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1 Introduction

Environmental sciences comprise the scientific disciplines, or parts of them, that consider the
physical, chemical and biological aspects of the environment (Allaby 1996). Environmental
sciences are possibly the largest grouping of sciences, drawing heavily on life sciences and
earth sciences, both of which are relatively large groupings themselves. Life sciences deal with
living organisms and include (among others) agriculture, biology, biophysics, biochemistry,
cell biology, genetics, medicine, taxonomy and zoology. Earth sciences deal with the physical
and chemical aspects of the solid Earth, its waters and the air that envelops it. Included
are the geologic, hydrologic, and atmospheric sciences. The latter are concerned with the
structure and dynamics of Earth’s atmosphere and include meteorology and climatology.

The field of environmental science is very interdisciplinary. It exists most obviously as
a body of knowledge on its own right when a team of specialists assembles to address a
particular issue (Allaby 1996). For instance, a comprehensive study of a particular stretch
of a river would involve determining the geological composition of the riverbed (geology),
determining the chemical and physical properties of the water (chemistry, physics), as well
as sampling and recording the species living in and near the water (biology). Environmental
sciences are highly relevant to environmental management, which is concerned with directing
human activities that affect the environment.

The most typical representative of environmental sciences is ecology, which studies the
relationships among members of living communities and between those communities and
their abiotic (non-living) environment. Ecology is frequently defined as the study of the
distribution and abundance of plants and animals (e.g., Krebs 1972). The distribution can
be considered along the spatial dimension(s) and/or the temporal dimension.

Within ecology, the topic of ecological modeling (Joergensen and Bendoricchio 2001) is
rapidly gaining importance and attention. Ecological modeling is concerned with the devel-
opment of models of the relationships among members of living communities and between

those communities and their abiotic environment. These models can then be used to better
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understand the domain at hand or to predict the behavior of the studied communities and
thus support decision making for environmental management. Typical modeling topics are
population dynamics of several interacting species and habitat suitability for a given species
(or higher taxonomic unit).

Machine learning is one of the essential and most active research areas in the field of
artificial intelligence. In short, it studies computer programs that automatically improve
with experience (Mitchell, 1997). The most researched type of machine learning is inductive
machine learning, where the experience is given in the form of learning examples. Super-
vised inductive machine learning, sometimes also called predictive modeling, assumes that
each learning example includes some target property, and the goal is to learn a model that
accurately predicts this property.

Machine learning (and in particular predictive modeling) is increasingly often used to
automate the construction of ecological models (Dzeroski 2001). Most frequently, models
of habitat suitability and population dynamics are constructed from measured data by us-
ing machine learning techniques. The most popular machine learning techniques used for
modeling habitat suitability include decision tree induction (Breiman et al. 1984, see also
Chapter 4 of this volume by Dattatreya), rule induction (Clark and Boswell 1991), and
neural networks (Lek and Guegan 1999, see also Chapter 2 of this volume by Marzban).

In this chapter, we will focus on applications of machine learning in ecological modeling,
more specifically, applications in habitat suitability modeling. Habitat-suitability modeling
studies the effect of the abiotic characteristics of the habitat on the presence, abundance
or diversity of a given taxonomic group of organisms. For example, one might study the
influence of soil characteristics, such as soil temperature, water content, and proportion of
mineral soil on the abundance and species richness of springtails, the most abundant insects
in soil. To build habitat-suitability models, machine learning techniques can be applied to
measured data on the characteristics of the environment and the abundance of the taxonomic

group(s) studied.
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In the remainder of this chapter, we first discuss in more detail the task of habitat
suitability modeling. We next briefly describe two approaches to machine learning that are
often used in habitat suitability modeling: decision tree induction and rule induction. We
then give examples of using machine learning to construct models of habitat suitability for
several kinds of organisms. These include habitat models for bioindicator organisms in a
river environment, springtails and other soil organisms in an agricultural setting, brown
bears in a forest environment, and finally habitat suitability models for sea cucumbers in a

sustainable fishing setting.

2 Habitat Suitability Modeling

If ecology is defined as the study of the distribution and abundance of plants and animals,
habitat suitability modeling is concerned with the spatial aspects of the distribution and
abundance. Habitat suitability models relate the spatially varying characteristics of the
environment on the presence, abundance or diversity of a given (taxonomic) group of or-
ganisms. For example, one might study the influence of soil characteristics, such as soil
temperature, water content, and proportion of mineral soil on the abundance and species
richness of springtails, the most abundant insects in soil.

The input to a habitat model is thus a set of environmental characteristics for a given
spatial unit of analysis. The output is a target property of the given (taxonomic) group
of organisms. Note that the size of the spatial unit, as well as the type of environmental
variables, can vary considerably, depending on the context, and so can the target property
of the population (even though to a lesser extent).

The spatial unit considered may be of different size for different habitat models. For
example, in the study of Collembola habitat, the soil samples taken were of size 7.8 cm
diameter and 5 cm depth (Kampichler et al. 2000), in the study of sea cucumber habitat

transects of 2m by 50m of the sea bed were considered (Dzeroski and Drumm 2003), and in
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ongoing studies of potential habitats for different tree species under varying climate change
scenarios, lkm by lkm squares are considered (Ogris and Jurc 2007). Habitat models can
thus operate at very different spatial scales.

The input to a habitat model is a set of environmental variables, which may be of three
different kinds. The first kind concerns abiotic properties of the environment, e.g., physical
and chemical characteristic thereof. The second kind concerns some biological aspects of
the environment, which may be considered as en external impact on the group of organisms
under study. Finally, the third kind of variables are related to human activities and their
impacts on the environment.

The environmental variables that describe the abiotic part of the environment can be of
different nature, depending for example on whether we study a terrestrial or an aquatic group
of organisms. Typical groups of variables concern properties of the terrain (calculated from
a digital elevation model), such as elevation, slope and exposition; geological composition of
the terrain or the riverbed/seabed; physical and chemical properties of the soil/water/air,
such as moisture, pH, quantities of pollutants, and so on. An important group of variables
concerns climate and encompasses temperature, precipitation, etc.

Biological aspects of the environment that are considered in habitat models are typically
more specific and more directly related to the target group of organisms as compared to
the abiotic variables. They may be rather coarse and refer to the community, e.g., when
modeling brown bear habitat one of the inputs may be the type of forest at a particular
location. They may also refer to more specific types of organisms that are related to the
target group, e.g., when modeling the habitat of wolves, information on important prey
species such as hare and deer may be taken into account.

Some environmental variables may involve both abiotic and biotic aspects. Land cover
is a typical example: possible values for this variable may be forest, grassland, water, etc.
Finally, some environmental variables are related to human activity: examples are proximity

to settlements, population density, and proximity to roads/railways.
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The output of a habitat model is some property of the population of the target group of
organisms at the spatial unit of analysis. There are two degrees of freedom here: one stems
from the target property, the other from the group of organisms studied. In the simplest
case, the output is just the presence/absence of a single species (or group). In this case, we
simply talk about habitat models.

An example habitat model for brown bears in Slovenia (taken from Jerina et al. 2003)
is given in Table 1. It has the form of an IF-THEN rule, which specifies the conditions
that define suitable habitat for brown bears. The rule uses three environmental vari-
ables PREDOMINANT-LAND-COVER, FOREST-ABUNDANCE and PROXIMITY-TO-
SETTLEMENTS: it was actually learned by applying machine learning techniques to obser-
vational data.

We can also be interested in the abundance or density of the population. If we take these
as indicators of the suitability of the environment for the group of organisms studied, we talk
about habitat suitability models: the output of these models can be interpreted as a degree
of suitability. The abundance of the population can be measured in terms of the number
of individuals or their total size (e.g., the dry biomass of a certain species of algae). If the
(taxonomic) group is large enough, we can also consider the diversity of the group (Shannon
index, species richness or such like, see Krebs 1989).

In the most general case of habitat modeling, we are interested in the relation between
the environmental variables and the structure of the population at the spatial unit of analysis
(absolute and relative abundances of the organisms in the group studied). One approach
to this is to build habitat models for each of the organisms (or lower taxonomic units) in
the group, then aggregate the outputs of these models to determine the structure of the
population (or the desired target property). An alternative approach is to build a model
that simultaneously predicts the presence/abundance of all organisms in the group or directly
the desired target property of the entire group. A comparison of the two approaches in the

context of machine learning of habitat models is given by Demsar et al. (2006a).
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We should note here that observing the presence or absence of a species/group (or its
abundance/density) within a given spatial unit can be a nontrivial task. While most plants
and certain animals (such as sea cucumbers) are relatively immobile, many animals (including
brown bears) can move fast and cover wide spatial areas. In the latter cases, one might
consider areals of activity (home ranges) and sample from these to obtain data for learning
habitat suitability models: this is what was done in the study by Jerina et al. (2003).

Another issue that commonly occurs in habitat modeling, especially in the context of
machine learning, is the fact that only presence data are often collected (i.e., no absence data
are usually available). In such cases, additional care is necessary when preparing the data
for the modeling task. Examples (spatial units) where the target group can be reasonably
expected not to occur (based on domain knowledge) may be considered as absence data.

Finally, let us reiterate that habitat modeling focuses on the spatial aspects of the dis-
tribution and abundance of plants and animals. It studies the relationships between some
environmental variables and the presence/abundance of plants and animals, under the im-
plicit assumption that both are observed at a single point in time for a given spatial unit.
It mostly ignores the temporal aspects of the distribution/abundance, the latter being the
focus of population dynamics modeling. Still, some temporal aspects may be taken into ac-
count, for example, averages of environmental variables over a period of time preceding the

observation are sometimes included in habitat models (e.g., average winter air temperature).

3 Machine Learning for Habitat Modeling

3.1 The Machine Learning Task of Predictive Modeling

The input to a machine learning algorithm is most commonly a single flat table comprising a
number of fields (columns) and records (rows). In general, each row represents an object and
each column represents a property (of the object). In machine learning terminology, rows are

called examples and columns are called attributes (or sometimes features). Attributes that
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have numeric (real) values are called continuous attributes. Attributes that have nominal
values (are called discrete attributes.

The tasks of classification and regression are the two most commonly addressed tasks
in machine learning. They are concerned with predicting the value of one field from the
values of other fields. The target field is called the class (dependent variable in statistical
terminology). The other fields are called attributes (independent variables in statistical
terminology).

If the class is continuous, the task at hand is called regression. If the class is discrete (it
has a finite set of nominal values), the task at hand is called classification. In both cases,
a set of data (dataset) is taken as input, and a predictive model is generated. This model
can then be used to predict values of the class for new data. The common term predictive
modeling refers to both classification and regression.

Given a set of data (a table), only a part of it is typically used to generate (induce,
learn) a predictive model. This part is referred to as the training set. The remaining part
is reserved for evaluating the predictive performance of the learned model and is called the
testing set. The testing set is used to estimate the performance of the model on unseen data
(and sometimes also called validation set, see Chapter 2 of this volume by Marzbahn).

More reliable estimates of performance on unseen data are obtained by using cross-
validation, which partitions the entire data available into N (with N typically set to 10)
subsets of roughly equal size. Each of these subsets is in turn used as a testing set, with all
of the remaining data used as a training set. The performance figures for each of the testing

sets are averaged to obtain an overall estimate of the performance on unseen data.

3.2 A Machine Learning Formulation of Habitat Modeling

In the case of habitat modeling, examples correspond to spatial units of analysis. The
attributes correspond to environmental variables describing the spatial units, as these are

the inputs to a habitat model. The class is a target property of the given (taxonomic) group
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of organisms, such as presence, abundance or diversity.

The habitat model from Table 1 has been learned from a dataset which includes the dis-
crete attribute PREDOMINANT-LAND-COVER (which can have the value forest, among
others) and the continuous attributes FOREST-ABUNDANCE and PROXIMITY-TO-
SETTLEMENTS. The class BrownBearHabitat is discrete, with Suitable and Unsuitable
as possible values. Hence, we are dealing with a classification task. An excerpt from the
dataset is given in Table 2.

The machine learning task of habitat modeling is thus defined as follows. Given is
a set of data with rows corresponding to spatial locations (units of analysis), attributes
corresponding to environmental variables, and the class corresponding to a target property
of the population studied. The goal is to learn a predictive model that predicts the target
property from the environmental variables (from the given dataset). If we are only looking at
presence/absence or suitable/unsuitable as values of the class (as is the case above), we have
a classification problem. If we are looking at the degree of suitability (density/abundance),

we have a regression problem.

3.3 Decision Tree Induction
What are decision trees?

Decision trees (Breiman et al. 1984, see also Chapter 4 of this volume by Dattatreya) are
hierarchical structures, where each internal node contains a test on an attribute, each branch
corresponds to an outcome of the test, and each leaf node gives a prediction for the value of
the class variable. Depending on whether we are dealing with a classification or a regression
problem, the decision tree is called a classification or a regression tree, respectively. An
example classification tree modeling the habitat of sea cucumbers is given in Figurel. The
tree has been derived from actual data by using machine learning (Dzeroski and Drumm
2003).

Regression tree leaves contain constant values as predictions for the class value. They
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thus represent piece-wise constant functions. Model trees, where leaf nodes can contain
linear models predicting the class value, represent piece-wise linear functions. An example
model tree that predicts the total abundance of hemi- and eu-edaphic Collembola is given
in Figure 2 (Kampichler et al. 2000).

Note that decision trees represent total partitions of the data space, where each test
corresponds to an axis-parallel split. Most algorithms for decision tree induction consider
axis-parallel splits. However, there are a few algorithms that consider splits along lines that

need not be axis-parallel or even consider splits along non-linear curves.

Top-Down Induction of Decision Trees

Finding the smallest decision tree that would fit a given data set is known to be computa-
tionally expensive (NP-hard). Heuristic search, typically greedy, is thus employed to build
decision trees. The common way to induce decision trees is the so-called Top-Down Induction
of Decision Trees (TDIDT, Quinlan 1986). Tree construction proceeds recursively starting
with the entire set of training examples (entire table). At each step, an attribute is selected
as the root of the (sub)tree and the current training set is split into subsets according to the
values of the selected attribute.

For discrete attributes, a branch of the tree is typically created for each possible value
of the attribute. For continuous attributes, a threshold is selected and two branches are
created based on that threshold. For the subsets of training examples in each branch, the
tree construction algorithm is called recursively. Tree construction stops when the examples
in a node are sufficiently pure (i.e., all are of the same class) or if some other stopping
criterion is satisfied (e.g., there is no good attribute to add at that point). Such nodes are
called leaves and are labeled with the corresponding values of the class.

Different measures can be used to select an attribute in the attribute selection step.
These also depend on whether we are inducing classification or regression trees (Breiman et

al. 1984). For classification, Quinlan (1986) uses information gain, which is the expected
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reduction in entropy of the class value caused by knowing the value of the given attribute.
Other attribute selection measures, however, such as the Gini index (Breiman et al. 1984)
or the accuracy of the majority class, can and have been used in classification tree induction.
In regression tree induction, the expected reduction in variance of the class value can be
used.

An important mechanism used to prevent trees from over-fitting data is tree pruning.
Pruning can be employed during tree construction (pre-pruning) or after the tree has been
constructed (post-pruning). Typically, a minimum number of examples in branches can
be prescribed for pre-pruning and a confidence level in accuracy estimates for leaves for

post-pruning.

3.4 Rule Induction

What are predictive rules?

We will use the word rule here to denote patterns of the form “IF Conjunction of conditions
THEN Conclusion.” The individual conditions in the conjunction will be tests concerning
the values of individual attributes, such as “PROXIMITY-TO-SETTLEMENTS > 1.5 km”
or “PREDOMINANT-LAND-COVER=Forest”. For predictive rules, the conclusion gives a
prediction for the value of the target (class) variable.

If we are dealing with a classification problem, the conclusion assigns one of the possible
discrete values to the class, e.g., “BrownBearHabitat=Unsuitable”. A rule applies to an
example if the conjunction of conditions on the attributes is satisfied by the particular
values of the attributes in the given example. Each rule corresponds to a hyper-rectangle in
the data space.

Predictive rules can be ordered or unordered. Unordered rules are considered indepen-
dently and several of them may apply to a new example that we need to classify. A conflict
resolution mechanism is needed if two rules which recommend different classes apply to the

same example. A default rule typically exists, whose recommendation is taken if no other
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rule applies.

Ordered rules form a so-called decision list. Rules in the list are considered from the top
to the bottom of the list. The first rule that applies to a given example is used to predict its
class value. Again, a default rule with an empty precondition is typically found as the last
rule in the decision list and is applied to an example when no other rule applies.

An ordered list of rules describing brown bear habitat is given in Table 1: the second rule
in this list is the default rule which always applies. An unordered list of rules that predicts
the suitability of habitat for sea cucumbers is given in Table 3. Note that classification trees
can be transcribed into sets of classification rules, since each of the leaves of a classification
tree corresponds to a classification rule. Although less common in practice, regression rules

also exist, and can be derived, e.g., by transcribing regression trees into rules.

The covering algorithm for rule induction

In the simplest case of binary classification, one of the classes is referred to as positive and
the other as negative. For a classification problem with several class values, a set of rules
is constructed for each class. When rules for class ¢; are constructed, examples of this class
are referred to as positive, and examples from all the other classes as negative.

The covering algorithm works as follows. We first construct a rule that correctly classifies
some examples. We then remove the examples covered by the rule from the training set and
repeat the process until no more examples remain. When learning ordered rules we remove
all examples covered and when learning unordered rules only the positive examples covered
by the rule.

Within this outer loop, different approaches can be taken to find individual rules. One
approach is to heuristically search the space of possible rules top-down, i.e., from general to
specific (in terms of examples covered this means from rules covering many to rules covering
fewer examples) (Clark and Boswell 1991). To construct a single rule that classifies examples

into class ¢;, we start with a rule with an empty antecedent (IF part) and the selected class
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¢; as a consequent (THEN part). The antecedent of this rule is satisfied by all examples in
the training set, and not only those of the selected class. We then progressively refine the
antecedent by adding conditions to it, until only examples of class ¢; satisfy the antecedent.
To allow for handling imperfect data, we may construct a set of rules which is imprecise,

i.e., does not classify all examples in the training set correctly.

4 Case Studies of Habitat Modeling with
Machine Learning

In this section, we exemplify the machine learning approach to habitat modeling through
four case studies. For each case study, we briefly describe the data available, the machine
learning approach used, and the results obtained. We also give examples of habitat models

learned in the process.

4.1 Bioindicator organisms in Slovenian rivers

In this study (Dzeroski et al. 1997), we learned habitat models for 17 organisms that can be
found in Slovenian rivers and are used as indicator organisms when determining the biological
quality of river waters. The habitat models explicate the influence of physical and chemical
parameters of river water on ten plant taxa and seven animal taxa. On the plant side, eight
kinds of diatoms (BACILLARIOPHYTA) and two kinds of green algae (CHLOROPHYTA)
were studied. The animal taxa chosen for study include worms (OLIGOCHAETA), crus-
taceans (AMPHIPODA) and five kinds of insects.

The plant taxa studied were: Coconeis placentula, Cymbella sp., Cymbella ventricosa,
Diatoma vulgare , Navicula cryptocephala, Navicula gracilis, Nitzschia palea, Synedra ulna,
Cladophora sp. , and Oedogonium sp.. The animal taxa studied were Tubifex sp., Gammarus
fossarum, Baetis sp., Leuctra sp., Chironomidae (green), Simulium sp., Elmis sp..

The data used in the study came from the Hydrometeorological Institute of Slovenia
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(now Environment Agency of Slovenia) that performs regular water quality monitoring for
most Slovenian rivers and maintains a database of water quality samples. The data used
cover a four year period, from 1990 to 1993. In total, 698 water samples were available on
which both physical/chemical and biological analyses were performed: the former provided
the environmental variables for the habitat models, while the latter provided information on
the presence/absence of the studied organisms.

Plants are more or less influenced by the following physical and chemical parameters
(water properties): total hardness, nitrogen compounds (NO2 , NO3, NH4), phosphorus
compounds (PO4), silica (Si02), iron (Fe), surfactants (detergents), chemical oxygen demand
(COD), and biochemical oxygen demand (BOD). The last two parameters indicate the degree
of organic pollution: the first reflects the total amount of degradable organic matter, while the
second reflects the amount of biologically degradable matter. Animals are mostly influenced
by a different set of parameters: water temperature, acidity or alkalinity (pH), dissolved
oxygen (02, saturation of O2), total hardness, chemical (COD), and biochemical oxygen
demand (BOD,).

The habitat models for the plant/animal taxa used the following environmental variables:
Hardness, NO2, NO3, NH4, P04, Si02, Fe, Detergents, COD, BOD for plants and
Temperature, PH, 02, Saturation, COD, BOD for animals. The class is the presence of
the selected taxon (with values Present and Absent). Seventeen machine learning problems
were thus defined, one for each taxon. Each of the datasets contained 698 examples.

Rule induction, and in particular the CN2 system (Clark and Boswell 1991), was used
to construct the habitat models. The rules induced on the complete data were given to
a domain expert (river ecologist) for inspection. Their accuracy on unseen data was also
estimated by dividing the data into a training set (70%) and a testing set (30%), repeating
this ten times and averaging the results (accuracy on the test set).

The accuracy of the 17 models on the whole (training) dataset ranges between 66% and

85%, while the default accuracy, i.e., the majority class frequency ranges from 50% to 70%.
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The estimated accuracy on unseen cases ranges from 53% to 71%. In nine of the 17 cases, the
models substantially improve upon the default accuracy and provide interesting knowledge
about the taxa studied.

In several cases, the induced rules are consistent with and confirm the expert knowledge
about the organism studied. The diatom Nitzschia palea, the most common species in
Slovenian rivers, is very tolerant to pollution. The rules confirm that a larger degree of
pollution is beneficial to this species: they indicate that Nitzschia palea needs nitrogen
compounds, phosphates, silica, and larger amounts of degradable matter (COD and BOD).
Elmis sp. is known to inhabit clean waters: the rules demand a low quantity of biodegradable
matter (pollution) in order for the taxon to be present, and predict that the taxon will be
absent if the water is overly polluted (has high values of BOD, COD and pH).

Not all of the induced rules agree with existing expert knowledge. For example, the rules
that predict the presence of the taxon Plecoptera leuctra sp., which is used as an indicator of
clean waters, that it is indeed found mainly in clean waters. However, they also state that it
can be found in quite polluted water, provided there is enough oxygen. Thus, they enhance

current knowledge on the bioindicator role of this taxon.

4.2 Soil insects on an experimental farm in Germany

Kampichler et al. (2000) used machine learning techniques to build habitat models for
Collembola (springtails), the most abundant insects in soil, in an agricultural soil environ-
ment. They study both the taxonomic group of Collembola, as well as the dominant species
in the study area, (Folsomia quadrioculata). The habitat models constructed relate the total
abundance and species number of Collembola, as well as the abundance of the dominant
species, to habitat characteristics, i.e., properties of the soil.

The data used in the study come from an experimental farm at Scheyern (near Munich),
Germany, run by the FAM Research Network on Agroecosystems. The farm was of size

approximately 153 ha, located at an elevation of 450 to 490 m above sea level, with mean
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annual temperature and mean annual precipitation of 7.58C and 833 mm, respectively. In
April 1991, one soil core was taken at each intersection of a 50 x 50 m mesh-size grid (7.8
cm dia, 5 cm depth) and yielded a total of 396 cores. The majority of these points were
situated in arable fields, the remainder in pastures, meadows and arable fields on former hop
fields. Microarthropods were counted and Collembola identified by species. Only data of
cuedaphic (soil-dwelling) Collembola and hemiedaphic Collembola (which live near the soil
surface) were included in the analysis.

To measure environmental factors, cores were taken from the same sampling points,
at a distance of approximately 25 cm from the first cores. The following environmental
variables were measured: microbial biomass, microbial respiration, soil moisture, soil acidity,
carbon content (Ct) and nitrogen content (Nt). Soil texture at the sampling points was also
determined and expressed by the (base 10) logarithm of the median particle size (diameter).
From the 396 cores, only those that had no missing values for any of these variables were
included in the model development, leaving a dataset of n = 195 samples.

To build habitat models, we used regression trees. More specifically, the system Mb
(Quinlan 1992) for model tree induction was used. Trees were built separately for each of
the three target variables: the abundance and diversity (species number) of Collembola, and
the abundance of the dominant species Folsomia quadrioculata. Example trees for the last
two are given in Figure 3, while an example tree for the first is given in Figure 2. Linear
regression models, as well as neural networks with one hidden layer, were also constructed
for each of the target variables.

In terms of predictive power, model trees fared better than linear regression and worse
than neural networks. All of them, however, had quite low predictive power (for unseen
cases, the correlation coefficients were estimated by 10-fold cross-validation at approx. 0.3
for linear regression, 0.4 for model trees and 0.5 for neural networks). The most probable
reason for the low performance is that the aggregated spatial distribution of collembolans sets

limit to the possibility of predicting the actual number of collembolans. In this context, the
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quality of trees of being transparent and providing explicit information about the quantitative
relationships between the variables proved very appealing to the domain experts.

The trees clearly identify microbial respiration as the most important factor influencing
the collembolan community, followed by soil texture and soil acidity. The same environmental
variables seem to be important for all three target variables and the structure of the individ-
ual trees is very similar. In this case, simultaneous prediction of all target variables seems
reasonable: this can be done by applying predictive clustering trees (Blockeel et al. 1998), a
generalized version of decision trees. This methodology, also called multi-objective classifi-
cation/prediction, has been applied to habitat modeling for river communities (Dzeroski et

al. 2001) and for soil insects, including mites and springtails (Demsar et al. 2006b).

4.3 Brown bears in Slovenia

The brown bear (Ursus arctos) occurs today in only a small part of its historical range:
Slovenia is among the few European countries with a preserved viable indigenous brown bear
population, as well as populations of other large predator species, such as wolf and lynx. The
Slovenian bear population is a part of the continuous Alps-Dinaric-Pindos population: its
core habitat (the forests of Kocevska and Sneznik in South-Western Slovenia) is connected
with Gorski Kotar in Croatia in a unified block of bear habitat. This bear population is
important also because it represents the source for natural re-colonization or reintroduction
of the bear into Slovenias neighboring countries Austria and Italy.

In their study, Jerina et al. (2003) address three aspects of the brown bear population in
Slovenia: its size (and its evolution over time), its spatial expansion out of the core area, and
its potential habitat based on natural habitat suitability. The results of the study include
estimates of population size, a picture of the spatial expansion of the population and maps
of its optimal and maximal potential habitat (based on natural suitability). All of these are
relevant to the management of the Slovenian brown bear population. In this section, we

summarize the habitat modeling aspect of the study.
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The habitat models built were based on bear sightings data acquired in the last decade
of the 20th century by the Hunters association of Slovenia, as well as data from a previous
radio-tracking project. Since we were interested in the optimal habitat, best presented by
females with cubs, we selected only such sightings. Instead of using a cloud of sighting
location points as the basis for the models, we used an estimation of the inhabited area (IA)
constructed by a kernel method: this method gives as output the frequency /probability with
which individual points in space are occupied by brown bears.

The spatial unit of analysis was a pixel of size 500m x 500m. Positive examples were
sampled from the inhabited area. Examples for the ”"optimal” habitat model were sampled
from areas that exceeded a high threshold of the probability of bear occupancy: This thresh-
old was lower when sampling positive examples for the "maximal” potential habitat model.
Negative examples were randomly sampled from the rest of the study area (i.e., not the IA),
which presumably is less (or not at all) suitable for bear habitat.

The explanatory environmental variables were derived from several GIS (Geographical
Information Systems) layers. These included land cover data, forest inventory data, set-
tlements map, road map, and a digital elevation model. Example variables include forest
abundance and proximity to settlements. A value of each of these variables was associated
with each 500m x 500m pixel. The method of decision tree induction, and in particular the
Seeb commercial product, based on the C4.5 (Quinlan 1993) algorithm, was used to build
the "optimal” and "maximal” habitat models.

The decision tree for optimal habitat (Figure 4a) takes into account the surrounding
forest matrix size, forest abundance in each pixel, predominant land cover type, sub-regional
density of human population, and the predominant forest association within each forest
pixel. The decision tree for maximal habitat (Figure 4b) is much simpler and only takes into
account the predominant land cover type, forest abundance, and proximity to settlement.
Note that the classification rule for predicting "maximal bear habitat”, given in Table 1, is

obtained by rewriting the tree in Figure 4b.
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The learned trees were used to produce the respective habitat maps. The thematic
accuracy for the first map was estimated by 10-fold cross-validation as 89, and 84% for the
latter. The optimal habitat covers 12.3% of Slovenias territory, mostly in the southern part,
bordering to Croatia. The possible maximal habitat extent includes additional 26.4% of
the territory, mostly in the alpine region in the northern and western part of Slovenia, thus
totaling 38.7% of the country.

It can be gleaned both from the decision trees as well as from the final habitat maps,
that the bear habitat suitability in Slovenia largely depends on the presence of a dense
forest cover, while it depends less upon food availability. Considering the increasing trend
of forest cover in Slovenia, and assuming a continuation of high reproduction rates, we could
even expect a further expansion of bear-inhabited areas in the future. It is furthermore
obvious that the 6-lane LjubljanaTrieste highway cuts through the optimal habitat at two
vulnerable bottlenecks, disrupting the dispersion corridors towards the Alps: This can be
seen from a large number of bear related traffic accidents on the highway. The habitat maps
we constructed were used to recommend suitable locations for eco-ducts (wildlife bridges)

across this highway to the Highway authority of Slovenia.

4.4 Sea cucumbers on Rarotonga, Cook Islands

In the Pacific Islands, invertebrates including sea cucumbers are among the most valuable
and vulnerable inshore fisheries resources. The sea cucumber ( Holothuria leucospilota) forms
an important part of the traditional subsistence fishery on Rarotonga, Cook Islands, yet lit-
tle is known of this species present spatial distribution and abundance around the island.
To contribute to the knowledge about this species, Dzeroski and Drumm (2003) apply ma-
chine learning to measured data and build a habitat model that predicts the number of sea
cucumber individuals from environmental characteristics of a location.

The spatial unit of analysis was a 2m x 50m (100m?) strip transect: This size was selected

to account for the patchy distribution of the animals. A total of 128 sites were sampled for en-
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vironmental and biological variables. The number of H. leucospilota individuals encountered
along each transect was recorded. In addition to the species abundance, 10 environmental
variables that were expected to have an influence on the habitat preference of the sea cucum-
ber were recorded. These included the exposure of the site (windward or leeward side of the
island), and the following microhabitat variables, estimated as a percentage (with possible
values from 0 to 100%) of the total 100m? area sampled: Sand, Rubble, Cons_Rubble (con-
solidated rubble), Boulder, reef rock/pavement (Rock_Pave), live coral (Live_Coral), dead
coral (Dead_Coral), mud/silt (Mud-Silt), and Gravel.

The number of H. leucospilota individuals was the class variable, while the 10 environ-
mental variables were the attributes. Model tree induction was used to build the habitat
model. More specifically, M5’, a re-implementation of the system M5 (Quinlan 1992) within
the software package WEKA (Witten and Frank 1999) was used. The model tree constructed
is given in Figure 5. The correlation coefficient for predictions on unseen cases was estimated
to be 0.5 (by using 10-fold cross-validation).

The tree identifies the most important influences of the site characteristics on habitat
suitability (rubble and sand, followed by rock pavement, consolidated rubble, and live coral).
It identifies four types of sites (one leaf for each) and constructs different linear models to
predict the number of sea cucumbers at each.

Two of the site types are essentially not very suitable as sea cucumber habitat: the first
(LM1) does not have enough rubble, while the second (LM4) does have enough rubble, but
also has too much sand. The average numbers of individuals recorded at the two types of sites
are 15 and 35, respectively. One site type (LM2) is very suitable as sea cucumber habitat, as
evidenced by the average of 236 animals found per site. This type of site is characterized by
enough rubble, little sand and little rock pavement. The last type of site (LM3) represents
a moderately suitable habitat for sea cucumbers: it has the same characteristics as the
most suitable habitat, except for too much rock pavement. The sea cucumbers prefer larger

percentages of rubble and consolidated rubble in all four types of sites (positive coefficients
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for rubble/consolidated rubble in each of the four linear models).

5 Summary and Discussion

In this chapter, we have introduced the task of habitat suitability modeling and formulated it
as a machine learning problem. Habitat-suitability modeling studies the effect of the abiotic
characteristics of the habitat on the presence, abundance or diversity of a given taxonomic
group of organisms. We have briefly described two approaches to machine learning that are
often used in habitat suitability modeling: decision tree induction and rule induction.

Applications of machine learning to habitat suitability modeling can be grouped along
two dimensions. One dimension is the type of environment where the studied group of or-
ganisms lives, e.g., aquatic (river or sea) or terrestrial (forest or agricultural fields). Another
dimension is the type of machine learning approach used, e.g., symbolic (decision trees or
classification rules) or statistical (logistic regression or neural networks).

In this chapter, we have given examples of using symbolic machine learning approaches to
construct models of habitat suitability for several kinds of organisms in the abovementioned
environments. These include habitat models for springtails and other soil organisms in an
agricultural setting, brown bears in a forest environment, bioindicator organisms in a river
environment, and finally sea cucumbers in a sustainable fishing setting. Many more examples
of using machine learning for habitat modeling exist, some of which we point to below. A
collection of papers, devoted specifically to the topic of habitat modeling, has been edited
by Raven et al. (2002) and describes several applications of machine learning methods.

The author has been involved in quite a few other habitat modeling applications of
machine learning, besides those summarized above. These include another, more realistic
application in modeling the effects of agricultural actions on soil insects, including mites and
collembolans (Demsar et al. 2006). This has been also studied in the context of farming with

genetically modified crops and their effects on soil fauna, including earthworms (Debeljak
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et al. 2005). We have also studied habitat suitability for red deer in Slovenian forests using
GIS data, such as elevation, slope, and forest composition (Debeljak et al. 20001).

Neural networks are often used for habitat modeling: several applications are described in
(Lek and Guegan 1999). For example, (Lek-Ang et al. 1999) use them to study the influence
of soil characteristics, such as soil temperature, water content, and proportion of mineral soil
on the abundance and species richness of Collembola (springtails). Another study of habitat
suitability modeling by neural networks is given by Ozesmi and Ozesmi (1999).

Several habitat-suitability modeling applications of other data mining methods are sur-
veyed by Fielding (1999b). Fielding (1999a) applies a number of methods, including dis-
criminant analysis, logistic regression, neural networks and genetic algorithms, to predict
nesting sites for golden eagles. Bell (1999) uses decision trees to describe the winter habitat
of pronghorn antelope. Jeffers (1999) uses a genetic algorithm to discover rules that describe
habitat preferences for aquatic species in British rivers.

As compared to traditional statistical methods, such as linear and logistic regression, the
use of machine learning offers several advantages. On one hand, machine learning methods
are capable of approximating nonlinear relationships (typical for the interactions between
living organisms and the environment) better than traditional linear approaches. On the
other hand, symbolic learning approaches, such as decision trees and classification rules,
provide understandable models that can be inspected to give insight into the domain studied.

Let us conclude by mentioning several recent research topics related to the use of ma-
chine learning for habitat suitability modeling. These include machine learning methods
for simultaneous prediction of several target variables, machine learning methods that are
spatially aware and finally the use of habitat suitability modeling in the context of predicting
the effects of climate change. We discuss each of these briefly below.

When modeling the habitat of a group of organisms, we are interested in the relation
between the environmental variables and the structure of the population at the spatial unit of

analysis (absolute and relative abundances of the organisms in the group studied). While one
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approach to this is to build habitat models for each of the organisms, the alternative approach
of building a model that simultaneously predicts the presence/abundance of all organisms in
the group is more natural. For this purpose, we can use a neural network with several output
nodes that share a common hidden layer. Recently, however, symbolic machine learning
approaches have been developed that address this problem, namely predictive clustering
trees (Blockeel et al. 1998) and predictive clustering rules (Zenko et al. 2006) for multi-
target prediction.

When using machine learning to build habitat models, individual spatial points are
treated as training example. These are assumed to be completely independent and their
relative spatial position (proximity) is ignored. This can result in unrealistic predictions of
very small patches of habitat: this was, e.g., the case in the brown bear habitat modeling
study described earlier in the chapter. This problem is usually dealt in a post-processing
phase, where the prediction of the habitat model for each spatial unit are corrected by taking
into account (the predictions for) the neighborhood of that unit. However, spatially aware
machine learning methods have recently started to emerge (Lee et al. 2005, Andrienko et al.
2005), although applications of such methods in habitat modeling are still rare.

Finally, let us mention climate change, which is already causing significant changes in
the distribution of animals and vegetation across the globe. Predicting future effects along
these lines is an emerging area where the use of machine learning for habitat modeling is
likely to increase drastically. The idea in this context is to build habitat models for the
target groups of organisms, which include climate-related variables, such as mean annual
temperature and precipitation. By applying the habitat models to the predictions produced
by climate models, one can predict the changes of the distribution of the target group of
organisms. For example, Ogris and Jurc (2007) study the change of potential habitats for
different tree species under varying climate change scenarios.

Harrison et al. (2006) conduct a more global study where the changes of habitat are

investigated for a much larger and more diverse group of organisms. In their study, the
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availability of suitable climate space across Europe for the distributions of 47 species was
modelled. These were chosen to encompass a range of taxa (including plants, insects, birds
and mammals) and to reflect dominant and threatened species from 10 habitats. Habitat
availability was modelled for the current climate and three climate change scenarios using
a neural network model, showing that the distribution of many species in Europe may be
affected by climate change, but that the effects are likely to differ between species.

In sum, machine learning methods have been successfully used and are increasingly more
often used for habitat modeling, establishing the relations between abiotic characteristics of
the environment and the properties of a target population of organisms (such as presence,
abundance or diversity). The learned models can be used as tools for the management of
the population studied. Perhaps even more importantly, the learned model can enhance our

knowledge of the studied population.
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Tables

Table 1: A habitat model for the brown bear (Ursus arctos) in Slovenia.

29

IF

PREDOMINANT-LAND-COVER = Forest

AND FOREST-ABUNDANCE > 60Y%

AND PROXIMITY-TO-SETTLEMENTS > 1.5 km

THEN BrownBearHabitat

ELSE BrownBearHabitat

Suitable

Unsuitable

Table 2: An excerpt from the dataset for modeling brown bear habitat in Slovenia. PLC

stands for PREDOMINANT-LAND-COVER, PTS for PROXIMITY-TO-SETTLEMENTS,

and BBH for BrownBearHabitat.

Location PLC FOREST-ABUNDANCE PTS OtherEnvVariables BBH
11 Forest 80 214 Yes
12 Forest 66 13.9 Yes
13 Forest ) 50.0 No
14 Forest 72 1.2 No
15 Grassland 6 19.1 No
16 Grassland 0 11.4 No
17 Wetland 3 5.8 No

18 Water 0 3.9 No
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Table 3: A set of unordered rules that predicts the suitability of habitat for the sea cucumber
species Holothuria Leucospilota on Rarotonga, Cook Islands. The default rule, which predicts

the class Absent is not listed

IF Sand < 7.5
AND Rubble > 62.0
AND Rock_Pave < 15.0
AND Dead_Coral < 13.5

THEN Presence = Present [3 absent, 15 present]

IF Rubble < 54.0
AND 7.5 < Consol_Rubble < 77.5
AND Bould < 25.0
AND Rock_Pave < 30.0
AND Dead_Coral < 45.0

THEN Presence = Present [1 absent, 6 present]

IF Rubble < 9.5 AND Live_Coral < 27.5

THEN Presence = Absent [65 absent]

IF Sand > 8.5 AND Consol_Rubble < 5.0

THEN Presence = Absent [64 absent]

IF Bould > 2.5 AND Rock_Pave > 30.0

THEN Presence = Absent [10 absent]
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Table 4: Example rules from the habitat models for bioindicator organisms in Slovenian

rivers (Nitzschia palea, Elmis sp., and Plecoptera leuctra sp.).

IF Hardness > 11.85 IF NO2 < 0.005

AND NO2 > 0.095 AND NO3 < 7.1

AND NH4 > 0.09 AND P04 < 0.125

THEN Nitzschia = Present [82 0] AND Detergents < 0.055
AND BOD < 2

THEN Nitzschia = Absent [0 39]

IF Temperature > 12.75 IF PH > 7.05

AND BOD < 0.65 AND BOD > 12.15

THEN Elmis = Present [8 0] THEN Elmis = Absent [0 47]
IF Temperature < 23 IF Temperature < 22.25
AND 120 < Saturation < 150 AND Total Hardness < 18.55
AND COD > 10.9 AND BOD > 6.9

AND BOD < 3.75 THEN Leuctra = Absent

THEN Leuctra = Present
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Figure Captions

Figure 1. A classification tree that predicts the suitability of habitat for the sea cucumber

species Holothuria Leucospilota on Rarotonga, Cook Islands.

Figure 2. A model tree that predicts the total abundance (TA) of hemi- and eu-edaphic

Collembola on the FAM experimental farm at Scheyern (near Munich), Germany.

Figure 3. A regression (top) and a model tree (bottom) that predict the number of species
(NS) of hemi- and eu-edaphic Collembola and the number of individuals (NI) of the collem-
bolan species Folsomia quadrioculata, respectively, on the FAM experimental farm at Schey-

ern (near Munich), Germany.

Figure 4. Two decision trees predicting the a) optimal and b) maximal habitat of the brown
bear (Ursus arctos) in Slovenia. FA1, FA2, FA3, and FA4 denote four different groups of

forest associations, where FA1 and FA3 contain oak and FA2 and FA4 contain beech.

Figure 5. A model tree predicting the number of individuals (NI) of the sea cucumber species

H. Leucospilota in a 2m x 50m transect of the sea bed near Rarotonga, Cook Islands.
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Figure 1: A classification tree that predicts the suitability of habitat for the sea cucumber

species Holothuria Leucospilota on Rarotonga, Cook Islands.

Figure 2: A model tree that predicts the total abundance (TA) of hemi- and eu-edaphic

Collembola on the FAM experimental farm at Scheyern (near Munich), Germany.

Figure 3: A regression (top) and a model tree (bottom) that predict the number of species
(NS) of hemi- and eu-edaphic Collembola and the number of individuals (NI) of the collem-
bolan species Folsomia quadrioculata, respectively, on the FAM experimental farm at Schey-

ern (near Munich), Germany.

a) Optimal brown bear habitat

b) Maximal brown bear habitat

Figure 4: Two decision trees predicting the a) optimal and b) maximal habitat of the brown
bear (Ursus arctos) in Slovenia. FA1, FA2, FA3, and FA4 denote four different groups of

forest associations, where FA1 and FA3 contain oak and FA2 and FA4 contain beech.

Figure 5: A model tree predicting the number of individuals (NT) of the sea cucumber species

H. Leucospilota in a 2m x 50m transect of the sea bed near Rarotonga, Cook Islands.



