of predictive clustering trees improve the performance of a single predictive clus-
tering tree and whether this ensemble outperforms ensembles learned for sub-components
of the target.

2.2.3 The task of predicting structured outputs

The task of predicting structured outputs is gaining more and more attention from the
machine learning reserach community (Bakir et all 2007} Silla and Freitas, |2010). The
methods for predicting structured outputs can be separated in two main groups: local and
global. The local methods decompose the output to its smallest sub-components, con-
struct a classifier/model on each of the sub-components and then combine their outputs
to obtain a structured prediction. The standard, traditionally developed mashine learning
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methods (Berthold and Hand, 2003 Breiman et al., |1984; [Langley, [1996; Mitchell, [1997;
Tan et al} 2005) can be used to construct the classifiers for each sub-componenent.

The global methods, on the other hand, construct only single classifier that predicts the
complete structured output at once (the so-called ‘big-bang” approach (Silla and Freitas|,
2010)). The main advantage of the global approaches is that they are able to exploit
the interdependencies between the sub-componenets of the outputs (given in a form of
constarints or some statistical correlation) (Bakir et al} 2007} Blockeel et al., [2006; |Zenko,
2007)).

The proposed methods for predicting structured outputs typically are ‘computationally
demanding and ill-suited for dealing with large datasets’ (Bakir et al., 2007)). In this thesis,
we propose a global method for predicting structured outputs that has good predictive
performance and is very efficient. We use the predictive clustering framework for both
predicting multiple targets and hierarchical multi—label classification. In the literature,
mainly there are methods that are solving one of these two tasks. Therefore, in the
remainder of this section, we first present the methods that predict multiple target and
then the methods for hirarchical multi—label classification.

Methods for prediction of multiple targets

The task of predicting multiple targets is connected with the ‘multi—task learning” ({Caru-
anal 1997)) and ‘learning to learn’ (Thrun and Pratt, [1998) paradigms. These paradigms
include the task of predicting a variable (continuous or discrete) using multiple input spaces
(i.e., biological data for a disease obtained using different technologies); predicting multi-
ple variables from multiple input spaces and predicting multiple variables from single input
space. We are considering here the last task. Also, the approach we are presenting can
handle two types of outputs/targets: discrete targets (classification) and continuous tar-
gets (regression); while most of the approaches from literature can handle only one type
of targets.

There is extensive empirical work showing that there is an increase in the predictive
performance when the multiple tasks are learned simultaneously as compared to learn-
ing each task separately (for example, see (Baxter, 2000; Ben-David and Borbely, 2008;
Caponnetto et al., [2008; |[Evgeniou et al., |2005) and the references therein).

The key for success of multi—task learning is the ‘relatedness’ between the multiple
tasks. The notion of ‘relatedness’ is differently perceived and defined by the research
community. For example, Ando et al| (2005) assume that all related tasks have some
common hidden structure. In (Greene, 2007)), the relatedness is modeled under the as-
sumption of correlation between the noise for different regression estimates. [Baxter| (2000))
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views the similarity through a model selection criterion, i.e., learning multiple tasks simul-
taneously is beneficial if the tasks share a common optimal hypothesis space. To this
end, a generalized VC-dimension is used for bounding the average empirical error of set of
predictors over a class of tasks.

We present and categorize the related work along four dimensions: statistics, statistical
learning theory, Bayesian theory and kernel learning. To begin with, in statistics, Brown
and Zidek (1980) extend the standard ridge regression to multivariate ridge regression
and Breiman and Friedman| (1997)) propose the curds&whey method, where the relations
between the task are modeled in a post-processing phase. In statistical learning theory, for
handling the multiple tasks, an extension of the VC-dimension and the basic generalization
bounds for single task learning are proposed by Baxter| (2000); Ben-David and Borbely
(2008)).

Most of the work in multi—task learning is done using Bayesian theory (Bakker and
Heskes|, [2003; [Thrun and Pratt, 1998; Wilson et al| 2007)). In this case, simultaneously
with the parameters of the models for each of the tasks, a probabilistic model that captures
the relations between the various tasks is being calculated. Most of these approaches use
hierarchical Bayesian models.

Finally, there are many approaches for multi—task learning using kernel methods. For
example, [Evgeniou et al| (2005) extend the kernel methods to the case of multi—task
learning by using a particular type of kernel (multi-task kernel). The regularized multi—
task learning then becomes equivalent to a single-task learning when such kernel is used.
They show experimentally that the support vector machines with multi-task kernels have
significantly better performance than the ones with single-task kernels. For more details
on kernel methods and SVMs for multi—task learning, we refer the reader to (Argyriou
et all 2008; |Cai and Cherkassky], 2009; |Caponnetto et al., 2008; [Micchelli and Pontll,
2004) and the references therein.

Methods for hierarchical multi—label classification

A number of approaches have been proposed for the task of hierarchical multi—label clas-
sification (Bakir et all 2007)). Silla and Freitas| (2010]) survey and categorize the HMC
approaches based on their characteristics and the application domains. The characteristics
of the approaches they consider as most important are: prediction of single or multiple
paths from the hierarchy, the depth of the predicted class, type of the taxonomy that can
be handled and whether the approach is local (model for each part of the taxonomy) or
global (a model for the whole taxonomy). The most prominent application domain for
these approaches are functional genomics (biology), image classification, text categoriza-
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tion and genre classification.

Here, we present and group some existing approaches based on the learning technique
they use. We group the methods as follows: network based methods, kernel base methods
and decision tree based methods.

The network based approaches predict functions of unannotated genes based on known
functions of genes that are nearby in a functional association network or protein-protein
interaction network (Chen and Xu, 2004). Mostafavi et al.| (2008) calculate per gene
function a composite functional association network from multiple networks derived from
different genomic and proteomic data sources. Since the network base approaches are
based on label propagation, a number of approaches were proposed to combine predictions
of functional networks with with those of a predictive model. |Tian et al| (2008]), for
instance, use logistic regression to combine predictions made by a functional association
network with predictions from a random forest.

Lee et al| (2006)) combine Markov random fields and support vector machines which
are generated for each class separately. They compute diffusion kernels and use them in
kernel logistic regression. |Obozinski et al.| (2008} present a two-step approach in which
SVMs are first learned independently for each class separately (allowing violations of the
hierarchy constraint) and are then reconciliated to enforce the hierarchy constraint. Simi-
larly, Barutcuoglu et al| (2006)) use un-thresholded SVMs learned for each class separately
and then the SVMs are combined using a Bayesian network so that the predictions are
consistent with the hierarchical relationships. (Guan et al|(2008) extend this method to an
ensemble framework. Valentini and Re| (2009)) also propose a hierarchical ensemble method
that uses probabilistic SVMs as base learners and combines the predictions by propagating
the weighted true path rule both top-down and bottom-up through the hierarchy, which
ensures consistency with the hierarchy constraint.

Rousu et al.| (2006]) present a more direct approach that does not require a second
step to make sure that the hierarchy constraint is satisfied. Their approach is based on
a large margin method for structured output prediction which defines a joint feature map
over the input and the output space. Next, it applies a SVM based techniques to learn the
weights of a discriminant function (defined as the dot product of the weights and the joint
feature map). Rousu et al| (2006)) propose a suitable joint feature map and an efficient
way for computing the argmax of the discriminant function (which is the prediction for a
new instance).

The disadvantage of sub-symbolic learning techniques, such as SVMs, is the lack of
interpretability: it is very hard to find out why a SVM assigns certain classes to an example,
especially if a non-linear kernel is used. In contrast to the output of the previously described
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models, decision trees are easily interpreted by a domain expert.

Clare (2003) adapts the well-known decision tree algorithm C4.5 (Quinlan, 1993)) to
cope with the issues introduced by the HMC task. This version of C4.5 (called C4.5H)
uses the sum of entropies of the class variables to select the best split. C4.5H predicts
classes on several levels of the hierarchy, assigning a larger cost to misclassification higher
up in the hierarchy. The resulting tree is then transformed into a set of rules, and the best
rules are selected, based on a significance test on a validation set.

Geurts et al.| (2006b)) present a decision tree based approach related to predictive
clustering trees. They start from a different definition of variance and then kernelize this
variance function. The result is a decision tree induction system that can be applied to
structured output prediction using a method similar to the large margin methods mentioned
above. Therefore, this system could also be used for HMC after defining a suitable kernel.
To this end, an approach similar to that of Rousu et al.| (2006)) could be used.

Blockeel et al| (2002, 2006)) proposed the idea of using predictive clustering trees
(Blockeel et al| 1998) for HMC tasks. This work (Blockeel et al| 2006]) presents the
first thorough empirical comparison between an HMC and SC decision tree method in the
context of tree shaped class hierarchies. |Vens et al.| (2008]) extend the algorithm towards
hierarchies structured as DAGs and show that learning one decision tree for predicting all
classes simultaneously, outperforms learning one tree per class (even if those trees are built
taking into account the hierarchy).
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3 Ensembles for predicting structured outputs

3.1 PCTs for predicting structured outputs

The Predictive Clustering Trees (PCTs) framework sees a decision tree as a hierarchy of
clusters: the top-node corresponds to one cluster containing all data, which is recursively
partitioned into smaller clusters while moving down the tree. The PCT framework is
implemented in the Clus system (Blockeel and Struyf, 2002)E].

PCTs can be induced with a standard ‘top-down induction of decision trees’ (TDIDT)
algorithm (Breiman et al, [1984)). The algorithm is presented in Table [3.1 It takes as
input a set of examples (E) and outputs a tree. The heuristic (h) that is used for selecting
the tests (t) is the reduction in variance caused by partitioning (P) the instances (see
line [4] of BestTest procedure in Table [3.1]). Maximizing the variance reduction maximizes
cluster homogeneity and improves predictive performance.

Table 3.1: The top-down induction algorithm for PCTs.
procedure PCT(E) returns tree  procedure BestTest(E)

1. (t*, h*, P*) = BestTest(E) 1. (t*, h*, P*) = (none, 0, D)
2. if t* # none then 2: for each possible test t do
3 for each E, € P* do 3: P = partition induced by t on E
4 treex = PCT(Ey) 4: h = Var(E) —
5: return D Eer %Var(Ek)

node(t*, |, {tree}) 5: if (h > h*) A Acceptable(t, P)
6: else then
7: return 6: (t*, h*, P*) = (t, h,P)

leaf (Prototype(E)) 7: return (t*, h*, P*)

The main difference between the algorithm for learning PCTs and a standard decision
tree learner (for example, see the C4.5 algorithm proposed by Quinlan (1993)) is that
the former considers the variance function and the prototype function, that computes a
label for each leaf, as parameters that can be instantiated for a given learning task. So

1The Clus system is available for download at http://www.cs.kuleuven.be/~dtai/clus.
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far, the PCTs have been instantiated for the following tasks: multiple targets prediction
(Kocev et al| [2007b; |Struyf and DZeroski, 2006)), hierarchical-multi label classification
(Vens et all [2008) and prediction of time-series (Slavkov et al, 2010b). In this article,
we focus on the first two tasks.

3.1.1 PCTs for predicting multiple continuous variables

The PCTs that are able to predict multiple targets simultaneously are called multiple
targets decision trees (MTDTs). The MTDTs that predict tuple of discrete variables
are called multiple targets classification trees (MTCTs), while the MTDTs that predict
tuple of continuous variables (regression tasks) are called multiple targets regression trees
(MTRTSs). An example of predictive clustering tree for multiple targets regression is shown
in Figure [3.1] The internal nodes of the tree contain tests on the descriptive variables (in
this case, some GIS data) and the leafs store the predictions (in this case, the index of
the condition of the vegetation).

The instantiation of the variance and prototype functions for the multiple targets re-
gression trees is done as follows. The variance is calculated as the sum of the variances of
the target variables, i.e., Var(E) = 3.1, Var(Y;). The variances of the targets are nor-
malized, so each target contributes equally to the overall variance. The prototype function
(calculated at each leaf) returns as a prediction a vector of the mean values of the target
variables. The prediction is calculated using the training instances that belong to the given
leaf.

l NativeTreeProb > 0.31 ]

yes no

LandCover in {1,2,6,7,8, 9}‘ LandCover = 2
yes no yes no
/
GrassProbl Ha_RegionStdDev > 3.386‘ 2.70 5.01 ll empRange > 23'400‘
1.98 4.07
S 7.47 13.93 yes no
PN 3.00 141 P U

1.50 0.22 1.20 4.08 4.27 2.31
1.10 0.18 5.37 13.38 4.06 2.87
4.02 0.70 2.80 5.54 11.31 12.67
2.15 0.43 4.03 3.92
0.49 0.10 2.38 2.}1
2.97 0.61 9.66 7.30
1.58 0.31 4.26 5.10

Figure 3.1: Example of a predictive clustering tree for multiple continuous targets taken
from (Kocev et al,, 2009)). Each of the leafs stores the predictions for the indexes of the
vegetation quality.
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3.1.2 PCTs for predicting multiple discrete variables

The variance function for the multiple targets classification trees is computed as the sum
of the Gini indexes of the target variables, i.e., Var(E) = Z,.T:l Gini(E, Y;). Furthermore,
one can also use the sum of the entropies of class variables as variance function, i.e.,
Var(E) = Z,.T:l Entropy(E, Y;) (this definition has also been used in the context of multi—
label prediction (Clare, 2003)). The prototype function returns a vector of probabilities
that an instance belongs to a given class value for each target variable. Using this prob-
ability, the majority class for each target attribute can be calculated. In addition to the
two aforementioned instantiations of the variance function for classification problems, the
Clus system also implements other variance functions, such as reduced error, information
gain, gain ratio and m-estimate.
The instantiation of multiple targets trees in the Clus system is called Clus-MTDT.

3.1.3 PCTs for hierarchical multi—label classification

Silla and Freitas| (2010)) describe the algorithms for hierarchical classification as 4-tuple
(A, %,,0). In this 4-tuple, A indicates whether the algorithm makes prediction for a
single or multiple paths in the hierarchy, ¥ is the depth of the predicted classes, €2 is the
taxonomy structure of the classes that the algorithm can handle and © is the type of the
algorithm (local or global). Using this categorization, the algorithm we present next can
be described as follows:

e A = multiple path prediction: the algorithm can assign multiple paths or predicted
classes to each instance.

e > = non-mandatory leaf-node prediction: an instance can be labeled with a label at
any level of the taxonomy.

e () = tree or directed acyclic graph: the algorithm can handle both tree-shaped or
DAG hierarchies of classes.

e O = global classifier: the algorithm constructs a single model valid for all classes.

To apply PCTs to the task of hierarchical multi-label classification, the variance and
prototype are defined as follows (Vens et al., 2008).

First, the set of labels of each example is represented as a vector with binary com-
ponents; the /'th component of the vector is 1 if the example belongs to class ¢; and 0
otherwise. It is easily checked that the arithmetic mean of a set of such vectors contains
as /'th component the proportion of examples of the set belonging to class ¢;.
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The variance of a set of examples E is defined as the average squared distance between
each example's class vector (L,) and the set’'s mean class vector (L), i.e.,

> d(Ly, L)?

Var(E) = E

In the HMC context, the similarity at higher levels of the hierarchy is more important
than the similarity at lower levels. To that aim, the distance measure used in the above
formula is a weighted Euclidean distance:

d(Lq, Ly) = \/Z w(c) - (L1 — Loi)?,

where L, ; is the /'th component of the class vector L, of an instance X, and the class
weights w(c) decrease with the depth of the class in the hierarchy. More precisely, w(c) =
wo - avg; {w(p;(c))}, where p;(c) denotes the j'th parent of class ¢ and 0 < wy < 1). For
example, consider the toy class hierarchy shown in Fig[3.2(a,b), and two data examples:
(X1, S1) and (X2, S,) that belong to the classes S; = {c1, ¢, ¢22} (boldface in Fig[3.2(b))
and S, = {c}, respectively. Using a vector representation with consecutive components
representing membership of class ¢1, ¢, .1, ¢ and ¢z, in that order (preorder traversal
of the tree), the distance is calculated as follows:

d(S1,5,) = d(]1,1,0,1,0],[0,1,0,0,0]) = 1/wo + w2.

Note that our definition of w(c) allows the classes to be structured in a directed acyclic
graph (DAG). Fig[3.2(c) depicts an example of DAG structured hierarchy. In general, a
DAG hierarchy can have two interpretations: if an example belongs to a given class c,
then it also belongs to all super-classes of ¢, or it belongs to at least one superclass of c.
Here, we focus on the first case: the multiple inheritance interpretation.

The variance function used for tree-shaped hierarchies uses the weighted Euclidean
distance between the class vectors, where the weight of a class depends on its depth in the
hierarchy. When the hierarchy is a DAG, then the depth of a class is not unique: classes do
not have single path from the top-node (for example see class ¢s in Fig.[3.2(c)). To resolve
this issue, |Vens et al.| (2008]) suggest four aggregation schemes of the possible paths from
the top-node to a given class: average, maximum, minimum and sum. The aggregation

schemes use the observation that w(c) = Wgepfh(c)

can be rewritten as the recursive
relation w(c) = wy-w(par(c)), with par(c) as the parent class of ¢, and the weights of the
top-level classes equal to wy. After an extensive experimental evaluation, Vens et al.| (2008))

recommend to use the average as aggregation function (w(c) = wg - avgi{w(par;(c))}).
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(a) (b) (c)
C1 Ca C3 Cl(l)K C3 (5) C1 Co C3
C2.1 C2.2 C2.1 (3) C2.2(4) Cq Cs

(1)(2)(3)(4)(5)
Ly =11,1,0,1,0]

Ce

Figure 3.2: Toy examples of hierarchies structured as tree and DAG.(a) Class label names
contain information about the position in the hierarchy, e.g., ¢;1 is a subclass of ¢,. (b)
The set of classes {c;, ¢, ¢25}, indicated in bold in the hierarchy, and represented as a
vector. (c) A class hierarchy structured as a DAG. The class ¢ has two parents: ¢; and

Ca.

A classification tree stores in a leaf the majority class, which will be the tree's prediction
for all examples that will arrive in the leaf. In the case of HMC, an example may have
multiple classes, thus the notion of ‘majority class’ does not apply in a straightforward
manner. Instead, the mean L of the class vectors of the examples in the leaf is stored
as prediction. Note that the value for the i-th component of L can be interpreted as the
probability that an example arriving at the given leaf belongs to class c¢;.

The prediction for an example that arrives in the leaf can be obtained by applying a
user defined threshold T on the probability; if the i-th component of L is above T then
the examples belong to the class ¢;. When a PCT is making a prediction it preserves
the hierarchy constraint (the predictions comply to the parent child relationships from the
hierarchy) by choosing the value for the threshold T as follows: 7; < 7; whenever ¢; <;, ¢;.
The threshold is selected depending on the context. The user may set the threshold such
that the resulting classifier has high precision at the cost of lower recall or vice versa, to
maximize F-score, to maximize the interpretability or plausibility of the resulting model etc.
In this work, we use a threshold-independent measure (precision-recall curves) to evaluate
the performance of the models.

Clus-HMC is the instantiation (with the distances and prototypes defined as above) of
the PCT algorithm for hierarchical classification implemented in the Clus system.



30 ENSEMBLES FOR PREDICTING STRUCTURED OUTPUTS

3.2 Ensembles of PCTs for predicting structured outputs

An ensemble is a set of classifiers (called base classifiers) constructed with a given al-
gorithm. Prediction for a new example is obtained by combining the predictions of all
classifiers from the ensemble. The predictions from the classifiers can be combined by
taking the average (for regression tasks) and the majority or probability distribution vote
(for classification tasks), as described in (Bauer and Kohavi, |1999; Breiman| |1996a)), or
by taking more complex aggregation schemes (Kuncheva, 2004)).

To obtain a prediction from the ensemble for predicting structured outputs, we ac-
cordingly extend the voting schemes. For the datasets with multiple continuous targets,
as prediction of the ensemble, we take average of the predictions of the base classifiers.
Also, for the datasets for hierarchical classification we use the average of the predictions
and apply the thresholding described in Chapter ??. We obtain the ensemble predictions
for the datasets with multiple discrete targets using probability distribution voting (as sug-
gested by Bauer and Kohavi (1999))). We use predictive clustering trees as base classifiers
for the ensembles for structured outputs (see line |4 from the Induce_Forest procedure
in Table 3.2)).

A necessary condition for an ensemble to have better predictive performance than
any of its individual members, is that the classifiers are accurate and diverse (Hansen
and Salamon, [1990). An accurate classifier does better than random guessing on new
examples. Two classifiers are diverse if they make different errors on new examples. There
are several ways to introduce diversity: by manipulating the training set (by changing the
weight of the examples (Breiman|, (1996a; [Freund and Schapire, 1996)) or by changing the
attribute values of the examples (Breiman|, 2001b)) or by manipulating the feature space
(Breiman|, | 2001a}; |Ho| (1998))), or by manipulating the learning algorithm itself (Breiman,
2001a} Dietterich, 2000al).

In this paper, we consider two ensemble learning techniques that have primarily been
used in the context of decision trees: bagging and random forests.

3.2.1 Bagging

Bagging (Breiman) [1996a)) is an ensemble method that constructs the different classifiers
by making bootstrap replicates of the training set and using each of these replicates to
construct a classifier. Each bootstrap sample is obtained by randomly sampling train-
ing instances, with replacement, from the original training set, until an equal number of
instances as in the training set is obtained.
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Table 3.2: Random forest induction algorithm, where E is the set of the training examples,
k is the number of trees in the forest, and (D) is the size of the feature subset that is

considered at each node during tree construction.
procedure Induce Forest(E, k, f(D)) returns Forest

cF=10

: fori=1to k do

E; = sample_with_replacement(E)
T, = PCT(E;, f(D))

F=FUT,

return F

AN S A

X

Breiman| (1996a)) has shown that bagging can give substantial gains in predictive per-
formance, when applied to an unstable learner (i.e., a learner for which small changes in the
training set result in large changes in the predictions), such as classification and regression

tree learners.

3.2.2 Random forests

A random forest (Breiman|, 2001a) is an ensemble of trees, where diversity among the
predictors is obtained by using bootstrap replicates as in bagging, and additionally by
changing the feature set during learning. More precisely, at each node in the decision
trees, a random subset of the input attributes is taken, and the best feature is selected
from this subset. The number of attributes that are retained is given by a function f
of the total number of input attributes D (e.q., f(D) = 1, f(D) = |vVD + 1], f(D) =
|/og2(D)+1] ...). Bysetting f(D) = D, we obtain the bagging procedure. The algorithm
for learning a random forest using PCTs as base classifiers is presented in Table [3.2]

3.3 Local prediction of structured outputs with PCTs and
ensembles

The presented structured output learning algorithms (Clus-MTDT and Clus-HMC) belong
to the group of approaches known as ‘big-bang’ or global classifiers (Silla and Freitas,
2010)). The global classifier has two main advantages over the local classifiers (i.e., clas-
sifiers per target or per node (or level) in the hierarchy): (1) the total size of the global
model is considerably smaller than the total size of all local classifiers and (2) the depen-
dencies between the classes can be taken into account while learning the classifier and
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these dependencies can be explicated (Blockeel et all 2002} Vens et al, [2008)).

In Chapter 4] we compare global models to local models. Clus-MTDT trees will be
compared to a set of PCTs constructed by Clus, one per target variable. We could use
the same approach to compare Clus-HMC trees to a set of single label trees, however,
in (Vens et al,, [2008) we have proposed a hierarchical single label classification (HSLC)
variant, which has better predictive performance, smaller total model size, and faster
induction times than the non-hierarchical single-label algorithm.

The corresponding Clus-HSC algorithm constructs a classifier for each edge (connecting
a class ¢ with a parent class par(c)) in the hierarchy. The corresponding tree predicts
membership to class ¢, using the instances that belong to par(c). Construction of this
type of tree requires less instances: only the instances that are labeled with the par(c) are
used for training. Thus, the instances labeled with class ¢ become the positive instances,
while the other instances (the ones that are labeled with par(c), but not with ¢) become
negative.

The resulting HSLC tree predicts the conditional probability P(c|par(c)). A new
instance is predicted by recursive application of the product rule P(c) = min; P(c|par;(c))-
P(parj(c)) (with pari(c) denoting the jth parent of c in case of a DAG), starting from
the tree for a top-level class. Again, the probabilities are thresholded to obtain the set of
predicted classes. To satisfy the hierarchy constraint, the threshold 7 should be chosen as
in the case of Clus-HMC. For a detailed description of Clus-HSC, see (Vens et al., 2008)).
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4 Experimental design and results

4.1 Experimental design

In this section, we describe the procedure for experimental evaluation of the proposed
ensemble methods for predicting structured outputs. First, we state the questions we
consider. Next, we present the datasets we use to evaluate the algorithms, and then the
evaluation measures we applied. In the last subsection, we give the parameter instantiations
for the algorithms and the statistical tests that we used.

4.1.1 Experimental questions

Given the methodology from Chapters ?? and [3 we construct several types of trees
and ensembles. First, we construct PCTs that predict sub-components of the structured
output: a separate tree for each variable from the target tuple (Clus-ST) and a separate
tree for each hierarchy edge (Clus-HSC). Then, we learn PCTs that predict the structured
output simultaneously: a tree for the whole target tuple (Clus-MT) and a tree for the whole
hierarchy (Clus-HMC). Similarly, we are constructing the ensemble classifiers (Clus-Ens-
ST, Clus-Ens-HSC, Clus-Ens-MT, Clus-Ens-HMC) for both bagging and random forests.
We consider the following questions:

e Predictive performance: Can exploitation of the structure of the output lift the
predictive performance of an ensemble?

e (Convergence: Does the performance of the ensembles for structured outputs con-
verge/saturate faster than ensembles that predict sub-components of the output?

e Suitability: Which ensemble method should be preffered given the size of the datasets
in terms of number of instances, descriptive attributes and size fo the structured
output?

e [Efficiency: How much can the learning process benefit, in terms of time and memory
consumption, from the ensembles for structured outputs as compared to the basic
ensembles?
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We compare the algorithms that predict the complete structured output (Clus-MT,
Clus-HMC, Clus-Ens-MT, Clus-Ens-HMC) to the algorithms that predict the components
of the structured outputs separately (Clus-ST, Clus-HSC, Clus-Ens-ST, Clus-Ens-HSC).
First, we inspect the predictive performance of the algorithms. Then, we focus only on
the ensembles and examine the predictive performance at different ensemble sizes (i.e.,
we construct ‘saturation curves’). Our intention is to check if the performance of the
ensembles for structured outputs saturates with smaller number of trees as compared to
the saturation of the ensembles that predict the sub-components of the structured outputs.
At the end, we compare the running times and the sizes of the obtained models.

4.1.2 Data description

In this subsection, we present the datasets that were used to evaluate the predictive
performance of the ensembles. The datasets are divided in three groups of datasets based
on the type of their target concepts: multiple continuous targets datasets (regression),
multiple discrete targets datasets (classification) and hierarchical multi-label classification
datasets (HMC). Statistics of the used datasets are presented in Tables [4.1] [4.2] and [4.3]
respectively.

Table 4.1: Properties of the datasets with multiple continuous targets (regression
datasets); N is number of instances, D/C number of descriptive attributes (dis-
crete/continuous), and T number of target attributes.

Name of dataset N D—/C T
Collembola (Kampichler et a/.T2000) 393 8/39 3
EDM-1 (Karali¢, [1995) 154  0/16 2
Forestry—Kras (Stojanova et all 2010)) 60607 0/160 11
Forestry—Slivnica-LandSat (Stojanoval 2009) 6218 0/150 2
Forestry=Slivnica-IRS (Stojanova, 2009) 2731  0/29 2
Forestry=Slivnica-SPOT (Stojanova, 2009)) 2731  0/49 2
Sigmea real (Dems3ar et al., [2005) 817 0/4 2
Soil quality 1 (Dems3ar et al., [2006) 1944 0/142 3
Solar—flare 1 (Asuncion and Newman|, 2007]) 323 10/0 3
Solar—flare 2 (Asuncion and Newman| 2007]) 1066 10/0 3
Vegetation Clustering (Gjorgjioski et all, 2008 29679 0/65 11
Vegetation Condition (Kocev et al, [2009)) 16967 1/39 7
Water quality (Blockeeel et al., [1999; |DZeroski et al, 2000) 1060 0/16 14
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Table 4.2: Properties of the datasets with multiple discrete targets (classification
datasets); N is number of instances, D/C number of descriptive attributes (dis-
crete/continuous), and T number of target attributes.

Name of dataset N D—/C T
EDM-1 (Karali¢, [1995) 154 0/16 2
Emotions ({Trohidis et al., [2008) 593 0/72 6
Mediana (Skrjanc et al., 2001)) 7953 21/58 5
Scene (Boutell et al., 2004]) 2407 0/294 6
Sigmea real (Demgar et al., [2005)) 817 0/4 2
Solar—flare 1 (Asuncion and Newman| 2007)) 323 10/0 3
Thyroid (Asuncion and Newman|, 2007)) 9172  22/7 7
Water quality (Blockeeel et al., 1999 |[DZeroski et al, |2000) 1060 0/16 14
Yeast ([Elisseeff and Weston, 2001)) 2417 0/103 14

The datasets with multiple continuous targets (13 in total, see Table are mainly
from the domain of ecological modelling. While the datasets with multiple discrete tar-
gets (9 in total, see Table are from various domains: ecological modelling (Sig-
mea Real and Water Quality), biological (Yeast), multimedia (Scene and Emotions),
media space (Mediana) etc. Datasets that have classes organized in a hierarchy come
from various domains, such as: biology (Expression-FunCat, SCOP-GO, Yeast-GO and
Sequence-FunCat), text classification (Enron, Reuters and WIPQO) and image annota-
tion/classification (ImCLEFO7D, ImCLEFO7A and Diatoms). Hence, we use 10 datasets
from 3 domains (see Table [4.3)). Note that two datasets from the biological domain have
a hierarchy organized as a DAG (they have GO in the dataset name), and the remain-
ing datasets have tree-shaped hierarchies. For more details on the datasets, we refer the
reader to the referenced literature.

4.1.3 Evaluation measures

Empirical evaluation is the most widely used approach for assessment of the performance of
machine learning algorithms. A performance of a machine learning algorithm is computed
using some evaluation measure. The different machine learning tasks, we previously de-
scribed, use ‘task-specific’ evaluation measures. We first describe the evaluation measures
for multiple continuous targets (regression), then for multiple discrete targets (classifica-
tion) and at the end for hierarchical classification.

For assessment of the algorithm’s performance on the task of predicting multiple con-
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Table 4.3: Properties of the datasets with hierarchical targets; N /N;e is number of
instances in the training dataset and the testing dataset, D/C is number of descriptive
attributes (discrete/continuous), |H| is number of classes in the hierarchy, H4 is maximal
depth of the classes in the hierarchy, £ is average number of labels per example, and L, is

average number of leaf labels per example.

Domain Ner/Nie D/C H| Hy L L
ImCLEFO7D(Dimitrovski et a/.,72008) 10000/1006 0/80 46 3.0 3.0 1.0
ImCLEFO7A(Dimitrovski et al|, [2008) 10000/1006 0/80 % 3.0 30 1.0
Diatoms (ADIAC, [2008) 2065/1054  0/371 377 3.0 1.95 0.94
Enron (Klimt and Yang, 2004) 988/660 0/1001 54 3.0 530 2.84
Reuters (Lewis et all 2004 3000/3000 0/47236 100 4.0 320 1.20
WIPO (Rousu et al., [2006)) 1352/358 0/74435 183 40 4.0 1.0
Expression—FunCat ((Clare, 2003)) 2494 /1291 4/547 475 4.0 8.87 2.29
SCOP-GO (Clare|, [2003)) 6507 /3336 0/2003 523 55 6.26 0.95
Sequence—FunCat (/Clare, [2003) 2455/1264  2/4448 244 4.0 3.35 0.94
Yeast—-GO (Barutcuoglu et al} 2006) 2310/1155 5588/342 133 6.3 5.74 0.66

tinuous targets (regression), we employed three well known measures: correlation coef-
ficient (CC), root mean squared error (RMSE) and relative root mean squared error
(RRMSE). For each of this measure we performed statistical analysis and constructed
saturation curves. We present only the results using RRMSE, but same conclusions hold
if the other two measures are used.

The appropriate usage of evaluation measures in the case of classification algorithms
is not as clear as in the case of regression. |Sokolova and Lapalme] (2009) performed a
systematic analysis of twenty four performance measures that can be used in a classification
context. They conclude that evaluation measure for classification algorithms should be
chosen based on the application domain.

In our study, we used seven evaluation measures for classification: accuracy, precision,
recall, F-score, Matthews correlation coefficient, balanced accuracy (also known as Area
Under the Curve) and discriminant power. We used two averaging approaches to adapt
these measures for multi-class problems: micro and macro averaging (note that averaging
is not needed for accuracy). More about these measures can be found in Sokolova et al.
(2006)). Since the goal of this study is not to assess the evaluation measures themselves, we
_ o Precision-Recall

ProciaoniRasay). However, the conclusions
of the evaluation of the performance of the algorithms using the other measures concur

present here only micro average F-score (F
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with the ones presented here.

In the case of hierarchical classification, we evaluate the algorithms using the Area
Under the Precision-Recall Curve (AUPRC), and in particular, the Area Under the Average
Precision-Recall Curve (AUPRC) as suggested by |Vens et al| (2008). A Precision-Recall
curve plots the precision of a classifier as a function of its recall. The points in the PR
space are obtained by varying the value for the threshold 7 from 0 to 1 with step 0.02.
The precision and recall are micro averaged for all classes from the hierarchy.

In these domains, the positive examples for a given class are only few as compared to
the negative ones. The PR evaluation of these algorithms is most suitable in this context
because typically we are more interested in recognizing the positive examples (i.e., that an
example belongs to a given class), rather than correctly predicting negative instances.

Finally, we compare the algorithms by their efficiency in terms of time consumption
and size of the models. We measured the processor time needed to construct the models:
in the case of predicting the sub-components of the structure, we sum the times needed
to construct the separate models. In a similar way, we calculated the sizes of the models
as total number of nodes (internal nodes and leafs). The experiments for multiple targets
were performed on a server running Linux, with two Intel Quad-Core Processors©@2.5GHz
and 64GB of RAM. The experiments for the hierarchical classification were run on a cluster
of AMD Opteron processors (1.8 — 2.4GHz, > 2GB RAM).

4.1.4 Experimental setup

Here, we first state the parameter instantiation of the algorithms for constructing the
single trees and the ensembles for all types of targets. Then, we describe how we assessed
the statistical significance of the differences in the performances of the algorithms.

The single trees for all types of targets are obtained using ‘F-test pruning’. This pruning
procedure uses exact Fisher's test to check whether a given test from an internal node
in the tree produces a statistically significant reduction in variance at a given significance
level. If there is no test that can satisfy this, then the node is converted to a leaf. For
this, we selected an optimal significance level using internal 3-fold cross validation, from
the following values: 0.125, 0.1, 0.05, 0.01, 0.005 and 0.001.

The construction of the ensembles requires a size of the ensemble as an input parameter
(i.e., number of base classifiers to be constructed). We constructed ensembles with 10,
25, 50, 75 and 100 base classifiers for both multiple targets and hierarchical classification
datasets. Additionally, for the datasets with multiple continuous targets we constructed
ensembles with 150 and 250 base classifiers, and for the datasets with multiple discrete
targets, ensembles with 250, 500 and 1000 base classifiers.
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The random forests algorithm, as input requires the size of the feature subset that
Is randomly selected at each node. For the multiple targets datasets, we apply the log-
arithmic function of the descriptive attributes |log, DescriptiveAttributes| + 1, which
is recommended by Breiman| (2001a)). For the hierarchical classification, we used |0.1 -
DescriptiveAttributes| + 1, since the feature space of some of these datasets is big
(several thousands of features) and the logarithmic function is under-sampling the feature
space.

The predictive performance of the algorithms on the datasets with multiple targets is
estimated by 10-fold cross-validation. The hierarchical datasets were previously divided (by
the data providers) on a train and a test set. Thus, we estimate the predictive performance
of the algorithms on the test set.

We adopt the recommendations by Demsar (2006)) for the statistical evaluation of
the obtained results. We use Friedman test (Friedman, [1940)) for statistical significance
with the correction from |Iman and Davenport (1980). Afterwards, to check where the
statistically significant differences appear (between which algorithms), we use Nemenyi
post-hoc test (Nemenyi, 1963]). We present the results from the statistical analysis with

‘average ranks diagrams’ (see Figures [4.2] [4.5] [4.6] [4.8] and [4.9).

4.2 Results and discussion

The results from the experiments we performed can be analyzed along several dimensions.
First, we present the saturation curves of the ensemble methods (for both predicting the
structured output and the sub-components). Then, we compare models that predict the
complete structured output vs. models that predict sub-components of the structured
output. Next, we can compare the single trees vs. ensembles of trees. At the end, we
evaluate the algorithms by their efficiency in terms of running time and model size. We
do these comparisons for each task separately: predicting multiple continuous targets,
predicting multiple discrete targets and hierarchical multi—label classification.

4.2.1 Multiple continuous targets

The results from the experiments for evaluation of the algorithms for the task of prediction
of multiple continuous targets are presented in Figures [4.1] and [4.3] First, we discuss
the results with respect to the saturation curves (Figure [4.1)). Next, we discuss the
statistical evaluation of the performances (Figure . At the end, we compare the
efficiency of the algorithms (Figure |4.3)).
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In Figure [4.1] we present the saturation curves for the ensemble methods. Although
these curves are averaged across all target variables for a given dataset, they still provide
useful insight on the performance of the algorithms. The random forests perform better
than bagging, both when predicting the multiple targets simultaneously or separately, on
the ‘larger’ datasets (the ones with more than 10000 examples), such as Forestry-Kras
from Figure H(a). On the other hand, the bagging outperforms the random forests, in
both scenarios, on the ‘medium’ datasets (that contain between 1000 and 10000 exam-
ples), such as Soil quality from Figure [4.1|(b). For the ‘small’ datasets (the ones with less
than 1000 examples and less than 10 descriptive attributes), the curves are variable and it
is not conclusive which algorithm should be preferred. Also, there is no clear connection
between the performance of the algorithms and the number of target variables (i.e., the
size of the target tuple). However, on majority of all datasets the ensembles for predic-
tion of multiple targets simultaneously perform better than the ensembles that predict the
targets separately.
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Figure 4.1: Saturation curves for the prediction of multiple continuous targets. These
curves are obtained by averaging the RRMS E values for all of the target variables. Smaller
RRMSE values mean better predictive performance. The algorithms are abbreviated as
follows: random forests for prediction of multiple targets — MTRF, random forests for
prediction of single target — ST RF, bagging for prediction of multiple targets — MT Bag
and bagging for prediction of single target — ST Bag.

The averaged saturation curve for all datasets is shown in Figure [4.I(c). This curve
shows that the ensembles for predicting multiple targets simultaneously perform better
than the ones predicting the targets separately across all ensemble sizes (except with
100 trees where random forests for multiple targets is worse than random forests for
single target). To test which differences in performance are statistically significant, we
perform Friedman tests. First, we check at which ensemble size the difference is no longer
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statistically significant for each method separately. In this case, for all algorithms, the
difference is not statistically significant after 50 trees are added. Thus, we compare the
performance of the algorithms after 50 trees and after 250 trees (the maximal number of
trees).
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(a) ensemble with 50 trees (b) ensemble with 250 trees

Figure 4.2: Average rank diagrams at significance level of 0.05 for prediction of multiple
continuous targets. The difference in the performance of the algorithms connected with
a red line are not statistically significant. The numbers after the name of the algorithm
indicate its average rank. The abbreviations are same as in Figure with addition of
predicting clustering tree for multiple continuous targets — MT RT and predictive clustering
tree for single continuous target — STRT.

The statistical tests in Figure show that the difference in the performance of
the ensemble methods is not statistically significant at the level of 0.05. However, best
performing method is random forests for predicting multiple targets and worst performing
method is bagging for predicting the multiple targets separately. |If more trees are added,
the ordering of the algorithms does not change (only small changes in the average ranks).
The difference in performance of all ensembles and the single trees is statistically significant
at 0.05. The single trees for predicting multiple targets simultaneously are better than
single trees for predicting the multiple targets separately.

Finally, we compare the algorithms by their running time and the size of the models
when the ensembles consist of 50 trees (see Figure [4.3]). The statistical tests show that
both random forests and bagging for predicting multiple targets simultaneously outper-
form significantly, in terms of size of models, the ensembles that predict multiple targets
separately. In terms of time efficiency, random forests for multiple targets outperform sig-
nificantly both ensemble methods for predicting the targets separately. Also, bagging for
multiple targets are significantly faster to construct than bagging for separate prediction
of the targets.

Let us further examine the speed-up and the size of the models ratios. Random
forests for predicting multiple targets simultaneously are ~3.3 times faster to construct
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and the models are ~3.75 times smaller than random forests for predicting single target.
In addition, they are ~3.7 times faster to construct and have ~1.14 times smaller models
than bagging for multiple targets. Furthermore, bagging for predicting multiple targets are
~3 times faster and ~3.6 times smaller than bagging for predicting single target.
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Figure 4.3: Efficiency of the ensembles for prediction of multiple continuous targets. The
size of the ensembles is 50 trees.

To summarize, ensembles for predicting multiple continuous targets simultaneously
perform better than ensembles predicting multiple targets separately. While the difference
in predictive performance is not statistically significant, the differences in efficiency are.
Random forests have higher predictive performance than bagging on the larger datasets,
while on the medium datasets bagging ensembles are better. In terms of efficiency, the
algorithms that predict the multiple targets simultaneously (especially the random forests)
should be always preferred.

4.2.2 Multiple discrete targets

The performance of the algorithms for multi-class classification can be assessed using
different measures, some of which we listed in Section [4.1.3] The evaluation measure
should be selected based on the application domain (Sokolova and Lapalme, [2009)). In our
study, we used micro weighted averaged F-score (ufF — score): reasonable compromise
between all measures, since it combines the precision and the recall values.

The results for algorithms that predict multiple discrete targets are presented in Fig-
ures [4.4], and [4.6] In Figure [4.4] we present the saturation curves. Next, we discuss
the statistical analysis of the results (Figure [4.5]). At the end, we compare the algorithms
by their efficiency (Figure |4.6)).

In Figure[4.4] we present three saturation curves for the four ensemble methods. Same
as for predicting multiple continuous targets, these values are averaged from all target
variables for a given dataset (and in Figure [4.4|c) averaged across all datasets). These
saturation curves offer us several insights to the performance of the ensembles on the
task of predicting multiple discrete targets. The saturation curves for the smaller datasets
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(ones with less than 1000 examples) are variable (for instance, see the saturation curve
for the Sigmea real dataset shown in Figure [4.4(a)). However, we can note that on the
smaller ensemble sizes the ensembles that predict the targets simultaneously outperform
the ensembles that predict the targets separately.

The saturation curves for the larger datasets (with more than 1000 examples) are more
stable and we can observe two types of behavior: (1) on the datasets with less than 30
descriptive variables, the ensembles for predicting the targets simultaneously outperform
the ensembles that predict the targets separately (for instance, see the saturation curve
for the Water quality dataset shown in Figure [4.4(b)); (2) on the datasets with more than
30 descriptive variables, the ensembles for predicting the targets simultaneously are better
when the size of the ensemble is small than the ensembles that predict the multiple targets
separately, while on the ensembles with bigger sizes the situation is reversed. Similar
behavior can be also noticed on the Overall saturation curve (Figure [4.4(c)). Finally,
same as for the multiple continuous targets, there is no connection between the predictive
performance of the algorithms and the size of the target tuple.
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Figure 4.4: Saturation curves for the prediction of multiple discrete targets. These curves
are obtained by averaging the uF — score values for all of the target variables. Bigger
wF — score values mean better predictive performance. The algorithms are abbreviated
as follows: random forests for prediction of multiple targets — MT RF, random forests for
prediction of single target — ST RF, bagging for prediction of multiple targets — MT Bag
and bagging for prediction of single target — ST Bag.

The results from the statistical analysis of the predictive performance (uF — score)
are shown in Figure [4.5] First, for each ensemble method separately, we check at which
ensemble size the predictive performance is no longer statistically significant. The ensem-
bles for predicting the multiple targets simultaneously saturate with 50 trees added, while
the ensembles for separate prediction of the targets require more trees: 75 for the random
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forests and 250 for bagging. After this, we select ensembles sizes of 50 (Figure [4.5(a))
and 1000 (maximal number of trees, Figure [4.5(b)) and compare the algorithms.

The statistical tests reveal that there is no statistically significant difference in the
performance of the ensemble methods and that all ensemble methods perform statistically
significantly better than single tree. When the ensembles have 50 trees, the bagging for
predicting the multiple targets simultaneously is best performing method (average rank
2.59) and the remaining methods have smaller and very close to each other average ranks
(ranging from 3.0 to 3.11) with random forest for separate prediction of the targets having
the smallest average rank. The situation is similar with 1000 trees, with the difference
that now random forests for simultaneous prediction of the targets are worst performing
method (average rank 3.26) and the other three methods have very close average ranks
(from 2.71 to 2.75) with random forest for separate prediction being the best performing
method. This just confirms the findings with the saturation curves: adding of trees helps
more to the ensembles that predict the targets separately than the ensembles that predict
the targets simultaneously.

Critical Distance = 0.981675 Critical Distance = 0.981675
—

MTBag@2.59 STRF@2.71

STBag@3.0 MTBag@2.73

STCT@4.90 MTRF@3.07 STCT@4.97 STBag@2.75
MTCT@4.33 STRF@3.11 MTCT@4.58 MTRF@3.26
(a) ensemble with 50 trees (b) ensemble with 1000 trees

Figure 4.5: Average ranks diagrams at significance level of 0.05 for prediction of multiple
discrete targets. The difference in the performance of the algorithms connected with a
red line are not statistically significant. The numbers after the name of the algorithm
indicate its average rank. The abbreviations are same as in Figure with addition of
predicting clustering tree for multiple discrete targets — MT CT and predictive clustering
tree for single discrete target — STCT.

At the end, we compare the ensembles by their efficiency: running times (Figure[4.6{(a))
and size of models (Figure [4.6|(b)). Concerning the running time, we can only state that
the random forests for predicting multiple targets simultaneously significantly outperform
the bagging for predicting the multiple targets separately. As for the size of the models,
we can note the following: (1) the bagging for predicting multiple targets simultaneously
significantly outperforms both ensemble methods for separate prediction of the targets and
(2) random forests for predicting multiple targets simultaneously significantly outperform



44 EXPERIMENTAL DESIGN AND RESULTS

the random forests for separate prediction of the targets.
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(a) Time efficiency (b) Size of the models

Figure 4.6: Efficiency of the ensembles for prediction of multiple discrete targets. The
size of the ensembles is 50 trees.

We further investigate the running times and size of models ratios. The random forests
for predicting multiple targets simultaneously are ~2.3 times faster to construct and have
~2.1 times smaller models than the random forests for separate prediction of the targets.
Also, they are ~5.6 times faster and have ~1.14 times bigger models than bagging for
predicting multiple targets simultaneously. Furthermore, bagging for predicting multiple
targets simultaneously is ~2.5 times faster and have ~1.9 times smaller models than
bagging for separate prediction of multiple targets.

In summary, the predictive performances of the ensemble methods for predicting multi-
ple targets simultaneously and the ones for separate prediction are not statistically signif-
icantly different. However, the ensemble methods for predicting multiple targets simulta-
neously are better when the number of trees in the ensemble is smaller. Furthermore, they
should be preferred if the efficiency of the classifier is an issue. The ensemble methods
for simultaneous prediction are faster (especially random forests) and smaller (especially
bagging) than the ensemble methods for separate predictions.

4.2.3 Hierarchical multi—label classification

In this subsection, we present the results for the task of hierarchical classification in a
similar way as for the task of predicting multiple targets. We asses the performance of the
algorithms using the area under the average precision-recall curve (AUPRC) as suggested
by Vens et al| (2008)). The results are presented with saturation curves (Figure |4.7)),
statistical tests (Figure and efficiency evaluation (Figure [4.9)).

The saturation curves for the different domains (functional genomics, image annotation
and text classification) show different behavior, thus we discuss the curves for each domain
separately. On the domain of functional genomics, the ensembles for HMC outperform
the ensembles for HSC when the target hierarchy is organized as DAG (for instance, see
the saturation curve for the SCOP-GO dataset in Figure [4.7(a)). Moreover, the random
forests for HMC are best performing method. The ensembles for HMC also outperform
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Figure 4.7: Saturation curves for hierarchical multi—label classification. These curves are
obtained by averaging the AUPRC values for all of the target variables. Bigger AUPRC
values mean better predictive performance. The algorithms are abbreviated as follows:
random forests for hierarchical multi—label classification — HMCRF, random forests for
hierarchical single-label classification — HSCRF, bagging for hierarchical multi—label clas-
sification — HMCBag and bagging for hierarchical single-label classification — HSCBag.

the ensembles for HSC on the domain of image annotation/classification (for instance, see
the saturation curve for the ImCLEF07D dataset in Figure [4.7(b)). On these datasets,
the bagging for HMC is the best performing method. The situation is different on the
text classification domains. Here, the ensembles of HSC outperform the ensembles of
HMC. We hypothesize that this is because of the large number of descriptive variables.
The performance of ensembles of HMC on text classification datasets should be further
investigated.

Next, we discuss the results with respect of the statistics of the datasets. First, on
the datasets that have on average more than 5 labels per instance (£ > 5), random
forests perform better than bagging in both cases (HMC and HSC). On the datasets with
less than 3 labels per instance (£ < 3), bagging for HMC is better than random forests
for HMC. Next, on the datasets with bigger hierarchies (|| > 300), the ensembles
for HMC outperform the ensembles of HSC. On the datasets with smaller hierarchies
(JH] < 100) the random forests perform better than bagging. The ensembles for HMC
also outperform the ensembles for HSC when the number of descriptive attributes is smaller
than 1000. There are no clear preferences for some ensemble method on the datasets
grouped regarding the number of instances available for training.

The overall saturation curve (Figure [4.7c)) shows the performance of the algorithms
averaged over the datasets from the three domains. Best performing method is random
forest for HMC and worst performing method is bagging for HSC. To further investigate the
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differences in the performances, we perform statistical analysis for each method separately
for all ensemble sizes. We do this to check when adding of trees in the ensemble does not
statistically significantly improves the predictive performance. The ensembles for HMC
and random forests for HSC saturate after 50 trees are added in the ensemble, while
bagging for HSC saturates after only 25 trees. We further compare the performance of
the ensembles at 50 trees and 100 trees (results presented in Figure [4.8)).

The average ranks diagram for the ensembles with 50 trees (Figure [4.8|(a)) shows
that the performance of the ensembles is not statistically significantly different. Note
that the best performing method is random forests for HSC (average rank 2.25) and
worst performing method is bagging for HSC (average rank 2.85). Similarly, there is no
statistically significant difference in performance when the ensembles contain 100 trees.
Again, bagging for HSC (average rank 2.9) is the worst performing method, but bagging for
HMC (average rank 2.2) is now the best performing method. In both cases, the ensemble
methods significantly outperform a single predictive clustering trees.
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Figure 4.8: Average ranks diagrams at significance level of 0.05 for hierarchical multi—
label classification. The difference in the performance of the algorithms connected with
a red line are not statistically significant. The numbers after the name of the algorithm
indicate its average rank. The abbreviations are same as in Figure with addition
of predicting clustering tree for hierarchical multi—label classification — HMCPCT and
predictive clustering tree for hierarchical single—label classification — HSCPCT .

Finally, we compare the algorithms by their efficiency when they contain 50 trees
(running times in Figure [4.9((a) and size of the models in Figure [4.9(b)). The random
forests for HMC are statistically significantly faster than both bagging for HMC and HSC,
while random forests for HSC are significantly faster than bagging for HSC. The models of
bagging of HMC are statistically significantly smaller than the models from the ensembles
for HSC. The models of random forests for HMC are statistically significantly smaller than
the models from the random forests for HSC.

We further investigate the speed up and size of the models ratios. The random forests
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for HMC are ~6.4 times faster and have ~4.6 times smaller models than the random
forests for HSC. Similarly, bagging for HMC is ~6.4 times faster and have ~3.2 times
smaller models than bagging for HSC. Random forests for HMC are ~7.8 times faster and
~1.1 times smaller models than bagging for HMC. All in all, in terms of efficiency, random
forests for HMC outperform the rest of the ensemble methods.
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Figure 4.9: Efficiency of the ensembles for hierarchical multi—label classifications. The size
of the ensembles is 50 trees.

To summarize, the difference in predictive performance between ensembles for HMC
and ensembles for HSC is not statistically significant. However, on several datasets, the
ensembles for HMC outperform the ensembles for HSC. Moreover, the ensembles for HMC
are more efficient than the ensembles for HSC. Finally, the ensembles for HMC lift the
predictive performance of a single predictive clustering tree.
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5 Further developments

In the previous chapters, we presented an extension for predicting structured outputs of the
most widely used ensemble techniques in context of decision trees: bagging and random
forests. The extension was done for three typical types of structured outputs: multiple
continuous variables, multiple discrete variables and multiple labels that are organized into
a hierarchy.

In this chapter, we further discuss the extensions of the proposed approach for addi-
tional types of structured outputs (such as, time series, tuples of time series or hierarchies)
and for an arbitrary type of structured output. Also, we present additional distances for
hierarchical multi-label classification and their influence on the predictive performance of
the algorithms. Next, we show how the random forests mechanism can be exploited to
obtain feature ranking for a stuctured output and we present a case study for biomarker
discovery.

The last section of this chapter outlines a novel algorithm for ensemble learning that
is based on beam search. The ensemble obtained in this way has two properties: in-
terpretability and controled diversity. The interpretability of an ensemble is interesting
research topic in the ensemble learning community. Several approaches exist that deal
with the problem of obtaining a model that is representative for the whole ensemble (Ass-
chel, 2008} |[Bauer and Kohavi, 1999; |Craven, 1996; [Domingos, [1998; |Ferri et all [2002;
Geurts, 2001; Karqupta et al., 2006; Trivino-Rodriguez et al., 2008)).

Another also interesting research topic is the notion of diversity in the ensembles and its
influence/connection to the predictive performance of the ensemble (Bernard et al., [2009;
Brown and Kuncheval 2010} [Brown et al., 2005; Carney and Cunningham), 2000} |Giacinto
and Roli, 2001; [Hansen and Salamon, 1990; [Kuncheva, 2004; [Kuncheva and Whitaker,
2003)). All in all, we suggest an approach that unifies the two aforementioned research
topics and provide insights how the beam search can be further explored and exploited.
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5.1 Predicting other structured outputs

The approaches that we described in Chapters ?? and |3 and the previous sections can be
easily extended for handling other types of structured outputs. To adequately adjust the
algorithms, the only requirement is that a distance can be defined for the given structured
output. This means that the variance and prototype functions for induction of PCTs
(Chapter 7?7 and Section will now use the new distance measure.

The construction of the ensembles (Chapter [3]) will change in the part of the voting
scheme. The new voting scheme will employ prototype function which uses the new
distance and returns the median of the individual predictions. This is different as compared
to the voting schemes we used in Chapter [3| which are based on average. This is because
the distance (for regression and HMLC) is Euclidean and the mean can be considered as
the prototype (closed form prototype). The feature ranking will additionally requires a
quality criterion for the prediction of the specific structured outputs. In the following, we
will shortly describe few extensions of the proposed algorithms: additional distances for
HMLC, predicting time series and predicting tuples of structured outputs.

Distances for hierarchical classification

In Chapter ??, we described PCTs for hierarchical multi-label classification and stated
that they use Euclidean distance to calculate the variance and the prototype. However,
we investigated the predictive performance of other distance measures on datasets from
functional genomics (Aleksovski et al, 2009]).

The distances that currently can be used for hierarchical multi-label classification using
PCTs are:

e weighted Jaccard distance: the distance between two examples is the ratio between
the sum of the weights of their joint annotations and the sum of the weights of
all their annotations (Jaccard, 1901; [Tan et al,, 2005). Similarly as in the case of
weighted Euclidean distance, the same exponential weighting scheme can be used.

e SimGIC: the distance between two examples is the ratio between the sum of the infor-
mation contents of their joint annotations and the sum of the information contents
of all their annotations (Pesquita et all, [2007)).

e /mageCLEF: it takes into account the depth and the difficulty of the predictive
problem (the so-called ‘branching factor’) at which an error has occurred (Tommasi
et al, 2010).
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The distances were extended for handling hierarchies organized as DAGs similarly as for
the weighted Euclidean distance. The overall conclusion was that there is no statistically
significant difference in the performance of the algorithmd]

Regarding the voting scheme for the ensembles in this case,

Time series

A time series is a sequence of data points measured at successive time points at uniform
or variable time intervals. The selection of a distance/similarity measure for time series
depends on the application at hand and the form of the time series (equal/different lengths,
sampled at uniform/non-uniform intervals, etc). For an extensive list on the distances for
time series see the surveys by [Liao| (2005|).

In the Clus system, four distance measures can be used in the context of predicting
time series Slavkov et al| (2010b)): Euclidean distance, Pearson’s correlation coefficient,
Qualitative distance measure ((Todorovski et al., [2002) and Dynamic time warping distance
(Sakoe and Chiba, 1978). Depending of the application domain, one can choose which
distance measure should be used. The prediction of time series using PCTs was evaluated
on two studies from different domains: biological (gene expression levels) and agriculture
(crop and weed cover). First, [Slavkov et al|(2010b)) evaluated the approach on time series
data concerning the changes in the expression level of yeast genes in response to a change
in environmental conditions. Their evaluation shows that PCTs are able to cluster genes
with similar responses, and to predict the time series based on the description of a gene.
Next, Debeljak et al.| (2011]) use PCTs that use dynamic time warping to model time series
of weed cover in agricultural sites throughout whole United Kingdom. The time series in
this case study are irregular both in terms of length and intervals between points. Both case
studies offered interesting and insightful results for the respective domains. This is unique
approach that performs clustering of time series and simultaneously provides descriptions
of the clusters.

Tuples of structured outputs

Slavkov et al.| (2010b)) consider gene expressions of around 5000 genes from yeast (Sac-
charomyces cerevisiae) under diverse environmental stresses (such as, heat chock, diamide
treatment, nitrogen starvation etc.). Each of the shocks is considered separately, thus ob-
taining a PCT for each of the shocks. However, one can also consider a scenario in which

1The statistical significance was assessed usinf Friedman test for multiple hypothesis testing (Demsar
et al}, |2006| [Friedman), (1940)).
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a single PCT is built for all environmental stresses. In this case, the goal would be to make
a PCT for a tuple of time series.

Another possible application domain is for prediction of the functions of a gene (i.e.,
functional genomics). Each gene can be annotated using several annotation schemes,
such as Gene Ontology (Ashburner et al., [2000), FunCAT (Ruepp et all 2004, KEGG
(Kanehisa and Goto, [2000) etc. Maybe the mutual connectedness/information between
the different annotation hierarchies can help building a classifier with superior predictive
performance. In this case, the goal is to predict the functions of a gene using tuple of
annotation hierarchies.

Distance measure for this type of output can be obtained by combination of distances
for the components of the tuples. For the example with time series, one can decide to
use dynamic time warping for part of the time series and for the rest to use qualitative
distance measurdl] Afterwards, the distances can be combined by averaging the distances
calculated over the components of the tuple. This would balance the influence of the
components to the overall score. Moreover, one can consider a weighting scheme to
favorize one or more components from the tuple. After the extension of the variance
and prototype function for construction of PCTs (Chapter ?7) for this type of output,
the voting scheme for combining the votes from the ensembles can updated as discussed
earlier.

5.2 Feature ranking for structured outputs

In this section, we describe how the random forest mechanism can be further exploited
to calculate the importances of the variables, i.e., to obtain the feature ranking. |Breiman
(2001a)) introduced and described the approach for feature ranking for single target (con-
tinuous or discrete) target variable. We extend this approach so that it can perform feature
ranking for an arbitrary structured output. To this end, we use predictive clustering trees
(see Chapter ?7) and adequate error measure for the given structured output. Here, we
first present the algorithm itself (Table and several error measures that can be used
for structured outputs. Then, we present a case study where we use feature ranking for
biomarker discovery.

INote that for doing this one must carefully look at the nature of the distance measures. For instance,
the distances are expressed in different scales or some of the distances are more sensitive than the others.s
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5.2.1 Feature ranking using random forests

The proposed approach for feature ranking using random forests is presented in Table [5.1].
It is based on internal out-of-bag estimates of the error and noising of the descriptive
variables. The rationale behind this approach is that if a variable is important for the
target concept, then noising its values should produce increase in the error. To create
each tree from the forest, the algorithm first creates a bootstrap replicate (line , from
the Induce_RF procedure, Table. The samples that are not selected for the bootstrap
are called out-of-bag (OOB) samples (line 7} procedure /nduce_RF). These samples are
used to evaluate the performance of each tree from the forest.

Suppose that there are D descriptive variables. After each tree from the forest is
built, the values of the descriptive attributes for the OOB samples are randomly per-
muted attribute-by-attribute thus obtaining D noised/permuted OOB samples (line[3|from
Update_Imp procedure). The predictive performance of each tree is evaluated on the
original OOB data (Err(OOB;)) and the permuted versions of the OOB data (Err;(fy)).
Then the importance of the j-th variable (/;) is calculated as the relative increase of the
error that is obtained when its values are randomly permuted (Equation . The impor-
tance is at the end averaged over all trees in the forest. So, the variable importance is
calculated using the following equation:

Erri(fy) — Err(OOBy)
Err(OOBy) (5.1)

k

Importance(fy) = % : ;
where k is the number of bootstrap replicates (or size of the random forest) and f, is the
d-th descriptive variable (0 < d < D).

The proposed approach for feature ranking generates single ordered list of features
valid for the whole structured output. Typically, one has to generate several rankings for
each sub-component of the structured output (if it is possible to decompose the output
at all) and then using some complex aggregation functions produce single ranking valid for
the complete structured output (for example, see (Jong et al., 2004; Saeys et al., 2008
Slavkov et all 2010a))).

For each type of structured output, the algorithm requires an appropriate error measure.
To begin with, we use average misclassification rate if the target structure is a tuple
of discrete variables (multiple targets classification). In the case of predicting a tuple
of continuous variables (multiple targets regression), we use average relative root mean
squared error (RRMSE). Also, if the target is a time series, we use root mean squared
error adapted for time series data (RMSE+s). In the case of hierarchical multi-label
classification, we propose to use (1 — AUPRC) as error measure. All in all, based on the
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Table 5.1:  The algorithm for feature ranking via random forests. E is the set of the
training examples, k is the number of trees in the forest, D is the number of descriptive
variables and (D) is the size of the feature subset that is considered at each node during
tree construction.

procedure  Induce RF(E, k, f(D)) procedure Update_Imp(Eoos, T, /)

returns Forest, Importances 1: Errpog = Evaluate(T, Ecog)
1 F =10 2: forj=1to D do
2 [ =10 3: E; = Randomize(Epos, J)
3: for i =1to k do 4 Err = Evaluate(T, E))
4; E; = Bootstrap_sample(E) 5 li =1+ (Err;— Erroos)/Erroos
5: T. = PCT(E;, f(D)) 6: return
6: F=FUT procedure Average(/, k)
7: Eoos = E \ E; 1T =0
8. Updatelmp(Eoos, Ti, /) 2: for | =1 to size(/) do
9: | = Average(/, k) 3: Il =1/k

10: return F,/ 4 return /7

application at hand and the structured output, one can easily update these measures to
more suitable ones for performing the task at hand.

5.2.2 Biomarker discovery using ranking for multiple targets

We applied this approach to the problem of biomarker discovery for neuroblastoma can-
cer (Kocev et al, 2008). We used the data from the micro array study performed by
Schramm et al| (2004) on 63 patients (samples). In this study, main interestis finding
a set of biomarkers for the outcome of the disease. However, there are additional clini-
cal parameters that are available, such as MYCN gene amplification and 1p chromosome
deletion. It is known that these genomic alterations are connected to the disease outcome.

Figure depicts the ‘testing error curves' [[| (Slavkov et all [2010a]) for the feature
ranking when all three variables are used as targets and when the target is only the dis-
ease outcome. We can note from the curves that the ranking for the multiple targets
is better than the one when only single variable is used. To begin with, the classifiers

1Testing error curves are constructed as follows. Using the feature ranking, |D| classifiers are constructed
(D is the number of descriptive attributes). The first classifier is constructed using only the top ranked
feature; the second classifier is constructed using the two top ranked features and so on. The curve plots
on the x-axis the number of features and on the y-axis the misclassification rate.
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Figure 5.1: Testing error curves for feature ranking for all clinical parameters simultane-
ously and for feature ranking for disease outcome.

for the multiple targets ranking that are constructed using the top most ranked features
exhibits better predictive performance than the classifiers for the single target ranking [[
Furthermore, Wilcoxon test that considers the complete testing error curves shows that
the classifiers from the multiple targets ranking outperform the classifiers from the single
target ranking with p < 4-107°. All in all, the proposed approach can exploit the mutual
information/connectedness of the multiple targets and perform better feature ranking (i.e.,
provide more reliable set of biomarkers).

The proposed approach has several advantages over aggregated ranking obtained by
learning separate rankings for the sub-components. To begin with, it is general in terms
of the type of the output: it can handle various types of structured outputs and it can
easily be extended to arbitrary type of structured output. It can use some underlying
connections and relations that may exist between the sub-components of the outputs.
Furthermote, if another variable is added to the structured output, then for learning of
separate rankings this will mean learning an additional ranking for the added variable.On
the other hand, the running time of the proposed approach will increase slightly. All in all,
the proposed approach is efficient, general and can be extended for an arbitrary type of
structured output.

INote that this is especially important for the domain of biomarker discovery. Here, the users are
interested in the top 10-20 ranked features/genes, so they can perform lab-experiments using the results of
the ranking.
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5.3 Construction of ensembles of PCTs using beam-search

The decision trees (and PCTs, Chapter ??) are typically constructed using greedy top-
down induction (TDI) algorithm. This standard approach however does not allow for
many useful constraints to be easily enforced. Also, since it employs greedy search, it is
susceptible to myopia: it may not find any tree satisfying the constraints, even though
several exist in the hypothesis space.

Here, we propose a new induction algorithm for PCTs (and trees in general) that uses
beam search (we call this implementation Clus-BS) (Kocev et al| [2007a)). The Clus-BS
approach has three main advantages over the TDI algorithm. To begin with, it return set of
PCTs, instead of a single PCT. This is useful in some domains, where the domain experts
require multiple trees/solutions for the problem at hand. Next, many useful constraints
can be pushed into the induction algorithm. For instance, size constraints, such as ‘return
a tree with at most 15 nodes’, can be handled during the induction of the tree, i.e., during
the refinement of the trees from the beam, while the standard approach handles this mostly
during post-pruning (Garofalakis et al, [2003)). Finally, this approach is less susceptible to
myopia than the standard greedy search.

However, the Clus-BS approach tends to return trees that are similar to each—otherE],
both syntactically (similar attributes appear in the internal nodes of the trees) and seman-
tically (the trees make equal predictions for the same instances). To overcome this, we
introduce additional term in the heuristic score that calculates the similarity of the tree
to the other trees that are already in the beam. This way, the induced beam will contain
trees that are less similar to each other and the user can control the level of diversity in
the beam (we call this implementation Clus-BS-S).

The trees obtained using beam search (especially Clus-BS-S because their diversity)
can be regarded as an ensemble. Thus, Clus-BS-S can be used for ensemble learning where
each tree from the beam can vote to obtain a joint prediction. Moreover, the best ranked
model from the beam can be selected as a representative for the whole ensemble, thus,
Clus-BS and Clus-BS-S can produce an ‘interpretable’ ensemble. Furthermore, using the
diversity measure we can investigate in bigger depth the connection between the diversity
of an ensemble of trees and its predictive performance. The latter question has received
significant amount of attention from the ensemble learning community over the years
(Brown and Kuncheva, 2010; [Brown et al., 2005} |Carney and Cunningham) 2000; |[Hansen
and Salamon, 1990; Kuncheval 2004} Kuncheva and Whitaker, [2003)).

INote that this is to be expected having in mind the algorithm presented bellow in Table and the
heuristic score from Equation If a given tree has good predictive performance, then its refinements will
most probably also have good predictive performances.
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Table 5.2: The beam search algorithm for induction of predictive clustering trees — Clus-
BS

procedure Clus-BS(E k) procedure Refine(T, E)
1: i=0 1. R=10
2: Tiear =leaf(centroid(/)) 2: for each leaf / € T do
3: h = Heuristic(Tieaf, E) 3: E, = Instances(E,/)
4: beamg = {(h, Tiear) } 4 for each attribute a do
5: repeat 5: t = best test on a
6: i=i+1 6: {E1, E>} = Partition(t, E))
7: beam; = beam;_4 7 l, = leaf(centroid(E;))
8: for each 7 € beam,_; do 8 l = leaf(centroid(E,))
o: R = Refine(T, E) 9 n = node(t,{h, h})
10: for each T, € R do 10: T, =replace I by nin T
11: h = Heuristic(Tcang, E) 11: R=RU{T,}
12: hworst = MaXtebeam; Heuristic(T, E) 12: return R
13: Tworst = argmaxTepeam Heuristic(T, E)
14: if h < hyorse OF |beam;| < k then
15: beam; = beam; U {(h, Tcang)}
16: if [beam;| > k then
17: beam; = beam; \ {(hworst, Tworst) }

18: until beam; = beam,_;
19: return beam;

In the remainder of this Section, we first describe the beam search induction algorithm.
Then, we present the heuristic score that we use to evaluate the trees and we show how
the similarity measure can be included in the score. Next, we discuss the results of the
experimental evaluation of the proposed approach. At the end, we conclude and give
pointers for further work.

5.3.1 Beam-search induction of PCTs

We propose new approach for induction of decision trees that uses beam-search strategy
(Kocev et al], [2007a). The algorithm is outlined in Table [5.2l The beam is a set of trees
(PCTs) that are ordered by their heuristic value. The algorithm starts with a beam that
contains precisely one PCT: a leaf covering all the training data E.

Each iteration of the main loop creates a new beam by refining the PCTs in the current
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beam. That is, the algorithm iterates over the trees in the current beam and computes
for each PCT its set of refinements (Fig.[5.2)). A refinement is a copy of the given PCT
in which one particular leaf is replaced by a depth one sub-tree (i.e., an internal node
with a particular attribute-value test and two leaves). Note that a PCT can have many
refinements: a PCT with L leaves yields L - M refined trees, with M the number of possible
tests that can be put in a new node. In Clus-BS, M is equal to the number of attributes.
That is, Clus-BS considers for each attribute only the test with the best heuristic value.
Note that the number of possible tests on a numeric attribute A is typically huge: one test
A < a;, for each possible split point a;. Clus-BS only constructs one refined tree for the
split that yields the best heuristic value. This approach limits the number of refinements
of a given PCT and increases the diversity of the trees in the beam.

Clus-BS computes for each generated refinement its heuristic value. The heuristic
function differs from the heuristic used in the TDI algorithm from Chapter ?2?2. The
heuristic in the latter is local, i.e., it only depends on the instances local to the node that
is being constructed. In Clus-BS, the heuristic is global and measures the quality of the
entire tree. The reason is that beam search needs to compare different trees, whereas TDI
only needs to rank different tests for the same tree node. The heuristic that we propose

to use is:

h(T,E) = ( Z ‘E";T‘f’ Var(heaf)) + o - size(T), (5.2)
leaf € T
with E all training data and E..s the examples sorted into leaf. It has two components:
the first one is the average variance of the leaves of the PCT weighted by size, and the
second one is a size penalty. The latter biases the search to smaller trees and can be seen
as a soft version of a size constraint. The size function that we use throughout the paper
counts the total number of nodes in the PCT (sum of the internal nodes and the leaves).

After the heuristic value of a tree is computed, Clus-BS compares it to the value of
the worst tree in the beam. If the new tree is better, or if there are fewer than k trees
(k is the beam width), then Clus-BS adds the new PCT to the beam, and if this exceeds
the beam width, then it removes the worst tree from the beam. The algorithm ends when
the beam no longer changes. This either occurs if none of the refinements of a tree in
the beam is better than the current worst tree, or if none of the trees in the beam yields
any valid refinements. This is the point in the algorithm where the user constraints can
be used to prune the search: a refinement is valid in Clus-BS if it does not violate any of
these constraints.

Note that Equation [5.2] is similar to the heuristic used in the TDI algorithm from
Chapter 77 if we assume that there are no constraints, « = 0 and kK = 1. In this case, the
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Figure 5.2: Refining the trees in the beam. (a) A tree in the beam; (b) the refinements
of tree (a); (c) the refinements of the top-most tree in (b). Note that the refinements
(c) are only computed in a subsequent iteration of the search after the top-most tree of
(b) has entered the beam.
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tree computed by Clus-BS will be identical to the tree constructed with TDI. The only
difference with TDI is the order in which the leaves are refined: TDI refines depth-first,
whereas Clus-BS with a beam width of one refines best-first.

Preliminary experiments have indicated a possible disadvantage of the proposed ap-
proach for induction of PCTs. Namely, the beam tends to fill up with small variations of
the same PCT, i.e., trees that differ only in a single node. To alleviate this, we modify
the heuristic score (Equation to include also a similarity constraint. We discuss this
constraint in the next section.

5.3.2 Diversity in the beam

The diversity in the ensembles is one of the most repeated buzzwords in the area of
ensemble learning for which there is no ‘uniquely agreed definition’ (Brown and Kuncheval,
2010). Many different diversity measures have been proposed (Kuncheva and Whitaker,
2003) with one single goal: to increase the predictive performance of the ensembles by
balancing the accuracy of the base classifiers and their diversity. Several studies have
been performed concerning the clarification and quantification of the role of the diversity
in the ensemble learning (Brown and Kuncheval 2010} Brown et al, 2005 |Carney and
Cunningham, 2000} [Kuncheval 2004; Kuncheva and Whitaker, 2003)).

However, there is no unifying theory for the different diversity measures or recommen-
dations which measure when should be used. Here, we propose to use Euclidean based
measures for all of the machine learning tasks. This approach is applicable straightforward
for the regression tasks. For the classification tasks, we propose to use average distance
between the probability distributions of the classes.

We propose to calculate the diversity as follows:

d(T1, T, E) = % . \/ZteE dp(p(T|1/,|t), p(T2, t))? | (5.3)

with  a normalization factor, |E| the number of training instances, p(T;, t) the prediction
of tree T, for instance t, and d, a distance function between predictions. In Equation[5.3]
1 and d, depend on the learning task. For regression tasks, d, is the absolute difference
between the predictions, and 7 = M — m, with M = maxee;jeq1,03 (T, t) and m =
min¢e; jeq1,2y P(Tj, t). This choice of n ensures that d(Ty, T2, /) is in the interval (0, 1).
For classification tasks, the dis-similarity is calculated similarly as for the regression with
the distinction that d, is now the absolute distance between the probabilities for each class.

Additionally, for classification we also consider disaccordance measure. Here, the
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parameter is set to 1 and d, = § with

§(a, b) = { ;:Zi 2 (5.4)

The proposed diversity measure can be easily extended for predicting structured out-
puts. For predicting multiple targets, both discrete and continuous, average per target
variable can be used. In the context of hierarchical multi-label classification, similar aver-
age can be calculated for each of the nodes in the hierarchy or use some other distances
for hierarchies of labels (Aleksovski et al., [ 2009)).

Using these definitions of diversity, the heuristic score for the trees (updated version
of Equation can be calculated as follows:

E

hs(T, beam, E) = ( > | }:ia” Var(E|eaf)) + o -size(T) + B -sim(T,beam, E) (5.5)
leaf €T | |

where the first two terms are the same as in the Equation[5.2] § is user defined parameter

that controls the influence of the diversity on the total heuristic score and sim(T, beam, E)

is the similarity measure calculated as:

d(T, Teana, E) + Zﬂebeam d(T, T, E)

sim(T,beam, E) =1 — beam|

(5.6)

where Tcang is the candidate tree, E is the training set and d(T;, T}, E) is the distance as
defined in Equation [5.3]

Since the heuristic value of a tree now also depends on the other trees in the beam,
it changes when a new tree is added. Therefore, each time that Clus-BS-S considers
a new candidate tree, it recomputes the heuristic value of all trees already in the beam
using Equation [5.5] The heuristic score for the trees already in the beam is updated only
with the term for the similarity, while the term for the predictive performance remains the
samd]

We experimentally evaluated the proposed approaches (Clus-BS and Clus-BS-S) us-
ing 16 datasets (8 classification and 8 regression) from the UCI repository (Asuncion
and Newman, 2007)). We used the disaccordance similarity measure for the classification
datasets and the absolute difference between the predictions for the regression datasets
(as described above). We set the beam size k to 10, the soft-size constraint influence o
to 0.00001 and the influence of the diversity B to 1. The performance of the algorithms
was compared over a range of hard size constraints varying from 5 to 51 and no size

1 To make the calculations one can exploit some properties of the distance measures, such as sym-
metricity d(T,, Ty, E) = d(Tp, T4, E) and reflexiveness d(T,, T,, E) =0
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constraints. The performance of the algorithms was assessed by 10-fold cross-validation.
More detailed description of the experiments, results and discussion can be found in (Kocev
et al., [2007a)).

The results show that Clus-BS yields models of comparable accuracy to a standard
TDI algorithm. Clus-BS windl] on 5 classification and 3 regression tasks. TDI wins on 2
classification and no regression tasks. This confirms that Clus-BS yields more accurate
models, which can be explained because it is less susceptible to myopia. There is no clear
correlation between the number of wins and the value of the size constraint.

Clus-BS-S wins over TDI on 6 classification and 4 regression tasks and loses on 13
classification and 1 regression tasks. Clus-BS-S performs, when compared to Clus-BS,
worse on classification data than on regression data. This is because the heuristic (used in
Clus-BS-S) trades off accuracy for diversity. If a given tree in the beam is accurate, then
new trees will be biased to be less accurate because the similarity score favors trees with
different predictions. For classification problems this effect is more pronounced because
a '0/1" distance between predictions is used, whereas in the regression case a continuous
distance function is used. The latter makes it ‘easier’ to have different predictions that
are still reasonably accurate. Also, this effect is stronger for bigger size constraints (the
majority of the losses of Clus-BS-S are for SC31, SC51 and NoSC) because the relative
contribution of the similarity score to the heuristic is greater for bigger size constraints.
The losses are in the range of 1-2% accuracy, so for the majority of domains this is not a
serious problem.

The results regarding the diversity in the beam show that Clus-BS-S trades off accuracy
for beam diversity. The beam diversity for Clus-BS-S is always bigger than that of Clus-
BS. Moreover, the variance of the accuracies of the trees in the beam increases with the
beam diversity. Additionally, the trees produced by Clus-BS-S not only produce different
predictions, but are also syntactically different from the trees constructed with Clus-BS.

We plan to further extend this work along several dimensions. To begin with, we will
consider introduction of the diversity during the test selection in the tree building process,
i.e., during the generation of the refinements. This can be done in an computationally
efficient way if the distance measures are Euclidean like. Second, we will investigate the
influence of the beam size on the performance. Next, we will perform experiments for
different values of B parameter to gain more insight about the trade-off between the
predictive performance and beam similarity. Finally, we will combine the trees in the beam
in an ensemble and comment on the influence of the diversity or the trees in the ensemble

1The statistical significance of the results was assessed using paired t-test. A win was considered
statistically significant if the corresponding p value was smaller than 0.05.
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to the performance of the ensemble. Moreover, the ensemble that is obtained in this can
be interpreted by selecting the top ranked tree (since in the beam the trees are ordered by
their performance). Allin all, the proposed approach will offer further understanding about
the influence of the diversity in the ensemble to its accuracy and ensemble interpretability.
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6 Case studies

In this chapter, we present three case studies that use ensembles for predicting structured
outputs. The case studies are from three domains: ecological modelling (modelling vege-
tation condition), image annotation (annotation of medical X-ray images) and functional
genomics (predicting the functions of a gene). In these case studies, two machine learning
tasks are addressed: predicting multiple continuous variables (vegetation condition) and
hierarchical multi-label classification (image annotation and functional genomics).

In addition to these case studies, we have used ensembles for predicting structured
outputs to construct habitat models for the diatoms in lake Prespa, Macedonia (Kocev
et al, 2010). The habitat for the diatoms was described using several environmental
variables, and the communities were described by the abundance of diatom species at
the given sites. The predictive performance of the obtained habitat models (PCTs for
predicting multiple continuous variables) was not high: We used ensembles to test whether
the performance of the PCTs can be significantly lifted. Although the ensembles do lift the
predictive performance of the PCTs in this setting, the conclusion was that the predictive
performance is limited by the size of the dataset and the selection of the descriptive
(environmental) variables and not by the learning paradigm (in our case PCTs).

The case studies presented here demonstrate the wide range of possible applications
of the proposed algorithms and extensions. We show that the ensembles for predicting
structured outputs have competitive predictive performance (and even better in come
cases) as compared to the state-of-the-art approaches used in the respective application
domains. In addition, the ensembles for predicting structured outputs are more efficient,
having smaller running times and producing smaller models.

In the next sections, we present the three applications as follows. First, in Section [6.1],
we describe the use of PCTs and ensembles of PCTs for prediction of the vegetation
condition in the state of Victoria, Australia, from GIS and remote-sensed data. Next, in
Section 6.2, we present the application of PCT ensembles to the annotation of medical
X-ray images. Finally, in Section [6.3] we compare ensembles (in particular bagging) of
PCTs for predicting the functions of a gene to state-of-the-art approaches to predicting
gene function used in functional genomics.
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6.1 Predicting vegetation condition

In this section, we present a study concerned with modelling the condition of remnant
indigenous vegetation. To this end, we use ensembles for predicting structured outputs
(in particular, predicting multiple continuous variables). The condition of the vegetation is
described by multiple (habitat hectares) scores that reflect the structural and compositional
attributes of a wide variety of plant communities at a given site. Multiple sites were
manually assessed, in terms of these scores, and subsequently described with GIS and
remote-sensed data.

From the data, we learned a (pruned) PCT and ensembles of PCTs. We compare
their performance with that of linear regression, regression trees (that predict individual
numeric variables) and ensembles of regression trees. The pruned PCT was constructed
to extract knowledge from the data. The goal was to better understand the resilience of
some indigenous vegetation types and the relative importance of biophysical and landscape
attributes that influence their condition.

From the learned models, we can conclude that the most important variables influencing
all scores are those related to tree cover. This holds also for scores that do not depend
directly on the presence of tree cover. Land cover is also of high importance, with dense
forest cover yielding high scores. Finally, climate (including the variability of weather
conditions) also plays an important role.

The ensembles of PCTs were used to generate maps of the condition of the indigenous
vegetation: They were selected because of their high predictive power and efficiency. We
compared their performance with the performance of the ensembles of regression trees.
In terms of predictive performance, the difference between the two methods was not
statistically significant at the confidence level 0.05. However, if we also consider the
efficiency (time needed to construct the classifier and size of the underlying models), the
random forests of PCTs should be preferred.

The usefulness of models of vegetation condition is twofold. First, they provide an
enhanced knowledge and understanding of the condition of different indigenous vegetation
types, and identify possible biophysical and landscape attributes that may contribute to
vegetation decline. Second, these models may be used to map the condition of indigenous
vegetation across extensive areas (in this case study, we generated a map for the whole
area of Victoria state, Australia) with some predictive confidence using easily obtained
remotely acquired data together with adequate field data, these maps can be used in
support of biodiversity planning, management and investment decisions.
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1. Introduction

ABSTRACT

An important consideration in conservation and biodiversity planning is an appreciation of the condition
orintegrity of ecosystems. In this study, we have applied various machine learning methods to the problem
of predicting the condition or quality of the remnant indigenous vegetation across an extensive area of
south-eastern Australia—the state of Victoria. The field data were obtained using the ‘habitat hectares’
approach. This rapid assessment technique produces multiple scores that describe the condition of various
attributes of the vegetation at a given site. Multiple sites were assessed and subsequently circumscribed
with GIS and remote-sensed data.

We explore and compare two approaches for modelling this type of data: to learn a model for each score
separately (single-target approach, a regression tree), or to learn one model for all scores simultaneously
(multi-target approach, a multi-target regression tree). In order to lift the predictive performance, we also
employ ensembles (bagging and random forests) of regression trees and multi-target regression trees.
Our results demonstrate the advantages of a multi-target over a single-target modelling approach. While
there is no statistically significant difference between the multi-target and single-target models in terms
of model performance, the multi-target models are smaller and faster to learn than the single-target ones.
Ensembles of multi-target models, also, improve the spatial prediction of condition.

The usefulness of models of vegetation condition is twofold. First, they provide an enhanced knowledge
and understanding of the condition of different indigenous vegetation types, and identify possible bio-
physical and landscape attributes that may contribute to vegetation decline. Second, these models may
be used to map the condition of indigenous vegetation, in support of biodiversity planning, management

and investment decisions.
© 2009 Elsevier B.V. All rights reserved.

landscape stability, fodder production for domestic stock or habitat
for species. A key challenge has been to develop metrics that facil-

Governments and other agencies worldwide are increasingly
required to demonstrate their compliance with the policies and
legislation relevant to the protection and management of remnant
indigenous vegetation (Parkes and Lyon, 2006). To this end, govern-
ment agencies are seeking to extend the requisite knowledge base
and representation of vegetation beyond just ‘extent’ and ‘type’, to
incorporate the notion of ‘condition’ or ‘quality’. The concept of veg-
etation condition is typically idiosyncratic and/or context-specific.
For example, the performance or quality of native vegetation could
be evaluated in terms of its capacity to deliver services such as
energy storage (including carbon sequestration), nutrient cycling,
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itate comparisons of condition both within and between disparate
ecosystem types. Recent attempts have been made to clarify these
concepts (Andreasen et al., 2001; Gibbons et al., 2006), and develop
general and widely applicable metrics and indices for assessing
vegetation or ecosystem condition from a biodiversity perspective
(Parkes et al., 2003; Scholes and Biggs, 2005; Oliver, 2004; Eyre et
al., 2006; Gibbons et al., 2009).

With an increasing emphasis on landscape scale planning for
biodiversity investment (Margules and Pressey, 2000; Rouget et al.,
2006; Knight et al., 2006; Moilanen, 2007) and widespread access
to Geographic Information Systems (GIS) and associated data and
software, the production of maps or spatially explicit models of
landscape indices, species distributions and other ecological phe-
nomena has become commonplace (see Li and Wu, 2004; Guisan
and Thuiller, 2005). The apparent utility of compound indices, such
as vegetation condition or ecosystem integrity presents a generic
problem for the land management agencies which employ them:
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can we usefully predict such attributes from site data across exten-
sive geographic regions, from a vector of covariate remote sensed
and ancillary environmental data?

The focus of this study is to take data from site assessments
employing a multi-component index of vegetation condition and
attempt to fit a generalized view of this index over an exten-
sive area—in this case the State of Victoria, Australia, an area of
some 227,000 km2. So, the problem that we are addressing is how
to predict multiple target variables (responses) from a vector of
ecological/remote-sensed data. We employed two modelling sce-
narios: (1) learn a model for each component of the overall index
separately and (2) learn a model for all component scores simul-
taneously. For the first scenario, we applied regression trees (RTs)
(Breiman etal., 1984) and ensembles of RTs (Breiman, 1996, 2001) to
the problem, while for the second, we applied multi-target regres-
sion trees (MTRTs) (Struyf and DZeroski, 2006) and ensembles of
MTRTSs (Kocev et al., 2007).

Regression trees are decision trees that predict the value of a
single numeric target variable. The multi-target regression trees
are a generalization of RTs. They are able to predict the value of
multiple numeric target variables. Their main advantages (over
building a separate model for each target attribute) are: (1) a multi-
target model is smaller than the total size of the individual models
for all target attributes and (2) a multi-target model explains
dependencies between different target attributes (Blockeel et al.,
1998; Struyf and DZeroski, 2006). We selected regression trees and
multi-target regression trees because they are easy to understand
and interpret and yet offer satisfactory predictive power.

To obtain models that have improved predictive performance
we used ensembles. Ensemble learning combines the predictions
of multiple models and lifts the predictive performance of their base
classifiers, both in the single-target (Breiman, 1996) and the multi-
target setting (Kocev et al., 2007). We focus on the two most widely
used ensemble learning methods that use tree models as base
classifiers: bagging (Breiman, 1996) and random forests (Breiman,
2001).

We perform the analysis using two scenarios: (1) we learn
pruned tree models (smaller tree models) to obtain some knowl-
edge and understanding about the condition of the indigenous
vegetation and (2) we learn ensembles of trees opting for better
predictive performance that will yield more precise and reliable
maps of the vegetation condition.

The development of predictive models of condition for rem-
nant indigenous vegetation may assist in identifying the relative
importance of associated biophysical and landscape attributes in
explaining observed condition states, across vegetation types and
landscape scales. In addition, spatially explicit models of condition,
could, when used in conjunction with other data, inform natural
resource investment decisions, statutory protection and reserve
design, while providing a basis for new forms of environmental
accounting and potentially monitoring landscape change.

The remainder of this paper is organized as follows: In Section 2,
we describe our modelling methodology, and in Section 3 the data.
The experimental setup for data analysis is presented in Section 4.
In Section 5, we present, discuss and compare the models that we
obtained. Finally, we outline our conclusions in Section 6.

2. Machine learning methodology
2.1. Regression trees

Regression trees are decision trees that predict the value of a
numeric target variable (Breiman et al., 1984). Regression trees are

hierarchical structures, where the internal nodes contain tests on
the input attributes. Each branch of an internal test corresponds to

an outcome of the test, and the prediction for the value of the target
attribute is stored in a leaf. Each leaf of a regression tree contains
a constant value as a prediction for the target variable (regression
trees represent piece-wise constant functions).

To obtain the prediction for a new data record, the record is
sorted down the tree, starting from the root (the top-most node
of the tree). For each internal node that is encountered on the
path, the test that is stored in the node is applied. Depending
on the outcome of the test, the path continues along the cor-
responding branch (to the corresponding subtree). The resulting
prediction of the tree is taken from the leaf at the end of the
path. The tests in the internal nodes can have more than two
outcomes (this is usually the case when the test is on discrete-
valued attributes where a separate branch/subtree is created for
each value). Typically each test has two outcomes: the test has suc-
ceeded or the test has failed. The trees in this case are also called
binary trees.

2.2. Multi-target regression trees

Multi-target regression trees (Blockeel et al., 1998; Struyf and
DZeroski, 2006) generalize regression trees to the prediction of
several numeric target attributes simultaneously. The leaves of a
multi-target regression tree store a vector, instead of storing a sin-
gle numeric value. Each component of this vector is a prediction for
one of the target attributes. An example of a multi-target regression
tree is shown in Fig. 3.

A multi-target regression tree (of which a regression tree is
the special case with a single response variable) is usually con-
structed with a recursive partitioning algorithm from a training
set of records. The algorithm is known as Top-Down Induction of
Decision Trees (TDIDT). The records include measured values of the
descriptive and the target attributes. The tests in the internal nodes
of the tree refer to the descriptive, while the predicted values in the
leaves refer to the target attributes.

The TDIDT algorithm starts by selecting a test for the root
node. Based on this test the training set is partitioned into sub-
sets according to the test outcome. In the case of binary trees, the
training set is split into two subsets: one containing the records for
which the test succeeds (typically the left subtree) and the other
contains the records for which the test fails (typically the right
subtree). This procedure is recursively repeated to construct the
subtrees.

The partitioning process stops when a stopping criterion is sat-
isfied (e.g., the number of records in the induced subsets is smaller
than some predefined value; the length of the path from the root
to the current subset exceeds some predefined value, etc.). In that
case, the prediction vector is calculated and stored in a leaf. The
components of the prediction vector are the mean values of the
target attributes calculated over the records that are sorted into the
leaf.

One of the most important steps in the tree induction algorithm
is the test selection procedure. For each node a test is selected by
using a heuristic function computed on the training data. The goal
of the heuristic is to guide the algorithm towards smaller trees with
good predictive performance.

In this paper, we use the CLUS (Blockeel and Struyf, 2002) sys-
tem for constructing (multi-target) regression trees (the system
is available at http://www.cs.kuleuven.be/~dtai/clus/). The heuris-
tic used for selecting the attribute tests (that define the internal
nodes) in this algorithm is the intra-cluster variance summed over
the subsets induced by the test. Intra-cluster variance is defined as
N . ZZ:1Var[yt] with N the number of examples in the cluster, T
the number of target variables, and Var[y;] the variance of target
variable y; in the cluster. The variance function is standardized so
that the relative contribution of the different targets to the heuris-
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tic score is equal. Lower intra-subset variance results in predictions
that are more accurate.

The multi-target regression trees are an instantiation of the pre-
dictive clustering trees (PCTs) framework proposed in (Blockeel et
al., 1998). In the PCTs framework, a tree is viewed as a hierarchy of
clusters: the top node corresponds to one cluster containing all data,
which is recursively partitioned into smaller clusters while moving
down the tree. The PCTs can be instantiated for different tasks using
adequate variance and prototype functions. So far, PCTs have been
used to handle multiple targets (Struyf and DZeroski, 2006), time
series (DZeroski et al., 2007) and hierarchical multi-label classifica-
tion (Vens et al., 2008).

2.3. Ensembles

An ensemble method constructs a set of predictive models
(called an ensemble) (Dietterich, 2000). An ensemble gives a pre-
diction for a new data instance by combining the predictions of its
models for that instance. For regression tasks, the predictions can
be combined by averaging the outputs of the models.

In order for an ensemble to be more accurate than any of its
individual members, the individual models need to be accurate
and diverse (Hansen and Salamon, 1990). An accurate model is one
that performs better than random guessing on new examples. A
set of models is diverse if the models make different errors on new
examples. The diversity in an ensemble can be introduced in vari-
ous ways: by manipulating the training set (changing the weight of
examples or changing the weight of attributes) or by manipulating
the learning algorithm used to obtain the models.

Ensembles of MTRTs are sets of MTRTS, obtained by applying
the same TDIDT algorithm. A prediction of an ensemble of MTRTs
is obtained by averaging the predictions of its models. They are
able to lift the predictive performance of a single MTRT (also in the
case of a single target) (Breiman, 1996; Kocev et al., 2007). In this
work, we use bagging and random forests, the two most widely
used ensemble methods to produce ensembles of RTs and MTRTs.
An illustration of these two methods is presented in Fig. 2.

2.3.1. Bagging

Bagging (Breiman, 1996) is an ensemble method that constructs
the different models in the ensemble by making bootstrap repli-
cates of the training set; these are used to construct individual
models (Fig. 2). Each bootstrap sample is obtained by randomly
sampling training instances, with replacement, from the original
training set. The bootstrap sample and the training set have the
same number of instances. Bagging can yield substantial gains in
predictive performance, when applied to unstable learners (i.e., a
learner for which small changes in the training set can resultin large
changes in the predictions), such as classification and regression
tree learners (Breiman, 1996). The diversity in bagging comes from
the variation in the training sets used to construct the individual
models in the ensemble.

2.3.2. Random forests

A random forest (Breiman, 2001) is an ensemble of trees,
where the diversity of the trees is obtained from two sources:
(1) by using bootstrap sampling and (2) by changing the fea-
ture set during learning (this is done by a randomized decision
tree algorithm, see Fig. 2). At each node in the decision tree, a
random subset of the input features is taken and the best split
is selected from this subset. The size of the random subset is
given by a function F of the number of descriptive attributes
M (eg,F=1,F=|VM|,F=|loggM|+1,F=[M/2|,...). If
F=M, then the random forests algorithm is equal to the bagging
algorithm.

3. Data description

In this study, we use field data acquired using the habitat
hectares approach (Parkes et al., 2003), a technique for the rapid
assessment of vegetation condition, developed primarily for biodi-
versity conservation planning. ‘Vegetation quality’ in the ‘habitat
hectares’ approach is defined as the degree to which the current
vegetation differs from a ‘benchmark’ that represents the average
characteristics of a mature and long-undisturbed stand of the same
plant community. Against the benchmark, the decline in quality can
be estimated for each vegetation type and dissimilar community
assemblages, such as rainforests and savannahs can be compared
by employing the same general index. This general approach has
become a standard method used to quantify the condition of habi-
tat within the state of Victoria (www.dse.vic.gov.au) and has been
emulated to some degree by other jurisdictions within Australia
(see Eyre et al., 2006; Gibbons et al., 2009).

The ‘habitat hectares’ score is the weighted sum of 7 site and 3
landscape scale metrics. The landscape components of the ‘habitat
hectares’ score can be readily rendered spatially within a GIS using
tools such as FRAGSTATS (McGarigal et al., 2002) and have not been
further considered in this study. The objective was to make spatially
explicit predictions of the 7 site scale components of the ‘habitat
hectares’ score (hereafter referred to as the ‘habitat hectares’ site
score or HHSS).

Employing the ‘habitat hectares’ approach, 16,967 ‘homoge-
nous’ sites were sampled within the State of Victoria, Australia
(see Fig. 1) between the years 2001 and 2005. Each sampling
point is described by 40 independent (or feature) variables (GIS
and remote-sensed data with a pixel resolution of 30 m x 30 m)
and 7 dependent (or target) variables (the HHSS). The HHSS
is a numeric variable composed as a weighted average of the
following components: Large Trees; Tree (canopy) Cover; Under-
storey (non-tree) Strata; Lack of Weeds; Recruitment; Organic Litter;
and, Logs. Apart from Lack of Weeds, each component score was
calculated comparing the current status of the vegetation with
a benchmark. For a basic statistic of the target attributes see
Table A2 in Appendix.

The Large trees score represents the number of large trees (both
living and dead) that are present at the measuring site (compared
to the ‘benchmark’ archetype). The Tree Canopy score assesses the

0 2000 Kilometers A

Fig. 1. Map of Australia with latitude and longitude shown. The State of Victoria in
the south east of mainland Australia (our study area) is shaded.
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Fig. 3. Pruned multi-target regression tree (the target attributes in the leaves are ordered as per Table 1).

projective foliage cover of canopy trees in the stand, while the
Understorey score assesses the abundance and diversity of vari-
ous shrubs and forb/herb strata of a community. The understorey
assessment includes only indigenous plant species. The Lack of
weeds score is calculated from the cover of non-indigenous weed
species.

The Recruitment score provides an indication of the level of
regeneration of woody plant species and could be seen as a sur-
rogate measure of the long-term viability of the site’s structural
characteristics. Litter represents both fine and coarse plant debris
less than 10 cm diameter, while Logs represent the fallen timber
or branches of trees that are substantially detached from the par-
ent tree. An unabridged description of the ‘habitat hectares’ scores
and methods can be found in (Parkes et al., 2003, 2004) and at
www.dse.vic.gov.au.

The 40 independent variables include 39 continuous variables
and one categorical variable (see Appendix Table Al). The cate-
gorical variable LandCover surface was derived from Landsat 7 TM
spectral data. Classes were obtained by applying a k-means clus-
tering procedure to a stack of median values for all Landsat 7 TM
spectral bands and the Normalised Difference Vegetation Index (see

Tucker, 1979) across the years spanning 1989-2005. The 50 classes
that emerged from the unsupervised classification were ‘lumped’
into 10 bins that were partially informed by a landuse model sim-
ilarly derived using an ANN process. This procedure allowed for
temporal states consequent of clearing, wildfire and forest har-
vesting to remain evident within broad landuse classes. The 10
categories approximate to the descriptions in Fig. 3.

4. Experimental setup for data analysis

From the description of the data, we can define a multi-target
regression problem, to be solved either by the single-target or
the multi-target regression approach. The goal is to predict mul-
tiple continuous targets (responses, outputs) from a vector of
descriptive (independent) variables. When applying the single-
target approach, we learn a regression tree (or an ensemble of
regression trees) for each target attribute separately (in our case,
this means that we will have seven models or ensembles). With the
multi-target approach we learn a multi-target regression tree (or
ensemble of multi-target regression trees) for all target attributes
(meaning that the output is a single model or ensemble).
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We define two experimental scenarios. In the first scenario, the
purpose of the modelling is to learn about the condition of the
indigenous vegetation, and the relative importance of different bio-
physical and landscape attributes for that condition. We focus on
interpretability to obtain such knowledge: the models need to have
reasonable size and predictive power. We prune our models by set-
ting the minimal number of instances in a leaf to 2048 (for both
the single-target and multi-target approach). We varied this prun-
ing parameter starting from 4 up till 4096 (taking numbers that are
power of 2). We selected 2048, because it offered the best trade-off
between the size and the performance of the model.

In the second scenario, we are not interested in the size of
the models, but in their predictive power. To improve predictive
performance, we use ensembles of unpruned single- and multi-
target regression trees. We constructed ensembles consisting of
100 unpruned trees as recommended in (Bauer and Kohavi, 1999;
Breiman, 1996, 2001). To combine the predictions of the trees we
averaged the predictions from each tree. The size of the feature
subsets for the random forests (F) was set to F = Llogz MJ +1 as
suggested in (Breiman, 2001).

The learned models, from both scenarios, were then used to
derive maps of remnant indigenous vegetation condition. Com-
bined with other data, these maps will contribute to investment
decisions in natural resource management, statutory protection
and reserve design.

We compare the single-target and multi-target regression trees
and ensembles. For baseline comparison, we use linear regression
(as implemented in the WEKA system, Witten and Frank, 2005).
We compared the methods in terms of their predictive perfor-
mance (correlation coefficient between predictions and observed
values, and root mean squared error—RMSE), time efficiency and
model size. To estimate the predictive performance of the mod-
els on unseen data, we employed 10 times 10-fold cross-validation,
thus we present the performance results with respective confidence
intervals.

To assess whether the differences in performance are sta-
tistically significant, we employed the corrected Friedman test
(Friedman, 1940) and the post hoc Nemenyi test (Nemenyi, 1963)
as recommended by DemsSar (2006). The Friedman test is a
non-parametric test for multiple hypotheses testing. It ranks the
algorithms according to their performance for each dataset sepa-
rately, thus the best performing algorithm gets the rank of 1, second
best therank of 2. . ., and in case of ties it assigns average ranks (see
Tables A2 and A3 in Appendix). Then, the Friedman test compares
the average ranks of the algorithms and calculates the Friedman
statistic x2, distributed according to the x2 distribution with k — 1
degrees of freedom (k being the number of algorithms). Iman and
Davenport (1980) show that the Friedman statistic is undesirably
conservative and derive a corrected F-statistic that is distributed
according to the F-distribution with k—1 and (k—1)x(N-1)
degrees of freedom (k being the number of algorithms and N being
the number of datasets).

If there is a statistically significant difference in the performance,
than we can proceed with a post hoc test. The Nemenyi test is
used to compare all the classifiers to each other. In this procedure,
the performance of two classifiers is significantly different if their
average ranks differ more than some critical distance. The critical
distance depends on the number of algorithms, number of datasets
and critical value (for a given significance level) that is based on the
Studentized range statistic and can be found in statistical textbooks.

We present the result from the Nemenyi post hoc test with an
average ranks diagram as suggested by Demsar (2006). An average
ranks diagram can be seen in Fig. 6 (and Figure A1 in Appendix).
The ranks are depicted on the axis, in such a manner that the best
ranking algorithms are at the right-most side of the diagram. The
algorithms that do not differ significantly are connected with a line.

5. Interpretation and evaluation of the vegetation
condition models

We followed the analysis scenarios, described in the previous
section and obtained two sets of models. The first set consists
of single models (single-target regression trees and multi-target
regression trees) and is concerned with the process of knowledge
extraction (the first scenario). The second set consists of ensembles
(of single-target and multi-target regression trees) and is concerned
with better predictive power (the second scenario). All models are
presented and discussed in the next subsections.

5.1. Models for knowledge extraction

In this sub-section, we present and discuss the models that were
obtained with the first scenario described in Section 4. This set of
models contains single-target regression trees for each target and
one multi-target regression tree for all targets. We compared the
performance of the models (Table 1), with both approaches yield-
ing models of comparable predictive performance. The difference
is in the interpretability and the time and size efficiency. The time
needed for learning the MTRT was 2.33 s, while learning all regres-
sion trees takes 13.77 s (a speed-up of factor 5.9). The speed can
be very important in real-time applications. Also, the MTRT is of
size 11 (total number of nodes), while all single-target regression
trees taken together have size 81 (a ratio of 7.4). These models are
depicted in Figs. 3 (MTRT) and 4 (single-target trees).

One of the most important differences between the two
approaches is in their interpretability. It is much easier to inter-
pret one tree that describes all target variables, than interpreting
each regression tree separately and trying to find some connec-
tion between the different models. The multi-target regression tree
gives us a more general overview of the knowledge that is hidden
in the data.

The pruned multi-target regression tree shown in Fig. 3 is read-
ily interpreted, grouping the data into six clusters. The clusters that
are in the right-hand side have (on average) a higher HHSS, indicat-
ing that such sites are likely to support indigenous vegetation close
to its benchmark state. An intuitively robust, if somewhat simpli-
fied overview of vegetation condition across the State of Victoria
is provided by a map generated from the multi-target solution and
applied to the spatial covariates (Fig. 5).

The key variable at the initial node of the tree is NativeTreeProb
which is the prediction of a Neural Network model (ANN) of the
probability of a lack of native tree cover for Victoria, informed by a
chronosequence of Landsat imagery from 1989 to 2005. A Native-
TreeProb>0.31 is equivalent to a predicted probability of greater
than 0.31 of the subject pixel supporting tree cover. Given that three
of the sub-components of the HHSS depend directly on the presence
of tree cover (Large tree score, Canopy cover score and Logs score), its
central role in partitioning the data is logical.

Table 1

Comparison of the performance of the pruned multi-target regression tree for all
scores with the regression trees for each score (MTRT—multi-target regression tree,
RT—regression tree).

Target Correlation RMSE
MTRT RT MTRT RT

Large tree score 0.52 + 0.02 0.53 + 0.02 2.88 + 0.06 2.86 + 0.06
Tree canopy score 0.68 + 0.02 0.68 + 0.01 1.63 + 0.04 1.64 + 0.03
Understorey score 0.70 + 0.02 0.71 + 0.02 511 +£ 0.13 5.05 + 0.13
Litter score 0.72 + 0.02 0.69 + 0.02 1.43 + 0.03 1.47 + 0.04
Logs score 0.70 + 0.02 0.71 &+ 0.02 1.48 + 0.03 1.47 £ 0.03
Weeds score 0.75 + 0.01 0.78 + 0.01 4.04 £ 0.09 3.83 £ 0.10
Recruitment score 0.61 £ 0.02 0.62 + 0.02 2.59 + 0.07 2.57 £ 0.06
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Fig. 4. Regression trees for each Habitat Hectares site score. The sum of these attributes comprises the overall Habitat Hectares site score.
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Fig. 5. Map of the condition of indigenous remnant vegetation in Victoria derived from the application of the pruned multi-target regression tree model to the explanatory
features (left-hand side figure). The dark bordered rectangular inset refers to the area represented at higher resolution in the right-hand side figure.

Focusing on the ‘no’ branch of the tree (with the higher HHSS)
the next decision node pivots on the membership of data to the
LandCover category 2. LandCover category 2 corresponds with dense
comparatively undisturbed forest cover and has the highest overall
site score (of 50). All other LandCover categories proceed to the next
node that partitions further, employing the variable TempRange.
TempRange is one of many climate variables or features created
using the ANUCLIM software package (see Houlder et al., 2000). This
variable describes the annual range in temperature at a site by sub-
tracting the climate model for the minimum temperature of coldest
period of the year from the maximum temperature of the warmest
period of the year. A TempRange of greater than 23.4 °C can be found
in the semi-arid North West of Victoria where plant growth rates
and consequently recovery from perturbation is generally slow.

The left-hand side of the tree, where the probability of tree cover
is smaller than 0.31, is further partitioned by membership or oth-
erwise of the LandCover categories 1, 2, 6, 7, 8, and 9. Apart from
LandCover category 2 (i.e., Dense Forest Cover) these land cover
types are all highly modified land use settings with correspond-
ingly low habitat hectare scores. The small areas with LandCover
category 2 that have a high probability of not finding tree cover (i.e.
greater than 0.31) are likely to be feature data errors carried over
from the land use mapping employed.

All these categories when NativeTreeProb is greater than 0.31
are assigned moderate condition scores (mean 25) by the pruned
regression tree model. These are predominantly areas where tree
cover is either absent, partially cleared or tree cover has been
removed by recent wildfires. Fire scars are apparent in the North
West region of the map. The incidence of fire has not been explicitly
addressed in this study, however, future modelling will investi-
gate the impact of fire on the HHSS and other condition indices
through the inclusion of mapped fire boundaries derived from satel-
lite imagery and historic cartographic sources.

The final node in the multi-target regression tree to be dis-
cussed here is regulated by the variable Grassiha RegionStdDev.
This variable is derived from an ANN model of the probability of
native grass cover for every pixel in Victoria, informed by afore-
mentioned chronosequence of Landsat imagery. A neighborhood of
1 ha around each pixel was interrogated and the standard deviation
of the probability of indigenous grass cover across that area was
obtained. Although speculative, this variable identifies spectrally
uniform areas—regions that if they support treeless native vegeta-
tion could be relatively free of the degrading edge effects such as
weed invasion that may emanate from surrounding land uses. The
variable may be interpreted as a surrogate for the core area concept

in landscape ecology (sensu Botequila Leitdo et al., 2006) seen here
as a useful predictor of grassland vegetation condition in Victoria.

The regression trees for each target attribute are shown in Fig. 4.
If we compare Figs. 3 and 4, each of the components of the habitat
hectare site score use different features and sequences of features
to that of the tree that predicts the site score alone. This adds com-
plexity and removes ecological naivety from the model. As with the
single-target solution, we can closely examine the internal logic of
each regression tree for the component scores. Prima-facie, each of
the single-target regression trees is ecologically interpretable.

For example, if we just follow the positive or far left-hand side
of the tree predicting Weed Score, it initially partitions the data on
the basis of TreeProb1HaRegionMean: mean probability of detect-
ing no tree cover within a 1 ha area around the subject pixel. This
variable effectively divides the landscape into forests and treeless
areas or areas with only scattered trees. Following the positive or
left-hand side of the tree the data is further partitioned by the land
cover classes. Classes 2, 3,4, 5, and 10—all of these classes are natu-
ral or semi-natural areas and we should expect these areas to have
a higher weed score (a high positive score reflects the absence of
weeds rather than weed infestation) relative to other thinly treed
areas. This is borne out by the regression tree. The final node is con-
trolled by NetRainfall. NetRainfall is a variable that is derived from
both mean monthly rainfall and mean evaporation rates. In essence
it reflects the amount of effective rainfall (rainfall less evaporation)
over an entire year. Once we have reached this node the model pre-
dicts that the drier and hotter a place is, the higher the weed score
(provided we have satisfied earlier criteria). This reflects the cur-
rent on-ground ecological reality in south-eastern Australia where
there have been few deliberate introductions of exotic plant species
into specialist habitat types, such as semi-arid regions, in compari-
son with temperate and sub-humid climatic regions that have been
favoured by human settlement and intensive agriculture.

A further advantage of the multi-target approach is that is can
reveal relationships between response variables. It is apparent
that Recruitment score and Understorey score are positively related
(see Fig. 4). The single-target regression trees of these scores are
structurally identical and both employ very similar explanatory
variables at similar junctures. Again, this is consistent with both
field observation and ecological theory: a diverse and structurally
intact understorey implies an adequate level of shrub and tree
regeneration. The reverse is also likely. Within defined ecosystem
types and states, a positive relationship between ecosystem func-
tion and structure is generally accepted by ecologists (Cortina et al.,
2006; Bradshaw, 1984). Overall, the most important variables influ-
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Table 2

Correlation coefficients of the obtained models (LR—linear regression, MTRT—multi-target regression tree, RT—regression tree, Bag—bagging, RF—random forests).

Target LR MTRT RT BagMTRT Bag RT RF MTRT RF RT
Large tree score 0.61 £+ 0.02 0.63 + 0.02 0.60 + 0.02 0.69 + 0.01 0.69 + 0.02 0.69 + 0.01 0.69 + 0.01
Tree canopy score 0.76 £+ 0.01 0.76 + 0.01 0.74 £ 0.02 0.80 + 0.01 0.81 + 0.01 0.81 + 0.01 0.81 + 0.01
Understorey score 0.77 £+ 0.02 0.78 + 0.01 0.77 + 0.01 0.83 + 0.01 0.83 + 0.01 0.83 + 0.01 0.83 + 0.01
Litter score 0.76 + 0.01 0.77 + 0.01 0.76 + 0.01 0.81 + 0.01 0.82 + 0.01 0.82 + 0.01 0.82 + 0.01
Logs score 0.75 £+ 0.01 0.76 £+ 0.01 0.75 + 0.02 0.80 £+ 0.01 0.80 £+ 0.01 0.80 + 0.01 0.80 £+ 0.01
Weeds score 0.82 + 0.01 0.83 + 0.01 0.83 + 0.01 0.87 + 0.01 0.87 + 0.01 0.87 + 0.01 0.87 + 0.01
Recruitment score 0.67 + 0.02 0.69 + 0.02 0.67 + 0.02 0.74 + 0.02 0.74 + 0.01 0.74 + 0.01 0.75 + 0.01

Table 3

Root mean squared error of the obtained models (LR—linear regression, MTRT—multi-target regression tree, RT—regression tree, Bag—bagging, RF—random forests).

Target LR MTRT RT BagMTRT Bag RT RF MTRT RF RT

Large tree score 2.66 + 0.05 2.62 £+ 0.05 2.72 + 0.06 2.43 £ 0.05 2.44 + 0.06 2.44 £+ 0.05 2.43 £+ 0.05
Tree canopy score 1.46 + 0.03 1.45 £ 0.03 1.52 £ 0.04 133 £ 0.03 132 £ 0.03 132 £0.03 132 £0.03
Understorey score 4.59 + 0.16 447 + 0.13 4.58 £+ 0.15 4.04 £ 0.12 4.04 £ 0.12 4.05 £+ 0.11 4.03 + 0.11
Litter score 1.34 + 0.03 1.30 + 0.03 134 £ 0.03 119 + 0.03 118 + 0.03 118 + 0.03 118 + 0.03
Logs score 137 £ 0.03 135 £ 0.03 139 £ 0.04 1.25 £ 0.03 1.26 £ 0.03 1.25 £ 0.03 1.25 £ 0.03
Weeds score 3.48 £+ 0.09 3.41 £ 0.09 3.49 + 0.10 3.01 £ 0.08 3.01 £+ 0.08 3.02 £+ 0.08 3.01 £ 0.08
Recruitment score 2.41 4+ 0.08 2.35 + 0.07 2.43 + 0.08 2.18 + 0.07 2.18 + 0.06 2.18 + 0.06 2.18 + 0.06

encing all components of the HHSS are those immediately related to
(the probability) of (indigenous and non-native) tree cover (such as
NativeTreeProb that appears in the root of the multi-target tree, and
TreeProb1HaRegionMean, which appears in the roots of 5/7 single-
target trees). It is interesting to note that this is the case also for the
sub-components that do not depend directly on the presence of
tree cover, e.g. Weeds Score. Following closely is LandCover (as mod-
elled from satellite images), with dense forest cover (category 2)
yielding high HHSS scores. Finally, climate plays an important role,
with variables describing temperatures, rainfall and their variability
appearing in most of the models.

5.2. Models with superior predictive performance

This sub-section presents and discusses the models obtained
with the second scenario (see Section 4). Here, we compare linear
regression, multi-target regression trees, regression trees, ensem-
bles of multi-target regression trees and ensembles of regression
trees to investigate the possible improvements in prediction per-
formance (Tables 2 and 3) and computational efficiency (Table 4)
that can be achieved by ensemble methods.

We present the predictive performance of the obtained models
in terms of their correlation coefficient s and RMSEs. The results are
presented with the corresponding confidence intervals, to show the
stability of the used algorithms. Recall that 10 times 10-fold cross-

Critical Distance = 3.40521

validation was used to estimate the performance on unseen data.
We can note that the confidence intervals are small. This is due to
the size of the dataset (16,967 samples).

To check whether the differences in performance are of statisti-
cal significance, we used the corrected Friedman test for multiple
hypothesis testing. To detect which algorithms perform signif-
icantly better or worse than the others we used the Nemenyi
post hoc test. The result of the corrected Friedman test is that
the difference in performance of these algorithms is statistically
significant with a p-value smaller than 0.01. The results of the
Nemenyi post hoc test for the RMSE comparison are presented in
Fig. 6 with an average ranks diagram. On the axis the algorithms
are plotted according to their average rank. The best performing
algorithm is random forests with single-target regression trees,
while the worst performing algorithm is the single-target regres-
sion tree. The critical distance is calculated for the significance level
of 0.05.

The Nemenyi test shows that the performance of the ensemble
methods (in terms of RMSE) is significantly better than the one of
individual trees. The ensembles from both MTRTs and RTs are not
significantly better than the single MTRT (at p =0.05). However, the
ensembles of MTRTs (both bagging and random forests) and the
random forests of RTs are significantly better than linear regression
and single-target regression trees. The difference in performance
between MTRTs, RTs and linear regression is not statistically sig-

7 6 5 4 3 2 1
L I . ! 1 | |
RT _ | RF RT
LR Bag MTRT
MTRT RF MTRT
Bag RT

Fig. 6. Average ranks diagram for the applied algorithms (comparing by RMSE). Algorithms that do not differ significantly (p =0.05) are connected with a line.
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Table 4
Comparison of the time and size efficiency of the algorithms (LR—linear regression, MTRT—multi-target regression tree, RT—regression tree, Bag—bagging, RF—random
forests).

LR MTRT RT Bag MTRT Bag RT RF MTRT RF RT
Time (s) 8.06 718 36.18 430.94 2053.50 87.69 385.38
Size 332 345 4729 10,639.94 35,145.02 10,907.66 43,030.76
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Fig. 7. Map of the condition of indigenous remnant vegetation in Victoria derived from the application of the random forests of MTRTs (left-hand side figure). The dark
bordered rectangular inset refers to the area represented at higher resolution at the right-hand side figure.

nificant. Similar conclusions can be drawn if instead of the results
for RMSE we consider the results for the correlation coefficient
(Figure A1 from Appendix).

In addition, we compared the approaches by their time and size
efficiency (Table 4). For the single-target scenarios (linear regres-
sion, regression trees, bagging of regression trees and random
forests of regression trees) the time efficiency is calculated as the
sum of the times used to learn a model for each target separately.
The size of a linear regression model is the number of terms in the
equation. The size of a MTRT is calculated as the number of nodes
in the tree, while the size of a regression tree is the sum of the
number of nodes in the trees over all targets. For bagging and ran-
dom forests of multi-target regression trees, the size efficiency is
the sum of size of the trees in the ensemble, while for the bagging
and random forests of regression trees the size is the sum of the
sizes of the ensembles for each target.

When comparing ensemble methods, the speed-up ratio of
multi-target over single-target tree models remains high (4.5 on
average), while the size of the multi-target tree models is about 0.25
of the size of single-target tree models. Multi-target regression con-
sistently delivers models that have equally good predictive power,
but are smaller and faster to learn (and apply). Linear regression has
comparable time and size efficiency with multi-target regression
models.

Overall, random forests of multi-target regression trees should
be preferred, given that they improve the predictive performance
and stability of multi-target trees in general, and are not as compu-
tationally expensive as bagging.

The spatially explicit map produced by the MTRT random forest
ensemble, provides a subtle and accurate reflection of the condi-
tion of indigenous vegetation across the State of Victoria (Fig. 7). As
we can see in the detailed inset, the modelled condition is finely
resolved and nuanced, responding appropriately to local condi-
tions, land use and land tenure. Application of the models allows
for their further evaluation by experts familiar with local study
areas. Such an evaluation is an ongoing process—but preliminary
assessment indicates that the random forest MTRT is a robust

model across a wide range of landscape, landuse and historical
contexts.

6. Conclusions

In this work, we model the condition of remnant indigenous
vegetation with machine learning techniques. The condition of the
vegetation is described by multiple (habitat hectares) scores that
reflect the structural and compositional attributes of a wide variety
of plant communities. To model the multiple scores, we used two
approaches: single-target and multi-target regression. With single-
target regression we learn a model for each score separately, while
with the multi-target regression we learn one model for all scores.
The results show the advantages of multi-target over single-target
regression: multi-target models have a smaller size and are faster to
learn and apply. Also, there is no statistically significant difference
in their predictive power.

We performed two sets of experiments. With the first set we
were interested in knowledge extraction, and with the other we
opted for models that have better predictive power. For knowledge
extraction, we used pruned regression trees and pruned multi-
target regression trees. The goal was to better understand the
resilience of some indigenous vegetation types and the relative
importance of biophysical and landscape attributes that influence
their condition. From the learned models, we can conclude that the
most important variables influencing all scores are those related to
tree cover. This holds also for scores that do not depend directly
on the presence of tree cover. Land cover is also of high impor-
tance, with dense forest cover yielding high scores. Finally, climate
(including the variability of weather conditions) also plays an
important role.

Predictive power and efficiency was an imperative for the selec-
tion of the preferred model from the second set of experiments.
In order to obtain models that have high predictive power we used
unpruned regression trees, ensembles of regression trees, unpruned
multi-target regression trees and ensembles of multi-target regres-
sion trees. Given the results of the statistical tests for the predictive
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power, and the time and size efficiency, the random forests of multi-
target regression trees should be preferred.

An important consideration of model utility is the spatial aspect
at which the models are to be used and the specific purpose for
which the model has been developed. The development of both
single trees and ensembles of trees has highlighted the trade-off
in model selection between complexity and predictive power on
one hand and interpretability on the other. The pruned single tree
based solutions to the prediction problem are transparent and facil-
itate almost immediate interpretation and qualitative evaluation
by a range of users with varying degrees of understanding of the
underlying learning algorithm. However, due to their simplicity, the
predictions of single (pruned) trees as rendered by mapping pro-
duce generalized surfaces apparently devoid of the heterogeneity
and subtlety of the real world. This may be a useful outcome if the
objective is to produce a simple model. Conversely, due to the high
predictive power, the ensemble models provide for the complexity
and fine scale accuracy absent from the single trees, but are not
readily interpretable to users.

It is apparent from this study that complex weighted metrics
such as the habitat hectare index of vegetation condition can be
modelled across extensive areas with some predictive confidence,
using easily obtained remotely acquired data and provided ade-
quate field data is collected. Such products can provide a ‘snapshot’
of the prevailing conditions and provide investment and decision
support for natural resource managers.

We intend to extend out work in several directions. We hope
to use new features that summarise relevant past and prevailing
environmental disturbances and land uses, with a view to improv-
ing spatial models of vegetation condition, while realising some
view of condition trajectory. In addition, we intend to develop spa-
tially explicit models of both the untransformed and unweighted
field measures that inform each of the components of the HHSS
and the benchmark or reference values for these measures. Finally,
we are interested in investigating the potential for implementing
cost-sensitive learning to reflect heightened regulatory, planning or
investment interest in particular geographic regions or particular
index value ranges.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.ecolmodel.2009.01.037.
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APPENDIX

Table Al. Table describing the descriptive (explanatory, independent) variables

. . . N Pixel
Environmental Variables Brief Description .
Resolution

ThorPot07 Radiometric Data — Ratio of the radioelement count of Thorium and the 50 m resampled
radioelement count of Potassium. Sourced from Various Australian State to 30 m
Agencies

ThorlnvPot07 Radiometric Data — Ratio of the inverse radioelement count of Thorium and | 50 m resampled
the radioelement count of Potassium. Sourced from Various Australian to 30 m
State Agencies

Bl 89 05 Band 1 (Blue-green reflectance 0.45-0.52 micrometers) Landsat 7 TM 30 m
Median value years 1989 — 2005

B2 89 05 Band 2 (Green reflectance 0.52-0.60 micrometers) Landsat 7 TM Median 30 m
value years 1989 — 2005

B3 89 05 Band 3 (Red reflectance 0.63-0.69 micrometers) Landsat 7 TM Median 30 m
value years 1989 — 2005

B4 89 05 Band 4 (Near-infrared reflectance 0.76-0.90 micrometers) Landsat 7 TM 30 m
Median value years 1989 — 2005

B5 89 05 Band 5 (Mid-infrared reflectance 1.55-1.75 micrometers) Landsat 7 TM 30 m
Median value years 1989 — 2005

B7 89 05 Band 7 (Mid-infrared reflectance 2.08-2.35 micrometers) Landsat 7 TM 30 m
Median value years 1989 — 2005

Ndvi_89 05 Mean Normalised Difference Vegetation Index derived from LANDSAT 7 30 m
TM of years 1989 — 2005

Ndwi_89 05 Mean Mean Normalised Difference Wetness Index derived from LANDSAT 7 30 m
TM of years 1989 — 2005

Ndwi_89 05 StdError Standard Error of Normalised Difference Wetness Index derived from 30 m
LANDSAT 7 TM of years 1989 — 2005
Mean value across a 10 hectare neighbourhood of cells calculated from the

B3 98 05_10ha_Mean surface - Mean value for Band 3 (Blue-green reflectance 0.45-0.52 30m
micrometers) Landsat 7 TM years 1998 — 2005
Mean value across a 10 hectare neighbourhood of cells calculated from the

B4_98 05_10ha_Mean surface - Mean value for Band 4 (Near-infrared reflectance 0.76-0.90 30m
micrometers) Landsat 7 TM years 1998 — 2005
Mean value across a 10 hectare neighbourhood of cells calculated from the

B5_98 05_10ha_Mean surface - Mean value for Band 5 (Mid-infrared reflectance 1.55-1.75 30m
micrometers) Landsat 7 TM years 1998 — 2005
Mean value across a 10 hectare neighbourhood of cells calculated from the

B6_98 05_10ha_Mean surface - Mean value for Band 7 (Mid-infrared reflectance 2.08-2.35 30m
micrometers) Landsat 7 TM years 1998 — 2005

Nvdi 98 05 10haMean Mean Normalised Difference Vegetation Index derived from LANDSAT 7 | 30 m
TM of years 1998 — 2005
Standard Deviation across a 10 hectare neighbourhood of cells calculated

B3_98 05_10ha_StdDev from the surface - Mean value for Band 3 (Blue-green reflectance 0.45-0.52 30m
micrometers) Landsat 7 TM years 1998 — 2005
Standard Deviation across a 10 hectare neighbourhood of cells calculated

B4_98 05_10ha_StdDev from the surface - Mean value for Band 4 (Near-infrared reflectance 0.76- 30m
0.90 micrometers) Landsat 7 TM years 1998 — 2005
Standard Deviation across a 10 hectare neighbourhood of cells calculated

B5_98 05_10ha_StdDev from the surface - Mean value for Band 5 (Mid-infrared reflectance 1.55- 30m
1.75 micrometers) Landsat 7 TM years 1998 — 2005
Standard Deviation across a 10 hectare neighbourhood of cells calculated

B6_98_05_10ha_StdDev from the surface - Mean value for Band 7 (Mid-infrared reflectance 2.08- 30m
2.35 micrometers) Landsat 7 TM years 1998 — 2005

RoadDensity5K Density of Roads in a 5 kilometre radius - line count 30 m

TempR Annual range in temperature (°C) between minimum temperature of coldest | 100m resampled

empiange period of the year and the maximum temperature of the warmest period of to 30m

the year. Developed using ANUCLIM (Houlder et al. 2000)

MaxTempWarmestP The highest temperature (°C) of any weekly maximum temperature. 100m resampled

to 30m




Table A1 (ctd.). Table describing the descriptive (explanatory, independent) variables

Environmental Variables Brief Description Plxel.
Resolution
AnnualRain Mean Annual Rainfall Surface (mm) developed using ANUCLIM (Houlder | 100m resampled
et al. 2000) to 30m
NetRainfall Mean Annual Rainfall (mm) (from ANUCLIM model) less Mean Annual 100m resampled
Evaporation (mm) (from ANUCLIM model) to 30m
The Standard Deviation of Monthly Net Mean Rainfall (Monthly Net mean 100m resampled
NetRainfallStdev Rainfall is the mean Monthly Rainfall (mm) less the Mean Monthly t0 30m P
Evaporation). Monthly means were developed using ANUCLIM (Houlder
et al. 2000)
Topographic Wetness Index a compound terrain attribute (sensu Bevan and 100m resampled
TWIix1000 Kirby 1979) implemented using the Shuttle Radar Topography Mission t0 30m p
(SRTM) Digital Elevation Model and TOPOCROP Version 2.1 (Schmidt
2002)
Rad Direct Direct Solar Radiation (Watts m2 per year). Derived from Shuttle Radar 100m resampled
- Topography Mission (SRTM) Digital Elevation Model using The Solar to 30m
Analyst 1.0 (Fu and Rich 2000)
LandCover Categorical variable 10 Landcover classes derived from K-means 30 m
clustering of median satellite imagery captured between 1989 and 2005
NativeTreeProb An Artificial Neural Network Model of the probability of a lack of tree 30m
cover for Victoria trained using Landsat 7 TM chronosequence and Spot 4
panchromatic imagery.
. The mean result for a 1 hectare neighbourhood for the probability of a lack
TreeProblHa_RegionMean of tree cover for Victoria (see Nati\%eTreeProb). Trainelc)i using Lansat 7 30m
TM chronosequence and Spot 4 panchromatic imagery.
. The mean result for a 10 hectare neighbourhood for the probability of a
TreeProbl0ha_RegionMean lack of tree cover for Victoria (see I\%ativeTreeProb). Tr'fined using Landsat 30m
7 TM chronosequence and Spot 4 panchromatic imagery.
. The standard deviation across a 1 hectare neighbourhood for the probabilit
TreeProbIHa_RegionStdDev of a lack of tree cover for Victoria (see NatiViTreeProb). Traine(f using U
Landsat 7 TM chronosequence and Spot 4 panchromatic imagery.
The standard deviation across a 10 hectare neighbourhood for the
TreeProbl0ha_RegionStdDev | probability of a lack of tree cover for Victoria (see NativeTreeProb). 30 m

Trained using Landsat 7 TM chronosequence and Spot 4 panchromatic
imagery.

Prel750TreeDensity

An Artificial Neural Network model of the density of tree cover across
south eastern-Australia prior to European invasion in the easly 19th
century. The model was trained and validated using tree cover sampling
along roads and other parts of the landscape in which the tree cover has
been relatively undisturbed by subsequent land use.

100m resampled
to 30m

NativeGrassProb

An Artificial Neural Network Model of the probability of native grassland
cover for Victoria trained using Landsat 7 TM chronosequence and Spot 4
panchromatic imagery.

30 m

GrassProblHa RegionMean

The mean result for a 1 hectare neighbourhood for the probability of native
grassland cover for Victoria (see NativeGrassProb). Trained using Landsat
7 TM chronosequence and Spot 4 panchromatic imagery.

30 m

GrassProblHa_RegionStdDev

The standard deviation across a 1 hectare neighbourhood for the probability
of native grassland cover for Victoria (see NativeGrassProb). Trained using
Landsat 7 TM chronosequence and Spot 4 panchromatic imagery.

30 m

GrassProbl0ha_RegionMean

The mean result for a 1 hectare neighbourhood for the probability of native
grassland cover for Victoria (see NativeGrassProb). Trained using Landsat
7 TM chronosequence and Spot 4 panchromatic imagery.

30 m

GrassProb10ha_RegionStdDev

The standard deviation across a 10 hectare neighbourhood for the
probability of native grassland cover for Victoria (see NativeGrassProb).
Trained using Landsat 7 TM chronosequence and Spot 4 panchromatic

imagery.

30 m




Table A2. Basic statistics for the habitat hectares site score field data.

Minimum Maximum Mean Standard

value Deviation
Large Tree Score 0 10 2.82 3.36
Tree Canopy Score 0 5 2.46 2.23
Understorey Score 0 25 8.50 7.16
Litter Score 0 5 3.00 2.04
Logs Score 0 5 1.88 2.08
Weeds Score 0 15 6.97 6.14
Recruitment Score 0 10 3.33 3.26

Table 3A. Ranking of the algorithms by the RMSE for the Friedman test. Outcome of Freidman test is that
with p-value less than 0.01 the difference in the performance is statistically significant.

Target LR MTRT RT BagMTRT Bag RT RF MTRT | RFRT
Large Tree Score 6 5 7 1.5 3.5 35 1.5
Tree Canopy Score 6 5 7 4 2 2 2
Understorey Score 7 5 6 2.5 2.5 4 1
Litter Score 6.5 5 6.5 4 2 2 2
Logs Score 6 5 7 2 4 2 2
Weeds Score 6 5 7 1.5 3.5 3.5 1.5
Recruitment Score 6 5 7 2.5 2.5 2.5 2.5
Average Ranks 6.21 5.00 6.79 2.57 2.86 2.79 1.79

Table 4A. Ranking of the algorithms by the Correlation Coefficient for the Friedman test. Outcome of
Freidman test is that with p-value less than 0.01 the difference in the performance is statistically significant.

Target LR MTRT RT BagMTRT Bag RT RF MTRT | RFRT
Large Tree Score 6 5 7 2.5 2.5 2.5 2.5
Tree Canopy Score 5.5 5.5 7 4 2 2 2
Understorey Score 6.5 5 6.5 2.5 2.5 2.5 2.5
Litter Score 6.5 5 6.5 4 2 2 2
Logs Score 6.5 5 6.5 2.5 2.5 2.5 2.5
Weeds Score 7 5.5 5.5 2.5 2.5 2.5 2.5
Recruitment Score 6.5 5 6.5 3 3 3 1
Average Ranks 6.36 5.14 6.50 3.00 2.43 2.43 2.14

Critical Distance = 34052
7 6 5 3 3 2 1
1 L 1 ! 1 I
BT EFERT
LR Bag RT
MTRT RF MTRT
Bag MTRT

Figure Al. Average ranks diagram for the applied algorithms (comparing by correlation coefficient).
Algorithms that do not differ significantly (p—value = 0.05) are connected with a line.
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6.2 Hierarchical annotation of medical images

Hierarchical multi-label classification (HMC) problems are encountered increasingly often
in image annotation. However, flat classification machine learning approaches are pre-
dominantly applied in this area, in particular collections of SVMs. In this case study, we
propose to exploit the annotation hierarchy in image annotation by using ensembles of
PCTs for HMC.

We apply the ensembles of PCTs for HMC to two benchmark tasks for hierarchical
annotation of medical (X-ray) images and an additional task for photo annotation. We
compare it to a collection of SVMs (trained with a x? kernel), the best-performing and
most-frequently used approach to (hierarchical) image annotation. Our approach achieves
better results than the competition on all of these: For the two medical image datasets,
these are the best results reported in the literature so fafl Our approach has superior
performance, both in terms of accuracy/error and especially in terms of efficiency.

We explore the relative performance of ensembles of PCTs for HMC and collections
of SVMs under a variety of conditions. Along one dimension, we consider three different
datasets. Along another dimension, we consider two ensemble approaches, bagging and
random forests. Furthermore, we consider several state-of-the-art feature extraction ap-
proaches and combinations thereof. Finally, we consider two types of feature fusion, i.e.,
low- and high-level fusion.

Ensembles of PCTs for HMC perform consistently better than SVMs over the whole
range of conditions explored above. The two ensemble approaches perform better than
SVM collections on all three tasks, with random forests being more efficient than bagging
(and the most efficient overall). The relative performance holds for different image descrip-
tors and their combinations. The relative performance also holds for both low-level and
high-level fusion of the image descriptors, the former yielding slightly better performance.
We can thus conclude that for the task of hierarchical image annotation, ensembles of
PCTs for HMC are a superior alternative to using collections of SVMs.

At the end, we emphasize the scalability of our approach. Decision trees are one of the
most efficient machine learning approaches and can handle large numbers of examples. The
ensemble approach of random forests scales very well for large numbers of features. Finally,
trees for HMC scale very well as the complexity of the annotation hierarchy increases,
being able to handle very large hierarchies organized as trees or directed acyclic graphs.
Combining these, our approach is scalable along all three dimensions.

! Annotation results for these images can be found at the ImageCLEF competition web site (http:
//www . imageclef .org/2009/medanno)) for the Medical Image Annotation Task or in the edited volume
describing the competitors ((Tommasi et al., [2010)) and the references thereof).
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Abstract

We present a hierarchical multi-label classification (HM§g3tem for medical image annotation.
HMC is a variant of classification where an instance may lgptormultiple classes at the same
time and these clasgibels are organized in a hierarchy. Our approach to HMCoétgthe an-
notation hierarchy by building a single predictive clusigrtree (PCT) that can simultaneously
predict all annotations of an image. Hence, PCTs are VErgient: a single classifier is valid
for the hierarchical semantics as a whole, as compared & agijproaches that produce many
classifiers, each valid just for one given class. To imprasfgsmance, we construct ensembles
of PCTs. We evaluate our system on the IRMA database thatstemd X-ray images. We in-
vestigate its performance under a variety of conditionshdgin with, we consider two ensemble
approches, bagging and random forests. Next, we use setatedof-the-art feature extraction
approaches and combinations thereof. Finally, we emplaytyyes of feature fusion, i.e., low-
and high-level fusion. The experiments show that our sysiatperforms the best-performing
approach from the literature (a collection of SVMs, eachdymting one label at the lowest level
of the hierarchy), both in terms of error anffieiency. This holds across a range of descriptors
and descriptor combinations, regardless of the type ofifedtision used. To stress the general-
ity of the proposed approach, we have also applied it forraatiz annotation of a large number
of consumer photos with multiple annotations organizedeimantic hierarchy. The obtained
results show that this approach is general and easily a@iidn diferent domains, féering
state-of-the-art performance.

Keywords: Automatic Image Annotation, Hierarchical Multi-Label Gtification, Predictive
Clustering Trees, Feature Extraction from Images

1. Introduction

Digital imaging in medicine is in constant growth due to thereasing availability of imag-
ing equipment in hospitals. Average-sized radiology depants now produce several tera-bytes
of data annually. This prompts foffeient systems for image annotation, storage, retrieval and
mining. Typically, medical image databases are accessetextual information through the
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standard Picture Archiving and Communication System (PACS[2]. PACS integrates imag-
ing modalities and interfaces with hospital and departaleinformation systems to manage
storage and distribution of images to medical personnskaechers, clinics, and imaging cen-
ters. An important requirement of PACS is the provision oéflitient search function to access
the required images.

An universal format for PACS image storage and retrievahésDigital Imaging and Com-
munications in Medicine (DICOM) standard [3]. DICOM is a Weahtown standard for handling,
storing, printing, and transmitting information in medi@gaaging. The DICOM header con-
tains tags to decode the body part examined, the patierntiggosind the acquisition modality.
Some of the tags are automatically set by the digital systeeording to the imaging protocol
used to capture the pixel data. Other part of the tags are aetaily by the physicians or ra-
diologists during the routine documentation. This procediannot always be considered very
reliable, since frequently happens that some entries Hreranissing, false, or do not describe
the anatomic region precisely [4]. Furthermore, manuabgation of images is an expensive
and time-consuming procedure, especially given the langecanstantly growing databases of
medical images. Thus, completely automated categorizatiterms of DICOM tags is currently
not possible, but is highly desirable.

Automatic image annotation or image classification is anartgnt step in image retrieval.
In the medical domain, using information directly extracteom images to annotatmategorize
them will improve the quality of image annotation in partari and more generally the quality
of patient care. Properly classified medical image data edm imedical professionals in fast
and efective access to data in their teaching, research, training) diagnostic problems. The
results of the classification step can also be used for nmgjtibl image annotation as well as for
DICOM header correction [5].

Automatic image annotation can be used for retrospectivetation (pre DICOM). It can
also be used as help for human annotators (i.e., radio®)gishere the annotations that are
suggested by the system are correatedfiedconfirmed by the human annotator. The limits of
performance of an automated annotation system that leesmsdxample images annotated by
humans, is the ratgrobability of operator errgagreement of annotators.

Automatic image annotation uses a computer system whichatically assigns metadata
in the form of captions or keywords to a digital image. Tyficamage analysis first extracts
feature vectors. Then, together with the training annoretithey are used by a machine learning
algorithm to learn to automatically assign annotationse pérformance of the computer system
largely depends on the availability of strongly represtveavisual features, able to characterize
different visual properties of the images, and the us&ettve algorithms for training classifiers
for automatic image annotation.

A single image may contain flierent meanings organized in hierarchical semantics: hence
hierarchical multi-label classification (HMC) is strongcommended for obtaining multi-label
annotations. The task of multi-label classification is tsigis multiple labels to each image. The
assigned labels are a subset of a previously defined setrardtiy of labels. HMC is used in
various domains [6], such as text classification, scene aab\classification, medical imaging
and biological applications. One of the main issues inwblvemulti-label classification is the
importance of detecting and incorporating the connectlmtareen the labels into the process
of assigning multiple labels. A second and related issuseistiditional complexity involved in
learning multi-label classifiers, as compared to learningls-label classifiers.

In this paper, we present a HMC system for medical image atioot This system consists
of the two standard parts of image annotation systems precessing (feature extraction) and
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classification of images. The image processing part uses-atahe-art approaches to convert
an image to a set of numerical features extracted direcity fihe pixel values. The image clas-
sification part, which labels and groups the images, costifie main novelty of our approach:
The labels can be organized in a hierarchy and an image cabéked with more than one label
(an image can belong to more than one group).

First, we generate four fierent types of descriptors suitable for X-Ray medical insage
raw pixel representation (RPR) [7], local binary patterinBR) [8], edge histogram descriptors
(EHD) [9], and scale-invariant feature transform (SIFT)Q][1The features are generated using
the medical X-ray images from the ImageCLEF2009 medicaber@nnotation task [5]. Next,
we use these features together with the annotations tottraiolassifiers. In particular, we use
ensembles (bags and random forests) of PCTs for HMC and SviMéTgle-label classification,
the most widely used classifier in the area of image annotafiothe end, we assess the predic-
tive performance of the classifiers using the hierarchicakeneasure (HEM) from ImageCLEF
[5] and overall recognition rate (RR), commonly used foreasing the predictive performance
over the database we use.

The main question that we address in our research is whetpkriting the semantic knowl-
edge about the inter-class relationships among the imagésléorganized in a hierarchical struc-
ture) can improve the predictive performance of a systeraditwmatic image annotation. To this
end, we compare the predictive performance of the enserble€Ts for HMC (that predict
all labels simultaneously) to that of SVMs (each of them ptiay a single label). We do this
across all feature extraction techniques, thus evalugtimditerent feature extraction techniques
and their use in HMC of medical X-ray images. Moreover, weegtigate whether (and which
type of) combination of feature extraction techniquesdsdbetter predictive performance. We
consider low level (LL) and high level (HL) feature fusjgpmbination schemes [7].

To emphasize the generality of our approach, we have altedtéson the database of gen-
eral images from the ImageCLEF@ICPR 2010 photo annotatiski [tL1]. The images in this
database are annotated with 53 visual concepts organizzdlassification scheme with hier-
archical structure, which we used to build ensembles of PGITBIMC as classifiers. The 53
concepts include abstract categories (like partylifed,ttine of day (like day or night), persons
(like no person visible, small or big group) and quality €liklurred or underexposed). A com-
plete overview of the task is given by Nowak [11].

The remainder of the paper is organized as follows. In Se@jowe give an overview of
related work. Section 3 introduces predictive clusterimg$ and their use for HMC. Section
4 describes the techniques for feature extraction from @sadn Section 5, we explain the
experimental setup for annotating medical images. Thamddaesults and a discussion thereof
are given in Section 6. Section 7 describes the experimerganotation of general images, as
well as their results. Section 8 concludes the paper andgoirt some directions for further
work.

2. Related work

Regardless of the number of visual concepts that have todsedd and their mutual con-
nections, most of the present systems for annotation ofrgeimages (and medical images in
particular) learn a separate model for each visual condapel], i.e., they treat the classes as
completely separate and independent (both visually anésgeally). This means that multi-
label classification problems are transformed into sevarary classification problems. For
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example, the methods with high predictive performanceednechallenggsompetitions in de-
tection and annotation tasks (such as the PASCAL Visual @l§jéasses challenge [12], the
ImageCLEF medical image annotation task [13], [5] and thageCLEF visual concept detec-
tion and annotation task [14]) perform multi-label clagsifion by building binary classifiers
for each label. The instances associated with particulesl lare in one class and the rest are in
another class. For solving the binary classification prmisids common to use a SVM withy&
kernel [15]. This means that the increase of the number eisalsed for annotation will linearly
increase the complexity of such an approach.

To deal with a large number of categoyigasses, many approaches combine binary classi-
fiers using class hierarchies [16], [17]. This results in galithmic increase of complexity as
the number of labels increases. The class hierarchies cantbmatically constructed through
analysis of visual similarities: this can proceed top-ddwyrrecursive partitioning of the set of
classes [18] or bottom-up by agglomerative clustering.[T®e hierarchies could also be found
by exhaustive search or random sampling followed by cradistation [20].

An alternative method for automatic construction of hiehégs is to query an external se-
mantic network with class labels [17]. Since semantic netaanodel concepts and relations
between them, a subgraph in the form of a hierarchy can bly easiacted. Such an approach
allows to incorporate prior knowledge about object idgnitito the visual recognition system.
Our approach to automatic image annotation is based ondbi i We exploit the semantic
knowledge about the inter-class relationships among tlagénabels organized in a hierarchical
structure. We build one classifier that can simultaneousdglipt all annotations of an image,
instead of building one binary classifier for each node intileearchy.

Another popular approach to image annotation is TagProp T2hProp is a discriminatively
trained nearest neighbor model. Tags of test images aréctgddising a weighted nearest-
neighbor model to exploit labeled training images. Neighkeights are based on neighbor rank
or distance. TagProp allows the integration of metric leary directly maximizing the log-
likelihood of the tag predictions in the training set. Howevn a recent study, Mensink et al.[22]
showed that per-label-trained linear SVM classifiers otitpen TagProp.

3. Ensemblesof PCTsfor HMC

3.1. The task of HMC

Hierarchical multi-label classification is a variant ofs#fication where (1) a single example
may belong to multiple classes at the same time and (2) theilpeslasses are organized in a
hierarchy. An example that belongs to some claaatomatically belongs to all super-classes of
c¢: This is called the hierarchical constraint. Problems &f kind can be found in many domains
including text classification, functional genomics, andealiscene classification. For a more
detailed overview of the possible application areas we tbfereader to Silla and Freitas[6].

In medical image classification, the application domain driclv we focus, an important
problem is the development of an automatic image annotatystem, which can specify the
image modality, body orientation, body region, or the bjidal system examined. In this do-
main, the predefined set of labels might be organized in asieriaierarchy, such as the one
shown in Fig. 1. Each image is represented with: (1) a set sérifgors (in this example, the
descriptors are histograms of five types of edges encouhterthe image) and (2) a set of la-
belgannotations. A single image can be annotated with multgdbels at dierent levels of the
predefined hierarchy.



features/descriptors |

image annotations/labels
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ical spine@ anatomy bio-system
7 cervical spinei
i‘ 48|24 15916637 | ... musculoskeletal system
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Figure 1: An example task of HMC in a medical domain. The tabletijerleft-hand side) contains a set of images with
their visual descriptors and annotations. The annotatioapart of the IRMA [23] hierarchical classification schemie (
which a small part is shown on the right hand side).

yes no

yes no yes no

lumbar spine 0.84
upper lumbar spine 0.62
ureter 0.51 yes no
cervical spine 0.81 renal pelvis 0.87
musculosceletal 0.75 parenchyma 0.80

middle abdomen 0.72 axis 0.74

Figure 2: An example of a predictive clustering tree consediaising the descriptors from Fig. 1. The internal nodes
contain tests on the descriptors, while the leafs store tblegbilities that an image is annotated with a given labehfro
the hierarchy.

For example, the image in the second row of the table in Figasltivo labels, middle ab-
domen and renal pelvis, listed explicitly. Note that thigge is also implicitly labeled with the
labels: anatomy, abdomen, kidney, uropoietic and bioesystThese labels are all ancestors of
the explicitly listed labels in the given hierarchy.

The data, as presented in the table in the left-hand sidegoflFiconstitute a data set for
HMC. This set can be used by a machine learning algorithmaia & classifier for HMC. For
images in the testing set only the descriptors are given arsdpmiori annotations.

3.2. Predictive clustering trees

Predictive Clustering Trees (PCTs) [24]generalize decision trees [25] and can be used
for a variety of learning tasks includingftérent types of prediction and clustering. The PCT
framework views a decision tree as a hierarchy of clustérs:tap-node of a PCT corresponds
to one cluster containing all data, which is recursivelytiianed into smaller clusters while
moving down the tree. The leaves represent the clusterg dbwlest level of the hierarchy and
each leaf is labeled with its cluster’s prototype (predic}i Note that the hierarchical structure
of the PCT (Fig. 2) does not necessary reflect the hierarcsiiaecture of the annotations (Fig.
1).

1The PCT framework is implemented in the CLUS system, which isa@ivai athttp: //www.cs.kuleuven.be/
~dtai/clus.
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PCTs are built with a greedy recursive top-down inductioBIfTalgorithm, similar to that
of C4.5 [26] or CART [25]. The learning algorithm starts byessing a test for the root node.
Based on this test, the training set is partitioned into stgbaccording to the test outcome.
This is recursively repeated to construct the subtrees. pHntitioning process stops when a
stopping criterion is satisfied (e.g., the number of recamdbe induced subsets is smaller than
some predefined value; the length of the path from the rodid¢current subset exceeds some
predefined value etc.). In that case, the prototype is catledland stored in a leaf.

One of the most important steps in the TDI algorithm is thé $e¢ection procedure. For
each node, a test is selected by using a heuristic functiorpated on the training examples.
The goal of the heuristic is to guide the algorithm towardsalénmees with good predictive
performance. The heuristic used in this algorithm for gelgahe attribute tests in the internal
nodes is the reduction in variance caused by partitioniagrtstances, where the variantar(S)
is defined by (Equation 1). Maximizing the variance reduttisaximizes cluster homogeneity
and improves predictive performance.

The main diference between the algorithm for learning PCTs and an #hgoffor learning
decision trees (such as C4.5 [26] and CART [25]) is that theé&r considers the variance func-
tion and the prototype function (that computes a label fahdaaf) as parameters that can be
instantiated for a given learning task. So far, the PCTs haen instantiated for the following
tasks: multiple targets prediction [27], [28], predictioitime-series [29] and hierarchical-multi
label clasdfication [30]. In this article, we focus on the last of thesésas

3.3. PCTs for hierarchical multi-label classification

To apply PCTs to the task of HMC, the example labels are repted as vectors with
Boolean components. Components in the vector correspolatbéds in the hierarchy traversed
in a depth-first manner. Thieth component of the vector is 1 if the example belongs tosadas
and 0 otherwise. I¥; = 1, thenv; = 1 for all v;’s on the path from the root tq.

The variance of a set of example&3) (s defined as the average squared distance between each
example’s label; and the mean labelof the set, i.e.,

¥ d(vi, v)?

var(S) = ——

S )

The higher levels of the hierarchy are more important: aoretrthe upper levels costs more
than an error at the lower levels. Considering this, a weigituclidean distance is used:

i, vz) = \/Z Wo) s — Va1 @

wherevy; is thei’th component of the class vectay of an instancex, andw(c;) are the class
weights. The class weights decrease with the depth of tlss il@he hierarchyy(c;) = wo-w(c;),
wherec; is the parent o€. Each leaf in the tree stores the meeof the vectors of the examples
that are sorted into that leaf (Fig. 2). Each componentistthe proportion of examples in the
leaf that belong to class. An example arriving in the leaf can be predicted to belongldssc;
if v is above some threshotd The threshold can be chosen by a domain expert.

The PCTs are also extended for predicting hierarchies agdras directed acyclic graphs
(DAGS). In this case, the depth of a class is not unique asetado not have single path from
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the hierarchy’s root. To resolve this issue, Vens et al. R@jgest four aggregation schemes of
the possible paths from the top-node to a given class: ageragximum, minimum and sum.
After an extensive experimental evaluation, they reconthteruse the average as aggregation
function. For a detailed description of PCTs for HMC we rdfez reader to Vens et al. [30].
Next, we explain how PCTs are used in the context of an enseatdssifier, in order to further
improve the performance of PCTs.

3.4. Ensemble methods

An ensemble classifier is a set of (base) classifiers. A nempbais classified by the en-
semble by combining the predictions of the member classifine predictions can be combined
by taking the average (for regression tasks), the majodtg (for classification tasks) [31],[32],
or more complex combinations.

We use PCTs for HMC as base classifiers. Averaging is appliedmbine the predictions
of the diferent trees: the leaf’s prototype is the proportion of eXaspf diferent classes that
belong to it. Just like for the base classifiers, a threshoddikl be specified to make a prediction.

We consider two ensemble learning techniques that haveaphnieen used in the context
of decision trees: bagging and random forests. Baggingd8astructs the diierent classifiers
by making bootstrap replicates of the training set and usaah of these replicates to construct
one classifier. Each bootstrap sample is obtained by rarydssnhpling training instances, with
replacement, from the original training set, until a numbkinstances is obtained equal to the
size of the training set. Bagging is applicable to any typkeafning algorithm.

A random forest [32] is an ensemble of trees, obtained bothdwgstrap sampling, and by
randomly changing the feature set during learning. Moreipedy, at each node in the decision
tree, a random subset of the input attributes is taken, amthelst feature is selected from this
subset (instead of the set of all attributes). The numbettdlbates that are retained is given by a
function f of the total number of input attributeq(e.g.,f(x) = x, f(X) = VX, f(X) = |log, x| +1,
...). By settingf(x) = x, we obtain the bagging procedure.

4. Feature extraction from images

Collections of medical images can contain various imagésioeéd using dierent imaging
techniques. Oferent feature extraction techniques are able to captdifereint aspects of an
image (e.g., texture, shapes, color distribution...)hls $tudy, we focus on X-ray images, hence,
we use texture (LBP and EHD) and local (SIFT) features as prostising for describing X-ray
images [5],[33].

Texture is especially important, because it ifidult to classify medical images using shape
or gray level information. Eective representation of texture is needed to distinguetivéen
images with equal modality and layout. Local image chargsttes are fundamental for image
interpretation: while global features retain informatiom the whole image, the local features
capture the details. They are thus more discriminative @anieg the problem of inter and intra-
class variability, an open challenge in automatic annatadf medical images [7].

4.1. Raw pixel representation

The most straightforward approach to image classificatidhe direct use of the image pixel
values as features. The images are scaled to a common sizemadented by a feature vector
that contains image pixel values. It has been shown thatdssification and retrieval of medical
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radiographs, this method serves as a reasonable baselineN8 used a 32x32 down-sampled
representation of the images as recommended by Tommasi [g.alThe obtained 1024 pixel
values were then used as input features. Fig. 3 shows how Nteéhauraw pixel representation
for each image.

512x446

100 200 300 400 500 600 700 800 900 1000

Figure 3: Down-sampling for raw pixel representation

4.2. Local binary patterns

Local binary patterns (LBP) are one of the best represemsif texture content in images
[8]. They are invariant to monotonic changes in gray-scalages and fast to compute. Fur-
thermore, they are able to detecffdient micro patterns, such as edges, points and constant
areas.

The basic idea behind the LBP approach is to use the infoomatbout the texture from a
local neighborhood. First, we define the radRi®f the local neighborhood under considera-
tion. The LBP operator then builds a binary code that dessrthe local texture pattern in the
neighborhood set o pixels. The binary code is obtained by applying the gray e/aitithe
neighborhood center as a threshold. The binary code is tbeveded to a decimal number
which represents the LBP code. Formally, given a pixel attioos(xc, y.) the resulting LBP
code can be expressed as follows:

P-1
LPBpr(Xe,Yo) = . Slin = i)2" 3)
n=0

wheren ranges over the neighbors of the central pixekd, y.), ic andiy, are the gray-level values
of the central pixel and the neighbor pixel, adk) is defined as:

1, if x>0 (4a)

S() = { 0, otherwise (4b)

The image is traversed with the LBP operator pixel by pixel #re outputs are accumulated
into a discrete histogram. However, not all LBP codes arerinétive. Certain LBP codes cap-
ture fundamental properties of the texture and are calléddmm patterns because they constitute
the vast majority, sometimes over 90 percent, of all pastpresent in the observed textures [8].
These patterns have one thing in common, namely, a unifowular structure that contains very
few spatial transitions. They function as templates forroy&tructures such as bright spot, flat
area or dark spot.

In our experiments, we used the patteh&l’s‘i, where the superscripi2 reflects the use
of uniform patterns that have @ value of at most 2 on a neighborhood of size 8 and radius
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Figure 4: The image is divided into 4x4 non-overlapping sulges from which LBP histograms are extracted and
concatenated into a single, spatially enhanced histogram

1. TheU value is the number of spatial transitions (bitwigé 8hanges) in the pattern. The
non-uniform patterns (patterns that haveralue larger than 2) are grouped under one bin in the
resulting histogram. With thEBF‘g?l operator, the number of bins in the histogram is reduced
from 256 to 59 (58 bins for uniform patterns and one bin for-noifornynoisy patterns).

To spatially enhance the descriptors and improve the pegoce, it has been suggested to
repeatedly sample predefined sub-regions of an image (&,,2x2, 4x4 or 1x3) [35]. The
different resolutions are then aggregated into a spatial pgremich allows for region-specific
weighting. Following these approaches, we divide the irmdge 4x4 non-overlapping sub-
images (blocks) and concatenate the LBP histograms estféat each sub-image into a single,
spatially enhanced feature histogram. This approach dimistaining a more local description
of the images. Fig. 4 shows how we build the LBP histogram ®## bins in total for each
image (16 blocks with 59 bins each).

4.3. Edge histogram descriptors

Edge detection is a fundamental problem of computer visiohtes been widely investigated
[36]. The goal of edge detection is to mark the points in atdigmage at which the luminous
intensity changes sharply. An edge representation of agerdeastically reduces the amount of
data to be processed, yet it retains important informatimutthe shapes of objects in the scene.
Edges in images constitute important features to reprékeintcontent.

Figure 5: The image is divided into 4x4 non-overlapping swlages. For each sub-image, five types of edge bins are
calculated and concatenated into a single, spatially exg@thhistogram

The edge histogram in the image space represents the firggaed the directionality of the
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brightness changes in the image. To represent it, the MPEG#tlard defines the edge his-
togram descriptor (EHD) [9]. The edge histogram descripsmically represents the distribution
of five types of edges (vertical, horizontal, two types ofgdiaal and non-directional edges; see
Fig. 2). We divide the image space into 4x4 non-overlappitoghs, yielding 16 equal-sized
sub-images and count the edges on each one of them (as shbwn &).

Figure 6: Three dferent spatial pyramids used in our experiments, a) 1x1, b) Bd2ci 1x3. The spatial pyramid
constructs feature vectors for each of the specific partefittage.

To characterize the sub-images, a histogram of edge disbibfor each sub-image is gen-
erated. Edges in the sub-images are categorized into fiestygrtical, horizontal, 45-degree
diagonal, 135-degree diagonal and non-directional edgegresented in Fig. 5. The histogram
for each sub-image represents the relative frequency aframce of the five types of edges in
the corresponding sub-image and thus contains five bins.

Since there are 16 sub-images in the image and 5 types of ,eadgetal of 80 histogram
bins are required. Note that each of the 80-histogram bissitekaown semantics in terms of
location and edge type. In our experiments, the edge detediperformed using the Canny
edge detection algorithm [37].

4.4. SIFT descriptors

We employ the bag of features approach commonly used in matgyaf the art approaches
in image classification [38]. The basic idea of this approacdo sample a set of local image
patches using some method (densely, randomly or using g@diey-detector) and calculate a
visual descriptor on each patch (SIFT descriptor, norradlizixel values). The resulting distri-
bution of descriptors is then quantified against a pre-§ipécvisual codebook which converts
it to a histogram. The main issues that need to be considened applying this approach are:
sampling of the patches, selection of the visual patch gesciand building the visual codebook.

We use dense sampling of the patches, which samples an imialgia @ uniform fashion
using a fixed pixel interval between patches. We use an itdistance of 6 pixels and sample
at multiple scales = 1.2 ando- = 2.0). Due to the low contrast of the radiographs, it would be
difficult to use any detector for points of interest. Also, it hasrbpointed by Zhang et al. [38],
that a dense sampling is always superior to any strategyllmasdetectors for points of interest.
We calculate a SIFT descriptor [10] for each image patch.

The crucial aspects of a codebook representation are thebool construction and assign-
ment. An extensive comparison of codebook representatidahles is given by van Gemert et
al. [39]. We employk-means clustering (as implemented in Benvironment) [40] on 400000
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randomly chosen descriptors from the set of images availtltraining. k-means partitions
the visual feature space by minimizing the variance betveepredefined number &fclusters.
Here, we sek to 500 and thus define a codebook with 500 codewords [7].

Dense sampling gives an equal weight to all key-pointsspeetive of their spatial location
in the image. To overcome this limitation, we follow the spbpyramid approach which we
applied for the LBP descriptor. For this descriptor, we uaespatial pyramid of 1x1, 2x2,
and 1x3 regions. Since every region is an image in itself,sipegtial pyramid can easily be
used in combination with dense sampling. The resultingoragith 4000 bins ((1x: 2x2 +
1x3)x500) was obtained by concatenation of the eight hiatng. Fig. 6 shows an example of
the histograms extarcted from an image for the spatial pigsuf 1x1, 2x2 and 1x3.

4.5. Feature fusion schemes

Different visual features bringingftérent information about the visual content of the images
clearly outperform single feature approaches [5], [7].|¢wing these findings, we combine the
different visual features described above. We investigate ittereint feature fusion schemes:
low level (LL) and high level (HL). These fusion schemes agpidted in Fig. 7.
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Figure 7: Fusion schemes for thetdrent descriptors. a) Low level fusion, b) High level fusion

For the low level feature fusion scheme, the descriptor€aneatenated in a single feature
vector and a classifier is trained on the joint feature vedtbe high level fusion scheme averages
the predictions from the individual classifiers trained @ $eparate descriptors.

5. Experimental setup

In this section, we present the experimental setup we usedaloate the proposed system
and compare it to other approaches. First, we present tlabalsts of images that we use.
Next, we describe the evaluation metrics we use to assegsréléctive performance of the
classifiers. We then state the experimental questions thatwestigate in this study. We specify
the parameter instantiations for the algorithms and thgydesf the experiments.

5.1. The IRMA database

We evaluated our system by applying it to the database foinfageCLEF2009 medical
image annotations task [5]. This database is provided byRMA group from the University
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Hospital of Aachen, Germany [23]. The database containg 1 2@lly annotated radiographs,
taken randomly from medical routine, which should be usddhtiia a classifier. The dataset con-
tains two parts: ImageCLEF2007 (12339 training and 1388ganages) and ImageCLEF2008
(12667 training and 1733 testing images). These datasesemira dficult classification prob-
lem. First, the classes in the training set are extremehalarized (e.g. there are classes with
less than 10 images and classes with more than 2000 imagesdn@ the distribution of the
classes in the training set isfidirent from the one on the testing set.

b) IRMA: 1121-127-720-512

I
a) IRMA: 1123-211-520-3a0

Figure 8: IRMA-coded chest and abdomen radiograph. Fornesiahe code for the biological axis (512) on the sub-
figure b) is translated as follows: 5 is for uropoietic systém,is for uropoietic system, kidney and 512 is uropoietic
system, kidney, renal pelvis. The renal pelvis is an elemettiekidney, which in turn is an element of the uropoietic
system

The images are labeled according to the four annotation $age [5]. We used the Image-
CLEF2007 label set with 116 IRMA codes and the ImageCLEF2ab8I set with 193 IRMA
codes, both with a hierarchical nature of the coding sche2ig [The goal is to correctly an-
notate 1353 (for 2007) and 1733 (for 2008) images that areiged without labels, using the
different respective annotation label sets in turn.

The IRMA coding scheme consists of four axes with three ta fmsitions, each position
taking a value from the set0,..., 9, a,..., Z, where '0’ desatnspecified’ and determines the end
of a path along an axis. The four axes are: technical axisn@ge modality), directional axis (D,
body orientation), anatomical axis (A, body region exard)rend biological axis (B, biological
system examined). This allows a short and unambiguousiootdRMA: TTTT-DDD-AAA-
BBB), where T, D, A, and B denotes a coding or sub-coding difjithe respective axis. A
small part of the IRMA coding hierarchy is presented in Fig.Flg. 8 gives two examples of
unambiguous image classification using the IRMA code.

The IRMA code is hierarchical in its nature and it allows uset@loit the hierarchy of
the code. This means that we can construct an automatic iaraggation system based on
predictive clustering trees for HMC.

5.2. Evaluation metrics

In this study, we use two evaluation metrics: the ImageCLiFanchical evaluation measure
[5] and overall recognition rate. The ImageCLEF hierarahigvaluation measure takes into
account the depth and thefiittulty of the predictive problem ('branching factor’) at whian
error has occurred (Equation 5). It can be calculated usiaddllowing formula:
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wherel is the depth of the hierarchly;, is the number of possible labels at the error ("branching
factor’) andi is the depth at which the error occurred. This measure altbeglassifier not to
predict the complete coginnotation, that is, the classifier can predict the first 2esoaf the
code (level of the hierarchy) and then say 'don’t know’ (eshed by *) for the next nogkevel.
The ImageCLEF evaluation measure can range from 0 to the ewuafliesting images. If this
measure is closer to 0, then the classifier is more accurate.

The overall recognition rate is a very common and widely wseduation measure. It is the
fraction of the test images whose complete IRMA code wasigtedi correctly.

5.3. Experimental questions
The goal of this study is to answer the following questions:

1. Does the use of the hierarchy (in ensembles of PCTSs) inehay predictive performance
over flat classification (SVMs)?
2. How is the relative performance of the two techniquéscéed by the:
(a) Use of PCT ensembles versus single PCTs in the domainagfdrannotation?
(b) Different ensemble methods: bagging or random forests?
(c) Different feature extraction techniques for medical X-Ray ies&g
(d) Schemes for fusion of the descriptors from the featuteaetion techniques?
3. Is the proposed system with ensembles of PCTs for HMC Isleadand dicient?

For the first three questions (1, 2a and 2b), we evaluate ttierpence of PCTs for HMC
and ensembles (bagging and random forest) of PCTs. Aftérwleacompare the best method
for HMC with SVMs. It has been shown [30] that exploiting theusture of the hierarchy in tree
classifiers yields better predictive performance in the a@ionof functional genomics. Here, we
compare the performance of the ensemble classifiers with<Sféhflat classification - the most
widely used classifiers for medical image annotation [7].

To check which feature extraction technique is most sutdbf medical X-Ray images
(question 2c), we compare the performance of the classifiersach type of visual descrip-
tors. For this purpose, we discuss only the results froméparste runs of the descriptors (first
four rows from Table 1 and Table 2).

The various feature extraction techniques captufiedint aspects of an image. We also
investigate whether the combination of feature extradgmhniques can increase the predictive
performance (question 2d). The results from the fusion eelseare presented in the last 10
rows in Table 1 and Table 2.

We compare the execution times of théfelient classifiers to assess tlotency and scala-
bility of the system (question 3). We measure the time neédédin the classifiers; for SVMs
this includes also the time needed to optimize the paraseter
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Figure 9: The adapted hierarchy of the classes in the IRMA cod

5.4. Experimental design

In this section, we describe the experimental setup thatsed.uFirst, we describe an adap-
tation of the hierarchy of the IRMA code and then the paramiestantiations of the learning
algorithms. Note that we stated the parameters for the fea&ixtraction techniques while ex-
plaining them (see Section 4).

The IRMA coding scheme was proposed by Lehmann et al. in [28pnsists of four axes
which are strictly hierarchical (tree-shaped hierarchiebhe literature [5],[23] suggests that
these four axes are independent. We conducted a serieseriregpts predicting the four axes
simultaneously (combined in a single hierarchy) and seplgra The predictive performance
when using all four axes simultaneously was higher as coeapiar using each axis separately.
This leads us to believe that these axes are not-indeperidesnseparate study, Tommasi et al.
[7] come to a similar conclusion. To address this issue, vepted the IRMA coding hierarchy
as follows.

We take the code of the first position for the biological axigl add it in front of the codes
for the anatomical and directional axes. The inclusion eftitological code in the first level in
the hierarchy helps us to initially filter the images resgtin large visual dferences in the first
level of the hierarchy. In the context of the axis A, the fiestdl of axis B is necessary because
the examined body region inficiently describes the content and structure of the images. F
example, fluoroscopy of the abdominal region may accessdbeular or the gastrointestinal
system depending on the way the contrast agent is admigistehich results in diierent image
textures. For the directional axis, this is even more olwidtor instance, an image of a chest
and an image of a hand can have the same directional codeghiisaally very diferent.

The hierarchy of the IRMA code was adapted in order to inadhe inter-class variabil-
ity and decrease the intra-class variability of the imageg. 9 shows the adapted hierarchy
of classes that we use in the experiments. Note that thiarsiey was only used to train the
classifier. The evaluation was performed by using the asigiRMA hierarchy.

In the following, we state the parameter instantiations e used to train the classifiers:
PCTs, ensembles and SVMs. The algorithm for learning PCgsines as input the weight of
the depth in the hierarchy. We sgj to 0.75 to force the algorithm to make better predictions on
the upper levels of the hierarchy. Also, we performed Fyteshing to prevent over-fitting of the
trees [30].

We trained ensembles of 100 un-pruned trees (PCTs). ForasePCTs, we used the same
weight (0.75) used to train the single PCTs. The size of thdufe subset that is retained at
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each node, when training a random forest, was set to 10% oftimber of descriptive attributes.
Remember that the output of the classifier is a probabiliy éhgiven example is annotated with
a given label. If the probability is higher than a given tirasl (obtained during the training
of the classifier), then the example is annotated with thergiabel. Since the hierarchical
evaluation measure allows the classifier to predict a podicthe code, dferent thresholds for
the diferent levels of the hierarchy were selected. If a probghitit a given code was lower
than the threshold, then for this code and its sub-codedaksifier predicts ‘dont know’.

For training the SVMs, we used a custom developed applicatibhis application uses the
LiBSVM library [41]. We apply theDne-against-Al{OvA) approach to solve the partial binary
classification problems. Each of the SVMs was trained wit &ernel. We optimize the cost
parameteC of the SVMs using an automated parameter search procedorehé-parameter
optimization, we separate 20% of the training set and use veédation set. After finding the
optimalC value, the SVM was finally trained on the whole set of trainimgges.

For the evaluation of the SVMs using the hierarchical erreasure, we applied confidence
based opinion fusion [7]. Let us assume that theré\acgasses. Then, using the/®approach,

N SVMs are trained — each separating a single class from akliréng ones. The decision is
based on the distances of the test sample td\thgperplanes. The prediction then corresponds
to the hyperplane for which the distance is largest. The denfie based opinion fusion, how-
ever, takes into account thefidirence of the predictions with the two largest distancesrted
from the SVMs classifiers. This fierence is computed only if their distanceffel less than

a threshold value (obtained during training using the ‘aiah data set). In that case, the final
prediction will contain ‘don’t know’ starting from the pd&in where the two underlying predic-
tions begin to dier. For example, if the two predictions for the anatomicas axe 411 and 421
then the final prediction will be 4**. This approach improwués hierarchical error measure for
the SVMs classifier by 10 to 20 points depending on the usectigésrs.

6. Resultsand discussion

Table 1 and Table 2 present the results obtained using theriexgntal setup described in
Section 5 in terms of the hierarchical evaluation measuEeMMHand overall recognition rate
(RR) respectively. In the discussion of the results, we @ishpare the performance of single
PCTs and ensembles of PCTs. We then compare the performbtieelmest ensemble method
(random forests) and SVMs. We focus on the first evaluatioasue HEM (Table 1), since the
two show similar behavior; the conclusions for HEM are alabid/for RR.

The results clearly show that ensemble methods outperfimgiesPCTs on all datasets: ran-
dom forests are significantly better (according to the narametric Wilcoxon test for statistical
significance) than single PCTp & 4-107°%) and bagging is better than single PCPpsq{4-107°).

A comparison between the two ensemble methods shows thddmaforests outperforms bag-
ging and that the dierence is statistically significanp« 1- 104).

While extremely éicient, individual PCTs have the drawback of only using a smahber
of the available features, which results in low predictiegfprmance. The PCTs trade predictive
performance for interpretability. However, in the domaitsere interpretability of the model is
a necessity, PCTs are the models that should be considered.

We next compare the performance of random forests to theneshce of SVMs. On all
datasets, random forests perform better than SVMs; tiierdince on average is 17 points for
the ImageCLEF2007 and 20 points for ImageCLEF2008 datasets (note that a poineititaM
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Table 1: Predictive performance of the models learned frororgeers produced by élierent feature extraction algo-
rithms and their combinations. The best results are shownldfds®. Performance is given in terms of the ImageCLEF
hierarchical evaluation measure HEM, where smaller valuesirbetier performance. The low-level fusion results are
in rows that end with ‘LL" and high-level fusion results arerbws that end with ‘HH'.

Hierarchical Error Measure
ImageCLEF2007 ImageCLEF2008

SVM RF Bag PCTs SVM RF Bag PCTs
SIFT 75.00 | 58.90 59.78 | 180.00 | 179.88 | 161.67 | 161.47 | 320.90
LBP 12444 | 95.71 95.71 | 210.40 | 257.92 | 209.47 | 208.97 | 360.00
EHD 127.41 | 105.12 | 105.12 | 222.39 | 265.95 | 249.44 | 249.74 | 380.12
32x32 202.94 | 195.78 | 200.12 | 310.90 | 376.93 | 361.21 | 361.31 | 530.11
LBP+EHD LL 99.48 85.56 86.80 | 200.12 | 221.96 | 190.12 | 190.22 | 347.89
LBP+SIFT LL 72.71 52.89 53.22 | 17829 | 175.65 | 157.38 | 157.48 | 317.12
EHD+SIFT_LL 72.37 56.11 57.11 | 179.12 ] 170.97 | 159.30 | 159.33 | 318.87
LBP+EHD+SIFT LL 70.45 51.90 52.33 | 177.23 | 170.87 | 153.21 | 153.41 | 317.00
LBP+EHD+SIFT+32x32 LL 69.46 52.23 53.00 | 178.12 | 169.11 | 154.23 | 154.63 | 318.50
LBP+EHD_ HL 100.37 | 87.90 89.21 | 201.30 | 223.73 | 195.96 | 196.06 | 347.90
LBP+SIFT HL 73.72 54.21 54.56 | 178.90 | 177.12 | 159.73 | 160.03 | 318.00
EHD+SIFT_HL 72.70 | 59.12 61.71 | 179.50 | 174.44 | 161.85 | 162.05 | 318.80
LBP+EHD+SIFT _HL 71.58 52.54 53.00 | 177.90 | 174.18 | 156.21 | 156.31 | 317.90
LBP+EHD+SIFT+32x32 HL 70.46 53.90 54.50 | 178.58 | 173.28 | 156.50 | 156.70 | 318.30

roughly corresponds to one completely misclassified imagé)e diference in performance
is statistically significant (withp < 4 - 107°). This shows that exploiting the structure of the
hierarchy does help in improving the predictive perforneanc

We then analyze the results for the individual feature exiwa algorithms (top 4 rows from
Table 1 and Table 2). We can note the high predictive perfoo@af the SIFT histogram: it is
most capable of capturing the hierarchical structure obtiray images. The other feature ex-
traction algorithms follow after and are ordered by perfante as follows: LBP, then EHD and
the simplest descriptor RPR, which has the worst performanke diference of performance to
the LBP operator is very noticeable and larger for SVMs ttmmdndom forests: on the Image-
CLEF2007 dataset, random forests are better 80 points and on ImageCLEF2008 by50
points and on the ImageCLEF2007 dataset, SVMs are bettei3flyand on ImageCLEF2008 by
~ 80 points. The LBP descriptors capture information thatasareasily utilized by the random
forests than by the SVMs.

The experimental results show that the features that desthie image content in a local
manner (i.e., SIFT descriptors) outperform the ones thatige global descriptions. The local
features capture the details in an image, while the glolzlfes are able to retain information
on the whole image as a source of context. Furthermore, fR€ & scriptor is robust to noise,
illumination, scale, translation and rotation changesnddg it can better resolve the inter and
intra-class variability, thus it canfier better information to the classifier. We can conclude that
the local features are generally more informative than gldbatures for the medical image
annotation task at hand.

We also compare the results of the experiments conductdd diffierent feature fusion
schemes. Inclusion of more than one type of features in thssification process contributes
to better representation of the hierarchical nature of thages and helps to further improve
the predictive performance. Low level fusion (concatemgtiyields slightly better predictive
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Table 2: Predictive performance of the models learned frororg#ers produced by élierent feature extraction algo-
rithms and their combinations. The best results are shown loifdz®. Performance is given in terms of the overall
recognition rate evaluation measure, where larger values ineter performance. The low-level fusion results are in
rows that end with ‘LL’ and high-level fusion results are ows that end with ‘HH'.

Overall Recognition Rate
ImageCLEF2007 ImageCLEF2008

SVM RF Bag PCTs | SVM RF Bag PCTs
SIFT 77.31 | 79.37 | 79.08 | 63.04 [ 62.44 | 64.91 | 64.80 | 52.04
LBP 70.36 | 75.24 | 7524 | 56.02 | 56.26 | 60.99 | 60.70 | 47.02
EHD 68.37 | 72.28 | 7221 | 55.06 [ 54.53 | 54.99 | 54.81 | 45.00
32x32 57.35 | 58.01 | 57.64 | 4597 | 4547 | 4552 | 4547 | 36.98
LBP+EHD_LL 75.09 | 76.97 | 75.75 | 5898 [ 60.53 | 61.51 | 61.39 | 48.99
LBP+SIFT_LL 77.90 | 81.00 | 80.93 | 64.52 [ 62.26 | 65.49 | 65.43 | 53.49
EHD+SIFT_LL 7820 | 79.97 | 79.82 | 64.00 | 63.19 | 64.97 | 64.80 | 52.97
LBP+EHD+SIFT LL 78.42 | 81.96 | 81.67 | 64.89 [ 63.30 | 65.95 | 65.83 | 53.72
LBP+EHD+SIFT+32x32_LL 78.49 | 81.22 | 81.00 | 64.30 [ 63.53 | 65.78 | 65.55 | 52.97
LBP+EHD HL 74.87 | 76.01 | 76.64 | 5838 [ 60.13 | 61.45 | 61.39 | 48.87
LBP+SIFT_HL 77.46 | 79.97 | 79.97 | 6422 | 62.26 | 6532 | 65.14 | 53.49
EHD+SIFT_HL 77.90 [ 79.00 | 78.86 | 63.93 | 62.44 | 64.80 | 64.62 | 52.79
LBP+EHD+SIFT HL 78.05 | 81.00 | 80.93 | 64.59 [ 62.78 | 65.78 | 65.72 | 53.66
LBP+EHD+SIFT+32x32_HL 78.42 | 80.70 | 80.56 | 64.37 | 63.13 | 65.60 | 6549 | 52.97

performance than high level fusion. This is valid for all@lighms used in this study.

The classifiers on the fused feature sets use more informatiout the dferent aspects of
an image that are captured by thé&elient descriptors. Namely, they can consider combinations
of features from dierent descriptors. This additional information is orthigloand helps the
classifiers to produce better annotations. Moreover, tlserables of trees, such as random
forests, can #ectively exploit the information provided by the large nwenbf features. Thus,
low-level fusion yields better performance than high-ldusion.

The best results are achieved by using random forests orotiwatenated SIFT, LBP and
EHD descriptors (boldface in Table 1 and Table 2). This hfdboth datasets, ImageCLEF2007
and ImageCLEF2008. Moreover, our best results are beterttie best results reported so far
on this database [5]. Our score of 153.2 for ImageCLEF20@8 i$6.3 points better than the
best result, and the score of 51.9 for ImageCLEF2007 is by d@ints better than the best result.

From the results, we can also notice the worse performana# algorithms on the Image-
CLEF2008 dataset, as compared to the ImageCLEF2007 datésets mainly due to the larger
hierarchy of the ImageCLEF2008 dataset (195 nodes as cemparl40 nodes for the Image-
CLEF2007 dataset). In addition, thefférence of the distribution of images in the training and
the testing set is bigger for ImageCLEF2008 than for Image2007.

Additionally, we assess thedfriency of the algorithms by measuring the time needed to
learn the classifier and time needed to produce an annofati@m unseen image. The running
times for the algorithms are presented in Table 3. The rarfdossts are the fastest method; they
are~ 10 times faster than bagging ard5.5 times than the SVMs (including the optimization
of the SVM parameters). Recall that the random forests aserebles of PCTs that predict the
complete hierarchy (a single model), while the SVMs cortdtauclassifier for each node of the
hierarchy separately. Hence, the increase of the hieravidhgignificantly increase the training
time of SVMs (additional classifiers should be trained),lethie training time for random forests
will increase only slightly. Theféiciency of the random forests of PCTs is even more prominent
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Table 3: Running times of the algorithms: time needed to coacisthe classifier and time needed to produce an anno-
tation for an unseen image. Note that this table only listsrésalts for the low-level fusion scheme (the results that
end with ‘LL’). The running times for the high-level fusioneathe sum of running times for its constitutive runs. The

experiments were executed on a Linux server with two InteldQQare Processors@2.5GHz and 64GB of RAM.

ImageCLEF 2007 ImageCLEF 2008

SVM RF Bag PCTs SVM RF Bag PCTs

EHD 2820.873 | 92.668 | 566.880 4.667 | 3113.320 | 115.129 | 716.606 5.446
< |LBP 4323.681 [ 1909.510 | 21684.124| 127.889 | 4406.340 | 2631.485 | 28612.105 [ 158.955
2 [32x32 4745.630 | 1909.427 | 21458.823| 110.436 | 5467.686 | 2614.089 | 28410.495| 151.317
E SIFT 12451.760| 2886.417 | 31611.480| 227.709 |13219.039| 3717.713 | 40567.323 | 248.920
fn LBP+EHD_LL 4824.592 | 2315.010 | 21629.071| 231.516 | 4480.761 | 3012.840 | 28106.304 [ 254.442
E LBP+SIFT_LL 14871.131] 5095.170 [ 55476.671 | 502.794 | 15788.345| 6508.022 | 70057.262 | 487.347
‘s |EHD+SIFT_LL 12656.792] 3299.330 [ 36001.937| 337.784 | 13430.779| 4165.986 | 45921.571| 393.629
= |LBP+EHD+SIFT_LL 15076.162 | 5094.305 | 55724.765| 504.575 |16006.638 | 6460.307 | 70462.933 [ 500.873
LBP+EHD+SIFT+32x32 LL 17700.564 | 6936.030 | 73786.231| 591.772 | 18800.790 | 9128.094 | 95792.121| 679.572

- |EHD 0.016 0.002 0.003 0.001 0.019 0.004 0.003 0.001

& |LBP 0.172 0.002 0.003 0.001 0.179 0.003 0.003 0.001

E 32x32 0.189 0.002 0.003 0.001 0.192 0.002 0.002 0.001

g _|SIFT 0.551 0.002 0.003 0.001 0.591 0.003 0.004 0.001

°E‘ §LBP+EHD_LL 0.175 0.003 0.002 0.001 0.176 0.002 0.003 0.001

fﬂ LBP+SIFT_LL 0.569 0.002 0.002 0.001 0.565 0.003 0.003 0.001

£ |EHD+SIFT_LL 0.552 0.002 0.003 0.001 0.552 0.003 0.003 0.001

E LBP+EHD+SIFT_LL 0.570 0.002 0.002 0.001 0.569 0.002 0.002 0.001

LBP+EHD+SIFT+32x32_LL 0.600 0.002 0.002 0.002 0.590 0.003 0.003 0.002

when producing annotations for unseen images. The randstfoin this case are 165 times
faster than the SVMs. In this respect, bagging performs eoaigy to random forests. This
is due to the fact that passing through the tree has logadthomplexity with respect to the
number of leafs in the tree. Since random forests and baggivduce trees with similar sizes,
these times will be similar. All in all, random forests of PEJignificantly outperform SVMs as
compared by their training and testing times.

7. Experimentson photo annotation

To show the generality of the proposed system, we perforneraxignts on annotation of
general images. In this section, we first present the exgertiah setup that we used (the data,
evaluation metrics and the experimental design). We thesemt the results and compare them
to those of state-of-the-art approaches used in image oot

7.1. Experimental setup

This set of experiments was performed using the database thhe ImageCLEF@ICPR
photo annotation task [42]. The database consists of 5@09, tBO00 validation, and 10000
test images annotated with 53 visual concepts organizedinadl hierarchy with tree structure
(see Fig. 10 for an example). The average number of annogatier image is 8.68 (including
both leaf and internal nodes from the hierarchy). The visoakepts also contain abstract cate-
gories like FamilyFriends, Partylife, Quality (blurred, underexposed,anyl etc., thus making
the annotatioftlassification task very challenging.

The measures that we used to evaluate the performance dftrélams on the medical X-
ray images are specific for the problem of annotation of nadicages using the IRMA coding
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Figure 10: A fragment of the hierarchy for image annotatione @hnotations are part of the hierarchical classification
scheme for the ICPR 2010 photo annotation task (right). Thie ontains a set of images with their annotations (left).

schemé. Here, we use the most widely used evaluation measure inréfaecd ‘general photo
annotatiory‘visual concept detection’: mean average precision (MAR2)[ For a given target
visual concept, the average precision can be calculatedeaarea under the precision-recall
curve for that target. Hence, it combines both precision r@eall into a single performance
value. The average precision is calculated for each vismwatept separately and the obtained
values are then averaged to obtain the mean average precBarause the true labels of the
test images from the ImageCLEF@ICPR 2010 database are blitip@available, we report the
MAP value obtained on the validation dataset.

For the images from this database, we use SIFT featureshw¥ece the best performing
features in previous experiments (also SIFT features guiealty used in this type of problem
[14]). The SIFT features for this set of experiments werestwitted using a visual codebook
with 4000 instead of 500 words (see Section 4.4). This matifio was made because most of
the state-of-the-art approaches for image classificatigyeneral photos use a visual codebook
with 4000 words [14], [12]. In the previous experiments,dam forests were the best perform-
ing method, so again we train random forests with 100 unguUPCTs for HMC. For the base
PCTs, we used the same weight (0.75) and the size of the éestibiset that is retained at each
node was set to 10% of the number of descriptive attributaaésas in the experiments from the
Section 5).

To train the SVMs, we use thedSVM implementation with probabilistic outputs [43]. To
solve the multiple classification problems, we employ agh@One-against-Alapproach. For
each visual concept, we build a binary classifier where &t associated with that visual
concept are in one class (positive) and the rest are in anothgs (negative). To handle the
imbalance in the number of positive versus negative trgiekamples, we fix the weights of the

positive and negative class. The weight of the positivesdsiset to™3272% and the weight of
the negative class is set iﬁ:”eg, with #posthe number of positive instances in the train set

and #hegthe number of negative instances [15]. As in the previougerpents, we optimize the
value of the cost paramet€rof the SVMs.

2Note that the hierarchical error measure allows the alguorith say ‘don’t know’ for some classes, since the max-
imum number of labels per image with the IRMA coding scheme is knolm the case of general images, an image
can be annotated with zero |@| classes. Also, for the Overall recognition rate, for theecalsSIRMA coding scheme,
the number of possible combinations of labels is limited, wiilthe case of general images, this numberG Zhis
makes overall recognition rate not suitable for measuringthdictive performance of algorithms in annotating general
images.
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7.2. Results and discussion

The results from the photo annotation experiments are showiable 4. The table also
contains the total training time and testing time per imageobth SVMs and random forests of
PCTs for HMC. From the presented results we can note thaatigom forests of PCTs for HMC
outperform the SVMs both in terms of predictive performanod dficiency. The latter holds
especially for the time needed to produce an annotation fiven test image: our approach is
more than 500 times faster than the SVMs.

Table 4: Results of the photo annotation experiments eveduasing Mean Average Precision (larger values of MAP
mean better performance).

MAP Train time Test time per image
RF 0.450 9113.516 0.002
SVM 0.428 11821.227 1.078

Following the results from the study performed by Mensinklet[22], this means that our
system also outperforms the TagProp [21] approach for iraagetation. The results show that
our system ffers better predictive performance arfiicéency than systems that are most widely
used for annotation of images. All in all, the proposed syst&s high predictive performance
and dficiency, is general and is easily applicable to other domains

8. Conclusions

Hierarchical multi-label classification (HMC) problem&ancountered increasingly often in
image annotation. However, flat classification machineniegrapproaches are predominantly
applied in this area. In this paper, we propose to exploitaheotation hierarchy in image
annotation by using ensembles of trees for HMC. Our appraaetMC exploits the annotation
hierarchy by building a single classifier that simultandppsedicts all labels in the hierarchy.
A substantial performance improvement is achieved by mglénsembles of HMC trees, such
as random forests.

We apply our approach to two benchmark tasks of hierarchizabtation of medical (X-ray)
images and an additional task of photo annotation (i.eualisoncept detection). We compare it
to a collection of SVMs (trained with g2 kernel), each predicting one label at the lowest level
of the hierarchy, the best-performing and most-frequemslyd approach to (hierarchical) image
annotation. Our approach achieves better results tharmthpetition on all of these: For the two
medical image datasets, these are the best results rejpotteslliterature so far. Our approach
has superior performance, both in terms of accyeaoyr and especially in terms offieiency.

We explore the relative performance of ensembles of treddN&C and collections of SVMs
under a variety of conditions. Along one dimension, we cdasthree dierent datasets. Along
another dimension, we consider two ensemble approachggingaand random forests. Fur-
thermore, we consider several state-of-the-art featunaetion approaches and combinations
thereof. Finally, we consider two types of feature fusioa.,, low- and high-level fusion.

Ensembles of trees for HMC perform consistently better ®¥Ms over the whole range of
conditions explored above. The two ensemble approaché&srpebetter than SVM collections
on all three tasks, with random forests being mdfieient than bagging (and the mostieient
overall). The relative performance holds foffdrent image representations (we consider raw
pixel representation, local binary patterns, edge histogtdescriptors and SIFT histograms), as

20



well as combinations thereof: The SIFT histograms are tls¢ individual descriptors. More-
over, combinations of dlierent descriptors yield better predictive performanca tha individual
descriptors. The relative performance also holds for bothilevel and high-level fusion of the
image descriptors, the former yielding slightly betterfpanance. We can thus conclude that for
the task of hierarchical image annotation, ensembles e$tier HMC are a superior alternative
to using collections of SVMs, which are most-commonly aggiin this context.

We expect it is possible to further improve the predictivefgrenance of our system. We
could try to adapt our tree-learning approach to tackle tiif¢is distribution of images between
the training and the testing set. Better performance maytmsobtained by including high level
feature extraction algorithms able to give more understatedand compact representation of the
visual content of the images (segmented objects with oglatamong them).

Let us conclude by emphasizing the scalability of our apgnoaDecision trees are one of
the most icient machine learning approaches and can handle largeararabexamples. The
ensemble approach of random forests scales very well fge laumbers of features. Finally,
trees for HMC scale very well as the complexity of the annotahierarchy increases, being
able to handle very large hierarchies organized as treegeuteld acyclic graphs. Combining
these, our approach is scalable along all three dimensions.
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6.3 Predicting gene function

The completion of several genome projects in the past decade has generated the full
genome sequence of many organisms. Identifying open reading frames (ORFs) in the
sequences and assigning biological functions to them has now become a key challenge in
modern biology. This last step is often guided by automatic discovery processes which
interact with the laboratory experiments.

This case study considers three model organisms: Saccharomyces cerevisiae (yeast),
Arabidopsis thaliana (cress) and Mus musculus (mouse) which are well studied organisms in
biology. It is still a challenge, however, to develop methods that assign biological functions
to the ORFs in these genomes automatically. Different machine learning methods have
been proposed to this end, but it remains unclear which method is to be preferred in terms
of predictive performance, efficiency and usability.

Here, we present the use of predictive clustering trees for HMC in functional genomics,
i.e., to predict gene functions for each of the three organisms. The learner produces a single
tree that predicts, for a given gene, its biological functions from a function classification
scheme, such as FunCat or the Gene Ontology. Preliminary studies in using PCTs for
HMC to predict gene function were conducted by [Struyf et al| (2005) and Blockeel et al.
(2006)), but were of limited scope: smaller number of datasets, organisms and classification
schemes for gene functions were used.

The study also presents a tree-based ensemble learner for HMC. While tree-based
ensembles for multi-target prediction were published earlier (Kocev et al., 2007b)), this
is the first publication describing ensembles of trees for HMC and their implementation
Cluss-HMC-ENS. The empirical evidence shows that this learner outperforms several state-
of-the-art methods on the datasets from the three model organisms.

This case study reveals several advantages of using the proposed approach over other
approaches for prediction of gene functions. To begin with, we show that PCTs for
HMC outperforms an existing decision tree learner (C4.5H/M, (Clare, [2003))) in terms of
predictive performance. Next, we show that the predictive performance boost, obtained
in regular classification tasks by using ensembles, carries over to the HMC context. Then,
by constructing an ensemble of PCTs, our method outperforms a statistical learner based
on SVMs for Saccharomyces cerevisiae, both in predictive performance and in efficiency.
Finally, this ensemble learner is competitive to statistical and network based methods for
Mus musculus data. To summarize, individual PCTs for HMC can give additional biological
insight in the predictions, while ensembles of PCTs for HMC yields state-of-the-art quality
(predictive performance) for gene function prediction.
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Abstract

efficiency and usability.

approach to ORF function prediction.

Background: S. cerevisiae, A. thaliana and M. musculus are well-studied organisms in biology and the sequencing
of their genomes was completed many years ago. It is still a challenge, however, to develop methods that assign
biological functions to the ORFs in these genomes automatically. Different machine learning methods have been
proposed to this end, but it remains unclear which method is to be preferred in terms of predictive performance,

Results: We study the use of decision tree based models for predicting the multiple functions of ORFs. First, we
describe an algorithm for learning hierarchical multi-label decision trees. These can simultaneously predict all the
functions of an ORF, while respecting a given hierarchy of gene functions (such as FunCat or GO). We present new
results obtained with this algorithm, showing that the trees found by it exhibit clearly better predictive
performance than the trees found by previously described methods. Nevertheless, the predictive performance of
individual trees is lower than that of some recently proposed statistical learning methods. We show that ensembles
of such trees are more accurate than single trees and are competitive with state-of-the-art statistical learning and
functional linkage methods. Moreover, the ensemble method is computationally efficient and easy to use.

Conclusions: Our results suggest that decision tree based methods are a state-of-the-art, efficient and easy-to-use

Background

The completion of several genome projects in the past
decade has generated the full genome sequence of many
organisms. Identifying open reading frames (ORFs) in
the sequences and assigning biological functions to
them has now become a key challenge in modern biol-
ogy. This last step, which is the focus of our paper, is
often guided by automatic discovery processes which
interact with the laboratory experiments.

More precisely, machine learning techniques are used
to predict gene functions from a predefined set of possi-
ble functions (e.g., the functions in the Gene Ontology).
Afterwards, the predictions with highest confidence can
be tested in the lab. There are two characteristics of the
function prediction task that distinguish it from com-
mon machine learning tasks: (1) a single gene may have
multiple functions; and (2) the functions are organized
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celinevens@cs.kuleuven.be

'Department of Computer Science, Katholieke Universiteit Leuven,
Celestijnenlaan 200A, 3001 Leuven, Belgium
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in a hierarchy: a gene that is related to some function is
automatically related to all its ancestor functions (this is
called the hierarchy constraint). This particular problem
setting is known in machine learning as hierarchical
multi-label classification (HMC) and recently, many
approaches have been proposed to deal with it [1-19].
These approaches differ with respect to a number of
characteristics: which learning algorithm they are based
on, whether the hierarchy constraint is always met and
whether they can deal with hierarchies structured as a
directed acyclic graph (DAG), such as the Gene Ontol-
ogy, or are restricted to hierarchies structured as a
rooted tree, like MIPS’s FunCat.

Decision trees are a well-known type of classifiers that
can be learned efficiently from large datasets, produce
accurate predictions and can lead to knowledge that
provides insight in the biology behind the predictions,
as demonstrated by Clare et al. [3]. They have been
applied to several machine learning tasks [20]. In earlier
work [14], we have investigated how they can be
extended to the HMC setting: we presented an HMC

© 2010 Schietgat et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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decision tree learner that takes into account the hierar-
chy constraint and that is able to process DAG struc-
tured hierarchies.

In this article, we show that our HMC decision tree
method outperforms previously published approaches
applied to S. cerevisiae and A. thaliana. Our compari-
sons primarily use precision-recall curves. This evalua-
tion method is well-suited for the HMC tasks
considered here, due to the large class skew present in
these tasks.

Moreover, we show that by upgrading our method to
an ensemble technique, classification performance
improves further. Ensemble techniques are learning
methods that construct a set of classifiers and classify
new data instances by taking a vote over their predic-
tions. Experiments show that ensembles of decision
trees outperform Bayesian corrected support vector
machines [10], a statistical learning method for gene
function prediction, on S. cerevisiae data, and methods
participating in the MouseFunc challenge [21,22] on
M. musculus data.

Related work

A number of machine learning approaches have been
proposed in the area of functional genomics. They have
been applied in the context of gene function prediction
in S. cerevisiae, A. thaliana or M. musculus. We have
grouped them according to the learning approach they
use.

Network based methods

Several approaches predict functions of unannotated
genes based on known functions of genes that are
nearby in a functional association network or protein-
protein interaction network [2,4,5,8,15-17]. GENEFAS
[4], for example, predicts functions of unannotated yeast
genes based on known functions of genes that are
nearby in a functional association network. GENEMA-
NIA [15] calculates per gene function a composite func-
tional association network from multiple networks
derived from different genomic and proteomic data
sources.

These approaches are based on label propagation and
do not return a global predictive model. However, a
number of approaches were proposed to combine pre-
dictions of functional networks with those of a predic-
tive model. Kim et al. [16] combine them with
predictions from a Naive Bayes classifier. The combina-
tion is based on a simple aggregation function. The
Funckenstein system [17] uses logistic regression to
combine predictions made by a functional association
network with predictions from a random forest.

Kernel based methods

Deng et al. [1] predict gene functions with Markov ran-
dom fields using protein interaction data. They learn a
model for each gene function separately and ignore the
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hierarchical relationships between the functions. Lanck-
riet et al. [6] represent the data by means of a kernel
function and construct support vector machines for
each gene function separately. They only predict top-
level classes in the hierarchy. Lee et al. [13] have com-
bined the Markov random field approach of [1] with the
SVM approach of [6] by computing diffusion kernels
and using them in kernel logistic regression.

Obozinski et al. [19] present a two-step approach in
which SVMs are first learned independently for each
gene function separately (allowing violations of the hier-
archy constraint) and are then reconciliated to enforce
the hierarchy constraint. Barutcuoglu et al. [10] have
proposed a similar approach where unthresholded sup-
port vector machines are learned for each gene function
and then combined using a Bayesian network so that
the predictions are consistent with the hierarchical rela-
tionships. Guan et al. [18] extend this method to an
ensemble framework that is based on three classifiers: a
classifier that learns a single support vector machine for
each gene function, the Bayesian corrected combination
of support vector machines mentioned above, and a
classifier that constructs a single support vector machine
per gene function and per data source and forms a
Naive Bayes combination over the data sources.

Methods that learn a separate model for each function
have several disadvantages. Firstly, they are less efficient,
because # models have to be built (with # the number
of functions). Secondly, they often learn from strongly
skewed class distributions, which is difficult for many
learners.

Decision tree based methods

Clare [23] presents an HMC decision tree method that
learns a single tree for predicting gene functions of
S. cerevisiae. She adapts the well-known decision tree
algorithm C4.5 [20] to cope with the issues introduced
by the HMC task. First, where C4.5 normally uses class
entropy for choosing the best split, her version uses the
sum of entropies of the class variables. Second, she
extends the method to predict classes on several levels
of the hierarchy, assigning a larger cost to misclassifica-
tions higher up in the hierarchy. The resulting tree is
transformed into a set of rules, and the best rules are
selected, based on a significance test performed on a
separate validation set. Note that this last step violates
the hierarchy constraint, since rules predicting a class
can be dropped while rules predicting its subclasses are
kept. The non-hierarchical version of her method was
later used to predict GO terms for A. thaliana [9].
Here, the annotations are predicted for each level of the
hierarchy separately.

Hayete and Bienkowska [7] build a decision tree for
each GO function separately using information about
protein assignments in the same functional domain. As
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mentioned earlier, methods that learn separate models
for each function have several disadvantages. Moreover,
Vens et al. [14] show that in the context of decision
trees, separate models are less accurate than a single
HMC tree that predicts all functions at once.

Blockeel et al. [24] present to our knowledge the first
decision tree approach to HMC that exploits the given
class hierarchy and predicts all classes with a single
decision tree. Their method is based on the predictive
clustering tree framework [25]. This method was first
applied to gene function prediction by Struyf et al. [26].
Later, Blockeel et al. [27] propose an improved version
of the method and evaluate it on yeast functional geno-
mics data. Vens et al. [14] extend the algorithm towards
hierarchies structured as DAGs and show that learning
one decision tree for simultaneously predicting all func-
tions outperforms learning one tree per function (even
if those trees are built taking into account the
hierarchy).

Methods

We first discuss the approach to building HMC trees
presented in [14] and then extend it to build ensembles
of such trees.

Using predictive clustering trees for HMC tasks

The approach that we present is based on decision trees
and is set in the predictive clustering tree (PCT)
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framework [25]. This framework views a decision tree as
a hierarchy of clusters: the top-node corresponds to one
cluster containing all training examples, which is recur-
sively partitioned into smaller clusters while moving
down the tree. PCTs can be applied to both clustering
and prediction tasks. The PCT framework is implemen-
ted in the CLUS system, which is available at http://
www.cs.kuleuven.be/~dtai/clus.

Before explaining the approach in detail, we show an
example of a (partial) predictive clustering tree predicting
the functions of S. cerevisiae genes from homology data
[23] (Figure 1). The homology features are based on a
sequence similarity search performed for each yeast gene
against all the genes in SwissProt. The functions are
taken from the FunCat classification scheme [28]. Each
internal node of the tree contains a test on one of the
attributes in the dataset. Here, the attributes are binary
and have been obtained after preprocessing the relational
homology data with a frequent pattern miner. The root
node, for instance, tests whether there exists a SwissProt
protein that has a high similarity (e-value < 1.0-10®) with
the gene under consideration G, is classified into the rhi-
zobiaceae group and has references to the InterPro data-
base. In order to predict the functions of a new gene, the
gene is routed down the tree according to the outcome
of the tests. When a leaf node is reached, the gene is
assigned the functions that are stored in it. Only the

Is G strongly homologous to a protein
in rhizobiaceae with dbref interpro?
(e-value < |.0e-8)

yes no

Is G strongly homologous to a protein in
desulfurococcales? (e-value < |.0e-8)

Is G strongly homologous to a protein with

yes no

dbref aarhus/ghent_2dpage? (e-value < |.0e-8)

yes no
Is G homologous to a protein in
6/13/1,40/7, bacteria with dbref rebase? (e-value
40/10 between 4.0e-4 and 4.5e-2)
yes o

Is G strongly homologous to a protein with
molecular weight between 53922 and 74079
and dbref transfac? (e-value < 1.0e-8)

4/I/I,4/3/I,4/5I/I,
5/1,40/3,40/10

Figure 1 Example of a predictive clustering tree. This tree predicts the functions of a gene G, based on homology data. The functions are
taken from the FunCat classification scheme and are hierarchical: if for example function 4/3/1 (tRNA synthesis) is predicted, then function 4/3
(tRNA transcription) and function 4 (transcription) are predicted as well.
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most specific functions are shown in the figure. In the
rest of this section, we explain how PCTs are con-
structed. A detailed explanation is given in [14].

PCTs [25] can be constructed with a standard “top-
down induction of decision trees” (TDIDT) algorithm,
similar to CART[29] or C4.5 [20]. The algorithm takes
as input a set of training instances (i.e., the genes and
their annotations). It searches for the best acceptable
test that can be put in a node. If such a test can be
found then the algorithm creates a new internal node
and calls itself recursively to construct a subtree for
each subset (cluster) in the partition induced by the test
on the training instances. To select the best test, the
algorithm scores the tests by the reduction in variance
(which is defined below) they induce on the instances.
Maximizing variance reduction maximizes cluster
homogeneity and improves predictive performance. If
no acceptable test can be found, that is, if no test signif-
icantly reduces variance (as measured by a statistical
F-test), then the algorithm creates a leaf and labels it
with a representative case, or prototype, of the given
instances.

To apply PCTs to the task of hierarchical multi-label
classification, the variance and prototype are defined as
follows [14].

First, the set of labels of each example is represented
as a vector with binary components; the i'th component
of the vector is 1 if the example belongs to class ¢; and
0 otherwise. It is easily checked that the arithmetic
mean of a set of such vectors contains as i'th compo-
nent the proportion of examples of the set belonging to
class ¢;. We define the variance of a set of examples S as
the average squared distance between each example’s
class vector v, and the set’s mean class vector v, ie.,

2
Var(S) = Zp )" :
S|
In the HMC context, it makes sense to consider simi-
larity at higher levels of the hierarchy more important
than similarity at lower levels. To that aim, we use a
weighted Euclidean distance

d(v,, ;) = JZ w(e,)- (1~ v5,)%,

where v, ; is the i’th component of the class vector v,
of an instance x, and the class weights w(c) decrease
with the depth of the class in the hierarchy. We choose
w(c) = wo-avg; {w(p;(c))}, where p; (c) denotes the j'th
parent of class ¢ and 0 <w, < 1). Consider, for example,
the class hierarchy shown in Figure 2, and two examples
(%1, S1) and (xy, Sy) with §; = {1, 2, 2/2} and S, = {2}.
Using a vector representation with consecutive
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Figure 2 A toy hierarchy. (a) Class label names reflect the position
in the hierarchy, e.g., 2/1"is a subclass of ‘2. (b) The set of classes
{1,2,2/2}, indicated in bold in the hierarchy, and represented as the
vector vy.

components representing membership of class 1, 2, 2/1,
2/2 and 3, in that order, we have

d(S,,S,) =d([1,1,0,1,0],[0,1,0,0,0]) = /w, + w.

The heuristic for choosing the best test for a node of
the tree is to maximize the variance reduction as dis-
cussed before, with the above definition of variance.
Note that our definition of w(c) allows the classes to be
structured in a DAG, as is the case with the Gene
Ontology.

Second, a classification tree stores in a leaf the majority
class for that leaf; this class will be the tree’s prediction
for examples arriving in the leaf. But in our case, since an
example may have multiple classes, the notion of “major-
ity class” does not apply in a straightforward manner.
Instead, the mean v of the class vectors of the examples
in that leaf is stored. Recall that v; is the proportion of
examples in the leaf belonging to c;. An example arriving
in the leaf can therefore be predicted to belong to class c;
if v; is above some threshold t;, which can be chosen by
the user. To ensure that the predictions obey the hierar-
chy constraint (whenever a class is predicted its super-
classes are also predicted), it suffices to choose t; < ¢;
whenever c¢; is a superclass of ¢; . The PCT in Figure 1
has a threshold of #; = 0.4 for all i.

CLUS-HMC is the instantiation (with the distances
and prototypes defined as above) of the PCT algorithm
implemented in the CLUS system.

Ensembles of PCTs

Ensemble methods are learning methods that construct
a set of classifiers for a given prediction task and classify
new examples by combining the predictions of each
classifier. In this paper we consider bagging, an ensem-
ble learning technique that has primarily been used in
the context of decision trees. In preliminary experi-
ments, we also considered two other ensemble learning
techniques: random forests [30] and an adapted version
of the boosting approach for regression trees by Drucker
[31]. However, neither method performed better than
simple bagging.
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Bagging [32] is an ensemble method where the differ-
ent classifiers are constructed by making bootstrap repli-
cates of the training set and using each of these
replicates to construct one classifier. Each bootstrap
sample is obtained by randomly sampling training
instances, with replacement, from the original training
set, until the sample contains the same number of
instances as the original training set. The individual pre-
dictions given by each classifier can be combined by tak-
ing the average (for numeric targets) or the majority
vote (for nominal targets).

Breiman has shown that bagging can give substantial
gains in the predictive performance of decision tree lear-
ners [32]. Also in the case of learning PCTs for predict-
ing multiple targets at once (multi-task learning [33]),
decision tree methods benefit from the application of
bagging [34]. However, it is clear that, by using bagging
on top of the PCT algorithm, the learning time of the
model increases significantly, resulting in a clear trade-
off between predictive performance and efficiency to be
considered by the user.

The algorithm for bagging PCTs takes as input the
parameter k, denoting the number of trees in the
ensemble. In order to make predictions, the average of
all class vectors predicted by the k trees in the ensemble
is computed, and then the threshold is applied as before.
This ensures that the hierarchy constraint holds. We call
the resulting instantiation of the bagging algorithm
around the CLUS-HMC algorithm CLUS-HMC-ENS.

Results and discussion
In this section, we address the following questions:

1. How well does CLUS-HMC perform on functional
genomics data and what is the improvement, if any, that
can be obtained by using CLUS-HMC-ENS on such
tasks?

2. How does the predictive performance of the pro-
posed algorithms compare to results reported in the bio-
medical literature?

In order to answer these questions, we compare our
results to the results reported by Clare and King [3] and
Barutcuoglu et al. [10] on S. cerevisiae, to the results
reported by Clare et al. [9] on A. thaliana, and to the
results of the groups participating in the MouseFunc
challenge [21,22] on M. musculus. The methods used in
these studies were discussed in the “Related work”
section.

Datasets

For S. cerevisiae and A. thaliana, the datasets that we
use in our evaluation are exactly those datasets that are
used in the cited articles. They are available, together
with the parameter settings that can be used to repro-
duce the results, at the following webpage: http://www.
cs.kuleuven.be/~dtai/clus/hmc-ens. For M. musculus,
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the (raw) data is available at http://hugheslab.med.utor-
onto.ca/supplementary-data/mouseFunc_I/, while the
dataset we assembled from it is available at the former
webpage.

Next to predicting gene functions of three organisms
(S. cerevisiae, A. thaliana, and M. musculus), we con-
sider two annotation schemes in our evaluation: FunCat
(developed by MIPS [28]), which is a tree-structured
class hierarchy and the Gene Ontology (GO) [35], which
forms a directed acyclic graph instead of a tree: each
term can have multiple parents.

Saccharomyces cerevisiae

The first dataset we use (Dg) was described by Barut-
cuoglu et al. [10] and is a combination of different data
sources. The input feature vector for a gene consists of
pairwise interaction information, membership to coloca-
lization locale, possession of transcription factor binding
sites and results from microarray experiments, yielding a
dataset with in total 5930 features. The 3465 genes are
annotated with function terms from a subset of 105
nodes from the Gene Ontology’s biological process
hierarchy.

We also use the 12 yeast datasets (D; - Dy3) from
[23]. The datasets describe different aspects of the genes
in the yeast genome. They include five types of bioinfor-
matics data: sequence statistics, phenotype, secondary
structure, homology and expression. The different
sources of data highlight different aspects of gene func-
tion. The genes are annotated with functions from the
FunCat classification schemes. Only annotations from
the first four levels are given.

D, (seq) records sequence statistics that depend on
the amino acid sequence of the protein for which the
gene codes. These include amino acid frequency ratios,
sequence length, molecular weight and hydrophobicity.

D, (pheno) contains phenotype data, which represents
the growth or lack of growth of knock-out mutants that
are missing the gene in question. The gene is removed
or disabled and the resulting organism is grown with a
variety of media to determine what the modified organ-
ism might be sensitive or resistant to.

D3 (struc) stores features computed from the second-
ary structure of the yeast proteins. The secondary struc-
ture is not known for all yeast genes; however, it can be
predicted from the protein sequence with reasonable
accuracy, using Prof [36]. Due to the relational nature of
secondary structure data, Clare performed a preproces-
sing step of relational frequent pattern mining; D3
includes the constructed patterns as binary attributes.

D, (hom) includes for each yeast gene, information
from other, homologous genes. Homology is usually
determined by sequence similarity; here, PSI-BLAST
[37] was used to compare yeast genes both with other
yeast genes and with all genes indexed in SwissProt v39.
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This provided for each yeast gene a list of homologous
genes. For each of these, various properties were
extracted (keywords, sequence length, names of data-
bases they are listed in, ...). Clare preprocessed this data
in a similar way as the secondary structure data to pro-
duce binary attributes.

Ds, ..., D13. Many microarray datasets exist for yeast
and several of these were used [23]. Attributes for these
datasets are real valued, representing fold changes in
expression levels.

Arabidopsis thaliana

We use six datasets from [9], originating from different
sources: sequence statistics, expression, predicted SCOP
class, predicted secondary structure, InterPro and
homology. Each dataset comes in two versions: with
annotations from the FunCat classification scheme and
from the Gene Ontology’s molecular function hierarchy.
Again, only annotations for the first four levels are
given. We use the manual annotations for both schemes.

D,3 (seq) records sequence statistics in exactly the
same way as for S. cerevisiae. D14 (exprindiv) contains
43 experiments from NASC’s Affymetrix service “Affy-
watch” http://affymetrix.arabidopsis.info/AffyWatch.
html, taking the signal, detection call and detection p-
values. D5 (scop) consists of SCOP superfamily class
predictions made by the Superfamily server [38]. D¢
(struc) was obtained in the same way as for S. cerevisiae.
D, (interpro) includes features from several motif or
signature finding databases, like PROSITE, PRINTS,
Pfam, ProDom, SMART and TIGRFAMs, calculated
using the EBI’s stand-alone InterProScan package [39].
To obtain features, the relational data was mined in the
same manner as the structure data. D;g (hom) was
obtained in the same way as for S. cerevisiae, but now
using SwissProt v41.

Mus musculus

We use the data that was provided for the MouseFunc
challenge [21,22]. It consists of 21603 genes, of which
1718 are set aside as test genes. Each gene is annotated
with GO terms from a specified subset of the Gene
Ontology. The annotations are up-propagated using the
Gene Ontology’s “is-a” and “part-of” relation. The data
is composed of several sources: gene expression data,
protein sequence pattern annotations, protein-protein
interactions, phenotype annotations, phylogenetic profile
and disease associations. In order to construct a single
dataset (Do), we joined all data tables, removed attri-
butes with fewer than five non-zero values and com-
puted additional attributes that indicate for each gene
the classes of other genes to which it is linked through
a protein-protein interaction (only considering training
set genes). This yields 18746 attributes in total. The
resulting representation is similar to the one used by
Guan et al. [18].
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Methodology
Evaluation measure
We report the performance of the different methods
with precision-recall (PR) and ROC [40] based evalua-
tion measures. This is motivated by the following two
observations: (1) both measures have been used before
to evaluate approaches to gene function prediction
[1,8,22], and (2) they both allow to simultaneously com-
pare classifiers for different classification thresholds. Of
both measures, PR based evaluation better suits the
characteristics of typical HMC datasets, in which many
classes are infrequent (i.e., typically only a few genes
have a particular function). Viewed as a binary classifica-
tion task for each class, this implies that for most classes
the number of negative instances by far exceeds the
number of positive instances. In some cases, it is pre-
ferred to recognize the positive instances (i.e., that a
gene has a given function), rather than correctly predict
the negative ones (i.e., that a gene does not have a parti-
cular function). ROC curves are then less suited for this
task, exactly because they also reward a learner if it cor-
rectly predicts negative instances (giving rise to a low
false positive rate). This can present an overly optimistic
view of the algorithm’s performance [41]. Therefore,
unless it is impossible to reconstruct the PR behaviour
of the methods we compare to, we report a PR based
evaluation.

We use the following definitions of precision, recall,
average precision, and average recall:

Precision; = i, and Recall; = i,
TP;+FP; TP;+FN;
— i TP; — TP
Precision = # and Recall = #,
i TP;+%; FP; > TP;+Y; FN;

where i ranges over all functions, T P; is the number
of true positives (correctly predicted positive instances)
for function i, F P; is the number of false positives (posi-
tive predictions that are incorrect) for function i, and F
N; is the number of false negatives (positive instances
that are incorrectly predicted negative) for function i.
Note that these measures ignore the number of cor-
rectly predicted negative examples.

A precision-recall curve (PR curve) plots the precision
of a model as a function of its recall. We consider two
types of PR curves: (1) a function-wise PR curve for a
given function i, which plots Precision; versus Recall;,
and (2) an average or pooled PR curve, which plots
Precision VErsus Recall and summarizes the perfor-
mance of the model across all functions.

We construct the PR curves as follows. Remember
that every leaf in the tree contains a vector v with for
each function the probability that the gene is predicted
to have this function. When decreasing the prediction
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threshold ¢; from 1 to 0, an increasing number of
instances is predicted to belong to c; causing the recall
to increase whereas precision may increase or decrease
(with normally a tendency to decrease). Thus, a single
tree (or an ensemble of trees) with a specific threshold
has a single precision and recall, and by varying the
threshold a PR curve is obtained. Such curves allow us
to evaluate the predictive performance of a model
regardless of . In the end, a domain expert can choose
the threshold corresponding to the point on the curve
that looks most interesting to him.

Although a PR curve helps in understanding the pre-
dictive behaviour of the model, a single performance
score is more useful to compare models. A score often
used to this end is the area between the PR curve and
the recall axis, the so-called “area under the PR curve”
(AUPRC). The closer the AUPRC is to 1.0, the better
the model is. We consider two measures that are based
on this idea, that correspond to the two types of PR
curves and that are often reported in the literature: AU
(PRC), the area under the average PR curve, and
AUPRC > the average over all areas under the function-
wise PR curves. Note that AU(pRC ) gives more weight
to more frequent functions, while A(JPRC considers
the importance of every function to be equal.

Parameter settings for CLUS-HMC and CLUS-HMC-ENS

In the experiments, wy, which determines the weights of
the different functions in the decision tree heuristic, is
set to 0.75 and the number of examples in each decision
tree leaf is lower bounded to 5. The parameter k, which
denotes the number of trees used in the ensemble, is set
to 50. Preliminary experiments show that performance
does not strongly depend on the choice of wy and that
it does not significantly increase after k = 50, so the lat-
ter value is a good trade-off between performance and
runtime. The significance parameter used in the F-test
stopping criterion of CLUS-HMC and CLUS-HMC-ENS
is tuned on a separate validation set (1/3 of the training
data) and optimized out of 6 possible values (0.001,
0.005, 0.01, 0.05, 0.1, 0.125), maximizing the AU(pRC)-
The final model is constructed on the entire training set
using the selected value of the significance parameter.
Results

We will first investigate if ensembles improve the pre-
dictive performance of CLUS-HMC in gene function
prediction and if so, quantify this difference. We will
then compare CLUS-HMC and CLUS-HMC-ENS
against several state-of-the-art systems in gene function
prediction. On the one hand, we will compare CLUS-
HMC to C4.5H/M [3,9], because they both build a sin-
gle decision tree. On the other hand, we will compare
CLUS-HMC-ENS to Bayesian-corrected SVMs [10], a
statistical learning approach, on Dy, and to the methods
that entered the MouseFunc challenge on Djs.
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Figure 3 Comparison of AU(pPR( ) between Clus-HMC and
Clus-HMC-Ens. The white surface represents the gain in AU(PRC )
obtained by CLUS-HMC-ENS.

The datasets originating from [3,9] (i.e., datasets D; to
D,3) are divided into a training set (2/3) and a test set
(1/3). We use exactly the same splits. For dataset Dy, we
randomly construct a training and test set with the
same ratio. For dataset Do, we use the same training
and test sets that were used in the MouseFunc
challenge.

Comparison between CLUS-HMC and CLUS-HMC-ENS

For each of the datasets, the AU(pRC) of CLUS-HMC
and CLUS-HMC-ENS is shown in Figure 3. We see that
for every dataset, there is an increase in AU(pRC ) when
using ensembles. The average gain is 0.071 (which is an
improvement of 18% on average); the maximal gain is
0.157. Representative PR curves can be found in Figures 4,
5 and 6. Figure 7 shows the AUPRC of CLUS-HMC and
CLUS-HMC-ENS. Again, there is an increase in AUIPRC
when using ensembles, with an average gain of 0.093
(which is an improvement of 108% on average) and a max-
imal gain of 0.337. These results show that the increase in
performance obtained by CLUS-HMC-ENS is larger
according to AUPRC than according to AU(PRC),
which indicates that ensembles are performing particularly
better for the less frequent classes, typically occurring at
the lower levels of the hierarchy. To summarize, the
improvement in predictive performance that can be
obtained by using tree ensembles in more straightforward
machine learning settings carries over to the HMC setting
with functional genomics data.

Comparison between CLUS-HMC and C4.5H/M

We now concentrate on the comparison of the results
obtained by our algorithms to those obtained by other
decision tree based algorithms. For the datasets that are
annotated with FunCat classes (D; - D;g), we will com-
pare to the hierarchical extension of C4.5 [3], which we
will refer to as C4.5H. For the datasets with GO annota-
tions (D3 - D;g), we will use the non-hierarchical multi-
label extension of C4.5 [9], as C4.5H cannot handle
hierarchies structured as a DAG. We refer to this sys-
tem as C4.5M.
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Figure 4 Precision-recall curve for all classes for C4.5H,
Clus-HMC and Clus-HMC-Ens on D, with FunCat annotations.
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Figure 5 Precision-recall curve for all classes for C4.5H,

Clus-HMC and Clus-HMC-Ens on D,¢ with FunCat annotations.

D15 (GO): seq

1.0 T
0.8 i
Soef .
e
S
£ L ]
< 0.4
02 | Clus-HMC
" | — Clus-HMC-Ens
* C4.5M .
0.0 L
0.0 0.2 0.4 0.6 0.8 1.0

Recall

Figure 6 Precision-recall curve for all classes for C4.5M,
Clus-HMC and Clus-HMC-Ens on D,5; with GO annotations.
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Clus-HMC-Ens. The white surface represents the gain in  ATJPRC
obtained by CLUS-HMC-ENS.

For their experiments on A. thaliana, Clare et al. [9]
only report results per level of the hierarchy. In order to
obtain these results, they learn a separate classifier per
level, removing from their training and test set those
genes that do not have annotated functions at that level.
This approach may give a biased result: when annotating
a new gene, it is not known in advance at which levels
of the hierarchy it will have functions. Therefore, we
reran C4.5M to learn one classifier that uses all training
data and tested it on the complete test set.

For evaluating their systems, Clare et al. [3,9] report
precision. Indeed, as the biological experiments required
to validate the learned rules are costly, it is important to
avoid false positives. However, precision is always traded
off by recall: a classifier that predicts one example posi-
tive, but misses 1000 other positive examples may have
a precision of 1, although it can hardly be called a good
classifier. Therefore, we also compute the recall of the
models obtained by C4.5H/M. These models were pre-
sented as rules for specific classes without any probabil-
ity scores, so each model corresponds to precisely one
point in PR space.

For each of the datasets D; - Dyg, these PR points are
plotted against the average PR curves for CLUS-HMC.
As we are comparing curves with points, we speak of a
“win” for CLUS-HMC when its curve is above C4.5H/M’s
point, and of a “loss” when it is below the point. Under
the null hypothesis that both systems perform equally
well, we expect as many wins as losses. We observed that
only in one case out of 24, for dataset D¢ with FunCat
annotations, C4.5H/M outperforms CLUS-HMC. For all
other cases there is a clear win for CLUS-HMC. Repre-
sentative PR curves can be found in Figures 4, 5 and 6.

For each of these datasets, we also compared the pre-
cision of C4.5H/M, CLUS-HMC and CLUS-HMC-ENS,
at the recall obtained by C4.5H/M. The results can be
found in Figure 8. The average gain in precision w.r.t.
C4.5H/M is 0.209 for CLUS-HMC and 0.276 for CLUS-
HMC-ENS.
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Figure 8 Comparison of precision between C4.5H/M, Clus-HMC
and Clus-HMC-Ens, at the recall obtained by C4.5H/M. The gray
surface represents the gain in precision obtained by CLUS-HMC, the
white surface represents the gain for CLUS-HMC-ENS. D14(FC) was
not included, since C4.5H did not find significant rules. For D;¢(FQ),
C4.5H scored a slightly better precision (see Figure 5), hence the
lack of gray surface.

We can conclude that CLUS-HMC is the tree-building
system that yields the best predictive performance.
Compared with other existing methods, we are able to
obtain the same precision with higher recall, or the
same recall with higher precision. Moreover, the hierar-
chy constraint is always fulfilled, which is not the case
for C4.5H/M.

Comparing individual rules

Every leaf of a decision tree corresponds to an if ... then ...
rule. When comparing the complexity and precision/recall
of these individual rules, CLUS-HMC also performs well.
For instance, take FunCat class 29, which has a prior fre-
quency of 3%. Figure 9 shows the PR evaluation for the
algorithms for this class using homology dataset D,. The
PR point for C4.5H corresponds to one rule, shown in
Figure 10. This rule has a precision/recall of 0.55/0.17.
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Figure 9 Precision-recall curve for class 29 on D, with FunCat
annotations.

Page 9 of 14

CLUS-HMC’s most precise rule for class 29 is shown in
Figure 11. This rule has a precision/recall of 0.90/0.26.

Note from Figure 9 that an even higher precision can
be obtained with CLUS-HMC-ENS, although the rules
which lead to this prediction are more complex.
Comparison between CLUS-HMC-ENS and
Bayesian-corrected SVMs
In this section, we compare CLUS-HMC-ENS to the
statistical learning method of Barutcuoglu et al. [10],
which consists of Bayesian-corrected SVMs (see “Related
work”). We will further refer to this method as BSVM.
The authors have used dataset Dy to evaluate their
method and report class-wise area under the ROC con-
vex hull (AUROC) for a small subset of 105 nodes of
the Gene Ontology. As only AUROC scores are
reported by Barutcuoglu et al. [10], we adopt the same
evaluation metric for this comparison.

Barutcuoglu et al. [10] build a bagging procedure
around their system and report out-of-bag error esti-
mates [42] as evaluation, which removes the need for a
set-aside test set. Out-of-bag error estimation proceeds
as follows: for each example in the original training set,
the predictions are made by aggregating only over those
classifiers for which the example was not used for train-
ing. This is the out-of-bag classifier. The out-of-bag
error estimate is then the error rate of the out-of-bag
classifier on the training set. The number of bags used
in this procedure was 10. To compare our results, we
use exactly the same method.

On dataset Dy, the average of the AUROC over the
105 functions is 0.871 for CLUS-HMC-ENS and 0.854
for BSVM. Figure 12 compares the class-wise out-of-bag
AUROC estimates for CLUS-HMC-ENS and BSVM out-
puts. CLUS-HMC-ENS scores better on 73 of the 105
functions, while BSVM scores better on the remaining
32 cases. According to the (two-sided) Wilcoxon signed
rank test [43], the performance of CLUS-HMC-ENS is
significantly better (p = 4.37-107).

Moreover, CLUS-HMC-ENS is faster than BSVM.
Runtimes are compared for one of the datasets having
annotations from Gene Ontology’s complete biological
process hierarchy (in particular, we used D;4, which is
annotated with 629 classes). Run on a cluster of AMD
Opteron processors (1.8 - 2.4 GHz, > 2 GB RAM),
CLUS-HMC-ENS required 15.9 hours, while SVM-light
[44], which is the first step of BSVM, required 190.5
hours for learning the models (i.e., CLUS-HMC-ENS is
faster by a factor 12 in this case).

Comparison between CLUS-HMC-ENS and the methods

in the MouseFunc challenge

In this section we compare CLUS-HMC-ENS to the
seven systems that submitted predictions to the Mouse-
Func challenge. These systems are the ensemble exten-
sion of BSVM [18] (which we will call BSVM™"), Kernel
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if the ORF is NOT homologous to another yeast protein (e > 0.73)
and homologous to a protein in rhodospirillaceae (e < 1.0 -107%)

and  NOT homologous to another yeast protein (5.0-107* < e <
3.3 -1072) and homologous to a protein in anabaena (e > 1.1)

and  homologous to another yeast protein (2.0 - 1077 < e < 5.0 - 107%)
and homologous to a protein in beta_subdivision (e < 1.0-1078)

and  NOT homologous to a protein in sinorhizobium with keyword
transmembrane (e > 1.1)

and NOT homologous to a protein in entomopoxvirinae with dbref pir
(e >1.1)

and NOT homologous to a protein in t4-like_phages with molecular weight
between 1485 and 38502 (4.5-1072 < e < 1.1)

and  NOT homologous to a protein in chroococcales with dbref prints
(1.0-1078 < e < 4.0-107%)

and NOT homologous to a protein with sequence length between 344 and 483
and dbref tigr (e < 1.0-1078)

and  homologous to a protein in beta_subdivision with sequence length between
16 and 344 (e < 1.0-1078)

then class 29/0/0/0 “transposable elements, viral and plasmid proteins”

Figure 10 Rule found by C4.5H on the D, (FC) homology dataset, with a precision of 0.55 and a recall of 0.17.

if the ORF is NOT homologous to a protein in rhizobiaceae_group
with dbref interpro (e < 1.0 - 1078)

and  NOT homologous to a protein in desulfurococcales (e < 1.0-107%)

and  homologous to a protein in ascomycota with dbref transfac
(e <1.0-1078)

and  homologous to a protein in viridiplantae with sequence length > 970
(e <1.0-107%)

and  homologous to a protein in rhizobium with keyword plasmid
(1.0-1078 < e < 4.0-107%)

and  homologous to a protein in nicotiana with dbref interpro (e < 1.0 - 10~%)

then class 29/0/0/0 “transposable elements, viral and plasmid proteins”

Figure 11 Rule found by Clus-HMC on the D, (FC) homology dataset, with a precision of 0.90 and a recall of 0.26.
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Figure 12 Class-wise out-of-bag AUROC comparison between
Clus-HMC-Ens and Bayesian-corrected SVMs.

Logistic Regression [13] (which we will call KLR), cali-
brated SVMs [19] (which we will call CSVM), GENEFAS
[4], GENEMANIA [15], the combined functional net-
work and classifier strategy of Kim et al. [16] (which we
will call KIM) and the Funckenstein system [17]. These
methods were described in the “Related work” section.
Note that, when comparing the results, one should keep
in mind that each team independently constructed a
dataset, possibly using different features. As a result, the
differences in performance can be due not only to the
learning methods compared, but also the different fea-
ture sets used by the methods. As mentioned in the
“Datasets” section, the representation that we use is the
one of the BSVM™ team.

The organizers have made available a program that
computes several evaluation measures and was used to
compare the results by the different participating teams
in the challenge. This software is available at the same
URL where the data can be found, and computes
AUROC scores and precision values at several levels of
recall for a list of GO terms.
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A close inspection of this program reveals that it exhi-
bits some undesirable behaviour. This can easily be veri-
fied by observing the result for a classifier that always
predicts the same value. The correct function-wise PR
curve for any GO term would be a straight line parallel
to the recall axis, with precision equal to the frequency of
the term. However, the PR curve returned by the soft-
ware differs from this. If the ordering in which the genes
are processed happens to start with a positive gene, then
the precision at zero recall equals one. Moreover, if the
ordering ends with a negative gene, the precision at recall
one is still higher than the class frequency. The ordering
in which the examples are processed should be indepen-
dent from the resulting PR curve.

For this reason, we included the computation of preci-
sion and recall in the Clus software. Because the Mouse-
Func website lists a prediction matrix (containing for
each gene-term pair the corresponding probability that
the gene is annotated with the GO term) for each of the
methods we compare to, we can run our own evaluation
program on these predictions, producing corrected
results for these methods.

Each method gives predictions for 2815 selected GO
terms. These terms are divided into 12 disjunct subsets
corresponding to all combinations of the three GO
branches (Biological Process, Molecular Function and
Cellular Component) with four ranges of specificity,
which is defined as the number of genes in the training
set to which each term is annotated (3-10, 11-30, 31-
100 and 101-300). We have adopted the same subsets
and trained and evaluated our models on each of them.
Since 1846 of the selected 2815 GO terms were used as
annotation in the test set, our evaluation of all the sys-
tems is based only on those.

Table 1 shows the AU(pRC ) results of all the meth-
ods on the 12 subsets. Looking at the wins/losses for
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each of the 12 subsets, according to the (two-sided) Wil-
coxon signed rank test, the performance of CLUS-
HMC-ENS is significantly better at the 1% level than
BSVM*(p = 4.88-10*), CSVM (p = 1.47-10"%), GENEFAS
(p = 4.88-10™), and KIM (p = 4.88-10™%). CLUS-HMC-
ENS has more wins than KLR (p = 1.61.10%) and GEN-
EMANIA (p = 1.61:10%), but is not significantly better
at 1%. CLUS-HMC-ENS is performing significantly
worse than Funckenstein (p = 9.28-1073).

Table 2 shows the same comparison, but now for
AUPRC - According to the Wilcoxon signed rank test,
CLUS-HMC-ENS is performing significantly better at
the 1% level than KIM (p = 4.88-10™), while it is not sig-
nificantly different from BSVM™ (p = 4.70-10Y), KLR
(p = 1.61-107%), CSVM (p = 1.51-10"") and GENEFAS
(p = 2.59:10"%). CLUS-HMC-ENS is performing signifi-
cantly worse than GENEMANIA (p = 9.28:10%) and
Funckenstein (p = 9.77-107%).

Because AUJROC, the average over all areas under the
function-wise ROC curves, was used as evaluation mea-
sure in the MouseFunc challenge [22], we report it in
Table 3. According to the Wilcoxon signed rank test,
CLUS-HMC-ENS is not performing significantly differ-
ent at the 1% level than KLR (p = 9.10-10"), CSVM
(p = 2.20-10%), GENEFAS (p = 5.69-10™') and KIM
(p = 3.22.107%). CLUS-HMC-ENS is performing signifi-
cantly worse than BSVM"* (p = 4.88-10*), GENEMANIA
(p = 9.77-10"*) and Funckenstein (p = 9.77 10™).

The fact that CLUS-HMC-ENS performs better
according to AU(pRC) than to AUPRC and AUROC
can be explained as follows. The variance function used
to select the best tests gives a higher weight to functions
at higher levels of the hierarchy (see “Methods” section),
causing CLUS-HMC-ENS to perform well especially on
those functions. In contrast to AUJPRC and AUROGC
which consider each function as equal, the AU(pRC)

Table 1 Comparison of AU(pRC ) between Clus-HMC-Ens and the MouseFunc systems

Subset CLUS-HMC-ENS BSVM* KLR CSVM GENEFAS GeneMANIA KIM Funckenstein
BP_3-10 0.045 0.0406 0.0286 0.02% 0.0286 0071&® 0.0296 0.085®
BP_11-30 0.055 0.0426 0.053 00176 00126 0.0386 00316 0.083®
BP_31-100 0.109 0.1008 0.135® 00776 0.0336 0.0356 0.0446 0.1908
BP_101-300 0.173 0.1616 0.174® 0.1466 0.0786 0.0556 00516 0.225®
CC_3-10 0.182 00766 0.0606 0.0466 0.0506 01310 0.1286 02028
CC_11-30 0.207 0.0856 0.1286 0.0940 0.0386 0.0686 01126 0.1676
CC_31-100 0.233 0.1636 0.1616 0.0746 0.1076 0.0466 0.1276 0.2266
CC_101-300 0.220 0.1666 0.225® 0.1576 0.1106 0.101e 0.0946 0.248®
MF_3-10 0.266 0.2436 01916 0.2056 0.1746 0359 0.1896 0.368®
MF_11-30 0.356 0.2586 0.2856 02756 0.1366 02706 02156 0.384®
MF_31-100 0.360 0.2456 0.2946 02310 0.1206 0.2846 0.1916 04828
MF_101-300 0.368 0.2836 03316 0.386@ 0.1846 02026 0.1406 0485®

For each of the 12 subsets, the AU(PR( ) of CLUS-HMC-ENS is compared with the MouseFunc systems. A win (®) means that the MouseFunc system

outperforms CLUS-HMC-ENS, a loss (©) means that it is outperformed by CLUS-HMC-ENS.
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Table 2 Comparison of A[JPRC between CLUS-HMC-ENS and the MouseFunc systems

Subset CLUS-HMC-ENS BSVM* KLR CSVM GENEFAS GENEMANIA KIM Funckenstein
BP_3-10 0.120 0.156® 00756 00756 0.1086 0.170® 0.1086 0.198®
BP_11-30 0.110 01410 0.087© 0.0856 00740 0.151® 0.1076 0.162®
BP_31-100 0.139 0.172® 0.158® 0.1408® 0.0%46 0177&® 0.1166 0.244®
BP_101-300 0171 0.172® 0.1690 0.173® 0.1046 0.1600 0.0566 02140
CC_3-10 0319 0.24%0 0.1196 0.0830 02336 03240 02716 03166
CC_11-30 0.260 0.1940 02126 0.151e 01316 0.2356 0.1786 0.267®
CC_31-100 0.217 0.232® 0.1976 0.161© 01916 0.261® 0.1440 0.287®
CC_101-300 0.244 02170 0.2599® 02210 0.1776 0.258® 0.1186 0.279®
MF_3-10 0.320 04410 0.2586 0.2280 0427® 0465® 03040 0472®
MF_11-30 0.356 0373® 03479 0.393® 0.3508 0401® 0.3026 0455@
MF_31-100 0.269 0.289® 0.230© 0.278® 0.2426 0291® 0.2556 04160
MF_101-300 0322 03176 03216 0.374® 0.2956 0391® 01726 04410

For each of the 12 subsets, the PR of CLUS-HMC-ENS is compared with the MouseFunc systems. A win (@) means that the MouseFunc system outperforms

CLUS-HMC-ENS, a loss (©) means that it is outperformed by CLUS-HMC-ENS.

Table 3 Comparison of A[JROC between Clus-HMC-Ens and the MouseFunc systems

Subset CLUS-HMC-ENS BSVM* KLR CSVM GENEFAS GENEMANIA KIM Funckenstein

BP_3-10 0.695 0.808® 0.581© 0.5880 0.715@ 0.873® 0813@ 0.790®
BP_11-30 0.748 0.808® 07419 06596 0.767® 0.849¢® 0.822¢ 0.796®
BP_31-100 0.831 0.874® 0.846 0.7786 0.780© 0.872® 0851 0.880
BP_101-300 0823 0.853® 0.845® 08136 0.7336 0.840 0.7956 0.838®
CC_3-10 0.748 0.845® 05710 06186 0.782® 0.899¢ 0.865® 0.837®
CC_11-30 0.791 0.873® 0.790© 0.7856 0.834® 0.907® 0.846® 0.850
CC_31-100 0.863 0.896® 0.8500 08510 0.7836 0.887® 0.863 0.84%96
CC_101-300 0.845 0.873® 0.851® 08219 0.7508 08420 0.8086 0.867®
MF_3-10 0818 0.887® 06300 06816 0.8509 0951® 0.880@ 0.879®
MF_11-30 0.842 0.903® 0.861® 08360 0.865@ 0.936® 0.884® 0.909¢
MF_31-100 0.838 0.388® 08926 0.881® 0.843® 0.887® 0.884® 0.903®
MF_101-300 0874 0.904® 0.894® 0.884® 08430 0.909® 08440 0.918®

For each of the 12 subsets, the PR of CLUS-HMC-ENS is compared with the MouseFunc systems. A win (&) means that the MouseFunc system outperforms

CLUS-HMC-ENS, a loss (©) means that it is outperformed by CLUS-HMC-ENS.

evaluation measure shares the idea of giving a higher
penalty to mistakes made for functions at higher levels
of the hierarchy.

We can conclude that, in general, the performance of
CLUS-HMC-ENS is not significantly different from that
of BSVM", which has been evaluated on the same data-
set. Moreover, also compared to the other systems,
which have used other preprocessing methods, CLUS-
HMC-ENS is competitive: only the Funckenstein
method and GENEMANIA produce significantly better
results on 3 and 2 evaluation measures, respectively. In
a function-wise comparison over all 12 subsets (1846
functions in total), CLUS-HMC-ENS still performed
better than Funckenstein on 607 (according to AUPRC)
and 625 (according to AUROC) functions, while it had
an equal score for 98 (AUPRC) and 97 (AUROC) func-
tions. Similarly, it performed better than GENEMANIA
on 645/563 functions and had an equal score for 84/88

functions, respectively. This shows that none of the
methods is guaranteed to be the best choice for any
given function.

This comparison to the methods in the MouseFunc
competition suggests that incorporating functional link-
age information in the predictions made by an ensemble
method can substantially improve its performance. How
this could be achieved for CLUS-HMC-ENS will be
investigated in further work.

Conclusions

In this article, we have presented the use of a decision
tree learner, called CLUS-HMC, in functional genomics.
The learner produces a single tree that predicts, for a
given gene, its biological functions from a function clas-
sification scheme, such as the Gene Ontology. The main
contributions of this work are the introduction of the
tree-based ensemble learner CLUS-HMC-ENS and
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empirical evidence showing that this learner outper-
forms several state-of-the-art methods on S. cerevisiae,
A. thaliana and M. musculus datasets.

First, we have shown that CLUS-HMC outperforms an
existing decision tree learner (C4.5H/M) w.r.t. predictive
performance. Second, we have shown that the predictive
performance boost in regular classification tasks
obtained by using ensembles, carries over to the hier-
archical multi-label classification context, in which the
gene function prediction task is set. Third, by construct-
ing an ensemble of CLUS-HMC-trees, our method out-
performs a statistical learner based on SVMs for
S. cerevisiae, both in predictive performance and in effi-
ciency. Fourth, this ensemble learner is competitive to
statistical and network based methods for M. musculus
data.

To summarize, CLUS-HMC can give additional biolo-
gical insight in the predictions. Moreover, CLUS-HMC-
ENS yields state-of-the-art quality for gene function pre-
diction. The software implementing these methods is
easy to use and available online as open-source software.
As such, CLUS-HMC(-ENS) is competitive to the cur-
rent state-of-the-art systems and therefore, we believe it
should be considered for making automated predictions
in functional genomics.
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{ Conclusions and further work

In this thesis, we develop and evaluate methods for learning ensembles for predicting
structured outputs. Each of the proposed methods constructs a single model to make
a prediction for the whole structure simultaneously. The proposed methods are general
with respect to the type of the output: they can handle multiple target variables and
hierarchically structured classes (tree-shaped and DAGs). They are also scalable to wide
range of datasets with different number of examples and descriptive variables and different
types and sizes of structured outputs.

In the remainder of this chapter, we first summarize the results of the empirical eval-
uation of the proposed method and the case studies. Then, we discuss how the proposed
methods can be further improved and applied.

7.1 Conclusions

The methods we propose in this thesis further extend the predictive clustering framework
in the context of ensemble learning. They contribute in the areas of ensemble learning,
predicting structured outputs and the respective application domains of the case studies:
vegetation condition assessment, image annotation and functional genomics.

Concerning the ensemble learning methods, we show that ensembles lift the predictive
of a single classifier also if the output/target is structured. Next, we construct learning
curves for the ensemble methods (for the ensembles predicting both the structured output
and the sub-components). The learning curves help to determine the number of base
classifiers in an ensemble that offers optimal predictive performance and efficiency of the
ensemble. We then compare the performance (predictive power and efficiency) of the
ensembles that predict the complete structured output and the ensembles that predict
sub-components of the outputs. We also show that the ensembles can be used to obtain
a feature ranking when the target concept is a structure. Furthermore, we present a novel
algorithm for constructing ensembles based on beam-search.

We performed the empirical evaluation over a wide range of datasets. In particular,
we used 13 datasets with multiple continuous target variables (multi-target regression), 9
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datasets with multiple discrete target variables (multi—target classification) and 10 datasets
with hierarchical multi—label classification problems. We summarize the main findings of

the experimental evaluation as follows:

e The ensembles for predicting structured outputs (i.e., ensembles of PCTs) lift the
predictive performance of a single PCT. The difference in performance is statistically
significant at 0.05. Previously this was only shown for the applications where the
target is a single continuous or discrete variable. This finding is valid for the three
machine learning tasks that we consider in this thesis. This It suggests that the
non-trivial relations that might exist between the sub-components of the structure
are included when combining predictions of several classifiers or when injecting some

source of randomness in the learning algorithm.

e The learning curves show that the predictive performance of the ensembles is not
increasing significantly after adding the 50-th PCT to the ensemble. This means that
constructing an ensemble of 50 trees is a reasonable compromise (for the majority of
the domains) between the predictive performance and the efficiency. Furthermore,
the learning curves show that on majority of the domains the ensembles of PCTs have
better predictive performance than the ensembles that predict the sub-components.
This is especially the case when the ensembles contain fewer PCTs.

e The differences in the predictive performances of ensembles of PCTs and ensembles
of trees predicting sub-components of the output are not statistically significant
at 0.05 in any of the tasks. However, the ensembles of PCTs often have better
predictive performance (i.e., smaller average ranks) than the ensembles of trees
predicting the sub-components of the output.

e We assess the efficiency of the proposed methods through the time needed to con-
struct the classifiers and the size of the trees in the ensembles. The ensembles of
PCTs are more efficient than ensembles of trees predicting the sub-components of
the output on all tasks using both efficiency measures. In particular, random forests
of PCTs outperform all other ensembles in terms of time consumption and size of
the trees in the ensemble for predicting multiple continuous target variables. Bagging
of PCTs has the smallest models when predicting multiple discrete target variables
and hierarchical multi—label classification.

The random forests of PCTs, as side-product, can provide also a feature ranking. In this
thesis, we suggested that this can be used to obtain feature ranking for arbitrary structured
outputs. The feature ranking obtained this way exploit some underlying connections and
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relations that exist between the sub-components of the outputs. We show this on a small
case study for bio-marker discovery where the proposed approach offers better feature
ranking than the feature ranking for the sub-components.

We also proposed a novel ensemble learning algorithm that is based on the beam—
search strategy. This algorithm tackles two issues that are actively researched by the
community: ensemble diversity and ensemble interpretability. With the proposed algorithm,
we can explicitly control the diversity of the trees that are in the ensemble. Thus, we can
investigate the influence of the diversity of an ensemble on its predictive performance.
Furthermore, the beam-search keeps the trees sorted by a heuristic score. The best tree
from the heuristic score can be thus used as a representative for the ensemble. The
ensemble constructed using the proposed approach will be diverse and interpretable.

We applied the developed ensembles of PCTs to three application domains. In the
case studies, the ensembles of PCTs were compared to the state-of-the-art approaches
used in the respective domains. We summarize the conclusions from the case studies as
follows:

e We used two scenarios for assessing the condition of the indigenous vegetation using
easily obtained remote sensed data. The first scenario was concerned with knowledge
extraction: we constructed a pruned PCT for predicting multiple continuous targets.
The PCT helped to better understand the resilience of some indigenous vegetation
types and the relative importance of the biophysical and landscape attributes that
influence their condition. For the second scenario, in which high predictive power
was required, we constructed ensembles (especially random forests) of PCTs to
generate maps of the condition of the indigenous vegetation across the Victoria
state, Australia. These maps can support biodiversity planning, management and
investment decisions.

e We applied the ensembles of PCTs for HMC on two benchmark tasks for hierarchical
annotation of medical (X-Ray) images and an additional task for general photo
annotation. The ensembles of PCTs outperformed, on all three tasks, a collection
of SVMs with x? kernel (the best-performing and most-frequently used approach
in image annotation). Moreover, for the medical images, the ensembles of PCTs
produced the best results reported in the literature. Ensembles of PCTs (especially
random forests) are also more efficient than the collection of SVMs.

e [n the third case study, we focused on prediction of the gene function in three organ-
isms: Saccharomyces cerevisiae, Arabidopsis thaliana and Mus musculus. The genes
were annotated with functions from the FunCat catalogue of functions (tree-shaped
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hierarchy) and the Gene ontology (DAG shaped hierarchy). The extensive exper-
imental evaluation showed that bagging of PCTs outperforms a statistical learner
based on SVMs for the Saccharomyces cerevisiae genes, both in terms of predic-
tive performance and efficiency. For the two other organisms bagging of PCTs is
competitive to the state-of-the-art approaches in the area of functional genomics.

7.2 Further work

In this thesis, we presented a method for ensemble learning. The proposed method can
be used for prediction of three types of structured outputs: multiple continuous variables,
multiple discrete variables and hierarchical multi—label classification. One line of further
work is to extend the proposed approach for other types of structured outputs (e.g., the
ones we discuss in Section . Also, other distance measures for structured types can
be implemented, thus making the algorithms more flexible and applicable to new domains.

Another line of further work is to evaluate the feature ranking for structured outputs
on a bigger scale. The small case study showed that this approach is interesting and it
can be further investigated in scenarios where the output consists of multiple continuous
variables or classes organized in a hierarchy.

Third line of further work is to investigate the beam—search tree induction in the context
of learning a diverse and interpretable ensemble. This ensemble learning method should be
first evaluated in a large study. Then, it can be extended for predicting structured outputs.

Finally, the proposed approach can be further used in image annotation (for visual
codebook construction) and for large scale image retrieval. For construction of the visual
codebook, in the area of image annotation, typically k-means clustering is used. Marée
et al| (2007)); Moosmann et al| (2008]) proposed to use decision trees for predicting single
target variable to this aim, since the decision trees are much more faster and efficient
than the k-means clustering. Their approach, in addition to the better efficiency, offers
better predictive performance also. Predictive clustering trees (and ensembles of them)
can be used for visual codebook construction since they can exploit the dependencies
between the multiple image classes and thus offer even more discriminative codebooks.
Marée et al| (2009)) suggested to further exploit decision trees in the context of image
retrieval. Typically, in image retrieval, the hierarchical search structure is constructed using
approximate or hierarchical k-means algorithm (Philbin et al., [2007)). However, predictive
clustering trees can be also used to represent this hierarchical search structure. The
suggested approach will offer faster image retrieval because construction of a predictive
clustering tree is much faster than k-means clustering.
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