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1. Introduction

Ecology is frequently defined as the study of the distributions and abun-
dances of organisms across space and time and their interactions with the
environment [1]. The distribution can be considered along the spatial di-
mension(s) and/or the temporal dimension. Within ecology, the topic of
ecological modeling [2] is rapidly gaining importance and attention. Ecolog-
ical modeling is concerned with the development of models of the relation-
ships among members of living communities and between those communities
and their abiotic environment. These models can then be used to better
understand the domain at hand or to predict the behavior of the studied
communities and thus support decision making for environmental manage-
ment. Typical modeling topics are population dynamics of several interacting
species (temporal dimension) and habitat suitability for a given species (spa-
tial dimension). We further focus on the latter.

Habitat suitability /modelling focuses on the spatial aspects of the dis-
tribution and abundance of plants and animals. It studies the relationships
between some environmental variables and the presence/abundance of plants
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and animals. This is typically done under the implicit assumption that both
are observed at a single point in time for a given spatial unit.

The input to a habitat model [3, 4] is a set of environmental characteristics
for a given spatial unit of analysis. These environmental characteristics (i.e.
environmental variables) may be of three different types. The first type
concerns abiotic properties of the environment, e.g., physical and chemical
characteristic thereof. The second type concerns some biological aspects of
the environment, which may be considered as an external impact on the
group of organisms under study. Finally, the variables of the third type
are related to human activities and their impacts on the environment. The
output of a habitat model is a target property of the given (taxonomic) group
of organisms. Note that the type of environmental variables, as well as the
size of the spatial unit, can vary considerably, depending on the context,
and so can the target property of the population (even though to a lesser
extent). If we take the abundance or density of the population as indicators
of the suitability of the environment for the group of organisms studied, we
talk about habitat suitability models: the output of these models can be
interpreted as a degree of suitability. The abundance of the population can
be measured in terms of the number of individuals or their total size (e.g.,
the dry biomass of a certain species of algae). If the (taxonomic) group is
large enough, we can also consider the diversity of the group (e.g., Shannon
index, species richness).

Machine learning (and in particular predictive modeling) is increasingly
often used to automate the construction of ecological models [4]. Machine
learning is one of the essential and most active research areas in the field
of artificial intelligence. In short, it studies computer programs that auto-
matically improve with experience [5]. The most researched type of machine
learning is inductive machine learning, where the experience is given in the
form of learning examples. Supervised inductive machine learning, some-
times also called predictive modeling, assumes that each learning example
includes some target property, and the goal is to learn a model that accu-
rately predicts this property. The most popular machine learning techniques
used for modeling habitat suitability include decision tree induction [6], rule
induction [7], and neural networks .

In the most general case of habitat modelling, we are interested in the
relation between the environmental variables and the structure of the popu-
lation at the spatial unit of analysis (absolute and relative abundances of the
organisms in the group studied). One approach to this is to build habitat



models for each of the organisms (or lower taxonomic units) in the group,
then aggregate the outputs of these models to determine the structure of the
population. An alternative approach is to build a model that simultaneously
predicts the presence/abundance of all organisms in the group.

In this work, we investigate in more detail the later approach: predicting
the presence of all organisms from a group, i.e., community modelling. To this
end, we propose to use predictive clustering trees [8], and in particular their
instantiation for predicting multiple targets [9] (called multi-target decision
trees). This approach has several advantages over constructing a model for
each species separately and then aggregate/combine their outputs. To begin
with, they exploit the relations and connections that may exist between the
species from the group. Next, they are smaller and faster to learn. Finally,
it is easier to interpret a single multi-target decision tree than set of single-
target decision trees.

To further increase the predictive performance of the predictive cluster-
ing trees we construct ensembles. Ensembles are set of predictive models,
called base predictive models. The predictions of the base predictive models
are combined by some combination scheme to obtain the overall prediction.
There are many theoretical and empirical studies that show that ensembles
lift the predictive performance of the base predictive models and offer high
predictive performance [10, 11, 12]

We explore the potential of predictive clustering trees and ensembles
thereof for community structure modelling on three case studies. First, we
present community structure modelling in Slovenian rivers [13, 14]. Next, we
present community modelling in soil samples from experimental farming sys-
tems in Denmark [15]. Finally, we show a case study for diatom community
modelling in lake Prespa, Macedonia [16].

The remainder of this paper is organized as follows. In Section 2, we
provide the relevant background for habitat modelling and machine learning.
We present the methodology for community structure modelling in Section 3.
In Section 4, we show three case studies that concern river, lake and soil
communities of organisms. Finally, we state the conclusions in Section 5.

2. Background

In this section, we give the background for the work presented here. We
first present the habitat modelling within the framework of ecology. Namely,
we present the types of environmental variables that are typically encountered



in the habitat modelling applications and discuss several issues that need to
be considered during the construction of habitat models. Then, we define the
machine learning tasks of classification, regression in the context of habitat
modelling.

2.1. Habitat modelling

If ecology is defined as the study of the distribution and abundance of
plants and animals, habitat suitability modelling is concerned with the spa-
tial aspects of the distribution and abundance. Habitat suitability models
relate the spatially varying characteristics of the environment on the pres-
ence, abundance or diversity of a given (taxonomic) group of organisms. Note
that the size of the spatial unit, as well as the type of environmental vari-
ables, can vary considerably, depending on the context, and so can the target
property of the population (even though to a lesser extent).

The spatial unit considered may be of different size for different habitat
models. For example, in the study of soil microarthropods habitat (Sec-
tion 4.3 and [15]), the soil samples taken were of size 6cm diameter and
5.5cm depth, in a study of sea cucumber [17] habitat transects of 2m by 50m
of the sea bed were considered, and in some studies of potential habitats
for different tree species under varying climate change scenarios [18], 1km
by 1km squares are considered. Habitat models can thus operate at very
different spatial scales.

The input to a habitat model is a set of environmental variables, which
may be of three different kinds. The first kind concerns abiotic properties
of the environment, the second kind concerns some biological aspects of the
environment and the third kind of variables are related to human activities
and their impacts on the environment.

The environmental variables that describe the abiotic part of the envi-
ronment can be of different nature, depending for example on whether we
study a terrestrial or an aquatic group of organisms. Typical groups of vari-
ables concern properties of the terrain (calculated from a digital elevation
model), such as elevation, slope and exposition; geological composition of
the terrain or the riverbed/seabed; physical and chemical properties of the
soil/water/air, such as moisture, pH, quantities of pollutants, and so on. An
important group of variables concerns climate and encompasses temperature,
precipitation, etc.

Biological aspects of the environment that are considered in habitat mod-
els are typically more specific and more directly related to the target group of
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organisms as compared to the abiotic variables. They may be rather coarse
and refer to the community, e.g., when modelling brown bear habitat one of
the inputs may be the type of forest at a particular location. They may also
refer to more specific types of organisms that are related to the target group,
e.g., when modelling the habitat of wolves, information on important prey
species such as hare and deer may be taken into account.

Some environmental variables may involve both abiotic and biotic as-
pects. Land cover is a typical example: possible values for this variable may
be forest, grassland, water, etc. Finally, some environmental variables are
related to human activity: examples are proximity to settlements, population
density, and proximity to roads/railways.

The output of a habitat model is some property of the population of
the target group of organisms at the spatial unit of analysis. There are two
degrees of freedom here: one stems from the target property, the other from
the group of organisms studied. In the simplest case, the output is just the
presence/absence of a single species (or group). In this case, we simply talk
about habitat models.

We can also be interested in the abundance or density of the population.
If we take these as indicators of the suitability of the environment for the
group of organisms studied, we talk about habitat suitability models: the
output of these models can be interpreted as a degree of suitability. The
abundance of the population can be measured in terms of the number of
individuals or their total size (e.g., the dry biomass of a certain species of
algae). If the (taxonomic) group is large enough, we can also consider the
diversity of the group (Shannon index, species richness or such like, see Krebs
1989).

In the most general case of habitat modelling, we are interested in the
relation between the environmental variables and the structure of the popu-
lation at the spatial unit of analysis (absolute and relative abundances of the
organisms in the group studied). One approach to this is to build habitat
models for each of the organisms (or lower taxonomic units) in the group,
then aggregate the outputs of these models to determine the structure of
the population (or the desired target property). An alternative approach is
to build a model that simultaneously predicts the presence/abundance of all
organisms in the group or directly the desired target property of the entire
group.

We should note here that observing the presence or absence of a species/group
(or its abundance/density) within a given spatial unit can be a non-trivial



task. While most plants and certain animals (such as sea cucumbers) are
relatively immobile, many animals (including brown bears) can move fast
and cover wide spatial areas. In the latter cases, one might consider areas
of activity (home ranges) and sample from these to obtain data for learning
habitat suitability models.

Another issue that commonly occurs in habitat modelling, especially in
the context of machine learning, is the fact that only presence data are of-
ten collected (i.e., no absence data are usually available). In such cases,
additional care is necessary when preparing the data for the modelling task.
Examples (spatial units) where the target group can be reasonably expected
not to occur (based on domain knowledge) may be considered as absence
data.

Finally, let us reiterate that habitat modelling focuses on the spatial as-
pects of the distribution and abundance of plants and animals. It stud-
ies the relationships between some environmental variables and the pres-
ence/abundance of plants and animals, under the implicit assumption that
both are observed at a single point in time for a given spatial unit. It mostly
ignores the temporal aspects of the distribution/abundance, the latter being
the focus of population dynamics modelling. Still, some temporal aspects
may be taken into account, for example, averages of environmental variables
over a period of time preceding the observation are sometimes included in
habitat models (e.g., average winter air temperature).

2.2. Machine learning for habitat modelling

The input to a machine learning algorithm is most commonly a single
flat table comprising a number of fields (columns) and records (rows). In
general, each row represents an object and each column represents a property
(of the object). In machine learning terminology, rows are called examples
and columns are called attributes (or sometimes features). Attributes that
have numeric (real) values are called continuous attributes. Attributes that
have nominal values are called discrete attributes.

In the case of habitat modelling, examples correspond to spatial units
of analysis. The attributes correspond to environmental variables describing
the spatial units, as these are the inputs to a habitat model. The classes
represent the target property of interest for each of the organisms, such as
presence, abundance or diversity for each organism. This is illustrated in
Figure 1.
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Figure 1: An example of data table for habitat modelling of bioindicator organisms [14].
The descriptive variables are chemical parameters of water samples, while the target vari-
ables are the abundances of 14 bioindicator organisms.

The tasks of classification and regression are the two most commonly
addressed tasks in machine learning. They are concerned with predicting
the value of one attribute from the values of other attributes. The target
attribute is called the class (dependent variable in statistical terminology).
The other attributes are called attributes (independent variables in statistical
terminology).

If the class is continuous, the task at hand is called regression. If the class
is discrete (it has a finite set of nominal values), the task at hand is called
classification. In both cases, a set of data (dataset) is taken as input, and a
predictive model is generated. This model can then be used to predict values
of the class for new data. The common term predictive modelling refers to
both classification and regression.

We further extend the tasks of classification and regression for predicting
multiple target attributes. Here, instead of predicting one target attribute,
the predictive models make a prediction for multiple target attributes. We
formally define the task of multi-target prediction as follows. Given:

e A description space X that consists of tuples of values of primitive
data types (boolean, discrete or continuous), i.e., VX; € X, X; =
(Xiy, Tiyy ooy Tip ), Where D is the size of the tuple (or number of de-
scriptive variables),

e a target space Y which is a tuple of several variables that can be either



continuous or discrete, i.e., VY; € Y)Y = (Yi,, Yigs -y Yiy), Where T is
the size of the tuple (i.e., number of target variables),

e a set of examples E, where each example is a pair of tuples from the
description and target space, respectively, ie., F = {(X;, V)| X; €
X,Y; €Y, 1<i<N}and N is the number of examples of £ (N = |E|),
and

e a quality criterion ¢, which rewards models with high predictive accu-
racy and low complexity.

Find: a function f : X — Y such that f maximizes ¢. In this paper, the
function f is represented with decision trees, i.e., predictive clustering trees
or ensembles thereof.

The machine learning task of habitat modelling is thus defined as follows.
Given is a set of data with rows corresponding to spatial locations (units
of analysis), attributes corresponding to environmental variables, and the
classes corresponding to a target property for each of the species studied.
The goal is to learn a predictive model that predicts the target property for
each species from the environmental variables (from the given dataset). If we
are only looking at presence/absence or suitable/unsuitable as values of the
classes, we have a multi-target classification problem. If we are looking at the
degree of suitability (density/abundance), we have a multi-target regression
problem. Note that, the traditional classification and regression are special
cases of multi-target classification and multi-target regression, respectively,
when the class concerns a target property of single species.

3. Methodology

In this Section, we present the machine learning methodology used to
obtain the habitat models. We first describe the predictive clustering trees
for multi-target classification and regression. Then, we present the used
ensemble methods.

3.1. Predictive clustering trees

The Predictive Clustering Trees (PCTs) framework sees a decision tree as
a hierarchy of clusters: the top-node corresponds to one cluster containing



all data, which is recursively partitioned into smaller clusters while mov-
ing down the tree. The PCT framework is implemented in the CLUS sys-
tem [19], which is available for download at http://www.cs.kuleuven.be/
~dtai/clus.

CLUS takes as input a set of examples E = {(x;,v;)[i = 1,...N}, where
each x; is a vector of attribute values and y; are values of a structured (output)
datatype Ty. In this thesis, we consider three different classes of datatypes
Ty: tuples of discrete values, tuples of real values, and hierarchies of classes.
For each type Ty, CLUS needs two functions to be defined. The prototype
function returns a representative structured value given a set of such values.
The variance function describes how homogeneous a set of structured values
is: it is typically based on a distance function on the space of structured
values.

PCTs can be induced with a standard top-down induction of decision
trees (TDIDT) algorithm [6]. The algorithm is presented in Table 1. It takes
as input a set of examples (F) and outputs a tree. The heuristic (h) that is
used for selecting the tests (t) is the reduction in variance caused by parti-
tioning (P) the instances (see line 4 of BestTest procedure in Table 1). By
maximizing the variance reduction the cluster homogeneity is maximized and
it improves the predictive performance. If no acceptable test can be found
(see line 6), that is, if the test does not significantly reduces the variance,
then the algorithm creates a leaf and computes the prototype of the instances
belonging to that leaf.

Table 1: The top-down induction algorithm for PCTs.

procedure PCT(FE) returns tree procedure BestTest(E)
1: (t*, h*, P*) = BestTest(F) 1: (t*, h*, P*) = (none, 0,0)
2: if t* £ none then 2: for each possible test ¢t do

3: for each E; € P* do 3 ‘P = partition induced by t on E
4: tree; = PCT(E;) 4 h=Var(B) = X g cp 1o Var(E;)
5: return node(t*, J,{tree;}) 5: if (h > h*)AAcceptable(t, P) then
6: else 6: (t*,h*,P*) = (t,h, P)

7 return leaf(Prototype(E)) 7: return (¢, h*, P*)

The main difference between the algorithm for learning PCTs and a stan-
dard decision tree learner (for example, see the C4.5 algorithm proposed by
Quinlan [20]) is that the former considers the variance function and the pro-
totype function, that computes a label for each leaf, as parameters that can



be instantiated for a given learning task. So far, the PCTs have been instan-
tiated for the following tasks: multiple targets prediction [9, 21], hierarchical-
multi label classification [22] and prediction of time-series [23]. In this thesis,
we focus on the first two tasks.

PCTs that are able to predict multiple targets simultaneously are called
multi-target decision trees (MTDTs). The MTDTs that predict a tuple of
continuous variables (regression tasks) are called multi-target regression trees
(MTRTSs), while the MTDTs that predict a tuple of discrete variables are
called multi-target classification trees (MTCTs). The instantiation of the
CLUS system that learns multi-target trees is called CLUS-MTDT.

3.1.1. PCTs for multi-target classification

An example of a MTCT is shown in Figures 3 and 4. The internal nodes
of the tree contain tests on the descriptive variables (in this case, chemical
parameters of the water samples) and the leaves store the predictions (in this
case, which species are encountered and which not in a given water sample).

The variance function for the MTCTs is computed as the sum of the
Gini indices of the target variables, i.e., Var(E) = Zszl Gini(E, Y;). Fur-
thermore, one can also use the sum of the entropies of class variables as a
variance function, i.e., Var(E) = Y.._, Entropy(E, Y;) (this definition has
also been used in the context of multi-label prediction [24]). Note that in the
single target case, Var(E) = Entropy(FE) corresponds to information gain.

The prototype function returns a vector of probabilities that an instance
belongs to a given class for each target variable. Using these probabilities, the
most probable (majority) class for each target attribute can be calculated.
In addition to the two aforementioned instantiations of the variance function
for classification problems, the CLUS system also implements other variance
functions, such as reduced error, gain ratio and the m-estimate.

3.1.2. PCTs for multi-target regression

An example of a MTRT is shown in Figures 2 and 5. The internal nodes
of a PCT for multi-target regression, similar as for multi-target classification,
contain tests on the descriptive variables and the leaves store the predictions.
The MTRTSs look similar as MTCTs, with the difference, that in this case,
the prototype in each leaf is the mean value instead of the majority class.

The variance and prototype functions for MTRTSs are instantiated as fol-
lows. The variance is calculated as the sum of the variances of the target
variables, i.e., Var(E) = Y. Var(Y;). The variances of the targets are
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normalized, so each target contributes equally to the overall variance. The
prototype function (calculated at each leaf) returns as a prediction the tuple
with the mean values of the target variables, calculated by using the training
instances that belong to the given leaf.

3.2. Ensemble methods

An ensemble is a set of predictive models (called base predictive models).
In homogeneous ensembles, such as the ones we consider here, the base pre-
dictive models are constructed by using the same algorithm. The prediction
of an ensemble for a new instance is obtained by combining the predictions
of all base predictive models from the ensemble. In this article, we consider
ensembles of PCTs for multi-target prediction [21]. The PCTs in the ensem-
bles are constructed by using bagging and random forests methods that are
often used in the context of decision trees. We have adapted these methods
to use PCTs.

A necessary condition for an ensemble to have better predictive perfor-
mance than any of its individual members, is that the base predictive models
are accurate and diverse [25]. An accurate predictive model does better than
random guessing on new examples. Two predictive models are diverse if they
make different errors on new examples. There are several ways to introduce
diversity in a set of base predictive models: by manipulating the training set
(by changing the weight of the examples [26, 27], by changing the attribute
values of the examples [28], by manipulating the feature space [29, 30]) and
by manipulating the learning algorithm itself [29, 31].

The prediction of an ensemble for a new instance is obtained by com-
bining the predictions of all the base predictive models from the ensemble.
The predictions from the models can be combined by taking the average
(for regression tasks) and the majority or probability distribution vote (for
classification tasks), as described in [32, 26], or by taking more complex
aggregation schemes [11].

We use PCTs as base predictive models for the ensembles for multi-target
prediction. To obtain a prediction from an ensemble for multi-target predic-
tion, we accordingly extend the voting schemes. For the task of multi-target
regression, as prediction of the ensemble, we take average per target of the
predictions of the base predictive models. We obtain the ensemble predic-
tions for the multi-target classification using probability distribution voting
(as suggested by Bauer and Kohavi [32]) per target.
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We have implemented the bagging and random forests methods within
the CLUS system. These two ensemble learning techniques are most widely
known and have primarily been used in the context of decision trees. The
algorithms of these ensemble learning methods are presented in Table 2.
For the random forests method (right in Table 2), the PCT algorithm for
multi-target prediction needed changes: A randomized version of the selec-
tion of attributes was implemented, which replaced the standard selection of
attributes.

3.2.1. Bagging

Bagging [26] is an ensemble method that constructs the different classifiers
by making bootstrap replicates of the training set and using each of these
replicates to construct a predictive model (Table 2, left). Each bootstrap
sample is obtained by randomly sampling training instances, with replace-
ment, from the original training set, until an equal number of instances as
in the training set is obtained. Breiman [26] showed that bagging can give
substantial gains in predictive performance, when applied to an unstable
learner (i.e., a learner for which small changes in the training set result in
large changes in the predictions), such as classification and regression tree
learners.

3.2.2. Random forests

A random forest [29] is an ensemble of trees, where diversity among the
predictors is obtained by using bootstrap replicates as in bagging, and ad-
ditionally by changing the set of descriptive attributes during learning (Ta-
ble 2, right). More precisely, at each node in the decision trees, a random
subset of the descriptive attributes is taken, and the best attribute is selected
from this subset. The number of attributes that are retained is given by a
function f of the total number of descriptive attributes D (e.g., f(D) = 1,
f(D) = [VD + 1|, f(D) = |loga(D) + 1] ...). By setting f(D) = D, we
obtain the bagging procedure. The algorithm for learning a random forest
using PCTs as base classifiers is presented in Table 2.
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Table 2: The ensemble learning algorithms: bagging and random forests. Here, E is the
set of the training examples, k is the number of trees in the forest, and f(D) is the size
of the feature subset that considered at each node during tree construction for random
forests.

procedure RForest(E, k, f(D))
returns Forest

procedure Bagging(F, k)
returns Forest
1. F=10 1: F=40
2: fori=1to k do 2: for i =1to k do
3: E; = bootstrap(E) 3 E; = bootstrap(E)
T, = PCT(E;) T, = PCT _rnd(E;, f(D))
F = FU{T) F = FU{T}
6. return F 6. return F

4. Case studies

4.1. Experimental design
4.2. Water quiality prediction
4.2.1. Data description
4.2.2. Habitat models

- Water quality paper
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Tubifex sp. 1.02
Erpobdella oc. 0.94
Gongrosira inc. 0.88
Simulium sp. 0.70
Baetis rh. 0.67
Oedogonium sp. 0.61
Melosira var. 0.61
Stigeoclonium ten. 0.49
Audouinella ch. 0.27
Rhyacophila sp. 0.24

Audouinella ch. 0.82
Simulium sp. 0.80
Rhyacophila sp. 0.75
Cladophora sp. 0.70
Gongrosira inc. 0.50
Hydropsyche sp. 0.45
Nitzschia pal. 0.43
Ocdogonium sp. 0.30
Tubifex sp. 0.29
Erpobdella oc. 0.22
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Gammarus fo. 1.50
Baetis rh. 1.28
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Simulium sp. 1.07
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Tubifex sp. 0.38
Audouinella ch. 0.36
Stigeoclonium ten. 0.25

Rhyacophila sp. 0.95
Hydropsyche sp. 0.88
Simulium sp. 0.77
Baetis rh. 0.76
Gammarus fo. 0.63
Cladophora sp. 0.53
Gongrosira inc. 0.40
Oedogonium sp. 0.37
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Melosira var. 0.26
Audouinella ch. 0.11
Erpobdella oc. 0.10
Tubifex sp. 0.08
Stigeoclonium ten. 0.01

Figure 2: The habitat model for water quality with continuous target variables.
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Figure 3: The habitat model for soil quality with discrete target variables.

4.8. Soil quality prediction

4.3.1. Data description
4.8.2. Habitat models
- Soil quality paper

4.4. Prespa diatoms

This case study was published by Kocev et al. [16]. It concerns modelling
of the diatom communities in the lake Prespa, Macedonia.

4.4.1. Data description

Lake Prespa is located at the border intersection of Macedonia, Albania
and Greece. Monitoring of the state of Lake Prespa was performed during
one and a half year period (from March 2005 to September 2006). Samples
for analysis were taken from the surface water of the lake at 14 locations. The
lake sampling locations are distributed in the three countries as follows: 8 in
Macedonia, 3 in Albania and 3 in Greece. The selected sampling locations
are representative for determining the eutrophication impact [33].

In total, a total of 218 water samples from the lake Prespa were collected.
On these water samples, both physicochemical and biological analyses were
performed. The physicochemical properties of the samples provided the en-
vironmental variables for the habitat models, while the biological samples
provided information on the relative abundance of the studied diatoms. The
following physicochemical properties of the water samples were measured:
temperature, dissolved oxygen, Secchi depth, conductivity, alkalinity (pH),
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nitrogen compounds (NO2, NO3, NH4, inorganic nitrogen), sulphur oxide
ions SO4, and Sodium (Na), Potassium (K), Magnesium (Mg), Copper (Cu),
Manganese (Mn) and Zinc (Zn).

The biological variables were the relative abundances of 116 different
diatom species. Diatom cells were collected with a planktonic net or as
attached growth on submerged objects (plants, rocks or sand and mud). The
sample is examined with a microscope, and the diatom taxa and abundance
in the samples are obtained by counting 200 cells per sample. The specific

specie abundance is then given as the percent of the total diatom count per
sampling site.

4.4.2. Habitat models
- Prespa paper

Armmmm o.
Amphora cop.

yes yes Amphora ped. yes 1o,
Clocconeis pl.

Achnanthidium cl. Achnanthidium cl. Amphora ped. Amphora ped. Cymbella lan none Amphora ped.
Amphora ped. Amphora ped. Cyclotella jur. Cymatopleura el. Navicula pro. Cyclotella jur.
Cyclotella jur. Cyclotella jur. Cyclotella oc. Cyclotella jur. Navicula subh. Cyclotella oc.
Cyclotella oc. Cyclotella oc. Cavinula scu. Cyclotella oc. favicula subr. Cavinula scu.
Cavinula scu. Cavinula scu. Diploneis mau. Cavinula scu. Nitzschia suba. Navicula subr.
Navicula rot. Diploneis mau. Diploneis ov. Diploneis mau. Navicula vir. Staurosira con.
Navicula subr. Navicula kr. Gyrosigma mac. Gyrosigma mac. Placoneis bal. Staurosirella pin.

Nitzschia suba. Javicula pra. Navicula kr. Navicula kr. Placoncis neo.

Sellaphora per. Navicula pre. Navicula pra. Navicula pre. Sellaphora pu.

Navicula rot. Navicula pre Navicula rot Staurosirella pin.
Navicula subr. Navicula rei. Navicula subh.
Nitzschia suba. Navicula rot Navicula subr.
Placoneis bal. Navicula subr. Nitzschia suba.
Nitzschia suba. Placoneis bal.
Navicula veal. Pseudostaurosira br.
Placoneis bal. Sellaphora per.

Psecudostaurosira br.
Sellaphora pu.
Staurosirella pin.

Figure 4: The habitat model for all diatoms with discrete target variables.

4.5. Summary
5. Conclusions
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6. Appendix

6.1. Performance of the used machine learning methods

NO; > 0.12

yes no

| K2Cry07 > 0.86] Cl>0.22
yes 1'10\ yes no
/
Nitzschia pal. Melosira var. CO2 > 0.0 Rhyacophila sp.
Tubifex sp. Nitzschia pal.
Gammarus fo. yes no
Hydropsyche sp. ~ N
Melosira var. Cladophora sp.
Audouinella ch. Melosira var.
Gammarus fo. Gammarus fo.
Baetis rh. Hydropsyche sp.

Rhyacophila sp.

Figure 6: The habitat model for water quality with discrete target variables.
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yes no. yes no.
Cocconeis pl. 10.75
Cymbella lan. 10.38
yes no Cyelotella oc yes ves
Cyclotella oc. 35.94 Cyclotella oc. 32.88 Cavinula scu. Cyclotella oc. 27.27 Cyelotella oc. 16.72 Cyclotella oc. Cyclotella oc. 26.63
Cavinula scu. Cavinula scu. 15.88 Placoneis bal. Cavinula scu. 11.13 Cavinula scu. 9.17 Cavinula scu. Cyclotella jur. 6.59
Navicula ro Amphora ped. icula subr. 4.71 Navicula sul 22 Cyclotella jur Cavinula 6.35
Cyelotella men. Cyclotella jur. 4.66 Gomphonema ol. 3.72 Navicula subr. Diploneis mau. 2.17
Vitzschia suba. Navicula rot. 3.34 Cyclotella jur. 2.67 Amphora ped. Navicula subr. 1.83
Cyclotella jur. Navicula subr. 9.44 Amphora ped. 2.73 Amphora ped. 2.56 Staurosira con. Amphora ped. 1.42
Diploneis mau. 5 - Navicula pre. 2.69 Geissleria dec. 2.22 Staurosirella pin. 2.22 Staurosirella pin. 1.37
Navicula pra. Placoneis bal. 1.71 Diploneis mau. 2.08 Staurosirella pin. 2.22 Navicula tr. 2.17 Staurosira con. 1.18
Placoneis bal. Amphora cop. 1.59 Navicula kr. 1.73 Navicula rot. 2.17 Cocconeis pl. 1.94 Pseudostaurosira br. 1.03
Achnanthes lac. 1.41 )

Pseudostaurosira br. 1.68 Diatoma ang. 1.72 Cocconeis lin. 1.83 icula rot. 1.01

Figure 7: The habitat model for all diatoms with continuous target variables.

| Temperature > 5.5 |

yes no

T~

| Conductivity > 238 | none

yes no

none |Tempe7"ature > 17.5|

yes no\
Amphora ped. Amphora ped.
Cyclotella jur. Cyclotella jur.
Cyclotella oc. Cyclotella oc.
Cavinula scu. Cavinula scu.
Diploneis mau. Navicula sub.
Navicula pre.
Navicula rot.
Navicula sub.

Figure 8: The habitat model for top 10 diatoms with discrete target variables.
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