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Abstract

Symbolic machine learning methods induce explicitly represented symbolic models from data. The models can thus
be inspected, modified, used and verified by human experts and have the potential to become part of the knowledge
in the respective application domain. Applications of symbolic machine learning methods to ecological modelling
problems are numerous and varied, ranging from modelling algal growth in lagoons and lakes (e.g. in the Venice
lagoon) to predicting biodegradation rates for chemicals. This paper gives an overview of machine learning
applications to ecological modelling, focussing on applications of symbolic machine learning and giving more detailed
accounts of several such applications. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Machine learning; Decision trees; Equation discovery; Population dynamics; Habitat suitability; Environmental monitor-

ing

1. Introduction

Symbolic machine learning methods induce ex-
plicitly represented symbolic models from data.
This is in contrast to methods like neural net-
works, which most often produce black-box mod-
els. Models constructed by symbolic machine
learning can be inspected, modified, used and
verified by human experts and have the potential
to become part of the knowledge in the respective
application domain. Symbolic machine learning
methods include the induction of decision trees
for classification and regression, algebraic, differ-
ential and partial differential equations, and clas-
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sification rules, including relational rules (also
known as inductive logic programming). They
heuristically search the space of possible models
to identify models appropriate for the data at
hand.

Applications of symbolic machine learning
methods to ecological modelling problems are
numerous and varied. They range from modelling
algal growth in lagoons and lakes (e.g. in the
Venice lagoon), through modelling interactions of
a red deer population with the new growth in a

forest, to habitat-suitability modelling for
pronghorn  antelopes, brown bears, and
Collembola.

This paper gives an overview of machine learn-
ing applications to ecological modelling, focussing
on applications of symbolic machine learning. It
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gives more detailed accounts of several such appli-
cations. Symbolic machine learning methods are
not described in detail but rather illustrated
through the presented applications.

2. Applications in modelling population dynamics

Ecological modelling is concerned with the de-
velopment of models of the relationships among
members of living communities and between those
communities and their abiotic environment. These
models can then be used to better understand the
domain at hand or to predict the behavior of the
studied communities and thus support decision
making for environmental management. Typical
modelling topics are population dynamics of sev-
eral interacting species and habitat suitability for a
given species (or higher taxonomic unit).

Population dynamics studies the behavior of a
given community of living organisms (population)
over time, usually taking into account abiotic
factors and other living communities in the envi-
ronment. For example, one might study the popu-
lation of phytoplankton in a given lake
(Todorovski et al., 1998) and its relation to water
temperature, concentrations of nutrients/pollu-
tants (such as nitrogen and phosphorus) and the
biomass of zooplankton (which feeds on phyto-
plankton). The modelling formalism most often
used by ecological experts is the formalism of
differential equations, which describe the change
of state of a dynamic system over time. A typical
approach to modelling population dynamics is as
follows: an ecological expert writes a set of differ-
ential equations that capture the most important
relationships in the domain. These are often linear
differential equations. The coefficients of these
equations are then determined (calibrated) using
measured data.

Relationships among living communities and
their abiotic environment can be highly nonlinear.
Population dynamics (and other ecological) mod-
els have to reflect this to be realistic. This has
caused a surge of interest in the use of techniques
such as neural networks for ecological modelling
(Lek and Guegan, 1999). Measured data are used
to train a neural network which can then be used

to predict future behavior of the studied popula-
tion. In this fashion, population dynamics of algae
(Recknagel et al., 1997), aquatic fauna (Schleiter
et al., 1999), fish (Brosse et al., 1999), phytoplank-
ton (Scardi and Harding, 1999) and zooplankton
(Aoki et al., 1999) — among others — have been
modelled.

Symbolic machine learning has also been used
to model population dynamics. Systems for dis-
covery of differential equations have proved most
useful in this respect (DZeroski et al., 1999b), since
differential equations are the prevailing formalism
used for ecological modelling. Algal growth has
been modelled for the Lagoon of Venice (Kom-
pare and DzZeroski, 1995; Kompare et al., 1997b)
and the Slovenian Lake of Bled (Kompare et al.,
1997a), as well as phytoplankton growth for the
Danish Lake Glumsoe (Todorovski et al., 1998).

2.1. Case study: modelling algal growth in the
Lagoon of Venice

The beautiful and shallow Lagoon of Venice is
under heavy pollution stress due to agricultural
activities (use of fertilizers) on the neighboring
mainland. Pollutants are food (nutrients) for al-
gae, which have on occasions grown excessively to
the point of suffocating themselves, then decayed
and caused unpleasant odors (noticed also by the
tourists). Models of algal growth are needed to
support environmental management decisions and
answer questions such as: ‘would a reduction in
the use of phosphorus-rich fertilizers reduce algal
growth?

Kompare and Dzeroski (1995) and Kompare et
al. (1997b) use regression trees and equation dis-
covery to model the growth of the dominant
species of algae (Ulva rigida) in the lagoon of
Venice in relation to water temperature, dissolved
nitrogen and phosphorus and dissolved oxygen.
The trees give a rough picture of the relative
importance of the factors influencing algal growth
(cf. Fig. 1), revealing that nitrogen is the limiting
factor (and thus providing a negative answer to
the question in the above paragraph). The equa-
tions discovered, on the other hand, give better
prediction of the peaks and crashes of algal
biomass.
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Fig. 1. A regression tree for predicting algal growth, i.e. change in biomass. Bio(¢), DO(t) and NO;(¢) stand for the concentrations
of biomass, dissolved oxygen and nitrates at time ¢. The change in biomass ABio(¢) is defined as Bio(z) — Bio(z — 1).

Severe problems of data quality were encoun-
tered in this application.

1. Dissolved oxygen, for example, was measured
at the water surface approximately at noon
(when oxygen is produced by photosynthesis
and is plentiful) and does not reveal potential
anoxic conditions (which might occur at night)
— which it was supposed to reveal.

2. Measurement errors of algal biomass were es-
timated to be quite large by the domain ex-
perts (up to 50% relative error).

3. Finally, winds were not taken into account:
these might move algae away from the sam-
pling stations and cause huge variations in the
observed biomass values.

2.2. Case study: phytoplankton growth in Lake
Glumsoe

The shallow Lake Glumsoe is situated in a
sub-glacial valley in Denmark. It has received
mechanically-biologically treated waste water, as
well as non-point source pollution due to agricul-
tural activities in the surrounding area. High con-
centration of pollutants (food for phytoplankton)
lead to excessive growth of phytoplankton and
consequently no submerged vegetation, due to
low transparency of the water and oxygen deficit
(anoxia) at the bottom of the lake. It was thus
important to have a good model of phytoplank-

ton growth to support environmental manage-
ment decisions.

We used machine learning methods for the
discovery of differential equations (Dzeroski et
al., 1999b) to relate phytoplankton (phyt) growth
to water temperature (femp), nutrient concentra-
tions (nitrogen (nitro) and phosphorus (phosp))
and zooplankton concentration (zoo) (Todorovski
et al., 1998). Some elementary knowledge on pop-
ulation dynamics modelling was taken into ac-
count during the discovery process. This domain
knowledge tells us that a term called Monod’s
term, which has the form Nutrient/(Nutrient +
constant) is a reasonable term to be expected in
differential equations describing the growth of an
organism that feeds on Nutrient. It describes the
saturation of the population of organisms with
the nutrient.

The discovered model is given in Table 1. Here
phyt denotes the rate of change of phytoplankton
concentration. The model reveals that phosphorus
is the limiting nutrient for phytoplankton growth,
as it includes a Monod term with phosphorus as a
nutrient. This model made better predictions than
a linear model, which has the form

phyt = —5.41 — 0.0439 - phyt — 13.5 - nitro
—38.2 - zoo + 93.9 - phosp + 3.20 - temp.

It was also more understandable to domain
experts: the first term describes phytoplankton
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Table 1
A model for phytoplankton growth in Lake Glumsoe

pliyt = 0.553 - temp - phyt -

phosp
0.0264 + phosp

—4.35 - phyt — 8.67 - phyt - zo0

growth, where temperature and phosphorus are

limiting factors. The last two terms describe phy-

toplankton death and the feeding of zooplankton
on phytoplankton.

The following issues were raised in this
application:

1. Data quantity and preprocessing: measure-
ments were only made at 14 time points during
two months (once weekly). Some preprocessing/
interpolation was thus necessary to generate
enough data for discovering differential equa-
tions.

2. Data quality: ecological experts often have poor
understanding of modelling concepts, which
strongly influences the way data are collected.
An electrical engineer with knowledge of con-
trol theory would know much better that sam-
pling frequency has to be increased at times
when the system under study has faster dynam-
ics (e.g. at peaks of phytoplankton growth).

3. The need for taking into account domain
knowledge during the machine learning process:
this can compensate to a certain extent for poor
data quality and quantity (as was the case in this
application). This issue is of great importance,
yet few machine learning methods allow for the
provision of domain knowledge by experts.

2.3. Case study: modelling the interactions of a
red deer population

Here we studied the interactions among a popu-
lation of red deer and new forest growth in a
natural regenerated forest in Slovenia. Ideally,
foresters would like to keep in balance the size of

the deer population and the rate of regeneration
of the forest: if the deer population is large, so are
the browsing rates of new forest growth and
regeneration slows down. Understanding the rela-
tionship between the two is crucial for managing
the balance. Our study has shown that meteoro-
logical parameters strongly influence this relation-
ship and have to be taken into account.

A preliminary study using regression trees to
model the interactions was performed by
Stankovski et al. (1998). Here we summarize the
results of a follow-up study that used a slightly
larger dataset, cleaner data, and more reliable
methods of regression tree induction (Debeljak et
al., 1999). The induced models show that the
degree of browsing for maple (the preferred
browse species of red deer) depends directly on
the size of the population. The degree of beech
browsing, on the other hand, was most strongly
influenced by meteorological parameters, i.e. win-
ter monthly quantity of precipitation (snow) and
average monthly minimal diurnal air temperature
(cf. Fig. 2). While beech is not the preferred
browse species of red deer, it is consumed year-
long; it is also elastic and snow-resistant and thus
more exposed to the reach of red deer even in
deeper snow.

The following issues were raised by this
application:

1. Data quantity: the size of the deer population
and browsing rates are only estimated once a
year. Even though we were dealing with 18 years
worth of data, these were still only 18 data
points.
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Fig. 2. A regression tree for predicting the degree of beech browsing.

2. Data quality: some of the data collected in this
domain were unreliable and had to be cleaned/
corrected/removed before obtaining reasonable
results.

3. Missing information: the outcome of the data
analysis process suggested that measuring win-
ter and summer browsing rates separately
would greatly improve the models. This infor-
mation was not measured and it couldn’t be
reconstructed from the currently measured
data, but should be measured in the future.

3. Applications in habitat-suitability modelling

Habitat-suitability modelling is closely related to
population dynamics modelling. Typically, the ef-
fect of the abiotic characteristics of the habitat on
the presence, abundance or diversity of a given
taxonomic group of organisms is studied. For
example, one might study the influence of soil
characteristics, such as soil temperature, water
content, and proportion of mineral soil on the
abundance and species richness of Collembola
(springtails), the most abundant insects in soil
(Lek-Ang et al., 1999). The study uses neural
networks to build a number of predictive models
for collembolan diversity. Another study of habitat
suitability modelling by neural networks is given by
Ozesmi and Ozesmi (1999).

Several habitat-suitability modelling applica-
tions of other data mining methods are surveyed by
Fielding (1999b). Fielding (1999a) applies a number
of methods, including discriminant analysis, logis-
tic regression, neural networks and genetic al-
gorithms, to predict nesting sites for golden eagles.
Bell (1999) uses decision trees to describe the winter
habitat of pronghorn antelope. Jeffers (1999) uses
a genetic algorithm to discover rules that describe
habitat preferences for aquatic species in British
rivers.

The author has been involved in a number of
habitat suitability studies using rule induction and
decision trees. Rule induction was used to relate the
presence or absence of a number of species in
Slovenian rivers to physical and chemical proper-
ties of river water, such as temperature, dissolved
oxygen, pollutant concentrations, chemical oxygen
demand, etc. (Dzeroski and Grbovi¢, 1995). Re-
gression trees were used to study the influence of
soil characteristics, such as soil texture, moisture
and acidity on the abundance (total number of
individuals) and diversity (number of species) of
Collembola (springtails) (Kampichler et al., 2000).
We have also used decision trees to model habitat
suitability for red deer in Slovenian forests using
GIS data, such as elevation, slope, and forest
composition (Debeljak et al., 2001). Finally, deci-
sion trees that model habitat suitability for brown
bears have been induced from GIS data and data
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on brown bear sightings (Kobler and Adamic,
1999). The model has then been used to identify the
most suitable locations for the construction of
wildlife bridges/underpasses that would enable the
bears to safely cross the highway passing through
the bear habitat.

4. Applications in environmental monitoring and
protection

A typical national environmental protection
agency aims to ‘protect public health and to safe-
guard and improve the natural environment’. It sets
and enforces national pollution-control standards.
To this end, it performs environmental monitoring,
i.e. ‘periodic or continuous surveillance or testing
to determine the level of compliance with statutory
requirements and/or pollutant levels in various
media or in humans, plants, and animals’ (US EPA
Terms, 2000).

Given this context, environmental protection
includes, e.g. biological and chemical monitoring of
river water quality, which further includes regular
sampling (field work) and analysis/interpretation
(typically laboratory work) of the samples in terms
of, e.g. water quality classes. It also includes testing
chemical compounds for toxicity and biodegrad-
ability. Finally, it includes the study of effects of
various pollutants on the health of the population
in a given region (environmental epidemiology).

4.1. Environmental monitoring

Several machine learning methods have been
used to interpret and classify samples of river water
into quality classes. Walley et al. (1992) and Ruck
et al. (1993) used Bayesian methods and neural
networks respectively to classify river water quality,
and Walley and Dzeroski (1996) compared
Bayesian classification, neural networks and regres-
sion trees to classify biological samples taken from
British rivers. DZeroski and Grbovi¢ (1995) apply
rule induction to classify biological, as well as
chemical, samples taken from Slovenian rivers in
terms of water quality classes. Walley et al. (2000)
use unsupervised neural networks to diagnose river
quality from biological and environmental data.

4.2. Case study: from biological communities to
chemical properties of river water

Physical and chemical properties give a specific
picture of river water quality at a particular point
in time, while the biota (living organisms) act as
continuous monitors and give a more general
picture of water quality over a period of time. This
has increased the relative importance of biological
methods for monitoring water quality. The prob-
lem of inferring the chemical properties from the
biota is practically relevant, especially in countries
where extensive biological monitoring is con-
ducted. Regular monitoring for a very wide range
of chemical pollutants would be very expensive, if
not impossible. On the other hand, the state of the
biota can reflect an increase in pollution and
indicate likely causes/sources.

We used data on biological and chemical samples
from Slovenian rivers collected through the moni-
toring program of the Hydrometeorological Insti-
tute of Slovenia (Dzeroski et al., 2000). Pairs of
biological and chemical samples that were taken at
the same site at approximately the same time were
used: there were 1061 such pairs, collected over 6
years. Data on biological samples list all the spe-
cies/taxa present at the site and their abundances.
Chemical samples contain the measured values of
16 physical an chemical parameters: biological
oxygen demand (BOD), chlorine concentration
(Cl), CO, concentration, electrical conductivity,
chemical oxygen demand COD (K,Cr,0O; and
KMnO,), concentrations of ammonia (NH,), NO,,
NO; and dissolved oxygen (O,), alkalinity (pH),
PO,, oxygen saturation, SiO,, water temperature,
and total hardness.

We used regression tree induction to learn pre-
dictive models for each of the 16 parameters
(Dzeroski et al., 2000) separately. The models for
the most important indicators of pollution (ammo-
nia, biological oxygen demand, chemical oxygen
demand) had the best predictive power. We also
used clustering trees (Blockeel et al., 1998) to
predict the values for all 16 parameters at the same
time (Blockeel et al., 1999): this actually improved
the accuracy as compared to individual predictions
for each of the 16 parameters.

An example clustering tree is shown in Fig. 3. In
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Fig. 3. A clustering tree for simultaneous prediction of multiple chemical parameters for biological data.

the leftmost leaf (Chironomus tummi > 3), highly
increased values are predicted for NH, (2.3 S.D.

above the average), as well as for BOD, COD 2.

(K,Cr,0; and KMnO,), SiO,, Cl, PO,, CO,, and
conductivity. On the other hand, highly decreased
values are predicted for dissolved oxygen concen-
tration and oxygen saturation (1.66 and 1.77 S.D.
below average). This indicates heavy pollution and

is consistent with expert knowledge, as Chi- 3.

ronomus tummi is an indicator of heavily polluted
waters.

The following issues were raised in this
application:
1. Varying length data records: biological samples

formation or careful feature selection are thus
needed.

Aggregating data: we used detailed data, where
organisms were identified to species level, and
aggregated data, where species from the same
family were grouped together. Domain knowl-
edge on the taxonomy of river water organisms
was used.

Making multiple predictions: most machine
learning methods for prediction only deal with
one target variable. In many cases, however, it
might be beneficial to try to predict several
interrelated variables simultaneously.

list all the species present. Depending on the site 4.3. Environmental impact of chemicals

and water quality, the number of taxa present
can vary. Methods for handling structural in-

Large numbers of hazardous organic chemicals
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are emitted into the environment from anthropo-
genic and natural sources. Extensive tests of the
impact of chemicals are expensive. For example, to
test chemicals for carcinogenicity (the capacity to
cause cancer), trials are typically performed on
rodents (long term rodent bioassays) that take
several years and hundreds of animals. It is thus
highly desirable to have reliable models that can be
used to both quantitatively and qualitatively de-
scribe the fate and behavior of compounds in the
environment (Peijnenburg and Damborsky, 1996).

Typically, linear regression would be used to
develop a so-called quantitative structure-activity
relationship (QSAR) model. A domain expert
chooses the features that are relevant to describe
the group of compounds studied (which is often
very small). As the group of compounds increases
and diversifies in terms of chemical structure, this
traditional approach becomes less and less
appropriate.

A number of machine learning methods has been
used to derive QSAR models for mutagenicity,
carcinogenicity and biodegradability. Here meth-
ods of inductive logic programming (ILP) are
suitable, since they can use structural information
and existing domain knowledge. ILP has been used
to build a predictive theory for mutagenicity, the
capacity to cause genetic change which is relevant
to carcinogenicity (Srinivasan et al., 1996). A set of
structurally diverse aromatic and heteroaromatic
nitro-compounds (some of which are present in car
exhaust gasses) was studied, and a new structural
alert for high mutagenicity was discovered. ILP was
also used to predict the carcinogenicity of a diverse
set of chemical compounds (Srinivasan et al., 1997),
yielding the most accurate predictor that did not
use data from biological tests on rodents in an open
competition conducted within the US National
Toxicology Program.

ILP has been also used to predict the biodegrad-
ability of compounds (DZeroski et al., 1999a, see
below). Neural networks have been used to develop
QSAR models for predicting biodegradability of
organic contaminants in soil systems (Govind et al.,
1996). Damborsky et al. (1996) use clustering in
combination with linear regression to develop mod-
els for the dehalogenation of haloaliphatic com-
pounds. Finally, rule induction was used by

Gamberger et al. (1996) to develop biodegradation
models for two sets of chemicals.

Applications of machine learning methods to
relate exposure to pollution and human health are
also starting to appear. Konti¢ and DZeroski (1997)
study the influence of exposure to polluted air (as
a consequence of coal mining) and other environ-
mental/social factors on acute respiratory diseases
in children in Slovakia. Rajkumar et al. (2000) use
neural networks to assess health risk through
inhalation exposure to benzene from vehicular
emissions (car exhaust gasses).

4.4. Case study: predicting the biodegradability of
compounds

We used a database of 328 structurally diverse
and widely used (commercial) chemicals described
in a handbook of degradation rates. Complete data
on the structure of the chemicals (SMILES nota-
tion) was available, as well as data on the overall,
biotic and abiotic degradation rates in four envi-
ronmental compartments (soil, air, surface water
and ground water). We built models for biotic
degradation in surface water, predicting the loga-
rithm of the half-life time of aqueous biodegrada-
tion. Half-life times were measured for some
compounds and estimated by experts for others: in
the latter case, an upper and a lower bound were
given and we took the arithmetic mean of these.

We used several propositional and ILP methods
for decision tree, regression tree and rule induction.
In addition to a few global features, such as
molecular weight, the main information used for
learning was the data on the structure of com-
pounds, i.e. the atoms within a molecule and the
connections/bonds between them. Domain knowl-
edge about a variety of functional groups and
substructures was used. ILP systems use this data
directly, while propositional systems use features
derived from it, which represent the compounds’
structure approximately, but not completely. Sev-
eral of the derived models perform better than a
state-of-the-art biodegradability prediction system
based on linear regression.

An example rule for predicting biodegradability
is given in Table 2. Note that this rule is relational,
since it makes use of the relations ‘contains’ be-
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Table 2
A relational rule for predicting the biodegradability of a
compound

A compound M degrades fast IF

M contains an atom Al AND

Atom Al is a nitrogen atom AND

Atom Al is connected to atom A2 with bond B AND
Bond B is an aromatic bond AND

The molecular weight of M is less than 110 units AND
The log P value (hydrophobicity) of M is positive.

tween a compound and its components (in this case
an atom) and ‘is connected to’ between atoms.
Two important issues were raised here:

1. The need to handle structural information,
i.e. information on the structure of chemi-
cals. The natural representations of chemical
structures are not straightforward to squeeze
into a fixed-width-table.

2. The need for prior/domain knowledge:
chunks of knowledge defining functional
groups and substructures are essential for
good performance.

ILP methods provide facilities for using both
types of information directly.

5. Conclusion

Symbolic methods have been successfully ap-
plied to many problems in environmental sci-
ence, engineering and management. Of the case
studies presented here, the results of applying
symbolic machine learning methods are most di-
rectly relevant to practice in the red deer popu-
lation modelling case.

These applications have also raised a number
of issues of concern to developers of symbolic
machine learning methods. These include prob-
lems of data quantity (handling large datasets,
generalize from small datasets), data quality
(handling missing data, noisy data), and han-
dling nonstandard learning tasks (where the
data do not necessarily reside in a single fixed-
width table, e.g. information on chemical struc-
tures, images). Especially important is the
problem of using existing domain knowledge in
the learning process.

As demonstrated by the case studies pre-
sented, models constructed by symbolic machine
learning can be inspected, modified, used and
verified by human experts. They have the poten-
tial to become part of the knowledge in the re-
spective application domain. Symbolic machine
learning methods thus hold much promise for
further applications in ecological modelling.
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