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Abstract. Environmental studies form an increasingly popular applica-
tion domain for machine learning and data mining techniques. In this pa-
per we consider some applications of decision tree learning in the domain
of river water quality. More specifically, we study a) the simultaneous
prediction of multiple physico-chemical properties of the water from its
biological properties using a single decision tree (as opposed to learning a
different tree for each different property — we call this approach predict-
ive clustering) and b) the prediction of past physico-chemical properties
of the river water from its current biological properties. We discuss some
experimental results that we believe are interesting both to the applica-
tion domain experts and to the machine learning community.

1 Introduction

The quality of surface waters, including rivers, depends on their physical, chem-
ical and biological properties. The latter are reflected by the types and densities
of living organisms present in the water. Based on the above properties, surface
waters are classified into several quality classes which indicate the suitability of
the water for different kinds of use (drinking, swimming, ...).

Although water quality is related to both biological and physico-chemical
properties, it is well known that the physico-chemical properties give a limited
picture of water quality at a particular point in time, while the biota (living
organisms) act as continuous monitors of water quality over a period of time [6].
This has increased the relative importance of biological methods for monitoring
water quality [7]. Many different methods for mapping biological data to discrete
quality classes or continuous scales have been developed (for an overview, see
[7]). Most of these approaches use indicator organisms (bioindicators), which
have well known ecological requirements and are selected for their sensitivity /
tolerance to various kinds of pollution. Given a biological sample, information
on the presence and density of all indicator organisms present in the sample is
usually combined to derive a biological index that reflects the quality of the water



at the site where the sample was taken. Examples are the Saprobic Index [14],
which is used in many countries of Central Europe (e.g., Germany, Slovenia,

..), and the Biological Monitoring Working Party Score (BMWP) [13] and
its derivative Average Score Per Taxon (ASPT), which are used in the United
Kingdom.

The main problem with the biological indices described above is their sub-
jectivity [18]. The computation of these indices makes use of weights and other
numbers that were assigned to individual bioindicators by (committees of) ex-
pert biologists and ecologists and are based on the experts’ knowledge about the
ecological requirements of the bioindicator taxa, which is not always complete.
The assigned bioindicator values are thus subjective and often inappropriate
[19]. An additional layer of subjectivity is added by combining the scores of the
individual bioindicators through ad-hoc procedures based on sums, averages,
and weighted averages instead of using a sound method of combination. While a
certain amount of subjectivity cannot be avoided (water quality itself is a sub-
jective measure, as it is tuned towards the interests humans have in river water),
this subjectivity should only appear at the target level (classification) and not at
the intermediate levels described above. This may be achieved by gaining insight
into the relationships between biological, physical and chemical properties of the
water and its overall quality, which is currently a largely open research topic. To
this aim data mining techniques can be employed [18, 11, 9].

We point out that the importance of gaining such insight stretches beyond
water quality prediction. For instance, the problem of inferring chemical para-
meters from biological ones is practically relevant, especially in countries where
extensive biological monitoring is conducted. Regular monitoring for a very wide
range of chemical pollutants would be very expensive, if not impossible. On the
other hand, biological samples may, for example, reflect an increase in pollution
and indicate likely causes or sources of (chemical) pollution. The work described
in this paper is situated at this more general level.

The remainder of the paper is organized as follows. Section 2 describes the
goals of this study and the difference with earlier work. Section 3 describes the
available data on the water quality of Slovenian rivers, as well as the experimental
setup. Section 4 describes the machine learning tool that was used in these
experiments. Section 5 presents in detail the experiments and their results and
in Section 6 we conclude.

2 Goals of this study

In earlier work [10, 11] machine learning techniques have been applied to the
task of inferring biological parameters from physico-chemical ones by learning
rules that predict the presence of individual bioindicator taxa from the values
of physico-chemical measurements, and to the task of inferring physico-chemical
parameters from biological ones [9].

Dzeroski et al. [9] discuss the construction of predictive models that allow pre-
diction of a specific physico-chemical parameter from biological data. A different
predictive model is built for each parameter. The models, which are constructed



using Quinlan’s M5 system [17], are in the form of regression trees. This ap-
proach is compared with nearest neighbour and linear regression methods; the
authors conclude that the induction of regression trees is competitive with the
other approaches as far as predictive accuracy is concerned, and moreover has
the advantage of yielding interpretable theories.

A comparison of the different trees shows that the trees for different target
variables are often similar, and that some of the taxa occur in many trees (i.e.,
they are sensitive to many physico-chemical properties). This raises the question
whether it would be possible to predict many or all of the properties at once,
with only one (relatively simple) tree, and without significant loss in predictive
accuracy. As such, this application seems a good test case for recent research on
simultaneous prediction of multiple variables [1].

A second extension with respect to the previous work is the prediction of past
physico-chemical properties of the water; more specifically, the maximal, minimal
and average values of these properties over a period of time. As mentioned before,
physico-chemical properties of water give a very momentary view of the water
quality; watching these properties over a longer period of time may alleviate this
problem. This is the second scientific issue we investigate in this paper.

3 The Data

The data set we have used is the same one as used in [9]. The data come from
the Hydrometeorological Institute of Slovenia (HMZ) that performs water qual-
ity monitoring for Slovenian rivers and maintains a database of water quality
samples. The data provided by HMZ cover a six year period (1990-1995). Biolo-
gical samples are taken twice a year, once in summer and once in winter, while
physical and chemical samples are taken several times a year (periods between
measurements varying from one to several months) for each sampling site.

The physical and chemical samples include the measured values of 16 different
parameters: biological oxygen demand (BOD), electrical conductivity, chemical
oxygen demand (K5Cr207 and KMnOy), concentrations of Cl, CO2, NHy, POy,
Si03, NO3, NO;3 and dissolved oxygen (O2), alkalinity (pH), oxygen saturation,
water temperature, and total hardness.

The biological samples include a list of all taxa present at the sampling site
and their density. The frequency of occurrence (density) of each present taxon
is recorded by an expert biologist at three different qualitative levels, where 1
means the taxon occurs incidentally, 3 frequently, and 5 abundantly.

Our data are stored in a relational database represented in Prolog; in Prolog
terminology each relation is a predicate and each tuple is a fact. The following
predicates are relevant for this text:

— chem(Site, Year, Month, Day, ListOf16Values) : this predicate contains all
physico-chemical measurements. It consists of 2580 facts.

— bio(Site, Day, Month, Year, ListOfTaza): this predicate lists the taxa that
occur in a biological sample; ListOfTaxa is a list of couples (taxon, abundance-
level) where the abundance level is 1, 3 or 5 (taxa that do not occur are
simply left out of the list). This predicate contains 1106 facts.



Overall the data set is quite clean, but not perfectly so. 14 physico-chemical
measurements have missing values; moreover, although biological measurements
are usually taken on exactly the same day as some physico-chemical measure-
ment, for 43 biological measurements no physico-chemical data for the same day
are available. Since this data pollution is very limited, we have just disregarded
the examples with missing values in our experiments. This leaves a total of 1060
water samples for which complete biological and physico-chemical information
is available; our experiments are conducted on this set.

4 Predictive clustering and TILDE

Building a model for simultaneous prediction of many variables is strongly re-
lated to clustering. Indeed, clustering systems are often evaluated by measuring
the average predictability of attributes, i.e., how well the attributes of an object
can be predicted given that it belongs to a certain cluster (see, e.g., [12]). In
our context, the predictive modelling can then be seen as clustering the training
examples into clusters with small intra-cluster variance, where this variance is
measured as the sum of the variances of the individual variables that are to
be predicted, or equivalently: as the mean squared euclidean distance of the in-
stances to their mean in the prediction space. More formally: given a cluster C
consisting of n examples e; that are each labelled with a target vector x; € IR,
the intra-cluster variance of C is defined as

of =1/n- Z(Xi - X)'(x; — %) (1)

where X =1/n )"

1 X5,

In the above x;ve1 assume the target vector to have only numerical compon-
ents. This is not restrictive because nominal components can always be encoded
as numbers (e.g. 0/1); for a nominal component with only two values minim-
ising the variance corresponds to maximising the relative frequency of the most
frequently occurring class, which is exactly what is done by most classification
systems. (Note that most approaches to classification and regression are just
special cases of predictive clustering, where D = 1 and the prediction space is
nominal, respectively numerical. For rule-based systems, each rule body describes
one cluster; for tree-based systems the leaves of the tree (in some approaches also
the internal nodes) are clusters described by the tests in the tree.)

In our experiments we used the decision tree learner TILDE [2, 3]. TILDE is
an ILP system? that induces so-called first order logical decision trees (FOLDT’s).

* Inductive logic programming (ILP) is a subfield of machine learning where first order
logic is used to represent data and hypotheses. First order logic is more expressive
than the attribute value representations that are classically used by machine learning
and data mining systems. From a relational database point of view, ILP corresponds
to learning patterns that extend over multiple relations, whereas classical (proposi-
tional) methods can find only patterns that link values within the same tuple of a
single relation to one another. We refer to [8] for details.



Such trees are the first-order equivalent of classical decision trees [2]. TILDE can
induce classification trees, regression trees and clustering trees and can handle
both attribute-value data and structural data. It uses the basic TDIDT algorithm
[16], in its clustering or regression mode employing as heuristic the variance as
described above. The system seemed fit for our experiments because of the fol-
lowing reasons:

— Most machine learning and data mining systems that induce predictive mod-
els can handle only single target variables (e.g., C4.5 [15], CART [5], M5
[17], ...). Building a predictive model for a multi-dimensional prediction
space can be done using clustering systems, but most clustering systems
consider clustering as a descriptive technique, where evaluation criteria are
still slightly different from the ones we have here. (Using terminology from
[12], descriptive systems try to maximise both predictiveness and predictab-
ility of attributes, whereas predictive systems maximise predictability of the
attributes belonging to the prediction space.)

— Although the problem at hand is not, strictly speaking, an ILP problem (i.e.,
it can be transformed into attribute-value format; the number of different
attributes would become large but not unmanageable for an attribute-value
learner), the use of an ILP learner has several advantages:

e No data preprocessing is needed: the data can be kept in their original,
multi-relational format. This was especially advantageous for us because
the experiments described here are part of a broader range of exper-
iments, many of which would demand different and extensive prepro-
cessing steps.

e Prolog offers the same querying capabilities as relational databases, which
allows for non-trivial inspection of the data (e.g., counting the number
of times a biological measurement is accompanied by at least 3 physico-
chemical measurements during the last 2 months, ...)

The main disadvantage of ILP systems, as compared to attribute-value learners,
is that they are less efficient; however, efficiency was not our prime concern
here, and the inefficiency of ILP was not prohibitive and amply compensated
for by the additional flexibility it offers.

5 Experiments

For all these experiments, TILDE was run with default parameters, except one
parameter controlling the minimal number of instances in each leaf which was 20.
From preliminary experiments this value was found to combine good predictive
accuracy with reasonable tree size. All results reported here are obtained using
10-fold cross-validations.

5.1 Multi-valued Predictions

For this experiment we have run TILDE with two settings: predicting a single
variable at a time (the results of which serve as a reference for the other setting),



all variables single variable single variable

(TILDE) (TILDE) (M5.1)

variable r r r

T 0.482 0.563 0.561
pH 0.353 0.356 0.397
conduct. 0.538 0.464 0.539
O, 0.513 0.523 0.484
Og-sat. 0.459 0.460 0.424
CO» 0.407 0.335 0.405
hardness 0.496 0.475 0.475
NO- 0.330 0.417 0.373
NOs; 0.265 0.349 0.352
NH,4 0.500 0.489 0.664
PO, 0.441 0.445 0.461
Cl 0.603 0.602 0.570
SiO4 0.369 0.400 0.411
KMnO4 0.509 0.435 0.546
K2Crz07 0.561 0.514 0.602
BOD 0.640 0.605 0.652
avg 0.467 0.465 0.498

Table 1. Comparison of predictive quality of a single tree predicting all variables at
once with that of a set of 16 different trees, each predicting one variable.

and predicting all variables simultaneously. When predicting all variables at once,
the variables were first standardised (z, = (z — p,) /0, with p, the mean and o,
the standard devation); because standardised variables always have a variance of
1, this ensures that all target variables will be considered equally important for
the prediction.® As a bonus the results are more interpretable for non-experts;
e.g., “BOD=16.0" may not tell a non-expert much, but a standardised score of
+1 always means “relatively high”.

The predictive quality of the tree for each single variable is measured as
the correlation of the predictions with the actual values. Table 1 shows these
correlations; correlations previously obtained with M5.1 [9] are given as reference.

It is clear from the table that overall, the multi-prediction tree performs ap-
proximately as well as the set of 16 single trees. For a few variables there is a clear
decrease in predictive performance (T, NO5, NO3), but surprisingly this effect
is compensated for by the fact that some variables are predicted more accur-
ately when they are predicted together with other variables (conductivity, COa,
KMnOy,). A possible explanation for this is that when the variables to be pre-
dicted are not independent, they contain mutual information about one another

5 Since the system minimises total variance, i.e. the sum of the variances of each single
variable, the “weight” of a single variable is proportional to its variance; variables
with small variance would not be considered important because reducing their vari-
ance would result in an insignificant reduction of the total variance.



Chironomus thummi

Chlorellavulgaris

T=0.0305434
pH=-0.868026
cond=1.88505
02=-1.66761
02s=-1.77512
:1305:1-50212 o7 T=0.637616
ardness=1.. —.
NO2=0.78751 pH=0.790306
N03=0.309126 Cond=0.734063 <5
02=-1.17917
NH4=2.30423 025at=-0.942371
PO4=1.38143 CO2=0,603914 Gammarus fossarum
C1=1.46933 hardness=0.855631
S02=1.30734 NO2=1.57007
KMn04=1.09387 NO3=-0.250572 >=1 <1
K2Cr207=1.40614 NHA=0.510661
BOD=123197 PO4=0.247388
Cl=0.530256 T=-0.145121 T=-0.0308557
S02-0171444 pH=-0.0213303 pH=-0.600129
KMnO4=0.526165 €oNd=0.119256 cond=1.57447
K2Cr207-0561380 | | 02=-0.274239 02=-1.30586
BOD=0.630086 0O2s01=-0.33789 O2s1=-1.38338
————————— | C02=-0.182526 C02=0.630138
hardness=0.129298 hardness=1.55244
NO2=0.164533 NO2=0.839683
NO3=0.254751 NO3=-0.272559
NH4=0.0355588 NH4=1.01863
PO4=0.00090593 PO4=1.11101
Cl=-0.024326 C1=0.9249
Si02=-0.229698 Si02=0.717223
KMn0O4=0.460244 KMn0O4=1.74707
K2Cr207=0.324544 | | K2Cr207=1.40825
BOD=0.187718 BOD=0.998845

Fig. 1. An example of a clustering tree.

that may help the learner distinguish random fluctuations in a single variable
from structural fluctuations. The table also shows that TILDE’s performance is
slightly worse than that of M5.1 (possibly because of different settings).

Note that because of the constant “minimal coverage” of 20, all trees have
approximately equal size (about 35 nodes). This means that when predicting all
16 variables at once, the total theory size is effectively reduced by a factor of
16 when using the multi-prediction approach, with predictive accuracy suffering
only very slightly from this.

Figure 1 shows the first levels of a multi-prediction tree that was induced
during the experiment. The tree indicates, e.g., that Chironomus thummsi has
the greatest overall influence on the physico-chemical properties; its occurrence
indicates low oxygen (saturation) levels, high conductivity, very high ammonia
concentration, etc.

5.2 Predicting past values

In this experiment we try to predict the average, maximal and minimal values
of physico-chemical parameters over a period of three months before the date
when the biological sample was taken. Although three months is a relatively long



available measurements
months2 3 4 5

2 53690 6 O
3 672 311 77 2
4 759 444 147 21

Table 2. Overview of the number of SI measurements for which at least =z
physico-chemical measurements have been taken during the y months preceding the
date of the SI measurement.

minimum maximum average current

variable 7 T r T

T 0.444 0.591 0.578 0.563
pH 0.351 0.316 0.355 0.356
conduct. 0.410 0.405 0.443 0.464
O, 0.540 0.435 0.514 0.523

Og-sat. 0.522 0.388 0.472 0.460
CO» 0.359 0.401 0.403 0.335
hardness 0.412 0.451 0.497 0.475
NO, 0.236 0.446 0.416 0.417
NOs; 0.313 0.359 0.336 0.349
NH, 0.373 0.494 0.475 0.489
PO, 0.271 0.400 0.418 0.445
Cl 0.513 0.311 0.413 0.602
SiO» 0.344 0.432 0.394 0.400
KMnO, 0.524 0.461 0.526  0.435
K2Cr20O7 0.627 0.529 0.697 0.514
BOD 0.609 0.575 0.653 0.605
avg 0.428 0.437 0.474 0.465

Table 3. Comparison of predictive quality of trees when predicting the current value
of a property vs. its minimal, maximal or average value during the last three months.

period (according to our domain expert 1 to 2 months would be optimal), for
this data set we faced the problem that physico-chemical measurements are not
always available for each month; in some cases the only measurement available
for the last 5 months is taken on the same day as the biological measurement,
which means that the minimal, maximal and average value over the period of
time are equal to the current value. We quantify the problem in Table 2. This
table shows an overview of the number of biological samples for which at least
z physico-chemical measurements were available in the y months preceding the
biological sample. By using a period of 3 months we ensure that for a reasonably-
sized subset of the data set at least 2 or 3 measurements are available.

Results of this experiment are shown in Table 3. This table confirms most
of the expert’s expectations. For instance, for oxygen it was expected that the
minimal oxygen level during a period of time, rather than its average or max-
imum, is most related to the biological data. Especially for O5-saturation, and to



a lesser extent for Oy, this is confirmed by the experiment. The expectation that
for chemical oxygen demand (KMnQ,, K5Cry07), the average value would be
most important (because this parameter has a cumulative effect) is confirmed,
although the minimal value also shows high correlation, which was not expected.

5.3 Discussion

Both experiments show the potential of decision tree learning for gaining in-
sight in the water quality domain. The first experiment shows that simultan-
eous prediction of multiple parameters is feasible and increases the potential of
decision trees for providing compact, interpretable theories. The second exper-
iments confirms that it is possible to predict past properties of water from its
current biological properties; moreover the results may lead to more insight into
the mechanisms through which physico-chemical properties influence biological
properties over a longer period of time.

6 Conclusions

We have used the decision tree learner TILDE to test two hypotheses: a) is
it feasible to predict many properties at once with a single decision tree; b) is
it feasible to predict past chemical properties from current biological data? In
both cases the answer is positive. Our experiments globally confirm the expert’s
expectations, but here and there also contain some unexpected and interesting
results. From the point of view of the water quality domain, some insight has
been gained in the interdependencies of physico-chemical parameters and the way
in which the properties of the water in the recent past can be predicted from
current biological data. From the machine learning point of view, the feasability
and potential advantages of a hitherto little explored technique, simultaneous
prediction of multiple variables, has been demonstrated.

Related work in the machine learning domain includes the use of (descriptive)
clustering systems for prediction of multiple variables [12]. In the application
domain, we mention [9], [10] and [11] (on which this work builds further), and
[4] which discusses a broad range of preliminary experiments in this domain.

There are many opportunities for further work: first of all some of the res-
ults described in this paper need to be studied in more detail by domain experts;
secondly, simultaneous prediction of subsets of the 16 used variables, or of a mix-
ture of current and past values, seems an interesting topic for further research;
thirdly, many of the preliminary experiments described in [4], investigating other
kinds of relationships in this domain, deserve further study.
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